
Understanding Real World Indoor Scenes:
Geometry and Semantics

Ankur Handa

University of Cambridge and Imperial College London

October 16, 2016

Ankur Handa Understanding Real World Indoor Scenes: Geometry and Semantics



Outline

Background
SceneNet: Repository of Labelled Synthetic Indoor Scenes
Results on Semantic Segmentation on Real World Data
gvnn: Neural Network Library for Geometric Vision
Future Ideas

Ankur Handa Understanding Real World Indoor Scenes: Geometry and Semantics



Outline

Background
SceneNet: Repository of Labelled Synthetic Indoor Scenes
Results on Semantic Segmentation on Real World Data
gvnn: Neural Network Library for Geometric Vision
Future Ideas

Ankur Handa Understanding Real World Indoor Scenes: Geometry and Semantics



Real-time tracking

Real-time tracking
High frame-rate seems better but.. today most advanced
real-time tracking is at 10–60Hz.
Why? Should we increase the frame-rate in real, modern
advanced tracking problems?

Outline
We are going to experimentally investigate this using
photo-realistic synthetic videos.
We are going to consider a particular problem of camera
tracking against a known 3D rigid model.
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Tracking

Isard and Blake, IJCV 1998 Davison, ICCV 2003

What is tracking?
Visual tracking means estimating model parameters
sequentially from video.
Tracking is different from “detection” independently applied
to each frame since we can benefit from prediction — which
gets better as frame-rate increases.
With prediction the search for correspondence can be local or
guided — prediction from the previous frame can reduce the
search for correspondences in the next frame.
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3D tracking by whole image alignment

DTAM, 2011 KinectFusion, 2011 Audras et al., 2011

Dense Tracking
We focus on camera tracking in mostly rigid scenes.
Dense alignment has active search embedded in it — the
basin of convergence is directly related to the baseline joining
the images. As the baseline decreases convergence is quicker.
Previous frame estimates for initialising the optimisation in
current frame. The higher the frame-rate, better the
initialisation.
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Dense 3D tracking: Background

Dense 3D image alignment: Set-up
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Dense 3D tracking: Background

Dense 3D image alignment: Initialisation
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Dense 3D tracking: Background

Dense 3D image alignment: Step 1
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Dense 3D tracking: Background

Dense 3D image alignment: Step 2
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Dense 3D tracking: Background

Dense 3D image alignment: Step 3
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Dense 3D tracking: Background

Dense 3D image alignment: Step 4
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Dense 3D tracking: Background

Dense 3D image alignment: Pyramids
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Dense 3D tracking: Background

Dense 3D image alignment: Pyramids
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Dense 3D tracking: Background

Dense 3D image alignment: Pyramids
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Dense 3D tracking: Background

Dense 3D image alignment: Pyramids
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Synthetic Scenes with POVRay

Why synthetic data?
We needed repeatable trajectories at different frame-rates.
We wanted fixed light settings to carry out the experiments.
Synthetic data allowed us to exercise full control on all
parameters.
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Experiments

Interpretations
We ran our dense tracker on trajectories taken at different
frame-rates.
Error is mean absolute distance between predicted and ground
truth pose.
We will get Pareto Fronts showing the optima choice of
frame-rate as a function of compute power.
Verified with real world experiments, PhD Thesis, 2013.
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Experiment assuming perfect lighting

Pareto front for mininum
error/minimum processing load
performance, highlighting with
numbers the frame-rates that are
optimal for each available budget.

Interpretations
No noise and no blur —
perfect lighting conditions.
For very low budget few
iterations on higher
frame-rates (800Hz) are
sufficient because baseline is
already small to achieve the
accuracy.
Crossovers as the budget
changes.
A combination of high
frame-rate and high
resolution works best as
budget increases.

Ankur Handa Understanding Real World Indoor Scenes: Geometry and Semantics



Realistic lighting conditions

Characterisations
Real lighting conditions mean there is noise and blur in
images.
The degree of noise depends on the shutter-time as well as
strength of scene lighting.
The strength of scene lighting is quantified by a parameter
α ∈ {1, 10, 40}.
Motion blur is generated by averaging the irradiance and not
image brightness — Debevec et al., SIGGRAPH 1997.
Matching of blurry image is against a blurry predicted image
obtained from the model.
Our tracking results will be again represented in the form of a
Pareto-Front.
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Bright lighting

α=40
Pareto Fronts for lighting level
α = 40. Numbers on the curves
show the frame-rates that can be
used to achieve the desired error
with a given computational budget.

Interpretations for α=40, bright
lighting

Images at high frame-rate
are darker but still good
enough SNR. Very similar to
perfect lighting conditions.
Very low-budget allows
200Hz due to short baseline.
160Hz best choice for
320x240 resolution. This is
where cross-overs occur.
Budget increase prefers high
frame-rate.
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Moderate lighting

α=10
Pareto Fronts for lighting level
α = 10.

Interpretations for α=10,
moderate lighting

200Hz is best choice for very
very low budget because
prediction is strong and few
iterations are sufficient.
A slight increases sees
100Hz as the best choice —
contrast to bright as well as
perfect lighting conditions.
Best choice of frame-rates
shift to slightly lower values
compared to bright lighting.
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Low lighting

α=1
Pareto Fronts for lighting level
α = 1. Vision in very dark scenes.

Interpretations for α=1, low
lighting

High frame-rates pitch black
and no gradient information.
Pareto-Front does not
feature high frame-rates like
200Hz at all.
80Hz best choice for low
budget.
Overall tracking quality is
much lower.
Also takes more time to
converge.
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Discussion

Discussion
Given perfect lighting condition and therefore a high
signal-to-noise ratio (SNR), the highest accuracy is achieved
using a combination of high frame-rate and high resolution.
Using a realistic camera model, there is an optimal frame-rate
for given lighting conditions due to trade-off between SNR
and motion blur.
Realistic conditions mean that there is a combination of
optimal frame-rate and high resolution for accuracy.
We cannot separate resolution from frame-rate given the
nature of camera tracking algorithm.
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More synthetic scenes with POVRay

Where can large scale synthetic dataset be useful?
Perfect instance segmentation and semantic segmentation
ground truth.
Getting perfect ground truth poses, and depth and 3D.
Ground truth for transparent objects and surfaces.
Physics?
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Semantic segmentation of Indoor scenes

What is the goal?
Given enough training data we would like to segment 3D
scenes in real-time.
Overlay the per-pixel segmentations onto the 3D map.
Previous scenes we looked at took a long time to render —
RGB rendering is very time consuming.
We decided on depth based semantic segmentation here
mainly to understand the role of geometry. We will look into
RGB later.
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Semantic segmentation of Indoor scenes

How do we get enough training data?
Real world datasets are limited in size e.g. NYUv2 and SUN
RGB-D have 795 and 5K images for training respectively.
We can leverage computer graphics to generate the desired
data.
There are lots of CAD repositories of objects available but
none contains scenes.
We put together a repository of labelled 3D scenes called
SceneNet and train per-pixel segmentation on synthetic data.
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SceneNet

Repository of labelled 3D synthetic scenes.

Hosted at http://robotvault.bitbucket.org
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SceneNet

SceneNet Basis Scenes
Room Type Number of Scenes
Living Room 10

Bedroom 11
Office 15

Kitchens 11
Bathrooms 10

In total we have 57 very detailed scenes with about 3700 objects.
We build upon these scenes to create unlimited number of scenes
later for large scale training data.
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SceneNet

A very detailed living room. Each object in this scene is labelled
directly in 3D.

Ankur Handa Understanding Real World Indoor Scenes: Geometry and Semantics



SceneNet

dimensions: 27x25x2.7m3
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Generating Unlimited Number of Synthetic Scenes

Generating indoor scenes as energy minimisation problem
SceneNet is still very limited sized dataset with 57 scenes.
We would like to have potentially unlimited scenes with lots of
variety and shapes.
However.... we could use layouts of SceneNet and the object
co-occurrence statistics, i.e. which objects likely co-occur
together.
We can then sample objects from object repositories like
ModelNet and arrange them according to these
co-occurrence statistics to create more scenes.
We empirically scale the ModelNet CAD models to metric
space i.e. chairs should be ∼ 0.8-1m in height.
Placing objects in the scene could be turned into an energy
minimisation problem.
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Generating Unlimited Number of Synthetic Scenes

Generating indoor scenes as energy minimisation problem
Bounding box constraint.

Each object must maintain a safe distance from the other.
Pairwise Constraint.

Objects that co-occur should not be more than a fixed
distance from each other, e.g. beds and nightstands

Visibility Constraint.
Objects with visibility constraint must not have anything
joining their line of sight joining their centers, e.g. sofa,table
and TV must not having anything in between them.

Distance to Wall Constraint.
Some objects are more likely to occur next to walls e.g.
cupboards, sofa etc.

Use simulated annealing to solve this energy minimisation
problem.
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Generating Unlimited Number of Synthetic Scenes
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Co-occurrence statistics of objects
from NYUv2 bedrooms.

Interpretations
Heat-map of object
co-occurrence.
Training sets in NYUv2 and
SceneNet basis scenes are
used to obtain these
statistics.
Shows that bed, picture,
pillow and nightstand
co-occur together.
We sample objects from
ModelNet and arrange
them using these object
co-occurrence statistics.
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Generating Unlimited Number of Synthetic Scenes

Random placement With Pairwise only All constraints

Constraints
Objects that co-occur in real world should be placed together,
e.g. beds and nightstands.
Visibility constraint - nothing in the line of sight between
sofa-table and TV.
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Generating Unlimited Number of Synthetic Scenes

Very simple scenes with curtains.
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Generating Unlimited Number of Synthetic Scenes

Common room obtained from hierarchically optimising chairs and
table combination.
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Generating Unlimited Number of Synthetic Scenes

Living Room. Note that the inset objects are from Stanford Scenes
and have been grouped together already.
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Generating Unlimited Number of Synthetic Scenes

Living Room. Grouped objects from Stanford Scenes.
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Generating Unlimited Number of Synthetic Scenes

Data Collection
Collecting trajectories with joy-stick (though we have
randomised them now).
Using OpenGL glReadPixels to obtain the depth as well as
ground truth labels.
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Generating Unlimited Number of Synthetic Scenes

Depth Height Angle with gravity

Assumptions
Here we only study the segmentation from just depth-data in
the form of DHA images i.e. depth, height from ground plane
and angle with gravity vector.
Allows us to study the effects of geometry in isolation.
Texturing takes time and needs careful photo-realistic
synthesis. But we have added a custom raytracer to study
RGB-D based segmentation now.
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Network Architecture

SegNet: [Badrinarayanan, Handa, and Cipolla, arXiv 2015]
Saves pooling indices explicitly in the encoder and passes on
to the decoder for upsampling.
Inspired by Ranzato et al., CVPR 2007.
Similar ideas emerged in DeconvNet from Hyeonwooh Noh et
al. ICCV2015 and Zhao et al. Stacked What-Where
Auto-encoders, arxiv2015.
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Carefully synthesising realistic depth-maps

Adding noise to depth-map Denoising depth-map Angle with gravity maps

Adapting synthetic data to match real world data
Synthetic depth-maps are injected with appropriate noise
models.
We then denoise these depth-maps to ensure that input
images look similar to the NYUv2 dataset.
Side by side comparison of synthetic bedroom with one of the
NYUv2 bedrooms.

Ankur Handa Understanding Real World Indoor Scenes: Geometry and Semantics



Outline

Background
SceneNet: Repository of Labelled Synthetic Indoor Scenes
Results on Semantic Segmentation on Real World Data
gvnn: Neural Network Library for Geometric Vision
Future Ideas

Ankur Handa Understanding Real World Indoor Scenes: Geometry and Semantics



Results on Semantic Segmentation on Real World Data

NYUv2 test images
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Results on Semantic Segmentation on Real World Data

Ground truth segmentation
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Results on Semantic Segmentation on Real World Data

Training on NYUv2 training set only
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Results on Semantic Segmentation on Real World Data

Training on SceneNet and fine-tuning on NYUv2
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Results on Semantic Segmentation on Real World Data

Training on NYUv2 only

Training on SceneNet and fine-tuning on NYUv2
What we learnt? [ICRA 2016, CVPR 2016]

Computer graphics is a great source for collecting data.
Depth based semantic segmentation allowed us to understand
the role of geometry.
We only used 10K synthetic frames in this experiment mainly
because of limited compute power.
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Results on Semantic Segmentation on Real World Data

What we learnt? [ICRA 2016, CVPR 2016]
We perform better than state-of-the-art on functional
categories of objects
Suggesting shape is a strong cue for segmentation.
We fall behind on objects that explicitly need RGB data.
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Results on Semantic Segmentation on Real World Data

What we learnt? [ICRA 2016, CVPR 2016]
We perform better than state-of-the-art on functional
categories of objects
Suggesting shape is a strong cue for segmentation.
We fall behind on objects that explicitly need RGB data.
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Results on Semantic Segmentation on Real World Data

What we learnt? [ICRA 2016, CVPR 2016]
We perform better than state-of-the-art on functional
categories of objects
Suggesting shape is a strong cue for segmentation.
We fall behind on objects that explicitly need RGB data.
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SemanticFusion Mccormac et al. 2016

Notes
Semantic mapping at the level of objects
Combines real-time 3D mapping system with a per-frame
CNN semantic predictions in a recursive bayesian loop.
Able to map large scale areas.
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Limitations

What we learnt? [ICRA 2016, CVPR 2016]
The cost functions are still primitive - per-pixel discrepancy
summed up assumes that pixels are independent. Maybe
better cost functions that take global context into account ala
discriminator in GANs can help.
Actually, we don’t need to segment the whole image at once -
attention can help?
Still hard to get sharp boundaries with segmentation
algorithms today.
Extracting thin structures is still very hard.
Benchmarking could be misleading...
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Attention based scene understanding

Ren and Zemel, arXiv May 2016.

Attention
Attention (and glimpses) based scene understanding.
We don’t need to segment the whole image at once.
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SceneNet 2.0 and Physics

Adding Physics
Since then we have extended SceneNet quite a lot.
Adding physics allows us to create scenes with arbitrary
clutter.
Placing pens and other small objects on tables is relatively
easy with physics.
We don’t want chairs always in upright positions. Physics
allows us to explore the space of poses of objects relatively
easy.
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SceneNet 2.0 and Raytracing

Adding Raytracing
ModelNet used in our previous experiment was not a big
repository.
Now, we use a much bigger repository, ShapeNets, to sample
objects.
Most CAD repositories do not have models in metric scales.
Use 3D bounding boxes in SUN RGB-D to get the metric
scales of objects.
Use physics to add clutter in the scenes.
Render RGB using a customised raytracer on GPU.
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SceneNet 2.0 and Raytracing

Probability of chair height Probability of desk height

Adding Raytracing
Use a much bigger repository, ShapeNets, to sample objects.
Most CAD repositories do not have models in metric scales.
Use 3D bounding boxes in SUN RGB-D to get the metric
scales of objects.
Use physics to add clutter in the scenes and render using a
customised raytracer on GPU.
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SceneNet 2.0 and Raytracing

Probability of bed height Probability of table height

Adding Raytracing
Use a much bigger repository, ShapeNets, to sample objects.
Most CAD repositories do not have models in metric scales.
Use 3D bounding boxes in SUN RGB-D to get the metric
scales of objects.
Use physics to add clutter in the scenes and render using a
customised raytracer on GPU.
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SceneNet 2.0 and Raytracing

Probability of cabinet height Probability of lamp height

Adding Raytracing
Use a much bigger repository, ShapeNets, to sample objects.
Most CAD repositories do not have models in metric scales.
Use 3D bounding boxes in SUN RGB-D to get the metric
scales of objects.
Use physics to add clutter in the scenes and render using a
customised raytracer on GPU.

Ankur Handa Understanding Real World Indoor Scenes: Geometry and Semantics



SceneNet 2.0 and Raytracing

Low-res on laptop High quality

Adding Raytracing
Sufficient Photorealism is desirable.
Depth sensors have limited range.
RGB is universal and allows us to model various different
cameras.
Need good approximation of shadows, lighting, and various
other global lighting artefacts.
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SceneNet 2.0 and Raytracing

Randomness
Textures on the layouts are randomised.
Object textures are from ShapeNets.
Random lighting.
Random positions of objects and random camera trajectories.
We have 2.5 million rendered images now and rendering.
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SceneNet 2.0 and Raytracing

Randomness
Textures on the layouts are randomised.
Object textures are from ShapeNets.
Random lighting.
Random positions of objects and random camera trajectories.
We have 2.5 million rendered images now and rendering.
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SceneNet 2.0 and Raytracing

Randomness
Textures on the layouts are randomised.
Object textures are from ShapeNets.
Random lighting.
Random positions of objects and random camera trajectories.
We have 2.5 million rendered images now and rendering.
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SceneNet 2.0 and Raytracing: High quality renders

Randomness
Textures on the layouts are randomised.
Object textures are from ShapeNets.
Random lighting.
Random positions of objects and random camera trajectories.
We have 2.5 million rendered images now and rendering.
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SceneNet 2.0 and Raytracing: High quality renders

Where can large scale synthetic dataset be useful?
Getting perfect ground truth poses, and depth and 3D and
physics?
Instance and semantic segmentation ground truth.
Optical flow ground truth for non-rigid scene understanding.
Ground truth for transparent objects and surfaces.
We are working on these problems now.
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gvnn: Geometric Vision with Neural Networks

What is gvnn?
A new library inspired by Spatial Transformer Networks
(STN).
Implemented in torch.
Includes various different transformations often used in
geometric computer vision.
These transformations are implemented as new layers that
allow backpropagation as in STN.
Brings together the domain knowledge in geometry within the
neural network.
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Different new layers in gvnn

What is gvnn?
Original Spatial Transformer (NIPS 2015) had 2D
transformations mainly.
Added SO3, SE3 and Sim3 layers for global transformation on
the image.
Optical flow, over-parameterised Optical flow, Slanted plane
disparity.
Pin-Hole Camera Projection layer.
Per-pixel SO3, SE3 and Sim3 for non-rigid registration.
Different robust M-estimators.
Very useful for 3D alignment, unsupervised warping with optic
flow or disparity and geometric invariance for place
recognition.

Ankur Handa Understanding Real World Indoor Scenes: Geometry and Semantics



Inspiration

Notes
Spatial transformer modules allow to add domain knowledge
into the network, Spatial Transformer Networks, NIPS15.
Self-supervised learning can provide general feature
representations Learning to see by moving, ICCV15.
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Global Transformations in gvnn

SO3 Layer (SE3 and Sim3 follow easily from here) for 3D Rotations

∂C
∂v = ∂C

∂R(v) ·
∂R(v)
∂v (1)

∂R(v)
∂vi

= vi [v]× + [v× (I− R)ei ]×
||v||2 R (2)

Notes
C is the cost function being minimised.
v = (v1, v2, v3) is the SO3 vector. Note the derivative is not
at vi ≈ 0 and ei is the i th column of the Identity matrix.
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Global Transformations in gvnn

Notes
C is the cost function being minimised.
v = (v1, v2, v3) is the SO3 vector. Note the derivative is not
at vi ≈ 0 and ei is the i th column of the Identity matrix.
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Global Transformations in gvnn

Notes
C is the cost function being minimised.
v = (v1, v2, v3) is the SO3 vector. Note the derivative is not
at vi ≈ 0 and ei is the i th column of the Identity matrix.
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Global Transformations in gvnn

(a) v = (0.2, 0.0, 0.0) (b) v = (0.0, 0.3, 0.0) (c) v = (0.0, 0.0, 0.4)

Notes
C is the cost function being minimised.
v = (v1, v2, v3) is the SO3 vector. Note the derivative is not
at vi ≈ 0 and ei is the i th column of the Identity matrix.
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Per-pixel 2D Transformations in gvnn

Optical flow and Over-parameterised Optical Flow

(
x ′
y′

)
=

(
x + tx
y + ty

)
(3)

(
x ′
y′

)
=

 a0 a1 a2

a3 a4 a5


 x

y
1

 (4)

Notes
Over-parameterised optical flow also needs extra
regularisation.
2D and 6D transformations per-pixel. Useful for warping
images (and unsupervised learning), Patraucean, et al.
ICLRW2016.
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Per-pixel 2D Transformations in gvnn

Optical flow warping with gvnn

(
x ′
y′

)
=

(
x + tx
y + ty

)
(5)

Useful for warping one image on top of other - learning optical
flow with a CNN.
Self-supervised learning, Patraucean, et al. ICLRW2016.
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Per-pixel 2D Transformations in gvnn

Optical flow warping with gvnn

(
x ′
y′

)
=

(
x + tx
y + ty

)
(6)

Useful for warping one image on top of other - learning optical
flow with a CNN.
Self-supervised learning, Patraucean, et al. ICLRW2016.
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Per-pixel 2D Transformations in gvnn

Disparity and Slated Plane disparity

(
x ′
y′

)
=

(
x + d

y

)
(7)

d = ax + by + c (8)

Notes
Fitting slanted planes at each pixel.
Again, very useful for warping images (and unsupervised
learning), Garg et al. ECCV2016.
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Per-pixel 2D Transformations in gvnn

Notes
Fitting slanted planes at each pixel.
Again, very useful for warping images (and unsupervised
learning), Garg et al. ECCV2016.
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Camera Projection Layer in gvnn

Pin Hole Camera Projection Layer

π

 u
v
w

 =

 fx u
w + px

fy v
w + py

 (9)

∂C
∂p = ∂C

∂π(p) ·
∂π(p)
∂p (10)

∂π

 u
v
w


∂

 u
v
w


=

 fx 1
w 0 −fx u

w2

0 fy 1
w −fy v

w2

 (11)

Useful in differentiable renderer ala OpenDR.
Reasoning from 3D to 2D.
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Camera Projection Layer in gvnn

Rezende et al., arXiv 2016

Notes
Useful in differentiable renderer ala OpenDR.
Reasoning from 3D to 2D.
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Non-rigid per-pixel transformation

Non-rigid registration for point clouds: 6DoF and 10DoF
Per-pixel 6DoF and 10DoF transformations.

 x ′i
y′i
z ′i

 = Ti


xi
yi
zi
1

 (12)

x′i = si(Ri(xi − pi) + pi) + ti (13)

Also useful for volumetric spatial transformers when using voxel
grid representation.
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Non-rigid per-pixel transformation

SE3-Nets Byravan and Fox, arXiv 2016

Non-rigid prediction
Useful for predicting the dynamics of the objects.

Ankur Handa Understanding Real World Indoor Scenes: Geometry and Semantics



M-estimators

Notes
Different M-estimators for robust outlier rejection.
Very useful when doing regression.
Implemented as layers in gvnn.
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Sanity Checks on End-to-End Image Registration (SO3)

Notes
General dense image registration with global transformation.
Can use optical flow/disparity for dense per-pixel image
registration either with a CNN or RNN.
Initial experiments with supervised learning.
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Sanity Checks on End-to-End Image Registration (SO3)

Notes
General dense image registration with global transformation.
Can use optical flow/disparity for dense per-pixel image
registration either with a CNN or RNN.
Aim to train on large scale data from SceneNet and RGB
videos for unsupervised learning.
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Sanity Checks on End-to-End Image Registration (SO3)

δupdate = fsiamese(Ik
t , It+1) (14)

δk = δk−1 + δupdate (15)
Îk

t = fwarping(It , δk) (16)
Î0

t = It (17)
δ0 = 0 (18)
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Sanity Checks on End-to-End Image Registration (SE3)

Notes
Needs explicitly the depth to do warping.
This can either come from a sensor or an extra CNN/RNN
module that learns depth.
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Sanity Checks on End-to-End Image Registration (SE3)

(a) Prediction (b) Ground Truth (c) Residual (difference)
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Aligning images taken at different times of the day
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New libraries: gvrnn

Maggiori et al., arXiv 2016
gvrnn

CNNs are good at localisation but not good with accuracy.
Implements various PDE solvers as layers in torch.
Primal-dual optimisations (Pock et al. 2011).
Iterative image alignment.
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Outline

Background
SceneNet: Repository of Labelled Synthetic Indoor Scenes
Results on Semantic Segmentation on Real World Data
gvnn: Neural Network Library for Geometric Vision
Future Ideas
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Future Ideas

PhysNet, Lerer et al. ICML 2016 SceneNet2.0

Physical scene understanding with SceneNet to reason about
how the dynamics of the scene is going to evolve over time.
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Future Ideas

Deep learning with geometry: Example
Understanding dynamic scenes.
CNNs provide relatively stable features for images of same
scene taken across different lighting conditions.
These images cannot be aligned with geometry based
per-pixel dense image alignment methods.
We can put this together with change detection segmentation
to also reason about dynamic scenes.
Easy to collect data with SceneNet.
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Future Ideas

Attend-Infer-Repeat (Eslami et al. NIPS 2016) style 3D scene
understanding in the form of instances of objects and their
6DoF poses even for cluttered scenes, with recurrent neural
networks.
Solving 3D jigsaws as a means to unsupervised learning.
Computer vision architecture and computer graphics
architecture put together in the spirit of Variational
auto-encoder. Computer vision gives the poses and identities
of objects and computer graphics is a differentiable renderer .
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