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1 ICP

Aligning point clouds forms the front end of many visual odometry, 3D reconstruction and
SLAM systems. Such alignment of point clouds from two or more different views allows
to obtain an overall change in the translation and rotation relative to a given reference
view. In this report, we focus on such problem of aligning point clouds particularly
looking at the Iterative Closest Point (ICP) [2] which is one of the most popular and
simplest algorithms for point cloud alignment. The algorithm alternates between finding
the best possible correspondences and optimising over the 6-DoF robot pose given these
correspondences. Over the years many different variations [4] have emerged that yield
better and robust performance. We use the recommended point-plane variant of ICP in
the following.
Denoting R = {ri}Ni=1 as the set of 3D points in the reference view and L = {lj}Nj=1,

the set in the new incoming live view. ICP then seeks to obtain the SE(3) transformation
Trl (read it as live to ref transformation) that aligns the point in the live view to the
reference view. The point-plane variant of ICP measures the perpendicular distance of the
point from the plane and allows to slide the planar regions on top of each other. However,
unlike point-point ICP which requires only the 3D positions of the points, this variant
comes with an additional computational expense requiring 3D point surface normals to
compute the point-plane distance. Next, we formulate the cost functions that measure
the discrepency error which is optimised until a standard convergence criteria is satisfied
that confirms that points are best possibly aligned. We assume in the following that
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the correspondences have been obtained from some blanket search algorithm e.g. kD
trees, projected data association and the task is to obtain the transformation given these
correspondences. The cost function then reads

C(Tdestination_source) =

N∑
i=0

(ndestination · (Tdestination_sourcelsource − rdestination))
2

where n is a normal vector of size 3×1 as well as r and l are of size 3×1. Tdestination_source

is the transformation required to map the points from source to destination view (Note
that the transformation Tx_y is read the transformation that maps points from y to x.)
In our case this would be Trl which transforms from live to reference view. Rewriting this
in our notation, the cost function is

C(Trl) =
N∑
i=0

(nT
ri(Trlli − ri))

2

We seek to obtain the transformation Trl that overlays points on top of each other with
minimum cost. Using the well-known trick of linearising the transformation around a
previous estimate T̂rl, the cost function simplifies to the following

C(δ) =

N∑
i=0

(nT
ri(exp(δ)T̂rlli − ri))

2

The residual at each point is denoted by ei(δ).

ei(δ) = nT
ri(exp(δ)T̂rlli − ri)

The first order taylor approximation yields

ei(δ) = ei(0) + Jiδ

C(δ) =

N∑
i=0

(ei(0) + Jiδ)
2

The Jacobians are defined as

Ji =
∂ei(δ)

∂δ

Ji =
∂ei(δ)

∂δ
= nri ·

∂ exp(δ)r̂i
∂δ

where

r̂i = T̂rlli
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⇒ Ji =
(
nri ·G0r̂i nri ·G1r̂i nri ·G2r̂i nri ·G3r̂i nri ·G4r̂i nri ·G5r̂i

)
where the Gi are the SE3 generators defined as

G0 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 ,G1 =


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 ,G2 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0



G4 =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 ,G5 =


0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

 ,G6 =


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0


Even though the Generators are 4 × 4, the last rows can be removed to allow the dot

products with 3×1 or 1×3 vectors. Simplifying the first three terms in the Jacobians we
arrive at very simple expressions

nri ·G0r̂i = nri ·

1
0
0

 = (nri)x

nri ·G1r̂i = nri ·

0
1
0

 = (nri)y

nri ·G2r̂i = nri ·

0
0
1

 = (nri)z

Therefore, the first terms simplify to the normal vector that is computed at the reference
point avoiding the need of any computation since it is computed already.

⇒
(
nri ·G0r̂i nri ·G1r̂i nri ·G2r̂i

)
= nT

ri

The rest of three terms give

nri ·G3r̂i = nri ·

 0
−(r̂i)z
(r̂i)y


nri ·G4r̂i = nri ·

 (r̂i)z
0

−(r̂i)x


nri ·G5r̂i = nri ·

−(r̂i)y(r̂i)x
0


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It is interesting to see that this is nothing but the cross product of the projected point in
the reference frame and the normal at it’s correspondence in the reference frame.

(
nri ·G3r̂i nri ·G4r̂i nri ·G5r̂i

)
= nT

ri

 0 (r̂i)z −(r̂i)y
−(r̂i)z 0 (r̂i)x
(r̂i)y −(r̂i)x 0

 = (r̂i × nri)
T

Therefore, the 1 × 6 Jacobians have a very simplified form involving cross product

⇒ Ji =
(
nT
ri (r̂i × nri)

T
)

Remember that the transposes here are only to flatten the row vectors to
their respective columnar counterparts. The update then comes down to

δ =
( N∑
i=0

JTi Ji
)−1( N∑

i=0

JTi ei(0)
)

⇒ T̂k+1
rl = exp(δ)T̂k

rl

In the following subsections, we take a look at other different ways to align point clouds
that have emerged recently.

1.1 Direct Visual Odometry(DVO)

If ICP aligns two point clouds from different views, DVO [5] assumes that there are also
two images that are achored to the respective point clouds. Under the assumption that
the 3D structure that is being viewed is the same, one can project the colour of one image
onto the other using the depth-map and the relative camera pose and check for any colour
inconsistency as a measure to quantify the error in the transformation. The RGBD cost
function measure exactly that and optimises over the transformation until the two images
have as small as possible colour consistency error.

C(Trl) =

N∑
i=0

(
Ir(π(KTrlṗ))− Il(xi)

)2

C(δ) =
N∑
i=0

(
Ir(π(K exp(δ)Trlṗ))− Il(xi)

)2
ei(δ) = Ir(π(K exp(δ)Trlṗ))− Il(xi)

ei(δ) = ei(0) + Jiδ

C(δ) =

N∑
i=0

(ei(0) + Jiδ)
2
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Ji =
∂e(δ)

∂δ
=
∂Ir(π(KTrlṗ))

∂δ

Ji =
∂Ir(π(KTrlṗi))

∂π(KTrlṗi)

∂π(KTrlṗi)

∂KTrlṗi︸ ︷︷ ︸
gradpii

∂KTrlṗi

∂δ

Ji = gradpiTi K
∂Trlṗi

∂δ

Ji = gradpiTi K
∂ exp(δ)T̂rlṗi

∂δ

gradpi is 3×1 and K of size 3×3 therefore gradpiTK is of size 1×3. Rewriting
gradpiTK as gpK as a 1×3 vector. We arrive at a similar expression where Jacobian is
of the form

Ji = gpKi

∂ exp(δ)T̂rlṗi

∂δ

The Jacobian further simplies to

Ji =
(
gpKi (p̂i × gpKi)

T
)

where

p̂i = T̂rlṗi

and

p̂i × gpKi

is the cross product involving the two terms.

1.2 ICP+DVO

This method is amalgamation of point-plane ICP and DVO [6]. It not only measures the
geometric error in the point clouds but also the colour consistency error in the images.
However, both these cost functions have different units and dimensions and as a result
a weight is added to weigh one over the other. This overall cost function has an added
advantage of being able to still give a sensible transformation if either one of them fails
in a given scenario. For instance, in planar regions it is difficult for point-plane ICP to
obtain a unique transformation to register two point clouds; therefore, the colour based
term still operates and tries to pull the data from one frame to the other.

C(Trl) =

N∑
i=0

(nT
ri(Trlli − ri))

2 + w
N∑
i=0

(
Ir(π(KTrlṗ))− Il(xi)

)2
Ji =

(
nT
ri (r̂i × nri)

T
√
wgpKi

√
w(p̂i × gpKi)

T

)
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1.3 SDFTracking

The SDF tracking [1] based method assumes that the scene is available in the classic dis-
crete voxel grid representation [3]. As a result, one can directly throw the incoming points
into the voxel grid and read off the signed distance function (SDF) values sidestepping
the correspondence part of the optimisation in the previous methods. The cost function
is optimised over the transformtion until the read SDF values are as close to zero as
possible. The function ψ returns the SDF value at any given 3D location in the voxel
grid. It is important to remember that for non-integer 3D positions, the SDF values are
interpolated with favourite interpolation scheme e.g. bilinear interpolation etc.

C(Trl) =
N∑
i=0

(ψ(Twlli))
2

=
N∑
i=0

(ψ(exp(δ)T̂wlli))
2

=

N∑
i=0

(ψ(exp(0)T̂wlli) + JTi δ)
2

Ji =
∂ψ(exp(δ)T̂wlli)

∂δ

=
∂ψ(T̂wlli)

∂(T̂wlli)︸ ︷︷ ︸
si

∂(exp δ)T̂wlli
∂δ

Writing

l̂i = T̂wlli

and si is the derivative vector of size 1×3, the Jacobian simplifies to

Ji = si
∂ exp(δ)̂li

∂δ

⇒ Ji =
(
si (̂li × si)

T
)
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