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Abstract

A core problem that must be solved by any practical visual SLAM system is the need

to obtain correspondences throughout the image stream captured by a moving camera.

Correspondences enable joint estimation of a moving camera’s trajectory together with a

3D map of the observed scene. Visual SLAM pipelines commonly obtain correspondence

through sparse feature matching techniques and construct maps using a composition of

point, line or other simple primitives. The resulting sparse feature map representations

provide sparsely furnished, incomplete reconstructions of the observed scene.

Related techniques from multiple view stereo (MVS) achieve high quality dense recon-

struction by obtaining dense correspondences over calibrated image sequences. Despite

the usefulness of the resulting dense models, these techniques have been of limited use in

visual SLAM systems. The computational complexity of estimating dense surface geome-

try has been a practical barrier to its use in real-time SLAM. Furthermore, MVS algorithms

have typically required a fixed length, calibrated image sequence to be available throughout

the optimisation — a condition fundamentally at odds with the online nature of SLAM.

With the availability of massively-parallel commodity computing hardware, we demon-

strate new algorithms that achieve high quality incremental dense reconstruction within

online visual SLAM. The result is a live dense reconstruction (LDR) of scenes that makes

possible numerous applications that can utilise online surface modelling, for instance: plan-

ning robot interactions with unknown objects, augmented reality with characters that in-

teract with the scene, or providing enhanced data for object recognition.

The core of this thesis goes beyond LDR to demonstrate fully dense visual SLAM. We re-

place the sparse feature map representation with an incrementally updated, non-parametric,

dense surface model. By enabling real-time dense depth map estimation through novel

short baseline MVS, we can continuously update the scene model and further leverage its

predictive capabilities to achieve robust camera pose estimation with direct whole image

alignment. We demonstrate the capabilities of dense visual SLAM using a single mov-

ing passive camera, and also when real-time surface measurements are provided by a

commodity depth camera. The results demonstrate state-of-the-art, pick-up-and-play 3D

reconstruction and camera tracking systems useful in many real world scenarios.
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Introduction

Contents
1.1 Robot Perception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Sparse Visual SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Problems with Sparse Description . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4 Direct Approach: Dense Tracking and Mapping . . . . . . . . . . . . . . . . 19

1.5 From Sparse to Dense Visual SLAM . . . . . . . . . . . . . . . . . . . . . . . 32

1.6 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.1 Robot Perception

What are the limits on scene perception? This question has been investigated in a familiar form

since the inception of the field of artificial intelligence in the middle of the 20th century. We

are captivated by the amazing capabilities of humans and other animals that effortlessly

navigate and interact with the environment, sensing the world through their embodied

visual, tactile and auditory modalities, which provide noisy and incomplete measurements

of their environment. In a scenario where a robot needs to walk, drive or fly into a scene we

want to know what should be inferred about the surrounding environment for the robot

to achieve such navigation and interaction abilities; is there a generic way to represent the

available information, and what are the limits on what can be inferred with the given limits

in measurement quality and computing resources in practice?

10



1.1. Robot Perception 11

Computer vision research tackles an aspect of one the most challenging pieces of the prob-

lem, trying to invert the image formation process that occurs when a 3D scene is projected

into a camera creating its projected 2D image over time. The task of recovering the struc-

ture of the original scene given only passive images has resulted in decades of computer

vision research trying to understand the fundamental nature of the inverse problem. Such

an understanding is as important for unravelling the abilities found in animals using vision

as for engineering solutions using computer vision since, while algorithms produced might

be biologically implausible, the results demonstrate what is in principle retrievable from

the data given a defined set of assumptions. New understanding has been interleaved with

massive engineering efforts which, together with the explosion in computing resources,

have demonstrated inspiring results. Solutions to the scene inference problem have been

central to such feats as mapping at street level cities and towns across the planet to the

advent of robust driver-less vehicles.

A robot, such as a driver-less vehicle, must solve a tougher version of the scene inference

task that relates more acutely to the challenges faced by animals in that the problem must

be continuously solved on-line in real-time. It would be of little use if a robot car coming

to a particularly busy junction took several seconds to analyse the scene if an imminent

danger required action within the next second: it must swerve to miss the cyclist!

The core perception challenge for any autonomous robot whose main task is navigation

comprises two characteristic problems: environment mapping and robot localisation. To

solve the robot localisation problem using only on board sensors a map must be available

from which the robot can locate its relative location. But to be able to extend a map the

robot must know its current relative location. This fundamental simultaneous localisation

and mapping (SLAM) problem has been at the center of decades of robotics research.

Removing the complexities of a complete robot but keeping the core problem intact, re-

searchers in computer vision and robotics have attempted to understand how to solve the

visual SLAM problem where given only a sequence of images obtained from a moving

camera, a scene reconstruction together with a current camera pose can be estimated. The

most widely investigated class of visual SLAM systems estimate the pose of the cameras

together with a sparse 3D point based representation of the scene, illustrated in Figure

(1.1). The utilisation of a sparse point cloud model being sufficient for recovery of the

real-time camera pose whilst also being computationally efficient to obtain and update.

However, whilst such a sparse scene representation suffices for conservative forms of robot

navigation, it is insufficient for the majority of future applications that will require some

form of scene interaction.

Within a model based robotics paradigm it is clear that successfully achieving a particular
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Figure 1.1: Illustration adapted from Pollefeys et al. (1999) of the resulting point cloud
and camera pose estimates from a sparse feature based visual SLAM or SFM pipeline
consisting of extracting and matching observations of points u, across frames (2-views
are shown here). Joint estimation of the camera poses x, and point cloud structure y, is
performed using global optimisation, minimising the distance between predicted image
points and observations. The resulting point cloud structure and camera poses are used by
the authors in offline 3D model reconstruction.

task within the environment is to a large extent contingent on the availability and richness

of information, represented in the model of the scene, necessary to achieve that task. If

the task is to pick up an object on a table, the modelled scene must enable a planning

algorithm to take into account the interaction between the object being manipulated and

an end effector, such as information about the objects surfaces delineated from the reset

of the scene. A probing question is should object recognition come before interaction with the
scene? While it is the case that given knowledge that the object is a cup can lead to a greatly

simplified interaction through expert knowledge on the subject of cup lifting, it should not

be a necessary condition for interaction. More interestingly, the problem of interacting with

unrecognised surfaces is clearly a prior condition on learning novel instances for object

recognition in the robots future. Understanding what can be represented and inferred

from a stream of images without strong prior assumptions on what is present is of major

importance in building robots capable of exploring unknown environments and dealing

with the challenges of a more general form of novel interaction with the world.

A point cloud is an impoverished representation of the world. In this work take a step

towards understanding the limits of scene inference in the on-line setting by moving be-
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yond the sparse point cloud representation of scenes to a denser representation of surfaces

enabling much more of the image data available in the sensor stream to be used in both

the mapping and localisation problems of visual SLAM. Denser SLAM leads to more ro-

bust continuous tracking, and ultimately produces richer predictive models useful in both

robotics and augmented reality applications.

In the remaining sections of this introduction we outline the standard sparse visual SLAM

approach used to obtain a point-cloud model of a scene together with the live camera pose

estimate. We then illustrate the problems that arise in using a sparse scene representation

and sketch three core components of an alternative dense visual SLAM system that uses

a surface model representation of the scene in an attempt to capture and utilise all of the

available information in the video stream. Finally we outline the contributions of this thesis

in achieving a progression from sparse to dense visual SLAM.

1.2 Sparse Visual SLAM

In this section we first look at the specific formulation of the localisation and mapping

problem previously illustrated in Figure (1.1). We assume that we are given M input

images acquired from different locations overlooking a scene. In theory the images might

have been acquired from M different cameras placed about the scene, but here we assume

that they were captured from a single moving camera at different times.

We now make an abstraction from the image data: we model the structure of a scene as N
3D points which can be partially observed in the M images. The projection of a scene point

yi ∈ R3, into a camera with 6DoF pose xj ∈ SE3 results in an image point ūij ∈ Ω ⊂ R2

that could be observed in that camera. If a measurement of the predicted point is actually

observed, uij ∈ Ω, the error induced between the predicted and observed point is:

∆uij = ūij − uij . (1.1)

In probabilistic terms, the probability density function over the error is often assumed to

be a multivariate Gaussian distribution with diagonal covariance matrix σij ∈ R3×3:

p(ūij|xj, yi) ∝ exp(
1
2

∆u>ij σ−1
ij ∆uij) . (1.2)

If we further assume that observing multiple scene points across multiple cameras is an

independent process, then for structure and motion parameters, x = {x1, x2, xi, . . . , xM},
y = {y1, y2, yi, . . . , yN} and valid observations u =

{
uij|cij = 1

}
, the probability density
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function over all observations is:

p(ū|x, y) ∝
N

∏
i=1

M

∏
j=1

p(ūij|xj, yi) , (1.3)

where we have used cij = 1 to indicate that camera j did observe point i. The core of

the sparse visual SLAM pipeline attempts to estimate the unknown structure and motion

parameters given the available observations. By Bayes rule we have:

p(x, y|ū) ∝ p(ū|x, y)p(x, y) . (1.4)

Here p(x, y) is prior over the structure and motion parameters. Hence, the most likely

structure and motion parameters can be estimated by maximising the posterior distribution

given in Equation (1.4). In practice, we can minimise the energy function resulting from

the negative log of p(x, y|ū), known as bundle adjustment:

x̂j, ŷi
MLE
= min

xj,yi

N

∑
i=1

M

∑
j=1

ψ
(
∆uij

)
iff cij = 1

0 otherwise .
(1.5)

Here ψ(∆uij) = ∆u>ij σ−1
ij ∆uij for the Gaussian distributed observation error in Equation

(1.2), and in general is a positive penalty function designed to be robust to outliers in

the point correspondences, ideally matched to the error distribution of the observations.

Optimisation over the parameters is performed using a non-linear iterative minimisation

scheme, requiring an initial estimate of the point positions and camera poses1.

Given only the original input images a number of challenges arise: (1) parameter initial-

isation or bootstrapping, since the above non-linear optimisation is generally non-convex

in the parameters an initial estimate of the structure and motion variables is required; (2)

obtaining correspondence of the observed points across multiple images: the above bundle

adjustment made the assumption that point correspondences were available, but initially

we only have photometric image data; (3) timely optimisation of the resulting bundle ad-

justment Equation (1.5). We now look more closely at these challenges.

From Bundle Adjustment to Online Visual SLAM

In particular, it is of fundamental importance for many real world applications of visual

SLAM that a live camera pose can be estimated in real-time. Shown in Figure (1.2a),

a Bayesian network can be used to represent the causal relationships between a camera

with pose xj viewing the scene geometry abstracted to a point yi resulting in a 2D point

1Equation (1.5) can be further extended to take into account a prior assumption about the smoothness of
the camera trajectory.
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u u uu u u u u u uu1 2 3 4 u5 6 7 8 9 10 11 12 13 14 15 16
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u u u u

(a) Bayesian Network
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(d) Keyframe BA

Figure 1.2: Graphical representations of the visual SLAM problem adapted from Dellaert
and Kaess (2006) and Strasdat et al. (2010). The causal relationship between scene structure
yi, camera poses xj and the resulting observations uij is captured in a Bayesian network (a).
The same problem can be expressed in an undirected Markov random field (b). The num-
ber of pose variables grows linearly over time and presents a computationally infeasible
inference task for an online application of SLAM. Approximations to the full inference task
are therefore required if estimation of the newest camera pose and observed structure is
to be achieved: filtering solutions jointly estimate the full structure variables together with
the live camera pose only (c); and keyframe based bundle adjustment approaches prune
away all but a select number of judiciously chosen pose variables, which together with the
observed scene structure and live camera state present a sparser inference task that can be
solved in an available window of time.

observation uij, captured in the probabilistic model from Equation (1.3), the graph also

shows each new pose can be further constrained by the previous pose state. The full SLAM

problem aims to solve for poses and scene points given a set of observations, as presented

in the bundle adjustment problem. A further graphical abstraction shown in Figure (1.2b),

removes the observations from the graph, and presents the constraints between a given

camera pose and the scene points that it observed. This undirected Markov random field

(MRF) is a direct representation of the structure of the bundle adjustment problem in

Equation (1.5) where for cij = 1, each edge between a point i and pose j in the graph is

associated with a reprojection error under a given penalty function.

To achieve online SLAM operation, strategies are required to reduce the linearly growing

number of pose variables in the inference task, which quickly makes estimation of the lat-

est camera pose and observed scene structure an impossibly expensive computation to be

achieved in a fixed window of processing time. Illustrated in Figure (1.2c), probabilistic fil-

ters exploit the modelled Markov chain governing the camera state over time, enabling the

inference to be written in a recursive form involving estimation over only the newest cam-

era pose and the complete scene structure. An alternative solution shown in Figure (1.2d)

instead maintains a sparse subset of the camera poses known as keyframes, together with

the structure variables co-observed by these frames, maintaining a globally consistent joint

estimate over the scene structure and keyframe poses using bundle adjustment. Online es-

timation of the current camera poses is then performed relative to the currently estimated
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structure given estimated correspondences between the scene model points and the image.

The Correspondence Problem

The correspondence problem appears in a sparse visual SLAM system in two different

forms. The primary problem of obtaining 2D − 2D or image to image correspondence

without knowledge of the camera poses and takes the form of tracking 2D image points

across 2 or more views. This occurs in bootstrapping of both the structure and camera

parameters, where the challenge of obtaining a 3D point estimate simultaneously with

an estimate of the camera poses must be achieved first. We omit the techniques from

this introduction for brevity, but note that solutions to the bootstrapping problem are an

essential component of a fully automated visual SLAM system, and constitute one of the

great achievements in computer vision. A treatise on the subject of visual geometry is

available in Hartley and Zisserman (2004).

Assuming an estimate of M ≥ 2 camera poses has been achieved, the bootstrapping prob-

lem continues for insertion of new structure points when there is gross uncertainty over

the camera poses. When knowledge of the associated camera poses is available the space

of correspondences of a feature in a second image is restricted to lie on the projection of

the ray from the first images projection center and through the corresponding pixel called

an epipolar line. Given correspondence between 3 or more views in total the constraints

formed by the intersection of the epipolar lines resolves to a 3D point estimate of the ob-

served geometry, which can then be projected into any other view with known pose.

The secondary problem is 3D − 2D or model to image correspondence, also called data-

association, where given possibly incomplete knowledge of both the 3D point location yi

and a camera pose xj, correspondence is sought to obtain the 2D observation uij. Typically,

given the uncertain camera and structure estimates a restricted region within the image is

formed within which the correspondence is expected to be observed.

Feature Detectors and Image Descriptors

A standard approach to obtaining 2D− 2D image correspondences follows a feature detec-

tion, description and matching framework. Given a first image a sparse selection of image

locations is chosen at which local image patches are transformed into image descriptors. Fi-

nally, given M ≥ 2 other images with associated descriptors, correspondence is obtained by

searching for matching image descriptors amongst the frames. Data association or 3D− 2D
correspondence is achieved in a similar way. Descriptors associated with a 3D model point

are typically extracted from an image obtained when solving for the initial map point using

2D− 2D correspondences.



1.3. Problems with Sparse Description 17

(a) Original (b) Uniform Blur (c) Blur + Noise (d) Motion Blur

Figure 1.3: Example synthetic motion with degraded images. The original image (a) is
geometrically transform by a small in plane rotation and translation followed by three
degradations to form images (b-d).

The goal of the feature detection, description and matching pipeline is to efficiently max-

imise the likelihood of valid correspondences to localisable 3D scene points in co-observing

frames whilst minimising false correspondence occurrences for the space of image trans-

forms over which the feature is to be observed. The general class of transforms for a

static scene includes geometric (projective) distortion of the image region, and radiomet-

ric changes in appearance due to non-Lambertian materials, but in practice might include

movement in the scene and dynamic lighting. We note that if ψ is chosen as a robust cost

function, bundle adjustment minimisation can be made robust to erroneous correspon-

dences and multiple data associations where a descriptor is matched in several mutually

incompatible image locations.

1.3 Problems with Sparse Description

For the moment let us ignore the prevailing problem that arises when using sparse point

cloud models in applications that instead require a dense surface estimate, and turn our

attention to a key problem associated with robustness in the sparse visual SLAM algorithm.

We show an image in Figure (1.3a) which is then rotated and translated prior to applying

uniform blur, noise and motion blur to simulate degradation in the transformed image.

A simplified version of the pose estimation problem can be illustrated with these images.

Here we want to find the in-plane rotation and translation between the original image and

one of the transformed images and to do using the sparse visual SLAM approach we must

obtain correspondences between the images.

Since the sparse visual SLAM pipeline depends on the abstraction of the point features

and their 2D correspondence it is crucial for both the image-to-image or model-to-image

correspondence problem that such features can be reliably detected. This first step is used
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Figure 1.4: Result of running FAST corner detection on the images in Figure (1.3) using
fixed thresholds. Typically, FAST is run over a multi-scale decomposition of the image to
mitigate the effects image blurring in the original image.

to reduce the number of possible image locations down to a set that might be easily re-

detected under typical geometric and photometric image transforms. We demonstrate this

using the popular FAST algorithm by Rosten and Drummond (2006) applied to the original

and transformed images, the result is given in Figure (1.4). Unfortunately, as can be seen

by comparing extraction on the original image with the degraded versions, the features

detected vary considerably. Given an understanding of the feature detection mechanism

it is not a surprising demonstration, and preprocessing of the image data together with

tweaks to the detection algorithm parameters can be performed to improve repeatability of

the detected locations.

Given detected feature locations, image regions must then be described and matched across

frames. The vast majority of descriptors assume a locally planar surface around the feature

point and while progress has been made in obtaining robust invariance of such patches

across the geometric and photometric transformations typical in real images such invari-

ance comes at cost, typically requiring larger image regions. In Figure (1.5) we demonstrate

the result of running a popular feature detection, description and matching pipeline using

the scale invariance feature transform (SIFT) keys developed by Lowe (2004) 2. This ex-

ample demonstrates that the extraction and matching pipeline produces sparser matching

when faced with the degraded images. Again, this is not surprising since the feature

extraction stage will produce fewer candidates for description and matching given the uni-

form and motion blurred images. However, it is exactly this need to find good parameters

for the thresholds used in the extraction, description and matching pipeline, which often

differs drastically depending on image quality, that can result in total failure of a real-time

sparse visual SLAM system.

2Correspondences were computed using the software accompanying Lowe (2004) available from http:
//www.cs.ubc.ca/~lowe/keypoints/.

http://www.cs.ubc.ca/~lowe/keypoints/
http://www.cs.ubc.ca/~lowe/keypoints/
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(a) (b) (c) (d)

Figure 1.5: Example correspondences obtained by extracting and matching with SIFT,
(Lowe, 2004). Each column shows the correspondences computed between the original
image in Figure (1.3a) with a version of the transformed original image. (a) shows cor-
respondences with a transformed original image without further degradation. Matching
with the transformed and blurred noisy image is shown in (b), and with the motion blurred
version in (c). In (d) we show matching against the blurred noisy image where we have
added strong occluding outliers to the data. We note that while there are no correct de-
scriptor correspondences in (d) for the given descriptor matching scheme, it could still be
possible to estimate the correct transformation by using a RANSAC (Fischler and Bolles,
1981) style estimation of the transformation from a single inlier (since SIFT also encodes
planar rotation information). Incorporating the knowledge of the manifold on which the
correspondences exist would enable a more informative correspondence criteria.

1.4 Direct Approach: Dense Tracking and Mapping

We now break visual SLAM into its two characteristic problems. First, camera tracking:

Given a map, can we obtain the current camera pose?. The simultaneous problem to be solved

is: Given known camera poses can we obtain an updated map?. In the following three subsec-

tions we will look at alternative mechanisms that achieve camera tracking and structure

estimation for visual SLAM but which do not make use of the explicit feature extraction

and matching pipeline. Instead each component will formulate the tracking and mapping

problem in a direct manner working directly over a function of dense image data available

from the moving camera.
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1.4.1 Dense Tracking

Given a map, can we obtain the current camera pose? In the previous section we looked at

obtaining correspondences between frames required for estimation of the relative transform

which can be solved with a non-linear least squares estimation over the parameter space:

ξ̂ba
MLE
= min

ξ

N

∑
i=1

ψ
(

wSE2(ui
a, ξ)− ui

b

)
, (1.6)

Here we defined the warp function wSE2(u, ξ) which takes a pixel ua ∈ Ω ⊂ R2 in the

frame of reference from image a and transforms it to a pixel ub in image b using transform

parameters ξ. The N explicitly given correspondences are defined in pairs between the

frames (ui
a, ui

b). For the frame to frame tracking considered in figure (1.3), the warp function

is an SE2 transformation parametrising a 2D translation and in plane rotation of the image.

If instead we formulate the inter frame motion estimation problem to directly optimise over

the image intensity functions for frames and a and b we can remove the need to perform

sparse feature extraction and matching. The formulation computes a cost over all pixels in

the reference image Ia:

ε = ∑
u∈Ω

ψ (Ib(w(u, ξ))− Ia(u)) . (1.7)

Here, an image interpolation function enables sub-pixel intensity values to be computed.

The warp function together with image interpolation constitutes a generative model, and

can take any form that predicts an image measurement from a set of parameters. As in the

sparse bundle adjustment case, the direct approach can also utilise a robust error function

to match a modelled likelihood of a potentially noisy observation. Figure (1.6) illustrates

the shape of the cost function between the original image and three of the transformed

and distorted counterparts used in SIFT key demonstration. In each of the presented

cases a clear cost function minimum exists representing the solution to the optimisation

problem. In particular, the image pair used in Figure (1.5d) that includes outliers in the

data resulted in no correct correspondences using sparse feature extraction and matching

pipeline, which precludes recovery of the frame-frame transform using Equation (1.6). In

contrast the direct image error cost function shows a useful minimum for the same image

pair near the correct transform parameters, shown in Figure (1.6f). Therefore, while the

non-convex nature of Equation (1.7) prevents a guarantee of convergence to the correct pa-

rameters when using a gradient descent style optimisation, in practice we can often achieve

convergence to the minimum if the initial estimate of the parameters ensures we are within

a basin of convergence. The assumption under which such direct optimisation in Equa-

tion (1.7) is performed is that corresponding pixel values have brightness constancy, that
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(a) (b) (c)

(d) (e) (f)

Figure 1.6: Cost function plots for the example transformed and degraded image pairs
showing the parameter range with in-plane rotation ±π

2 and translation ±100pixels. (a)
shows the cost as computed using the original image and its transformed version. In (b)
between the original and transformed noisy blurred image (also shown in Figure (1.5b), and
in (c) between the original and transformed noisy blurred image with outliers shown in Fig-
ure (1.5d). In (d-f) we show zoomed in plots for (a-c) with parameter range ± π

20 ,±10pixels.
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is Ib(w(u, ξ)) ≈ Ia(u) given the correct parameters ξ, which although not generally true

often holds in practice over short periods of time. Throughout this introduction we will

assume this assumption does hold.

Direct Camera Tracking from a Dense Model

Assuming a static scene, a generative model can be formulated to compute an image pre-

diction for an observation of a general scene under perspective projection. Assuming we

have known perspective projection with calibration matrix K and the relative transforma-

tion between frames is ξba, then using known geometry for example in the form of depth

D(u) ∈ R+ associated with each pixel u in image a, the pixel is transformed into frame b
as:

wproj(u,D(u), ξba) = π
(

KξK−1[u>; 1]>D(u)
)

. (1.8)

This generative model optimally describes the geometric distortions given the now 6DoF

camera pose parameters ξ where the scene is jointly observable. As in the previous lower

dimensional example, optimisation of the cost function can be performed through a form of

gradient descent such as a non-linear least squares optimisation. The clear advantage of the

direct approaches is that by minimising an image error instead of explicitly provided sparse

correspondences we can hope to obtain a higher quality and more robust pose estimate,

taking advantage of the massive redundancy in the image data without the preprocessing

needed to achieve abstraction to 2D feature points.

It is important to note that researchers who pioneered the feature based tracking ap-

proaches originally asked the question what makes a good feature for tracking?, and modelled

the problem as a sparsification of the direct tracking equation under a given geometric

transform (i.e. affine (Shi and Tomasi, 1994)). Unfortunately such approaches are only

successful for the class of transforms that can be encapsulated in the image intensity alone,

since for optimal extraction under projective distortion of a non-planar scene the analy-

sis must include knowledge of the surface resulting in a per frame optimal extraction of

features.

1.4.2 Dense Correspondence and Depth Estimation

Given known camera poses can we obtain an updated map? The direct approach to camera

tracking is only possible if the scene model is provided in the form of a dense surface

model, enabling the warp function to densely predict the appearance of an image. We now

look at how such a dense surface estimate can be computed without recourse to the sparse

feature extraction and matching pipeline.
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Given M ≥ 1 correspondences from a pixel ua in a reference frame to other frames where

all poses are known, a new map point can be inserted by minimising the reprojection error

of the 3D point that lies on the reference pixel ray with the constraint that the point must be

in front of all observing cameras, illustrated in Figure (1.7). Using the previously defined

warp function wproj in Equation (1.8), we therefore parametrise the point as a depth D(ua)

in a depth map D : Ω 7→ R+ in the reference frame:

D̃(u) = min
d∈R+

M

∑
j=1

ψ
(
wproj(ua, d, ξja)− uj

)
, (1.9)

where uj is the correspondence to pixel ua found for frame j. Looking again at the extracted

feature locations in the clean image in Figure (1.4), it can be seen that homogeneously

textured image regions are feature sparse. From a mapping perspective this results in

the insertion of new 3D points only in regions of high level of texture where features are

detected.

We can instead attempt to obtain a dense correspondence field in a given reference image

using a direct minimisation of photometric cost at each pixel. The photometric error for

each pixel u in a reference image Ia and another frame Ib, using the previously described

parametrisation of the scene depth is:

D̃(u) MLE
= min

d∈R+

M

∑
j=1

ψ
(
Ib
(
wproj(ua, d, ξja)

)
− Ia(ua)

)
. (1.10)

Equation (1.10) takes the same form as the pose estimation cost function, simply fixing the

previously unknown camera pose parameters and now estimating depth. The function is

non-convex in the depth parameter, and so we are faced with two possibilities for its direct

minimisation. The first route uses a gradient descent style optimisation. As described pre-

viously for the direct pose estimation, a non-linear iterative optimisation can be performed,

linearising the photometric cost around a current depth estimate in each pixel to obtain a

convex form that can then be minimised. An alternative method, taking advantage of the

low dimensionality of the optimisation problem is simply to quantise D(u) into a finite

number of depth hypotheses, from which the minimum of the cost function can be located

by direct search. As the quantisation resolution tends to the sampling limit of the image

functions this direct approach will result in finding the minimum of Equation (1.10). Fig-

ure (1.8) demonstrates the result of estimating the depth at each pixel in a reference frame

by optimising the multi-view stereo cost function given a growing number of co-observing

views for multi-view video dataset.
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Figure 1.7: Multi-view stereo: Epipolar geometry constrains the correspondence problem
for static scenes. The brightness constancy assumption for the pixel assumes that the cor-
rect surface location should result in a projection into co-observing frames which take on
similar pixel values. Although a single pixel is not very discriminative in one view (since a
similar value might be present along the epipolar line, shown here in red), it is more likely
that across multiple views only the correct surface location should continue to project to
pixels with similar values. This assumption can be wrong when the scene contains large
homogeneous regions (of low or repeated textures).
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(a) 2 views (b) 5 views (c) 20 views (d) Ground Truth

Figure 1.8: Estimated Multi-view depth map: Example per pixel minimum of Equation
(1.10) using a quadratic function for ψ resulting in D̃. Depth is illustrated with lighter
values indicating points that are closer to the camera. Beginning with a two-view stereo
data term (a), noise is reduced in the depth map as the number of views are increased
(b-c). Noting the ground truth depth map(d), errors can be seen at depth discontinuities
in the image and regions corresponding to surfaces with non-Lambertian materials break-
ing the brightness-constancy assumption. This example multi-view stereo estimation was
performed on the Graz City of Sights video dataset presented in Chapter (4).

Global Optimisation

The depth estimation procedure discussed in the previous subsection yields erroneous

surface estimates wherever the brightness constancy assumption does not hold, which

occurs in a real world setting for a number of reasons including the presence of non-

Lambertian surfaces and dynamic lighting in the scene as well as partial observability of a

surface across the multiple views used in the optimisation. An insight into why the simple,

per-pixel minimum, depth estimation procedure with the brightness constancy assumption

falls short of obtaining higher quality surface estimates can be obtained by probabilistically

modelling the process by which the images used were captured. In this subsection we now

look to abstract from the image data and understand if, by modelling the noise present

in the estimated depth maps, we can do better than the per-pixel minimum optimisation

used to obtain the results in Figure(1.8). We note that a switch in notation is made in this

subsection to enable the two co-ordinates of a pixel location to be referenced directly (as

x, y).

Given a depth map (image) containing noise, we are interested in obtaining the denoised

version (solution). We can model the formation of the noisy observed image g : Ω 7→ R

as a degradation of the model solution D which is corrupted at each pixel (x, y) ∈ Ω by

Gaussian noise with a variance σ2:

g(x, y) = D(x, y) +N (0, σ) . (1.11)

For example, let us assume that the depth map D̃ in Equation (1.10) can be modelled by g.

A statistical model of the forward process is called the likelihood, or statistical generative
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(a) Model Depth D (b) D +N (0, Iσ) (c) Quadratic (d) TV-Quadratic

Figure 1.9: Image denoising results for a depth map (a), corrupted by Gaussian noise (b). (c)
Shows the resulting solution using a quadratic data term and regularisation with quadratic
cost over first order edge magnitude, the result is an over smoothed solution. In (d) the
TV-Quadratic denoising also uses the quadratic penalisation for the data term, but uses
the L1 metric on the regularisation term, better matching the statistics of the 1st order
gradient smoothness. This results in better edge preservation in the solution, but also
shows stepping artefacts. The solution is a piecewise constant function whereas the true
solution is piecewise affine.

model. Specifically the above model states the independence of each pixel observation

given the solution, and produces a conditional probability distribution:

p(g|D) = ∏
(x,y)∈Ω

1√
2πσ

exp
(
− (g(x, y)−D(x, y))2

2σ2

)
. (1.12)

We are interested in retrieving the noise free D given only the observation g and knowledge

of the noise level σ2, but unfortunately in its current form the problem is ill-posed; a

number of possible solutions might exist but are not deterministically obtainable. The main

tool in computer vision for obtaining a well-posed form of such problems is to restrict

the space of possible solutions by introducing an image prior. A large class of priors

have been investigated that assume the probability of the solution is proportional to its

spatial smoothness. This is quite reasonable since we more often observe that the noise

free depth map is composed of regions that vary smoothly across connected regions; scenes

are composed of objects comprising surfaces that vary smoothly, changing more abruptly

at object boundaries. Rather than jumping sporadically at pixel locations, a pixel depth

therefore has an increased probability of taking on a similar value to its neighbours. A

classic example is to model the prior as a Gaussian distribution over the magnitude of first

order image derivatives ‖∇D(x, y)‖, with variance ν2:

p(D) = ∏
(x,y)∈Ω

1√
2πν

exp
(
−‖∇D(x, y)‖2

2ν2

)
. (1.13)
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With both the likelihood and prior specified we are now in a position to write the posterior

distribution p(D|g) using Bayesian inference:

p(D|g) = p(g|D)p(D)
p(g)

. (1.14)

Since p(g) is independent of the solution u, p(D|g) ∝ p(g|D)p(D) and the highest proba-

bility or maximum a posteriori (MAP) solution for the above model we find D̂:

D̂ = max
u
{p(D|g)} (1.15)

D̂ = max
u
{p(g|D)p(D)} (1.16)

D̂ = max
u

 1
4πµν ∏

(x,y)∈Ω
exp

(
(g(x, y)−D(x, y))2

σ2 +
|∇D(x, y)|2

ν2

) . (1.17)

We transform this probability maximisation problem into an energy minimisation form by

setting E(D) = − ln p(D|g):

E(D) = − ln p(D|g) ∝ − ln p(g|D)− ln p(D) , (1.18)

the interchange between maxD{p(D|g)} and minD{E(D)} results in the maximum likeli-

hood estimate:

D̂ MLE
= min

D

 ∑
(x,y)∈Ω

(
1
2
((g(x, y)−D(x, y))2 +

1
2λ
‖∇D(x, y)‖2

) (1.19)

where λ combines factors relating to the variances ν2, σ2. E(D) in Equation (1.19) is a sum

of convex functions, and is therefore also convex. This is important since it ensures that

there is a globally achievable solution, D̂. In the form of an energy in Equation (1.18),

− ln p(g|D) is often called the data term while − ln p(D) is called the smoothness or regu-

larisation term.

In Figure (1.9) we simulate the production of a noisy depth map by corrupting the ground

truth depth map from Figure (1.8d) with Gaussian noise. Figure (1.9c) illustrates the re-

sulting denoised solution depth map, obtained using the quadratic model described above.

We can see that while noise is suppressed the depth boundaries are no longer sharp. Our

probabilistic model contains two components that could be at fault: the prior or likelihood.

However since in this synthetic example we have used an optimal likelihood model, given

knowledge of the Gaussian form and σ, the problem lies in the image prior.

The prior model was arrived at by assuming a Gaussian distribution over first order solu-
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(d) α = 0.2

Figure 1.10: Plots for the −log of four instances of the generalised Gaussian distribution
f (x), Equation (1.20). Shown in (a) and (b) for the Gaussian and the Laplacian distributions.
In (c) and (d) we show the generalised Gaussian model fit (in red) for the −log of two
sampled probability distributions (dashed lines): (c) for the gradients from a grey-scale
image ∇I , captured from a moving camera, while in (d) for the corresponding depth
image gradient ∇D, captured from the same camera trajectory taken over the course of a
minute of scene browsing in an office environment.

tion smoothness, but is a Gaussian a good match for the true distribution? By capturing the

real world derivative statistics for both natural images and depth images, researchers have

found that a generalised Gaussian distribution with higher kurtosis and larger variance

than is achieved with a Gaussian distribution provides a better fit:

f (x) ∝ exp(−|x− µ|α
ασα

) . (1.20)

The Gaussian distribution is also captured with α = 2, and yields the quadratic penal-

isation model through its negative log. To investigate what a more realistic distribution

over derivatives is, we collected statistics over the pixel gradients of depth maps measure-

ments for a dataset using a commodity structured light device in an office environment that

includes cluttered desks and people within a working range of 0.4m to 4m. Shown in Fig-

ure (1.10d), taking the negative log of the computed histogram over depth map gradients

shows clearly that a non-convex penalty over the first order gradients is appropriate, with

a good fit to the generalised Laplace distribution at α = 0.2. Since a convex formulation

confers serious advantages for fast global optimisation, an interesting prior model arises at

the boundary between convex and non-convex where α = 1, the closest convex model to

the desired distribution, the Laplace distribution. The equivalent penalty function shown

in Figure (1.10b) is an `1 norm. In comparison to optimisation under the quadratic penali-

sation, the `1 norm presents a robust cost which when applied as prior with the first order

derivatives of the solution yields Total-Variation (TV) regularisation of the solution. The

updated solution shown in Figure (1.9d) using the TV regularisation in combination with

the previous Gaussian likelihood model shows an improvement in capturing the depth

discontinuities whilst still suppressing noise.
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Returning to the original dense correspondence problem, we are presented with two pos-

sible routes to increase the quality of the result. In the simplest case we can model the data

term only depth map as a direct observation and define a likelihood model to describe the

noise we observe, coupled with a suitable image prior. Alternatively we can go further

back and model the likelihood directly over the photometric cost function and combine

this with a smoothness prior.

1.4.3 Combining Dense Depth Measurements into Dense 3D Maps

The surface measurement obtained by dense correspondence provides for each pixel an

estimated 3D point in the camera frame of reference in which it was estimated, but as we

have seen the depth maps contain errors. Moreover, each depth map covers only a partial

view of the scene. In this subsection we assume that a number of depth maps have been

computed from a moving camera browsing a scene. Given this set of calibrated depth

maps, our task is to obtain a consistent map which explains these measurements. A point

cloud representation of the scene, formed from the union of all depth measurements trans-

formed into a global frame has limited use. Since points have neither direction nor area,

a basic point cloud is unable to provide predictive capabilities such as surface visibility

or occlusion in a given view. A simple approach to obtain a surface representation from a

single depth map is to compute a triangle mesh by exploiting an assumed connectivity of

neighbouring elements in the depth image. However, simply triangulating the set of depth

maps can result in inconsistent reconstructions caused by connecting neighbouring depth

map vertices which are not topologically connected on the real surface.

Fortunately, a depth measurement provides more than just an observation on the surface

location in an image. It crucially also gives information about free space between the

surface and the camera center. Assuming a Gaussian likelihood along a ray of measured

depth, we can be relatively certain that the region in front of the measurement is free space,

while our observation tells us nothing about the region behind the estimated surface past

some threshold of uncertainty.

An extremely useful surface representation that enables the accurate representation of free

space is the signed distance function (SDF) S : R3 7→ R. Given a surface in 3D space, the

signed distance function volumetrically defines the signed Euclidean distance S(x) from

a point in the volume x ∈ Λ ⊂ R3 to the nearest point on the surface, where the sign

delineates regions of space that are closest to a front (positive distance) or back (negative

distance) of the surface. The surface is therefore implicitly represented as the zero level set

of the function, S(x) = 0.

In Figure (1.11a) we illustrate a truncated signed distance function (TSDF) representation for
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(a) (b)

Figure 1.11: A slice through the truncated signed distance volume showing the truncated
function S > µ (white), the smooth signed distance field around the surface interface S = 0
and voxels which are not defined with a valid signed distance S < −µ.

the scene in Figure (1.11b). Unlike the SDF, the truncated version defines only a limited SDF

near the surface interface and otherwise truncates the value where the unsigned distance

is above a specified threshold, furthermore it also defines values which do not have a valid

truncated SDF or SDF value through a second weighting function, defining the validity of

TSDF value at each point in the volume. The importance of this truncated SDF will now be

illuminated by its use in obtaining a global surface reconstruction from multiple calibrated

depth measurements.

Let us assume that for any potentially noisy depth map Di we have S̃i, its TSDF. A solution

to consistent model reconstruction can now be posed in terms of obtaining a denoised

truncated signed distance volume S given m noisy overlapping depth map measurements

in TSDF form. To that end, making the assumption that the surface measurements are

independent:

p(S̃1, S̃i, . . . , S̃m|S) =
m

∏
i=1

p(S̃i|S) (1.21)

and for S̃i, the likelihood p(S̃i(x)|S) is a Gaussian corrupted measurement of S(x) inde-

pendent of other points in S̃i with variance σ2
i (x) = 1/w2

i (u),

p(S̃1, S̃i, . . . , S̃m|S) = ∏
x∈Λ

m

∏
i=1

p(S̃i(x)|S) (1.22)

Then for the simplest uniform prior over S, we can write a trivial posterior distribution
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(a) Measurement (b) 2 Frames (c) 30 Frames (d) 100 Frames (e) Complete model

Figure 1.12: Example reconstruction using the truncated signed distance function averaging
approach. (a) Shows the set of vertices computed from one depth image captured from
a commodity structure light camera, rendered to show the surface normal orientation. In
(b,c,d) the partially reconstructed surface is shown with Phong shading, computed from
2, 30 and 100 calibrated surface observations of the subject acquired from a moving sensor.
The complete model from approximately 20 seconds of modelling is shown in (e), rendered
into the same camera pose as from measurement (a) highlighting the denoised and filled
in reconstruction obtained.

over the desired surface:

p(S|S̃1, S̃i, . . . , S̃m) ∝ ∏
x∈Λ

m

∏
i=1

exp
(
−|S(x)− S̃i(x)|2

2σ2
i (x)

)
, (1.23)

Taking the negative logarithm of the distribution, we can obtain the maximum likelihood

estimate of S by minimising the energy ∑M
i=1 |S− S̃i|2. Due to the independence assump-

tions made, given a discretisation over S this results in the weighted mean of the observa-

tions:

Ŝ = max
S

p(S|S̃1, S̃i, . . . , S̃m) (1.24)

Ŝ = min
S

m

∑
i=1
|S− wiS̃i|2 (1.25)

Ŝ =
1

∑m
i wi

m

∑
i=1

wiS̃i , (1.26)

where wi : Λ 7→ R volumetrically defines the confidence over the TSDF values, wi(x) ∝

σ−1
i (x). We note the weighting function removes summation over regions of the TSDF

which might not have a valid value simply by setting wi in those regions to 0.

A useful property of the weighted mean is the ability to write it as update equation using
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a second cumulative weight volume W : Λ 7→ R+,

Ŝi+1(x) =
Wi(x) + wi+1(x)S̃i+1(u)

Wi(x) + wi+1(x)
(1.27)

Wi+1(x) = Wi(x) + wi+1(x) (1.28)

The effect of averaging truncated versions of the SDF representation limits averages to local

regions in the multiple measurements. The narrow band of SDF represented values must

therefore be small enough to eliminate interference between front and back facing surfaces,

but must be wide enough to enable a useful average to be made between noisy observations

of the same surface.

This simple update scheme enables a route to constant time dense mapping of calibrated

depth measurements into an optimal surface reconstruction. A demonstration of this pow-

erful technique is given in Figure (1.12). Depth map input to the example is produced from

a Microsoft Kinect structured light depth camera with known sensor poses. Acquiring the

many 100s of depth images used in the reconstruction from a moving camera, the measure-

ments are integrated together and the resulting denoised surface is extracted as the zero

level set of the weighted average TSDF.

1.5 From Sparse to Dense Visual SLAM

In the previous section we outlined tracking, depth estimation and surface reconstruction

concepts that present approaches to solving separated localisation and mapping problems

without the use of explicit feature extraction, matching and tracking. In particular we

saw in Sections (1.4.1) and (1.4.2) the potential for direct optimisation of the pose and

structure parameters (in the form of a depth map) to simplify the visual SLAM pipeline

while providing a far richer mapping and potentially more robust tracking result. In this

thesis we introduce an approximation to a recursive form of the SLAM posterior, that will

enable us to use these dense tracking and mapping components in a straightforward way.

Given some form of an initial dense surface reconstruction mj−1 and a known camera pose

xj−1, let us assume that we can alternate between estimation of a new camera pose xj,

given the current dense map and that given that camera pose and the current map, we will

estimate an updated map mj:

p(xj, mj|x{j−1,...,j−J}, Z{j,j−1,...,j−J}) ≈

p(xj|mj−1, Zj) · p(mj|mj−1, x{j,j−1,...,j−J}, Z{j,j−1,...,j−J}) . (1.29)

Specifically this means that we will estimate a new camera pose xj, by exploiting the avail-
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ability of a (partial) surface reconstruction mj−1. The availability of the dense model will

enable us to use a direct tracking methodology. Then, given the surface model from mj−1,

the new camera pose xj, its associated sensor measurement Zj (i.e. a passive image) and

a subset of J such historically calibrated estimated sensor measurements we will define a

procedure to update a dense surface map of the environment mj. We will perform this

optimisation by abstracting the input frames to surface measurements in the form of depth

maps and optimally integrate these depth maps into a consistent global surface model.

Unfortunately, it is well known from SLAM research that such a partitioning of the joint dis-

tribution is not valid in general. This is due to the joint dependence of each measurement

on pose and structure parameters as made explicit in the visual SLAM joint distribution

from Equation (1.3). Typically we would expect error in pose estimates to ultimately lead

to irreversible camera drift and errors being baked in the map, and we know that such an

approximation in Equation (1.29) can only be valid if the estimates from the mapping and

tracking components result in optimal parameters at each alternating step. It is therefore

an interesting and surprising result of this thesis that we will demonstrate that the approx-

imation does often hold in practice, at least for smaller maps. We note that scalable SLAM

solutions exist based on sub-mapping and graph optimisation techniques (Thrun et al.,
2005), therefore we make use of this simplest of SLAM partitioning and focus on obtaining

real-time dense SLAM that will enable new applications in augmented reality and robot

interaction.

Selected Publications

The real-time systems developed during the course of this thesis contribute a progression

of dense visual SLAM systems. In early work, we augmented feature-based visual SLAM

point maps with a denser surface model composed of overlapping surface meshes obtained

by computing dense correspondences between frames. This enabled real-time geometry

aware augmented reality with a single moving camera: Live Dense Reconstruction from a
Single Moving Camera, Newcombe and Davison (2010).

By exploiting the video rate data available from a single moving camera we demonstrated

that the dense surface models can be computed more efficiently. We also replaced the fea-

ture based tracking pipeline with a direct tracking approach, utilising the dense geometric

and photometric predictions made possible by the dense surface model: DTAM: Dense
Tracking and Mapping in Real-time, Newcombe, Lovegrove, and Davison (2011c).

We then developed the full dense SLAM methodology that is central to this thesis. Taking

advantage of newly available commodity depth cameras to reduce the complexity in the

system development we focussed on enabling a truly incremental surface reconstruction.
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The dense SLAM pipeline enables continually updating surface fusion, using all depth

measurements in a live sensor stream and uses the current up to date surface model for

dense tracking: KinectFusion: Real-Time Dense Surface Mapping and Tracking, Newcombe,
Izadi, Hilliges, Molyneaux, Kim, Davison, Kohli, Shotton, Hodges, and Fitzgibbon
(2011b). Further applications of the real-time capabilities enabled by the dense surface rep-

resentation and real-time tracking were also investigated in KinectFusion: Real-Time 3D Re-
construction and Interaction Using a Moving Depth Camera, Izadi, Kim, Hilliges, Molyneaux,
Newcombe, Kohli, Shotton, Hodges, Freeman, Davison, and Fitzgibbon (2011).

In this thesis, we fully develop the form of alternating joint optimisation over the dense

surface model and camera pose developed in KinectFusion, enabling real-time dense sur-

face mapping and tracking with a single moving video camera, demonstrating the ability

to achieve high quality dense visual SLAM.

1.6 Thesis outline

At the beginning of each chapter in this thesis we review relevant research areas specific to

topics covered therein. In Chapter (2) we therefore take the opportunity to provide a back-

ground overview of related and interconnected areas from online visual SLAM through to

multiple-view stereo looking in particular at techniques which were developed for use in a

live operational setting.

In Chapter (3) we provide an introduction to the technical methods and notation used

in the thesis. We describe the calibration procedures used to geometrically rectify and

photometrically normalise the image data used in the visual SLAM systems, and provide

an overview of the optimisation techniques that are at the core of the methods developed

in later chapters.

In Chapters (4) and (5) we develop efficient convex optimisation based multiple-view depth

map estimation algorithms. We investigate techniques that enable use of many small base-

line images that are available from a video based data term, estimating depth maps as the

solution to an energy minimisation problem comprising the multi-view stereo data term

and a regularisation term. We select the most suitable algorithms that achieve a trade-off

between accuracy and computation for use in the dense SLAM pipeline.

In Chapter (6) we describe the volumetric implicit surface representation that enables con-

tinuous integration of depth measurements into a consistent surface reconstruction. We

also extend the model to capture a photometric representation of the scene and describe

and develop the tools to enable efficient rendering of both the geometric and photometric

predictions of the surface.
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In Chapter (7) we combine the multiple view depth map estimation methods from Chapters

(4) and (5) with the volumetric surface representation described in (6) and detail a pipeline

for incremental surface reconstruction from video exploiting the full predictive capabilities

of the dense surface model to reduce the complexity of estimating the depth map.

In Chapter (8) we develop the direct optimisation methods for estimating the pose of the

live sensor using dense frame to model alignment. We describe the whole image alignment

methods for both single passive and depth cameras that make full use of the dense surface

predictions possible from the surface reconstruction pipeline.

In Chapter (9) we combine the dense tracking and mapping components detailed in the

previous chapters into a number of dense visual SLAM systems. Importantly, we provide

a video appendix at the end of the chapter which demonstrates each of the main systems

and the components of which they are comprised.

Finally, in Chapter (10), we provide a summary of the work and the contributions made

together with future research directions of the work.
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2.1 Feature Based Visual SLAM

We are interested in systems that are capable of providing a camera trajectory and scene

maps without access to prior modelled artefacts or fiducial markers. This section provides

a short background development of the current state of the art in real-time visual SLAM

systems that succeed in producing accurate large scale maps in real-time with the asso-

ciated camera trajectory. In all cases the visual SLAM systems described here produce

models comprising simple geometric abstractions. Typically the models produced result

in a sparse point cloud consisting of 100′s or 1000′s of 3D points, while more advanced

systems extend the point cloud representation to include line segments.

A rich history of online or recursive estimation of the pose estimation and structure begins

with the structure from motion community from computer vision. The study of obtaining

36
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3D structure from 2D image motion has been extensively studied in the offline setting start-

ing in the 1950s in the field of photography. Here we will only touch on research that begin

to culminate in real-time, fully automatic systems that utilise the same basic principles

found in the later visual SLAM systems that we will discuss in more detail below. Jebara
et al. (1999); Faugeras and Toscani (1986); Faugeras (1993) provide a thorough overview of

the subject detailing recursive structure estimation for causal image sequences. They note

problems with small baselines having relatively little structure from motion information

available but that correspondences are however easier to obtain between shorter baseline

frames. The visual SLAM systems combined the research from structure from motion with

online SLAM solutions such as Bayesian Filtering that provided a means of scaling up the

optimisations while coping more explicitly with the uncertainties and ambiguities present

in visual sensing, Durrant-Whyte and Bailey (2006); Thrun et al. (2005).

2.1.1 Sequential Filter Based Structure from Motion

Harris and Pike (1987), introduced a single camera tracking and mapping system: DROID,

capable of real-time operation on very modest hardware. The environment is modelled as

a 3D point cloud. Each 3D point has an associated covariance matrix to capture its un-

certainty and can be seen as a forerunner of later visual odometry systems that accurately

estimate the sequential motion of camera from real-time video by exploiting the uncertainty

represented over the 3D point model to enable a constrained search for correspondences in

the live frame.

Broida et al. (1990) detailed a filtering approach to 6DoF camera tracking using a single

camera video stream. They initialise the system state comprising a map of 3D points and

the camera pose using a batch bundle adjustment step. They also introduce the idea of

reducing the search region for new features using the estimated covariance over the state

space, however in their system they use manually defined fiducials which they then track

by hand. Soatto (1997); Chiuso et al. (2000) emphasised the useful temporal constraints

available in causal video data. Working independently of the SLAM community, they

present an early Extended Kalman (EKF) Filter based system capable of joint structure and

motion estimation using a single moving passive camera. Jin et al. (2000) demonstrated

the principles of feature initialisation and detection that are fundamental to all filter based

feature based visual SLAM systems.

Davison (2003), developed the MonoSLAM system, establishing a crucial footing for real-

time single camera visual SLAM, building on earlier robot-based visual SLAM, (Davison
and Murray, 1998). Using a joint state representing pose and a point cloud map within

an EKF scheme, they use the joint uncertainty over predicted feature positions to reduce
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the computational cost of obtaining correspondences, the system’s stability and agility

surpassed previous systems, producing globally consistent maps over larger areas, leading

to longer operation times than had previously been demonstrated. Early versions of the

system needed a metric target to bootstrap the system from known features, and used a

particle filter to coalesce new feature observations into an initial map point with Gaussian

uncertainty. In a later version of the system by Montiel et al. (2006) the need for this

heuristic mechanism was replaced with an inverse depth parametrisation of the initial map

points that enabled representation of infinite uncertainty along the corresponding pixel ray,

enabling for the first time fully automatic single camera monocular SLAM without a prior

map.

Eade and Drummond (2006b) presented a novel approach based on camera tracking using

filtering within local sub map nodes which are connected in a global map represented

by a pose graph. Each node consists of an associated local frame of 3D points obtained

through a Rao-Blackwelised particle filtering over the live camera state and tracked image

features. A new node is introduced and connected to previous nodes in the graph via

edges representing the relative pose between the local frames of reference. They perform

pose optimisation over the graph propagating updates into the local nodes. Eade and
Drummond (2008) further unify the loop closure and re-localisation components of the

systems. Pupilli and Calway (2006) also used a particle filter on the state of camera pose

demonstrating increased robustness to agile camera motion in comparison to the previous

EKF based tracking systems.

2.1.2 Keyframe based Bundle Adjustment

Nistér et al. (2004) developed a real-time visual odometry system for stereo or single pas-

sive cameras using closed form solutions for camera pose estimation between frames and

triangulation of 3D points from 2D image trajectories. They do not attempt to solve re-

observation of historical map points leading to inevitable system drift. However by period-

ically restarting the system while keeping an initial pose estimate from the previous frame,

they demonstrate a reduction in error build-up. Engels et al. (2006) showed that a care-

fully implemented bundle adjustment could run at real-time rates over a sliding window

of recent video frames leading to increases in both camera trajectory and map accuracy,

and importantly reducing error build-up that can lead to tracking failure when using more

heuristic approaches.

Mouragnon et al. (2006) present a real-time single camera system using a local bundle

adjustment approach with sparse visual feature tracking, capable of mapping 1000s of 3D
points. Although no global optimisation is performed the system is robust on real-world
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urban sequences lasting around three minutes accruing a drift error of approximately 0.29

meters in comparison to a global bundle adjustment.

Klein and Murray (2007) developed Parallel Tracking and Mapping, a vastly different ap-

proach to the filter based monocular SLAM systems that came before it.

In place of an EKF where a joint representation of uncertainty over the map and pose re-

stricted the achievable density of the map due to the O(N2) complexity of the filter update

step, Klein and Murray combine two novel ideas in their system. First they defined a sep-

aration between the task of tracking the camera given a known map, and updating the

current map with new features. It is interesting to note a key insight from PTAM, that map

building need not take place at frame-rate, is a product of the application area in which

PTAM was built to succeed: Augmented Reality with a user in the loop, where brows-

ing a scene is unlikely to lead to catastrophic system failure if part of the environment is

not mapped. This can be contrasted with applications in the robotics community aiming

for fully autonomous navigation in an unknown environment where an up-to-date repre-

sentation of uncertainty over the pose and map of the scene are often a needed in online

planning and control to ensure the robot does not fall into a state of physical dilemma.

In practice by dropping all explicit representations of uncertainty in the pose and map and

decoupling the the tracking and mapping stages into a real-time tracking and slower offline

bundle adjustment based map building component, an unprecedented level of performance

over the filter based approaches was achieved in terms of tracking agility and accuracy as

well as map scalability and density.

A second related innovation replaces the explicit extraction of descriptors to be associated

with a map point with keyframes which are a selection of sparse source images decomposed

into a scale-space pyramid with an estimated pose. A map point then holds a reference to

a single source keyframe, together with the image location and scale where it was detected

as a feature. This keyframe description of feature appearance simplifies the process of

adding new features since no extra processing or storage is required, and many features

may be present in a single image. The use of keyframes is also central to enabling efficient

joint optimisation of the map structure in the SLAM system since sparsification of the live

frame rate image stream into the keyframes enables practical use of bundle adjustment.

Robust point-based camera tracking is performed by projecting and matching features from

the current map into each live frame, establishing data-association between the current

model and live image data. The current camera pose is obtained by an iterative non-

linear optimisation of the pose variables only, minimising the re-projection error of the

data-associated features.
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A mechanism for adding new keyframes, and with it new map points, works intermit-

tently taking the current frame and pose and creating a new source keyframe. Correspon-

dences from other keyframe points that can be data-associated are added to a growing list

of keyframe correspondences. In a second thread global map optimisation is performed

slower than frame-rate e.g. 2Hz. The set of the keyframes, along with the list of corre-

spondences are bundle adjusted, to obtain a global estimate of the pose of the keyframes

and the 3D point cloud model. A later investigation by Strasdat et al. (2010) compared the

computational cost with achieved map and trajectory accuracy. The study showed that a

keyframe based bundle adjustment approach in which more features are used for tracking

without joint uncertainty typically leads to increased accuracy and stability over systems

utilising joint estimation with uncertainty over sparser maps using a filtering framework.

Klein and Murray (2008) turned their attention to increasing the agility and robustness

of the real-time pose estimation component of PTAM. Motivated in particular by the poor

performance of point-based tracking in comparison to systems that rely on a prior built

model, they argued that small image patches, as used in Klein and Murray (2007) and

the earlier systems by Davison et al. (2007), are unable to handle large pixel motion due

to motion blur artefacts that occur during rapid motion, and add edglets that in principle

are more resilient to motion blur. They also add an inter-frame pose estimation mechanism

that does not rely on the map, but instead uses a whole image alignment approach. Using the

combined mechanisms they demonstrated a vast improvement in tracking higher velocity

and acceleration camera motion.

They also introduced a simplified two stage re-localisation mechanism using the same

direct alignment mechanism used in the frame-frame motion estimation. The effectiveness

of the first stage was demonstrated by Reitmayr and Drummond (2006) within a known

model tracking scenario. When tracking is lost, a zero mean sum of squared differences

between the current frame pixel values and all keyframes is performed at coarse sub-

sampled level of the scale-space pyramid. In the second stage, given the keyframe with

the smallest photometric error, the SE2 whole image alignment optimisation is performed

with an extra variable optimisation over the image mean to account for global illumination

variation between the reference and live images. Klein and Murray (2007) point out that

while the mechanism is not capable of arbitrary view relocalisation, i.e. when the camera

is substantially rotated relative to the nearest keyframes, the low processing requirements

of the optimisation together with user feedback enables the user themselves to easily move

the camera to a nearby previous location increasing the likelihood of re-localisation. Such

a simple mechanism contrasts with the more substantial approach taken in the original

PTAM and developed by Williams et al. (2007) based on computing a minimal set of

correspondences between the live frame and a prior learnt set of map features resulting
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in 3D-2D point correspondences that enable the pose to be estimated within the RANSAC

frame of Fischler and Bolles (1981).

2.2 Live Dense Reconstruction

In this section we review systems that produce dense maps by exploiting the maps and

real-time camera trajectories obtained with feature-based visual SLAM system. As in the

previous section we are most interested in only those systems that attempt to achieve a

real-time or incremental result. Unlike offline dense reconstruction systems that assume

all camera poses are known prior to the dense reconstruction step, a live dense reconstruc-

tion (LDR) system must cope with increased or unknown uncertainty in the camera pose

estimates. Furthermore, in the live setting the data input to the system is not fixed, hence

LDR like visual SLAM systems must provide a solution should ideally posses a constant

computational cost per frame enabling ongoing incremental reconstruction.

2.2.1 Extended Features in Visual SLAM

A natural extension for the feature-based visual SLAM systems is to incorporate an ex-

tension to richer geometric modelling primitives beyond points, perhaps the simplest ex-

ample is the use of line or low dimensional parametric curves, (Smith et al., 2006; Eade
and Drummond, 2006a; Klein and Murray, 2008). An example map produced by PTAM,

(Klein and Murray, 2008) is shown in Figure (2.1a) using the joint point and edglet scene

representation.

Molton et al. (2004) used planar patches though not explicitly to increase map density

but to increase feature correspondence by enabling better prediction of the map points

over larger baselines due to representation of surface orientation provided by the patch.

Chekhlov et al. (2007) coalesce co-planar map points to initialise planes represented in an

EKF based monocular SLAM system, although observations of the planes remain point-

based.

2.2.2 Free-Space Carving Approaches using Sparse Features

An important property of the previously introduced visual SLAM systems is the ability

to maintain globally consistent maps through association of historical features with new

observations obtained by data-association. Furthermore, the visual SLAM systems either

explicitly represent map uncertainty (Davison et al., 2007) or enable an estimate over joint

map and pose uncertainty using the partial derivatives of the bundle adjustment error

function (Davis, 2006).
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A number of researchers have demonstrated dense reconstruction based on a 3D triangu-

lation of the sparse point clouds available from real-time visual SLAM systems. An elegant

incremental reconstruction approach can be achieved by using estimated correspondence

information associated with each 3D point to provide constraints on free-space in the scene.

Assuming a noiseless map point, the space along a ray emanating from a camera center

and ending at the point must be empty requiring any represented solid that tessellates the

space, such as tetrahedra, to be carved away.

Hilton (2005) introduced a provable theory for the reconstruction of dense geometric mod-

els consistent with all induced visibility constraints produced by a point map. They develop

an efficient recursive algorithm which is proven to have a constant computational cost per

new frame, but critically relies on point set noise distribution devoid of outliers, with only

a small amount of measurement noise being tolerated for correct reconstruction.

Lovi et al. (2010) used PTAM (Klein and Murray, 2007) as the basis of an incremental free-

space carving approach for fast rough estimation of scene geometry. The system includes

the ability to handle map point insertion, deletion and point refinement whilst maintaining

a run time cost proportional to the number of points visible in any key-frame. However,

the visibility constraint does not take into account measurement uncertainty leading to

possible incorrect carving of large structures, and a generally noisy surface reconstruction.

A similar tetrahedral space carving approach using free space constraints induced by the

point cloud map and selected camera frames in MonoSLAM is discussed by Lovegrove
(2011).

Pan et al. (2009) developed ProForma, a probabilistic feature-based model system that gen-

erates good quality planar faceted models in real-time with modest commodity computing

requirements. ProForma also use a keyframe based real-time structure from a motion

based system to obtain a point cloud in real-time similar to PTAM. Unlike the incremental

approach of Lovi et al. (2010), upon keyframe addition, ProForma reconstructs a full Delau-

nay tetrahedralisation of the updated point cloud and then uses an efficient probabilistic

space carving algorithm to obtain a reconstruction consistent with all available visibility

constraints.

While the space carving algorithms produce models that are consistent with the free-space

constraints induced by a given point based map, the resulting models are typically very

coarse and rough, seemingly as a consequence of the density of points in the constructed

maps produced by the feature-based visual SLAM systems.
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2.2.3 Real-time Dense Reconstruction on Commodity Hardware

If we can assume that the estimated poses obtained from the feature-based visual SLAM

systems are within some bounded acceptable error we can separate the problem of estimat-

ing the camera pose, achieved using the feature-based approach, from that of reconstruct-

ing the observed scene with dense surface representation. Estimation of dense surface

structure given multiple calibrated camera imagery has been extensively researched in the

computer vision field of multiple-view stereo, (Szeliski and Scharstein, 2004; Seitz et al.,
2006), which has produced a large number of techniques to achieve high quality recon-

struction. In this subsection we look at systems that achieve live dense reconstruction by

separating the camera pose estimation and dense reconstruction tasks together with im-

portant developments that enabled the computationally demanding dense reconstruction

components to operate on commodity hardware in a live or real-time setting.

Pollefeys et al. (1999, 2004) demonstrated one of the earliest, complete, single camera dense

reconstruction pipelines. Although their system was not capable of real-time processing at

the time of publication it contained the core of what has become one of the most successful

dense reconstruction pipelines for both real-time and offline reconstruction applications.

Their pipeline consists of first estimating the pose of a sequence of camera frames using

SfM with a bundle adjustment refinement. Dense multi-baseline stereo is then computed

on rectified temporally neighbouring image pairs, followed by multiple view linking of the

dense correspondences to increase depth accuracy and reject low quality correspondences.

A dense geometric model is computed by fusing the multiple view depth maps within

the volumetric signed distance function fusion framework of Curless and Levoy (1996)

followed by extraction of the surface mesh from the zero level set using the marching cubes

algorithm by Lorensen and Cline (1987). Finally the mesh is simplified to facilitate efficient

rendering of the reconstructed model within an augmented and mixed reality application.

The resulting pipeline required several minutes for reconstruction from a sequence of five

images obtained from a hand-held camera but established the result of acquiring a dense

surface model from passive imagery using commodity computing hardware.

Pollefeys et al. (2008) addressed a number of computational issues associated with the

pipeline outlined above, producing the first real-time capable dense reconstruction system

using a single passive camera. Their work aims at a practical solution for reconstruct-

ing street size urban scenes viewed at car level. While the full incarnation of the system

uses GPS and inertial measurement to obtain a real-time trajectory for up to four (non

overlapping) cameras, the pipeline can utilise the structure from motion with bundle ad-

justment framework based on the systems of Nistér et al. (2006) and Engels et al. (2006) to

provide camera pose estimates from a single camera video stream. Specifically, given the
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sparse visual SLAM results of systems such as PTAM from Klein and Murray (2007) or

sliding window bundle adjustment by Engels et al. (2006), which provide real-time cam-

era pose and sparse point-cloud estimation, the main difficulties overcome by Pollefeys
et al. (2008) concern computing and fusing dense multiple view correspondences into a

consistent surface reconstruction in particular by making use of newly available passively

parallel commodity general purpose graphics processing (GPGPU) hardware.

Depth Map Estimation from a Single Camera

Collins (1996) introduced the elegant plane-sweep algorithm to obtain correspondences

across multiple calibrated views as the minimum of a quantised disparity-space cost func-

tion induced in a chosen reference frame, resulting in a depth map for that frame. The

plane-sweep approach directly enforces the epipolar geometry between the reference and

comparison views equivalent to the direct search approach discussed in the introduction

Equation (1.9).

Yang et al. (2003) introduced a real-time implementation demonstrating the effectiveness

of GPGPU from several pre-calibrated static cameras for use in real-time teleconferencing

applications. Previously such real-time capabilities had been available only through the

use of specialised processing hardware, typically for fixed stereo pairs. The planesweep

algorithm maps well to GPU hardware due to the trivial parallelisability of the stereo cost

function computation removing the burden of depth map estimation from the host CPU,

freeing up resources for other tasks in the real-time dense reconstruction pipeline. Many

further developments increased the quality of the depth map estimation from multiple

views, while more efficiently utilising the available commodity computing hardware.

Further rapid developments provided increases in depth map estimation quality while

further utilising the growing capabilities of commodity GPU hardware. These included

reduced noise in the estimated depth maps by spatial aggregation over the data term and

occlusion handling, (Woetzel and Koch, 2004); the addition of spatial regularisation, (Cor-
nelis and Van Gool, 2005); as well as addition of gain-adaptive data terms producing

robustness to illumination changes across frames that break the brightness constancy as-

sumption in the basic stereo data term, (Kim et al., 2007).

Gallup et al. (2007) introduced a planesweep with multiple sweeping directions to address

the issues associated with errors induced in the fronto-parallel plane sweep framework in

which the error function computed for slanted surfaces visible across multiple views, being

warped incorrectly, leads to erroneous local minima and decreased depth map accuracy.

Gallup et al. (2007) also include an explicit occlusion handling mechanism (Kang et al.,
2001) in which the minimum of two temporally separated subsets either side of the plane-
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sweep reference frame is used, replacing the sum over all comparison views and leading to

a decrease in the degradation of the disparity space cost function at depth discontinuities.

While depth error increases quadratically in surface depth for the above systems Gallup
et al. (2008) later introduced variable baseline/resolution stereo to achieve a constant depth er-

ror by dynamically altering the depth quantisation and camera baseline to keep a constant

triangulation angle for any estimated depth.

Surface Reconstruction

The second major computational difficulty for the real-time dense reconstruction pipeline is

the generation of a consistent surface reconstruction given the multiple view depth maps.

The urban reconstruction approach of Pollefeys et al. (2008) addresses the issue by re-

placing the computationally expensive volumetric fusion approach of Curless and Levoy
(1996) used in (Pollefeys et al., 2004) with an explicit mesh representation of the scene

constructed by compositing together multiple depth maps into a global frame using the

visibility based depth map fusion approach by Merrell et al. (2007).

The depth map fusion approach from Merrell et al. (2007) generates small base-line depth

maps, computed at frame rate on the input video using a GPU accelerated planesweep.

These are back projected into the global frame where the depth map is triangulated.

Meshes are fused in real-time using an efficient quad-tree structure in the image space

by projecting neighbouring meshes into each others reference frames and updating the

meshes to obtain a surface that reduces view consistency violations.

Zach et al. (2006) produced one of the first multiple-view stereo pipelines capable of dense

reconstruction at interactive rates. While the resulting system did not demonstrate a com-

plete live pipeline at the time of publication, the components present in the system and the

emphasis on integration of all data available from a live video source makes the system

the starting point for work in this thesis. By using components that efficiently exploit the

massive computational resource presented by the GPU their aim was to produce a system

with a constant computational cost associated with a new frame. This was in contrast the

majority of offline multiple view stereo algorithms where performance scaled worse than

linearly in the number of input frames (Seitz et al., 2006). The system consists of computing

a plane sweep stereo in a sliding window of frames using the gpu approach introduced by

Woetzel and Koch (2004) but extended to include the more robust zero mean normalised

cross correlation cost function. Their system integrates the short baseline depth maps into

a dense volumetric reconstruction using a variant of the robust signed distance function

averaging by (Curless and Levoy, 1996) again making efficient use of the GPU resource

resulting in an order of magnitude reduction in integration time compared to a CPU im-

plementation. A final mesh model extracted from the implicit surface zero crossing using a
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CPU implementation of the marching cubes algorithms, but an interactive visualisation of

the current reconstruction result is available using volume rendering techniques working

directly on the GPU bound reconstruction. They demonstrate the full pipeline on a number

of offline calibrated image sequences.

Vogiatzis and Hernández (2011) describe a video based multiple view stereo system using

a per-pixel probabilistic depth estimation in which a posterior depth distribution is updated

on every new frame, which unlike the majority of offline multiple view stereo system

utilises hundreds of measurements possible from a video stream. The approach is similar

to the extended Kalman filter based iconic depth map approach of Matthies et al. (1989),

but crucially utilises a novel mixture model over the depth estimate increasing robustness

to outliers and perpetual aliasing on repeating texture, similarly to the particle filter used

in map point insertion mechanism in MonoSLAM (Davison et al., 2007). Real-time camera

pose estimates are obtained using a fiducial marker based tracking system, later replaced

in Woodford et al. (2011) with live camera pose estimates obtained by PTAM. The result

is a dense point cloud obtained in real-time for image regions with high enough texture

to initialise a 2D image based feature tracker over a short baseline. When considering

the possibility to regularise the correspondence field computed in the live image frame,

Vogiatzis and Hernández (2011) argue that such early spatial regularisation, while leading

to increased model completeness, reduces accuracy of the final model. Therefore for low

texture regions, the reconstruction is sparse and an offline post-processing of the point

cloud is required to generate the final surface reconstruction.

2.3 Global Optimisation and Regularised Stereo

Many problems in computer vision can be cast as global energy functions and solutions

can be obtained by energy minimisation. This was previously demonstrated in Chapter

(1) for a denoising problem, and the optimisation framework can be applied to estimate

stereo directly without first extracting a depth map. The most widely researched class of

energy minimisation approaches set up an energy summing two terms, defining the energy

induced by a depth map solution D, the global energy is:

E(D) = Edata(D) + Esmooth(D) , (2.1)

where Edata(D) computes a cost (or energy) over a given data term for a possible solu-

tion. This is summed together with a regularisation Esmooth(D) term that penalises the

non-smoothness of the solution in some way. A solution depth map is then obtained by

searching for D that yields a minimum energy. Such regularisation of ill posed problems

has been studied in many forms in computer vision in an attempt to understand how
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to state and solve low level vision problems in a useful, efficient and principled way. This

work has also often been motivated by a desire to understand the principles behind the hu-

man visual system (Marr, 1982; Poggio et al., 1985; Blake and Zisserman, 1987; Szeliski,
1991).

The particular form of the smoothness term is critical to obtaining high quality solutions.

In general, because natural scenes are comprised of piecewise smooth surfaces it is impor-

tant that the regularisation is discontinuity preserving. The seminal work by Geman and
Geman (1984) originally proposed the Bayesian interpretation of many energy functions

and formulated regularisation terms that are discontinuity-preserving.

We now briefly look at discrete optimisation approaches which have been extremely suc-

cessful in providing solutions to computer vision problems in the form of Equation (2.1).

2.3.1 Discrete optimisation

The most widely researched techniques for minimising the global energy attempt to solve

a discrete labelling problem where the solution for each pixel in a depth image is assigned

a discrete label D : Ω 7→ {Q0, Q1, .., QK}. In the simplest case a label can correspond at

each pixel to a discrete depth value. However, labels can instead specify pixel membership

to some local parametric estimation of a region.

Combinatorial Optimisation: The difficulty in optimisation of global energies depends on

the particular form of labelling and smoothness term used. For example, for a 1D label set

of finite size such as for stereo labelling, if the smoothness term is restricted to a convex

function of the solution space then an exact solution exists which can be found using the

group of combinatorial optimisation techniques, known in computer vision as graph cuts

(Boykov et al., 2001). Use of a more general smoothness term unfortunately renders the

problem NP-hard (Veksler, 1999)

Tappen and Freeman (2003) and Szeliski et al. (2008) provide an extensive comparison

of state of the art discrete optimisation approaches including graph cuts and belief prop-

agation Sun et al. (2003), with application in the stereo setting. Unfortunately, although

Graph cuts achieves high quality (near global minimum) solutions efficiently in compar-

ison to the previously non-deterministic search approaches such as simulated annealing

(Barnard, 1989), the solutions even in the two view stereo setting are not real-time applica-

ble, often taking on the order of minutes to solve even for space of K = 256 labels per pixel

with a convex regularisation function. While developments in practical belief propagation

have been achieved (Felzenszwalb and Huttenlocher, 2006), yielding simple and efficient

parallel implementations, they too are outside of the range of real-time operation.
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Convex Relaxations: More recently Pock et al. (2008a) introduced equivalent continuous

optimisation based convex relaxation formulations for a subset of the multi-label problems

which include stereo. A number of practical advantages are gained in the continuous set-

ting over the discrete counterpart, including efficient parallel implementation leading to an

order of magnitude speed-up using commodity GPU hardware over CPU based implemen-

tations, and also a reduction of the metrication errors that result from the approximation

used for distance computation in a local neighbourhood used in the discrete MRF models

which only approximate a discretisation of the gradient operators which measure smooth-

ness and are easily implemented in the continuous formulation (Pock, 2008; Klodt et al.,
2008). Unfortunately the speed-up gained due to efficient parallel implementation is still

far from useful in a real-time depth estimation setting.

Semi-Global Matching: In a rectified two view stereo setting, each scan-line can be treated

as an independent 1D problem comprising a solution smoothness or consistency constraint

along with the data term cost. Such scan line optimisation can be efficiently solved using

dynamic programming. However streaking artefacts in the solution result from the lack of

smoothness constraints existing between pixels on neighbouring scan lines.

Hirschmüller (2005) provides a solution to this in the form of semi-global matching (SGM)

which introduced a very efficient alternative to the full global optimisation of discrete

labelling problems. By splitting the global energy into several 1D optimisation problems,

where the data and smoothness cost minimum is computed along several directions, he

obtained a good approximation to the global minimum energy by selecting the minimum

energy computed amongst all paths. Because each of the decoupled 1D optimisations can

be solved using the dynamic programming approach SGM is computationally efficient.

Evaluation comparing SGM to the combinatorial optimisation approaches show similar

performance but with a speed-up of approximately 50×, making the approach potentially

useful in a real-time application. Extension to the multiple view setting can be performed

via any form of multiple input depth map denoising approaches where separate pairwise

depth maps are computed and then combined into a higher quality estimate.

2.3.2 Continuous Optimisation

Within continuous optimisation based depth estimation, an energy functional is devised,

mirroring Equation (2.1) consisting of a sum of two terms:

min
D

{∫
Ω

∑
k∈K

ψD (εk (x, D)) dx +
∫

Ω
λψR (A (D (x))) dx

}
. (2.2)
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When the error function εk(x, D) is linear in D and the data and smoothness norms are

chosen to be convex, then the functional is convex and a solution with a globally minimum

energy can be obtained in practice. In particular, the importance of such a continuous

convex energy functional lies in the assurance that a local minimum of the solution is also

the global minimum, and can be achieved independent of the solution initialisation using

a gradient descent style optimisation. This is extremely important in practice, since we

can then exploit the massive compute power of modern GPGPU to obtain real-time per-

formance, which has been found to be much harder for the previously described discrete

combinatorial optimisation approaches.

Linearised Data Terms: Unfortunately multi-view stereo data terms for ε in Equation (2.2)

are non-convex, for example for two-view stereo given a reference image Ir into which a

depth map will be estimated and a second view Il , the error function:

ε(x, D) = Ir(x)− Il(w(x, D)) , (2.3)

where w is the warp function from Equation (1.8), is generally non-convex in D. The

general solution used by nearly all continuous optimisation approaches is to linearise the

data term around a given solution estimate:

ρ(x, D) = Ir(x)− Il(w(x, D0))− (D− D0)∇D Il(w(x, D0)) (2.4)

Horn and Schuncks Optical Flow: Multiple-view variational depth estimation can be seen

as a constrained 1D form of the optic flow problem where the data term can be extended

over multiple images. In the seminal optical flow paper Horn and Schunck (1981) intro-

duced the vision community at large to the variational formulation of two view optical

flow. In doing so they demonstrated that superior performance in obtaining dense corre-

spondences could be achieved by solving a global optimisation problem involving a local

smoothness assumption and simple point-wise minimisation of the data term. Their func-

tional comprised a linearised brightness constancy data term, together with a quadratic

penalisation of the solutions 1st order gradient.

Course to Fine Solution: To ensure that linearisation of the data term holds, gradient de-

scent based continuous optimisation methods often embed the solution in a coarse-to-fine
framework. Initially, each of the input images are sub-sampled into separate image pyra-

mids. Coarse to fine optimisation then proceeds to solve the lower resolution solution by

minimising the global energy functional on the coarsest scale of images. The result of the

coarse scale estimate is then up-sampled (and scaled appropriately) to the next highest

resolution resulting in a linearisation point for the subsequent set of gradient descent iter-
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ations. Up-sampling followed by gradient descent continues until the original image scale

is reached.

Variational Depth Map Estimation

Early variational formulations of the depth estimation mirrored earlier approaches in the

optical flow research community performing gradient descent on the Euler-Lagrange equa-

tions of the energy functional. A number of innovations were introduced using robust data

terms in combination with discontinuity preserving regularisation. An equivalent two view

stereo version to Horn and Shuncks optical flow approach combining quadratic penalisa-

tion of the linearised brightness constancy data term together with quadratic penalisation

of the first solution variable first order gradients,

min
D

{∫
Ω

ρ(x, D)2 dx +
∫

Ω
λ|∇D|2 dx

}
. (2.5)

which is trivially extended to multiple views by replacing the two view linearised data

term with its SSSD linearised counterpart.

Robert and Deriche (1996) used the Aubert function
√

1 + (s/k)2− 1 over the basic quadratic

penalisation of s = ∇D which provides a depth discontinuity preserving smoothness

term. They also demonstrated the power of the image driven anisotropic regularisation

(IDAR) previously introduced by (Nagel and Enkelmann, 1986) in optic flow community

and originating in image restoration research. Image driven regularisation enables the

strength of a solution smoothness prior to be modulated by another image source on a

per solution point basis. Using an edge operator computed over the reference intensity, a

weight can be derived to reduce the regularisation power at image boundaries. Since depth

discontinuities often align with image boundaries a better depth discontinuity preserving

regularisation is obtained. Robert and Deriche (1996) also show that the quality of recon-

struction obtained using three images over two, where the comparison views captured are

captured from camera translation above or below and beside the reference frame reduces

the data term ambiguity that exists when depth boundaries align with the image axis.

Faugeras and Keriven (1998) provide novel variational formulations for multiple-view

stereo reconstruction. Their solution parametrisation was over a complete surface man-

ifold represented within the level-set frame-work and so is not strictly in keeping with the

depth map estimation formulations we are detailing here, they utilised an NCC patch data

term which can be expressed in a very similar form for any other non-parametric depth

representation. They also detail the importance of computing the data term gradient at the

linearisation point taking into account the surface normal there to reduce the fronto-parallel
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bias introduce by the patch data term.

Álvarez et al. (2000) also make use of the linearised brightness constancy data term and

IDAR regularisation using a quadratic cost on ∇D, and solve the resulting PDE from the

Euler-Lagrange equations within the linear scale space framework (Weickert et al., 1999)

resulting in improved correspondences over larger baselines.

Strecha et al. (2003) introduced a number of innovations focussing on wider baseline

multiple-view depth estimation using colour images. Using an inverse depth parametrisa-

tion of the scene, they formulate a novel energy functional comprising a linearised bright-

ness constancy data term with a per pixel gain under quadratic penalisation. Each pixel

within a view also has an associated correspondence variable used to down weight erro-

neous pixel values. While estimation of the data association is heuristic, the per pixel gain

adaptation is globally optimised with a quadratic penalisation of the fields first deriva-

tive. They also utilise IDAR under quadratic penalisation of ∇D. After discretisation of the

Euler-Lagrange equations they iteratively solve the PDE using a novel inhomogeneous time

diffusion process enabling a per solution point time step leading to faster convergence near

image regions where prior sparse feature matching used in the camera calibration step are

available.

Kim and Sohn (2003) present a rectified two view variational approach using combin-

ing the quadratic penalisation of the linearised brightness constancy with an inhomoge-
neous isotropic image driven regularisation introduced by Geman and McClure (1985) g(s2) =

1/(1+ s2)2 instead of the IDAR, although still within a quadratic penalisation of ∇D. Rather

than solving the resulting PDE using a course to fine gradient descent they initialise the so-

lution on the full resolution images using a per pixel data term minimum solution obtained

using block matching.

In their paper "Optic flow goes stereo", Slesareva et al. (2005) use the epipolar constraints

available between two views and reformulate the state of the art of optical flow technique

from Brox et al. (2004) in the constrained 1D setting. They introduce the `1 penalisation

based on a combined data term using both a linearised brightness constancy and lineari-

sation of the image gradients to increase robustness to illumination change. Similar to the

discontinuity preserving smoothness used by Robert and Deriche (1996), they introduce

the total-variation regularisation using the `1 in place of quadratic penalisation of the ∇D
which had been used to great success in image restoration Rudin et al. (1992). They re-

move the discontinuity present in the `1 costs using ε regularisation of the norm, and solve

the resulting fully convex functional in the coarse to fine framework used in the equivalent

optic flow formulation. Since the PDE is non-linear due to the denominator of the `1 norm

derivative, they perform a nested fixed point iteration by lagging the denominator to the
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previous iteration resulting in a sparse linear system which can be solved using successive

over relaxation (SOR). Liu et al. (2009) make use of the same formulation for their multi-

view stereo continuous depth estimation framework and point out the advantages of the

single pixel data terms for obtaining reconstruction of fine details.

Ben-Ari and Sochen (2007) focused on extending the sophisticated variational framework

developed by Shah (1993) that explicitly models solution discontinuities and occlusions

using the piecewise smooth segmentation approach developed by Mumford and Shah
(1989) (MS). Regularisation within the MS framework takes the form of a cost based on

both the solution smoothness such as quadratic variation |∇D|2 in combination with a

measure of boundary length of disparate regions within the solution. They make use of a

robust `1 joint colour and gradient constancy data term that is defined over the set of non

occluded pixels determined by the segmentation result. They also use the total-variation

regularisation in place of the quadratic variation used in Shah (1993) to improve further

the discontinuity preservation. The coupled segmentation and disparity estimation is then

solved using alternate minimisation of each functional within a coarse to fine framework.

Slesareva et al. (2007) develop a novel robust data term computing gradient constancy on

logarithmically transformed input images. Global illumination changes are transformed

into additive perturbations by the image logarithm, and since the gradient operation is

invariant to such transforms the result is invariance to such changes. They use an ε −
regularised `1 penalisation over the data term together with the quadratically penalised

IDAR regularisation and solve the non-linear PDE obtained from the Euler-Lagrange equa-

tions using the lagged denominator based linearisation approach.

Zimmer et al. (2008) derive an anisotropic solution driven two view stereo formulation bridg-

ing the gap between the isotropic solution driven approaches (i.e. Total Variation) and the

popular image driven anisotropic regularisation. They couple the regularisation with an `1

penalisation of brightness and gradient constancy data terms and solve using a multi-grid

gradient descent on the resulting non-linear PDE.

Kosov et al. (2009) introduce a novel multi-level adaptive technique (MLAT) that enables

efficient approximate solution of the Euler-Lagrange equations by introducing a measure

of stability for both the data term and smoothness term energy in a given iteration. Starting

at a coarse scale grid resolution they refine the computational grid over which the solution

is defined only in solution regions which have not converged, thereby reducing the total

number of iterations required for regions with strong data terms or that adhere quickly to

the local smoothness measure. Using a linearised brightness constancy data term they also

make use of an adaptive regularisation term which is switched between either a Charbon-

nier or Perona-Malik regularisation, both of which are non-convex functions and lead to
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discontinuity preservation. Switching is achieved on a per pixel basis by learning a map-

ping between the best regularisation to use and a current value ‖∇D‖2 estimated in an

offline manner on stereo data sets.

2.3.3 Fast Convex Optimisation for Dense Reconstruction

A great amount of research effort has been applied to efficiently obtain depth maps of

higher quality than can be obtained by searching for the stereo data term minimum alone.

Scharstein and Szeliski (2001) produced a taxonomy of the main algorithms available

early on in the research specifically looking at the two view stereo case which often are

also applicable in the multiple view setting. Research has continued to grow and produce

improvements on benchmark experiments for accuracy and robustness, but an important

distinction for application within a live dense reconstruction setting is the computational

efficiency of the algorithms. Many of the state of the art results which can not trivially

make use of GPGPU hardware typically require minutes or hours to compute a depth map

from a single stereo pair.

Pock et al. (2007a); Pock (2008) established a paradigm shift in real-time computer vision

with the application of continuous convex optimisation techniques efficiently implemented

on commodity GPUs to achieve state of the art real-time image denoising. In a series of

papers, a number of top performing algorithms were introduced in image denoising (Pock
et al., 2007a), optical flow (Zach et al., 2007a), segmentation Zach et al. (2008); Unger
et al. (2008), and dense reconstruction Zach et al. (2007b), providing real-time results on

commodity hardware using principles from continuous convex optimisation.

The rigorous convex optimisation framework used provides globally optimal results by

posing the solution to each problem as the result obtained by minimising a convex energy

functional comprising a data term and some spatial smoothness term. Within this opti-

misation setting the minimisation is obtainable using a first order gradient descent style

algorithm on the discretised functional (or by discretising the resulting gradient descent

equations). While more sophisticated optimisation techniques exist to minimise the en-

ergy functional, these gradient descent equations can be trivially parallelised leading to

an efficient mapping on commodity GPU architectures enabling rapid computation of the

solution.

Zach et al. (2007b) developed further the depth map fusion pipeline (Zach et al., 2006), pro-

ducing a globally optimal range fusion approach to dense reconstruction. The technique

transforms input depth maps into the truncated signed function form which are treated as

3D images. They produce a denoised TSDF as a minimum of a convex combination of the

data term error computed under an L1 norm from all input TSDF, under total-variation
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(a) Point and edge map from PTAM
(Klein and Murray, 2008)

(b) Mesh surface model LDR, (Newcombe and
Davison, 2010)

Figure 2.1: PTAM point and edglet map of an office scene, a person is lying on the floor. Live
Dense Reconstruction from a Single Moving Camera, using a hybrid approach applied to a
desktop scene. While no edglets or points are consistently mapped using the sparse visual
SLAM approaches, shape information is readily available from short baseline multiple view
stereo.

regularisation of the solution. Zach (2008) introduced a novel representation for errors in

the data-term, resulting in constant time optimisation with the total variation regulariser

of the TSDF independent of the number of input depth maps. The algorithm was imple-

mented efficiently on commodity GPU hardware and evaluated on offline pre-calibrated

image data achieving state-of-the-art multiple view stereo performance in quality but with

vastly decreased computation times as seen in the middleburry MVS evaluation website,

(Seitz et al., 2006).

Graber et al. (2011) used PTAM to produce a live running version of this efficient depth

map fusion approach. For each new keyframe produced by PTAM, a spatially local set of

neighbouring keyframe images with associated bundle adjusted poses are used in a concur-

rently running depth map estimation thread using a GPU implemented planesweep. The

system interleaves global optimisation with addition of new depth maps into the data term

when they become available. The current implicit surface is visualised using ray-casting,

and texture mapped using a set of nearby keyframes through projective texturing. Since

depth maps are only produced at keyframes, the system does not use all data available in

the live video stream, typically requiring tens of seconds before a sufficient set of initial

keyframes are available for a single depth map to be generated.

Newcombe and Davison (2010) developed a live dense reconstruction pipeline built on top

of PTAM described in more detail in Chapter (9). A surface patchwork of overlapping

depth maps is computed at automatically selected reference frames covering the currently

observed scene. The depth maps are estimated from multiple spatially local views around

each reference frame using a dense correspondence field computed between frames using
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a dense variational optical flow, (Zach et al., 2007a) computed on the GPU in coarse-to-fine

manner. To enable correspondences across wider views, increasing the quality of resulting

triangulation into a depth map, the optical flow estimation is initialised using a predicted

correspondence field induced between views by a coarse geometry proxy obtained by fit-

ting a surface to the PTAM point cloud. Figure (2.1) shows an example desktop scene

reconstruction.

Stuehmer et al. (2010) demonstrated a real-time GPU implemented depth map estimation

also within the convex optimisation framework of Zach et al. (2007a), but further exploit the

epipolar constraint between the multiple views given the static scene assumption to remove

the unnecessary burden of the pairwise optic flow computation used in Newcombe and
Davison (2010) with a direct parametrisation on depth. We will return to modern convex

optimisation based multi-view stereo in Chapter (5).

2.4 Dense Tracking and Mapping

The live dense reconstruction pipelines of the previous section enhance the 3D point maps

of sparse visual SLAM systems with a dense surface reconstruction. However, while the

surfaces are useful in a variety of applications, they are not used within the central scene

representation used to solve the SLAM problem. In this section we look at systems that

go beyond acquiring the model as the end result to pipelines that use live dense model

reconstruction within the SLAM pipeline.

Specifically given a dense model representing not only the scene geometry but also surface

appearance, it is possible to predict a whole image view simply by rendering the model in

a given camera frame. This is in contrast to the predictive capabilities of the sparse visual

SLAM systems that predict only the location in the image projections of geometric features.

We outlined in the introduction Section (1.4), the potential of direct tracking when a gen-

erative model of image appearance is available. These techniques originally developed

for non-projective transformations of the image pixels, (Lucas and Kanade, 1981), and are

often used as a sub-pixel refinement step in the feature based tracking and mapping sys-

tems such as PTAM and monoSLAM. Baker et al. (2004b) describe the basic extension of

the forward compositional luckas-kanade approach to 6DoF pose estimation when a dense

textured model is available. The improvement to the frame-frame tracking robustness of

Klein and Murray (2008) comes by mitigating the need to obtain binary data association

of sparse features, all of the following systems share this characteristic but go further by

making use of technique as the central tracking methodology.

A dense tracker is capable of using all of the pixels in a live measurement to align the model
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prediction, having the potential to add massive redundancy into the 6DoF optimisation

problem without having to decide beforehand which features are good to track. This

results in more robust camera tracking. We will discuss the technique in detail in Chapter

(8).

Silveira et al. (2008) introduced a direct visual SLAM approach which departs from the

traditional sparse visual SLAM systems from the previous sections to unify the tracking

and mapping of the scene with the extraction, tracking and matching of sparse features.

Their key observation is that reduced drift in camera trajectory can be obtained if a map’s

features can be observed throughout wider baselines as the camera moves. Specifically,

they parametrise the scene as a set of planes and define a joint optimisation over the plane

parameters and camera pose parameters. The joint estimation is solved using a direct

image-intensity based error minimisation over the plane induced homograph between a

set of keyframes. They formulate the minimisation using an efficient second-order method

(ESM) for optimisation over the homography parameters, (Malis, 2004) providing faster

convergence in comparison to the Gauss-Newton approximation first-order accurate for-

mulation. The sparse visual SLAM based systems that have typically only small regions

of stable observability over the map features with a given descriptor, due to geometric

appearance changes which are not modelled. In comparison, the large planar regions can

be continuously tracked for longer periods of time over larger baselines leading to greatly

reduced drift.

Lovegrove (2011) also uses the plane induced homography based ESM optimisation but

parametrises the scene as a single plane where a photometric prediction is obtained us-

ing a set of keyframes historically placed as the camera is tracked in real time using a

frame-frame whole image alignment. The system performs loop closure detection and ob-

tains globally consistent maps through a pose-graph optimisation using the relative pose

constraints estimated from keyframe-keyframe alignment.

Comport et al. (2007) details the quadrifocal tensor based visual odometry framework for a

calibrated stereo camera. A dense depth map obtained from the stereo pair along with the

reference frame image provides a dense model at keyframe locations. The dense prediction

can be warped via a quadrifocal tensor into estimated live camera frame using a 6DoF

camera transform between the keyframe and the estimated frame. The live stereo pair is

therefore aligned by optimising the relative camera transform to minimise the prediction

error between the predicted and live views using an efficient second order gradient descent.

Their system demonstrates the advantages of using all of the image data available in a

new frame and the model, to provide reduced drift without the traditional binary data

association based feature tracking and matching visual SLAM systems while working on a
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non-parametric representation of the scene.

Newcombe et al. (2011c) developed DTAM: Dense Tracking and Mapping in Real-time, demon-

strating the first single camera system to use both a dense non parametric scene mapping

and dense tracking pipeline showing increased robustness to agile camera motion. The

system represents the scene as a composite of overlapping dense textured meshes and con-

sists of two core components: using the current dense model of the scene they use the 2.5D
dense whole image alignment method of Baker et al. (2004b) to track camera motion at

frame-rate. Interleaved, given a sliding window of images from the tracked camera, they

update and expand the model by building and refining dense textured depth maps using a

novel convex optimisation based multiple view stereo technique developed in Chapter (5).

The DTAM system is boot strapped using the PTAM system to obtain the poses required

for an initial texture depth map before running independently. They directly compare the

tracking robustness to the PTAM system for desktop sized scenes demonstrating the ability

to track through motion and focal blur while providing a dense surface prediction for use

in geometry aware augmented reality. The system is described in further detail in Chapter

(9).

Tykkala and Comport (2011) develop a dense visual SLAM method for a passive stereo
camera to compute a 3D textured dense point cloud model of the scene. A dense track-

ing component estimates the live camera poses using a variant of the Lucas-Kanade 2.5D
alignment approach, (Comport et al., 2007). The model keeps a 1D Gaussian uncertainty

associated with each model point represented in a reference key-frame. The point is then

updated by exhaustively searching for a correspondence as the minima of the photomet-

ric cost function induced along the associated epipolar lines within neighbouring images.

Importantly they use a bounded region within which to search using the associated point

uncertainty to make the search tractable, and to reduce mismatches due to repeating tex-

ture or a reduced signal to noise ratio. New map points are initialised for image regions

where there are gaps in the model using a standard planesweep technique. The system

demonstrates high quality pose estimation with a low level of drift due to the massive

redundancy obtained in tracking from a dense model.

2.5 The Advent of Commodity Depth Cameras

Commodity RGB + Depth sensors like the Microsoft Kinect and Asus Xtion Pro (both based

on the Primsense structure light device) provide a real-time high resolution dense depth

map alongside the traditional passive RGB video. The availability of such sensors has

led to an explosion in practical SLAM being used in a variety robot systems for uses in

navigation, object recognition, grasp planning and augmented reality applications. The
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commodity depth sensors provide the real-time depth map as output without the need of

the large computational resource required for the real-time stereo approaches outlined in

Section (2.2.3).

Prior to the available commodity depth cameras, Rusinkiewicz et al. (2002) pioneered the

first demonstrably live dense 3D reconstruction system comprising a structured light based

depth measurement built using a commodity projector and single passive camera. While

the specifics of their hardware and application to small model acquisition reversed the

roles of the moving camera and static scene, their system pipeline demonstrated the core

for dense reconstruction using real-time depth images alone. As they move an object in

front of the depth camera, they align new depth scans into a mesh surface model using a

fast iterated closest point optimisation. The partial scans are visualised in a global frame

using an efficient splat rendering (Rusinkiewicz and Levoy, 2000), enabling feedback to

the user of where the model is currently incomplete. Finally they use the volumetric signed

distance function integration approach by Curless and Levoy (1996) to fuse the depth scans

into a consistent surface reconstruction.

Since the dense depth map mitigates a large computational cost in obtaining correspon-

dences for initialisation of 3D maps, the sensors can trivially replace the single passive only

camera used in all of the sparse visual SLAM systems discussed in section 2.1 leading to

improvements in mapping density and subsequent improvements in tracking quality. Re-

cently, Strasdat et al. (2011) utilised the depth camera to ease correspondence computation

for sparse visual feature based tracking within a keyframe based monocular SLAM frame-

work speeding up initial map point estimation. They enable a dense registered coloured

point cloud visualisation by hanging the depth maps from optimised keyframe poses, but

do not the use the depth map and available dense point cloud within pose estimation.

Henry et al. (2010) developed a full visual SLAM pipeline for medium to large indoor envi-

ronments. They combine a feature-based visual SLAM pipeline enabling global consistency

with a dense ICP based frame-frame tracking mechanism using the available depth maps

to increase robustness of the pose estimation when the number of visual features available

is small. They represent the scene as a series of dense key-frames for use in a loop closure

and pose graph optimisation. They also perform an offline processing of the point cloud

obtained from the keyframes into a higher quality surface reconstruction using a surfel
representation (a surface element comprising a location, scale and 3D orientation), (Pfister
et al., 2000). While it would be desirable for the surfel representation to be computable

online, they note that incremental updating of the representation is prohibitively expen-

sive since points used in computing a given surfel are dependent on the keyframe poses

which continue to change during global optimisation. The system demonstrates impressive
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performance on real-world datasets constructing maps within whole offices, but requires

relatively slow camera motion to ensure the sparse visual SLAM based correspondence is

achieved and tracking maintained.

More recently a number of researchers have taken advantage of the frame-rate and high

quality RGB-D measurements from the commodity depth sensors. Returning to visual

odometry systems that accurately estimate the camera pose using methods based on di-

rectly minimising the dense 2.5D frame-model alignment error, they demonstrate very low

levels of drift due to massive redundancy in the optimisation problem which can be ro-

bustified to moving objects and illumination changes, (Comport et al., 2011; Audras et al.,
2011; Steinbrucker et al., 2011).

Newcombe et al. (2011b) developed the KinectFusion system, demonstrating high quality,

real-time surface reconstruction from a single moving depth camera. KinectFusion inter-

leaves dense surface estimation using a real-time implementation of the volumetric signed

distance function integration method from Curless and Levoy (1996). The trivial par-

alleslisability of the weighted average update rule introduced in Section (1.4.3) is leveraged

to perform the surface fusion on commodity GPGPU hardware. The up-to date surface re-

construction provides the implicit surface estimate as the current zero-level set of the SDF,

extracted in KinectFusion using direct raycasting on the SDF volume. Real-time camera

pose estimation is achieved by aligning a new depth using dense ICP with a prediction

from the current surface reconstruction. Utilising all surface measurements in a tightly

interleaved surface reconstruction and camera tracking pipeline leads to reduced drift in

the system in comparison to frame-frame pose estimation. Furthermore, despite no explicit

joint estimation of the camera pose with the surface reconstruction, KinectFusion is capa-

ble of consistent drift free dense reconstruction within workspaces ranging in size from

desktops to small rooms. The incremental surface reconstruction components are detailed

in Chapter (6) and the dense camera tracking framework is detailed in Chapter (8). Results

of the complete system together with further extensions to enable larger scale mapping are

discussed in Chapter (9).
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In this Chapter we provide an overview of mathematical notation, camera calibration mod-

els and optimisation tools used throughout the thesis. We begin in Section Section (3.1)

by giving definitions of the geometric notation we will use to describe the point transfer

between frames of reference, parametrised with a Euclidean transform in 3D space. In

Section (3.2) we outline the models used for both geometric and photometric calibration

of a camera enabling simplifying assumptions in various techniques later developed. In

Sections (3.3) and (3.4) we provide an introduction to the two main optimisation tools used

in development of the dense visual SLAM tracking and mapping components in this the-

sis, and motivate the simplicity of their implementation on modern parallel hardware in

Section (3.5).
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3.1 Geometry

We define a rigid body transformation comprising a translation tba and rotation component

Rba as Tba ∈ SE3, where the special Euclidean group, SE3 is:

SE3 ,

{
Tba =

(
Rba tba

01×3 1

)
|Rba ∈ SO3, tba ∈ R3

}
, (3.1)

and the rotation component Rba is in the special orthogonal matrices, SO3:

SO3 ,
{

Rba ∈ R3×3|R>baRba = I, det(Rba) = +1
}

. (3.2)

We transform a point xa ∈ R3 represented as a 3-element column vector from a frame of

reference a into a second frame of reference b using the rigid body transform:

ẋb =Tba ẋa . (3.3)

Here, the dot notation defines the homogeneous point ẋ ≡ [ x
1 ] ∈ R4, enabling multipli-

cation by the 4× 4 transformation matrix. When multiplying by the transformation ma-

trix, unless specifically stated otherwise, we will imply that dehomogenisation has been

performed after multiplication of the homogenised vector, equivalent to explicit rotation

followed by translation:

xb = Rbaxa + tba . (3.4)

This notation allows us to chain transforms together, since:

Tca = TcbTba . (3.5)

The inverse of Tba is:

Tab ≡
(

Rab tab

01×3 1

)
=

(
R>ba −R>batba

01×3 1

)
=

(
Rba tba

01×3 1

)−1

= T−1
ba . (3.6)

Given two rigid bodies a and b, with transforms relative to a common frame of reference

w we can compute the relative transformation between a and b as:

Tba = T−1
wb Twa . (3.7)
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Figure 3.1: Basic components in the image acquisition pipeline. We calibrate for geomet-
ric lens distortion and also for the photometric sensor function when knowledge of the
exposure time of an image is available. We perform geometric calibration to remove any
non-linear geometric transformation in the image plane. We also perform photometric
calibration given knowledge of imaging exposure time and sensor response functions. Cal-
ibration enables useful simplifications in dense tracking and mapping components.

3.2 Camera Calibration

In this section we describe the basic camera model that is used throughout the thesis.

First we describe the geometric calibration that enables practical use of the simple camera

model, transforming a 3D point in the frame of reference of the camera into a 2D point

in the camera image. We then describe the photometric calibration possible for an image

captured with knowledge of the exposure time of the frame. This enables a simplifying

brightness constancy assumption relating the value measured in two or more views of a

static Lambertian surface under fixed lighting. An outline of the simplified geometric and

photometric transformations that take place during imaging is shown in Figure (3.1).

3.2.1 Geometric Calibration

Given a point xa ≡
[ x0

x1
x2

]
a
∈ R3 we define perspective projection to a point u ∈ Ω ⊂ R2:

u̇ = π(xa) ≡
1
x2

x0

x1

x2


a

. (3.8)

The intrinsic calibration matrix K is defined as:

K ≡

 f0 0 p0

0 f1 p1

0 0 1

 , (3.9)
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with focal length ( f0, f1)
> and principle point (p0, p1)

>. We can obtain the image co-

ordinates of a projected point pa:

ṗa = Kπ(xa) . (3.10)

We back-project the image co-ordinates pa, back to a point xa using a depth z ∈ R by:

ẋa =
(

K−1 ṗa

)
z . (3.11)

where K−1 is computed explicitly by:

K ≡


1
f0

0 − p0
f0

0 1
f1
− p1

f1

0 0 1

 . (3.12)

Perspective projection (3.8) ensures that straight lines in the world project to straight lines

in an image, but to relate elements in the geometric model to a pixel value in a real image,

we must first remove any non-linear geometric transformation produced by the camera lens

to obtain a rectilinear image. Relative to the rectlinear image which contains only a linear

transformation from projected point locations in a camera to pixel co-ordinates, we will

refer to the non-linear geometric transformation in the image plane to geometric distortion.

In particular, the lenses used in cameras throughout this thesis have a wide field of view
(FOV) where the main component of the image distortion is radial. Assuming that the

radial distortion is symmetric about a pixel d ∈ Ω, then a function R : R 7→ R, takes

a Euclidean distance ru = ‖d − uu‖2 in a rectilinear image to the distance in a radially

distorted image rd = ‖d− ud‖2. The mapping between a pixel uu ∈ Ω from a rectilinear

image to the corresponding radially distorted pixel location ud is:

ud = (uu − d)
R (ru)

ru
+ d. (3.13)

The inverse function from a pixel in the radially distorted image back into a rectilinear

image is:

uu = (ud − d)
R−1 (rd)

rd
+ d. (3.14)

Devernay and Faugeras (2001) modelled an ideal fish-eye lens by assuming that the dis-

tance between an image point and the principal point is proportional to the angle between

the corresponding rectilinear ray connecting the imaged 3D point with the optic center and
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the optic axis. The corresponding radial distortion function is:

R(rd) =
1
ω

arctan
(

2ru tan
(ω

2

))
, (3.15)

and its inverse is:

R−1(d) =
tan(rdω)

2 tan
(

ω
2

) . (3.16)

We use the calibration procedure defined in Devernay and Faugeras (2001) to estimate the

parameter ω together with the intrinsic calibration camera parameters ( f0, f1, p0, p1) used

in K, Equation (3.9). We assume that the center of distortion d is equal to the principal point

(p0, p1) and compute a look-up table for the inverse function from undistorted to distorted

pixel co-ordinates. Given a new distorted image, we proceed to obtain its rectilinear version

by bilinear interpolation of the distorted image using the pre-computed inverse map at each

pixel location uu.

3.2.2 Photometric Calibration

The ability to photometrically calibrate imagery from a camera is often understated or

neglected within standard visual SLAM systems. This is typically because the first oper-

ation of a sparse visual SLAM system is to condense an image to a set of discriminative

points (corners, FAST, Harris etc.) which can be robustly described for use in a binary

data-association framework.

In this work we would like to use all of the image data available in every frame, and as a

first step it is very useful to recognise the physical image formation process that occurs in

video capture. This enables us to transform the image pixel values into a form independent

of the camera exposure time that we will call irradiance values. This is possible in practice

because of an ability in modern digital video cameras to set or read the exposure over time.

Assuming a static scene, let Zj (ui) ∈ R denote the grey scale pixel value captured at pixel

location ui ∈ Ω at time j. The value is formed by the irradiance E at the corresponding

sensor bucket being integrated over the exposure time ∆tj and transformed by the sensor

response function f :

Zj (ui) = f
(
∆tjE (ui)

)
. (3.17)

The function f models both the physical response of the sensor including specific properties

of the imaging hardware (which includes saturation) and user defined operations such as

applying a gamma curve, contrast or brightness change. In reality sensor manufacturers

attempt to ensure that f is as linear as possible to achieve a faithful measurement of the

physical energy arriving at the sensor.
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Auto exposure control on the camera can be utilised to attempt to trade-off the two prob-

lems associated with fixed exposure video capture in natural environments. If the light

levels are low, a longer exposure is required to ensure sufficient signal to noise to ratio;

whereas if light levels are high, a shorter exposure may be necessary to remove value sat-

uration. This naive point assumes a static imaging scenario, since the trade-offs involved

with a moving scene become complicated by the fact that as image exposure increases, so

does motion blur. Understanding these trade-offs presented by a moving camera within a

visual SLAM setting is an area of current research, (Handa et al., 2012).

If f−1 is known and the exposure time is available then we can transform the pixel values

into irradiance:

f−1 (Zj (ui)
)
= E (ui)∆tj . (3.18)

⇒ E (ui) =
f−1 ((ui))

∆tj
. (3.19)

The importance of obtaining the quantity E is that for a scene composed of Lambertian

surfaces with constant illumination we can assume that pixel irradiance values can be

associated across frames:

Ej (ui) = Ek ((ui) + v) , (3.20)

where the displacement v maps the corresponding surface projections from image frame

j into frame k. This simple irradiance constancy assumption is useful when searching

for short baseline pixel correspondences between frames in a setting where the camera

exposure is changing, as occurs when using automatic exposure control. Under irradiance

constancy, given knowledge of the exposure across frames, a similarity measure between

frames can be computed as a function of pixel differences.

Computing the response function f

There are two main approaches to estimating the response function f . Chart based ap-

proaches use a calibration chart of colours of specified irradiance under known lighting

that can then captured over a range of exposure times using the sensor to be modelled.

Assuming static capture of the chart by the camera, f−1 can be trivially constructed as

a discrete table of 2b entries where b is the bit depth of the pixel value. Each entry maps

from measured pixel value to the known antecedent quantity E (u)∆tj given from the chart

and pixel exposure time. Since the pixel value measurements will contain noise, it is more

useful to robustly fit a parametric curve to a large number of irradiance-pixel value pairs.

Chart based calibration techniques, when performed with known illumination, can be used
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to produce a metric, physically meaningful sensor measurement. If no calibration chart is

available, or the available illumination when performing calibration is fixed but unknown,

we can only obtain the response function up to scale factor, noting that irradiance con-

stancy still holds in this case. In the chartless self-calibration approach of Debevec and
Malik (1997) f−1 is estimated by exploiting the assumed monotonicity of f and taking the

logarithm of Equation (3.18):

g
(
Zj (ui)

)
≡ ln f−1 (Zj (ui)

)
= ln E (ui) + ln ∆tj (3.21)

Given a finite pixel value depth of b bits Zj (ui) ∈
{

1, 2, . . . , 2b}, a non-parametric approx-

imation of g can be estimated by jointly optimising for discretised g and log irradiance

values E (ui). Given N pixel locations with observed values over a P known exposure

times, we can minimise a quadratic error under a 2nd derivative penalty on the solution of

g to enforce smoothness of the function, yielding the following energy function:

i=0

∑
i=N

j=0

∑
j=P

(
g
(
Zj (ui)

)
− ln E (ui)− ln ∆tj

)2
+ λ

Z=2b

∑
Z=1

∂2

∂2Z
g(Z) . (3.22)

Expressing the unknown 2b elements of the inverse function g concatenated with the un-

known log irradiance values in vector form:

p =

(
ĝ
Ê

)
(3.23)

ĝ =
(

g(1), g(2), . . . g(2b)
)>

(3.24)

Ê =
(

ln E0, ln E1, . . . ln EN

)>
, (3.25)

we can write the data term and smoothness constraint as a linear system Ap = b:(
D V

λ∇2 0

)(
ĝ
Ê

)
=

(
T
0

)
, (3.26)

where the sub matrices D = [dr,c]NP×2b and V = [vr,c]NP×N , T = [tr]NP×1 and λ∇2 =

[∂r,c]N×N is a scaled 2nd order derivative operator implemented as a finite difference matrix

contributing the smoothness constraint on g.

Each pixel location i observed at exposure j forms a row r = jN + i in D and V and a
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Figure 3.2: Capture of three raw images with a change of one order of magnitude in ex-
posure time between consecutive frames shown in (a). The images are normalised in (b)
using photometric calibration parameters for the camera.

corresponding element in T:

dr,c =

wi,j if Zj (ui) = c

0 otherwise,
(3.27)

vr,c =

−wi,j if c = i

0 otherwise,
(3.28)

∆tr = wij∆tj (3.29)

If N(P− 1) > 2b then the system is overdetermined. In this case the least squares solution

of ‖Ap− b‖2
2 for the estimated function f̂−1 can be recovered, together with the estimated

irradiance values, by solving for p using the pseudoinverse of A. Finally, element-wise

exponentiation of p inverses the log transformation.

Example Photometric Calibration

Calibrating each channel of an (RGB) enables photometric normalisation of each frame

from a video stream, resulting in irradiance constancy for pixels captured under different

exposures in a static scene. A response function for a f lea2 (rgb) colour camera is plotted

in Figure (3.2a) together with a calibrated image sequence from multiple exposures of the

same scene in Figure (3.2c). The saturation region for the sensor can clearly be seen in the

response function. When using photometrically calibrated video we discard the highest

value from the sensor across all colour channels, since pixel values which map through the
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saturation region will, through value quantisation, map onto the same irradiance value,

breaking the irradiance consistency assumption.

3.3 Parametric Optimisation

In Chapter (1) we discussed the basic advantages of the direct image alignment approach

introduced by Lucas and Kanade (1981) for obtaining an unknown transform x̂ between

two image frames by minimising a whole image error:

x̂ = argmin
x
{Ew(x)} , (3.30)

Ew(x) = ∑
u∈Ω

ψ (e(u, x)) . (3.31)

Here ψ is a robust function chosen to reduce the cost associate with potential outliers

resulting in photometric and geometric differences that are not modelled by the basic single

pixel error function and:

e(u, x) = Il(w(u, x))− Ir(u) , (3.32)

where the warp function w(u, x) is responsible for transforming a pixel u ∈ Ω, from image

frame r into frame l. In this section we outline the iterative solution to problems expressed

in form of Equation (3.30).

3.3.1 Iterative Gauss-Newton Gradient Descent

We often need to perform the minimisation of an energy function which is not convex due

to the data term being non-linear. For example, letting w be a similarity transformation in

the image plane with x = (θ, νx, νy) then:

w(u, x) =

(
− cos θ − sin θ

sin θ cos θ

)
u +

(
νx

νy

)
, (3.33)

and so the error is clearly a non-linear function of the parameters. Furthermore, even when

w is a linear map, the image data Il(w(u, x)) is not generally a linear function of x. Lucas
and Kanade (1981) proceed by Gauss-Newton gradient descent non-linear optimization to

iteratively solve (3.30).

We obtain a local convex approximation of the whole image error using a second order
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Taylor series expansion of Ew(x0 + ∆x) :

Ẽw(x0 + ∆x) ≈ Ew(x0) +∇xEw(x0)∆x + 1
2 ∆x>∇2

xEw(x0)∆x , (3.34)

where H(x0) = ∇2
xEw(x0) is called the Hessian. If the second order Taylor series expansion

at x0 is accurate then the solution can be obtained by stepping to the extremum for a convex

function, attained at ∇∆xẼw = 0.

Often obtaining the second order partial derivatives of Ew can be very computationally

demanding, and since higher order terms are multiplied with larger powers of ∆x the con-

tribution to the error from higher order terms is diminishing. We therefore further approx-

imate the function using a Gauss-Newton approximation of the Hessian term, requiring

only first order gradients of the cost function:

Ẽw(x0 + ∆x) = Ew(x0) + ∑
u∈Ω

ψ′(e(u, x0))J(u, x0)∆x + 1
2 ∑

u∈Ω
∆x> J(u, x0)

> J(u, x0)∆x ,

(3.35)

where the per pixel gradient vector is evaluated through the chain rule as a product be-

tween the error metric derivative wrt to the error:

ψ′(e(u, x0)) =
∂ψ(e(u, x))

∂e(u, x)

∣∣∣∣∣
x0

, (3.36)

and the derivative of the warp function wrt the parameter vector:

J(u, x0) =
∂Il(w(u, x))

∂x

∣∣∣∣∣
x0

. (3.37)

The minimising argument to equation (3.35) is obtained at the extremum:

∇x0 Ẽw(x0 + ∆x) = 0 . (3.38)

Taking the the derivative of (3.35) wrt x0 results in a linear system in ∆x:

∑
u∈Ω

J(u, x0)
> J(u, x0)∆x =− ∑

u∈Ω
ψ′(e(u, x0))J(u, x0) , (3.39)

⇒ ∆x =− ( ∑
u∈Ω

J(u, x0)
> J(u, x0))

−1 ∑
u∈Ω

ψ′(e(u, x0))J(u, x0) . (3.40)

The increment is solved for in practice using a Cholesky decomposition of the summed

Hessian approximation. The updated parameter estimate is obtained simply by adding the
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incremental update onto the current estimate resulting in a new linearisation point:

x← x0 + ∆x . (3.41)

This new estimate is then used in an updated version of the warp function, proceeding to

another iteration of the gradient descent which continues until convergence is achieved.

We can test for convergence in practice either by assessing the reduction in the computed

cost or the rate at which the cost is reducing, stopping when either falls below a predefined

value. We must also take into account the available computational budget of a live run-

ning system in which the optimisation procedure is being used. There is no guarantee of

convergence to the global minimum for the method since the original cost function is non-

convex. Therefore, without a specified cost threshold which might indicate a solution for

the application at hand, in practice, we run the optimisation for the maximum number of

iterations possible given an available computational window, checking for any degeneracy

that might occur in solving Equation (3.40).

3.4 Convex Optimisation

The previous section outlined an iterative optimisation approach applicable to general con-

tinuous non-convex cost functions comprising a sum of errors. However, in contrast to the

low dimension parameter estimation required for whole image alignment, we now look to

solve optimisation problems with hundreds of thousands of variables which arise when es-

timating the solution of every pixel in an image as required in image denoising and dense

correspondence problems.

In this section we detail the optimisation tools that enable the structure present in these

computer vision problems to be exploited, obtaining solutions that can be computed ex-

tremely efficiently in practice using modern parallel hardware.

Probabilistically modelling computer vision problems using a generative model of the

available measurements conditioned on the model solution, together with some prior as-

sumption on solution smoothness, has an equivalent energy form. Indeed, many vision

problems can be cast within this framework where the solution u ∈ RM×N is obtained as

the minimisation of an energy E(u):

E(u) , D(u, g) + λR(u) (3.42)

û = min
u∈RM×N

{E(u)} . (3.43)

Here the data term D : RM×N 7→ R is derived from the likelihood function ∝ − ln(p(g|u))
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given some measurement g, and a regularisation term R : RM×N 7→ R is derived from the

model prior ∝ −ln(p(u)), which takes on lower values for solutions with given desirable

characteristics. The data term comprises an error function e, which is the error induced

by generative model given the solution u and the available measurement g, and a positive

penalisation function ψD:

D(u, g) = ∑
x∈Ω

ψD (e (u(x), g(x))) , (3.44)

and the regularisation term is a function of the solution smoothness, together with a second

positive penalisation function ψR:

R(u) = ∑
x∈Ω

ψR(s(u)(x)). (3.45)

In a continuous domain and computing solution smoothness through s(u) = ∇u, we can

define the variational optimisation problem:

E(u) =
∫

Ω
ψD (e (u(x), g(x))) dx + λ

∫
Ω

ψR (∇u) dx . (3.46)

The calculus of variations provides a general condition to obtaining minima for this type

of functional involving u and its derivatives by minimising the Euler-Lagrange Equation of

the energy functional: ∂E(u)
∂u = 0.

If error function e is linear in u and both ψR and ψD are convex functions, then since ∇u
is also a linear function of u the resulting energy functional is a sum of convex terms,

resulting in a globally convex energy. In this case any solution obtained for ∂E
∂u = 0 is also

the global minimum. This has important ramifications for ensuring that a solution can be

obtained very efficiently and is the focus of the remainder of this chapter.

3.4.1 Convex norms

In Chapter (1) we saw that the quadratic cost x2 results from a Gaussian likelihood over

x in probability form, while the absolute function is at the convex-concave boundary and

provides the closest convex model for the associated probability distribution over spatial

gradients of both depth maps and intensity images. The associated vector norms using the

quadratic and absolute penalisation functions are summarised in table (3.1).

Minimisation under `1 norm is more robust to outliers, in that the maximum likelihood

estimate of a random variable can be achieved when up to half of the samples present

are outliers to the distribution. This is in contrast to the quadratic cost which is strongly

influenced by outliers. However, the `1 penalty |x|1, is non differentiable at x = 0. As we
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PDF(x) Cost Primal Vector Norm

Gaussian Quadratic |x|22 = x2
i ‖x‖2 ,

n

∑
i=1
|xi|22 ,

Laplacian `1 |x|1 =
√

x2
i ‖x‖1 ,

n

∑
i=1
|xi|1

Hybrid Huber |x|h =

{
|x|22 if |x| ≤ α

|x| − α
2 if |x| > α,

‖x‖h ,
n

∑
i=1
|xi|h

Table 3.1: Convex penalty terms.

will see below a solution to this is required to obtain the full power of the robustness of

this norm.

The Huber penalisation (Huber, 1981), is a piecewise mixture of the quadratic and absolute

functions:

|x|h =

|x|22 if |x| ≤ α

|x| − α
2 if |x| > α,

(3.47)

measuring x2 for small values of x and an absolute function for larger values. Hence,

the Huber vector (pseudo-norm) combines both the differentiability of a quadratic cost

function with the robustness to data outliers obtained when optimising under the `1 norm.

We also define the norms for use over vectors comprising elements of partial derivatives,

we define the quadratic cost over an element in ∇u by:

|∇u(i, j)|22 = ∂xui,j
2 + ∂yui,j

2 , (3.48)

and for the `1 norm:

|∇u(i, j)|1 =
√

∂xui,j
2 + ∂yui,j

2 (3.49)

with the Huber norm defined piecewise using both. We note that while the `1 coincides

with the Euclidean norm for a scalar variable, when placed within the summation or in-

tegral over the domain of u which is a vector, the Euclidean norm takes the square-root

of the sum of the squares, while the `1 sums the absolute values of elements in the norms

argument. In using the `1 norm of a vector field of ∇u(i, j) where each element ∈ R2 we

first apply the `2 norm to each element and sum the resulting (absolute) values, which

corresponds to the mixed `1 − `2 norm.

3.4.2 An Example of Convex Optimisation in Computer Vision

A classic convex optimisation based computer vision solution was presented by Rudin,
Osher, and Fatemi (1992), with a variational solution to the image de-noising problem in-
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troduced in Chapter (1). The model demonstrated in Section (1.4.2), combines the quadratic

norm on a data term corresponding to a Gaussian likelihood and the `1 norm over ∇u,

which we saw previously is obtained by taking a Laplacian distribution in the image prior:

EROF = ||∇u||1 + λ||u− f ||22 . (3.50)

The associated partial differential equation obtained from the Euler- Lagrange equation for

the model is:
∂EROF

∂u
= ∇ ·

(
∇u
|∇u|

)
+

1
λ
(u− g) = 0 , (3.51)

where ∇· is the divergence operator. Unfortunately we can see a number of problems in

obtaining the solution ∂EROF
∂u = 0. First, the derivative of the `1 is undefined at 0, second the

non-linearity of the derivative results in there being no direct closed form solution. The

simplest solutions to both of these problems were presented in the original paper, (Rudin
et al., 1992). First, non-differentiability of the `1 norm is resolved by using an ε− regularised
form:

|x|ε =
√

x2 + ε , (3.52)

where a small value ε removes the non differentiability of the norm. An explicit time

marching gradient descent is then performed with time step τ,

ut+1 − ut

τ
= −∇ ·

(
∇ut

|∇ut|

)
− 1

λ
(ut − g) . (3.53)

Such a gradient descent gets around a number of issues with the solution of the PDE,

resulting in a simple point-wise update of the solution variable given an initialisation on u
at t = 0. Unfortunately the method is very slow to converge and in any case results only

in the solution of a modified version of the original energy in Equation (3.50).

More efficient iterative solutions exist for this model including the straightforward use of

a semi-implicit time marching scheme (Vogel and Oman, 1996), in which the denominator

in the ε regularised `1 derivative term is the only lagged component in the discretised gra-

dient, resulting in a sparse linear system of equations. In the next section we return to the

original discrete energy and introduce a modern solution to the ROF following the more

recent results of Chambolle and Pock (2011), which has applicability to general convex

energy optimisation problems. These solutions make use of techniques, described next,

that mitigate the non-differentiability of the class of energy functional we are interested

in, resulting in efficient solutions to convex optimisation problems without resorting to

approximation. We note that there is large body of work on convex optimisation, and that

at the time of writing the work by Chambolle and Pock (2011) which contains extensive

comparison with historically related techniques, presents the state of the art for the type
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(a) (b)

Figure 3.3: The Lengendre-Fenchel transform takes non-differentiable points in F(x) to
affine sections in F∗y. Figure adapted from Touchette (2005), an accessible introduction
to the convex conjugate. In (a) and (b) non-differentiable points are transformed to affine
regions in the functions conjugate. In (b) the `1 function is transformed to the indicator
function.

and the size of the convex problems described here.

3.4.3 Duality and the Convex Conjugate

The convex conjugate F∗(x) of a function F(x) where x ∈ Rn is defined through the

Legendre-Fenchel transform,

F∗(y) = sup
x∈Rn
{〈x, y〉 − F(x)} , (3.54)

where 〈., .〉 computes the inner product between the so-called primal variable x and its

dual y. The importance of the convex conjugate lies in the transformation of functions

containing points of non-differentiability, such as in the `1 penalty, (Touchette, 2005). In

this case, the action of the Legendre-Fenchel transformation creates affine parts in F∗(x)
resulting in a function which, over the domain of y, is differentiable. The convex conjugate

of the `1 norm of a vector x ∈ Rn, illustrated geometrically in Figure (3.3b), is the indicator

function in dual variable y:

F∗(y) = δ(y) =

0 if ‖y‖1 ≤ 1

∞ otherwise .
(3.55)

Therefore we can write the `1 norm for the primal variable x ∈ Rnas:

‖x‖1 = max
y∈Y

(〈x, y〉 − δ(y)) , (3.56)

where the set Y is given by:

Y = {y ∈ Rn, ‖y‖∞ ≤ 1} . (3.57)
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The Huber-norm ‖x‖h which is defined piecewise, comprises a quadratic region for ‖x‖1

≤ α which results in a quadratic conjugate function within that region:

F∗(y) =
α

2
‖y‖2

2 ∀||y|| ≤ α , (3.58)

while the conjugate of the Huber-norm in the region ‖x‖1 > α leads again to an indicator

function:

F∗(y) =

 α
2 if α < ‖y‖ ≤ 1

∞ otherwise ,
(3.59)

therefore we can re-write the Huber-norm as:

‖x‖h = max
y∈Y

(
〈y,∇x〉 − δY(y)−

α

2
||y||2

)
. (3.60)

3.4.4 Discretisation

It will be convenient to use vector versions of the 2D solution or other images or variables

a ∈ RM×N . We will therefore use column vectors a ∈ RMN containing the stacked elements

of a, where i = x + My,

a = [am,n]M×N =


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
. . .

...

am,1 am,2 · · · am,n

 7→ a = [ai]MN×1



a1,1

a1,2
...

a1,n

am,1
...

am,n


. (3.61)

Within the energy minimisation setting, when the data and regularisation terms are linear

in u, we can conveniently rewrite the discrete energy in matrix-vector notation:

E(u) = ||Du− g||D + ||Ru||R . (3.62)

We note that often it is convenient simply to imply the use of matrix-vector notation, when

it is clear that the context of the formulation is discrete, hence we will not use the bold

vector notation and simply use u and g instead.
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Discrete Gradient and Divergence

We can define the discrete operator ∇ in matrix form ∇ = [∇i,j]2MN×MN , where the result-

ing partial derivative elements are stacked in a vectorial fashion:

∇a ,



∂
∂x 0 · · · 0 0 · · · 0
0 ∂

∂x · · · 0 0 · · · 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
0 0 · · · ∂

∂x 0 · · · 0
0 0 · · · 0 ∂

∂x · · · 0

0 0 · · · 0 0
. . . ∂

∂x
∂

∂y 0 · · · 0 0 · · · 0

0 ∂
∂y · · · 0 0 · · · 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
0 0 · · · ∂

∂y 0 · · · 0

0 0 · · · 0 ∂
∂y · · · 0

0 0 · · · 0 0
. . . ∂

∂y





a1,1
a1,2

.

.

.
a1,n
am,1

.

.

.
am,n

 =



ax
1,1

ax
1,2
.
.
.

ax
1,n

ax
m,1
.
.
.

ax
m,n

ay
1,1

ay
1,2
.
.
.

ay
1,n

ay
m,1
.
.
.

ay
m,n


(3.63)

Here, each dimensions partial derivative ∂
∂x and ∂

∂y is computed using a forward difference

operation. We note that the divergence operator ∇·, in matrix form is simply the trans-

pose of the gradient matrix i.e. ∇· ≡ ∇>. Extensive details and definitions for such a

discretisation are available in Handa et al. (2011); Zhu (2008); Chambolle and Pock (2011).

3.4.5 Primal-Dual methods

We now have the tools to look again at minimising the ROF denoising model in Equation

(3.50) using convex optimisation. Using the Lengendre-Fenchel transform, we can replace

the primal form of total variation regularisation ‖∇u‖1 of the ROF model, with the primal-

dual form in Equation (3.56). The resulting primal-dual energy minimisation is a saddle-

point problem in the primal solution variable u ∈ RMN and dual variable p ∈ R2MN :

min
u

max
p∈P

{
E (u, p) , 〈p,∇u〉+ λ

2
‖u− f ‖2

2 − δP(p)
}

, (3.64)

where δP(p) is the indicator function, and the set P is:

P =
{

p ∈ R2MN , ‖p‖∞ ≤ 1
}

. (3.65)

This concave-convex optimisation problem can be solved using a simple alternation of

gradient ascent on the dual variable:

pn+1 = Π1(pn + σ∇un) (3.66)
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where the projection onto the convex set P is performed pointwise:

Πζ(p) =
p

max
{

1, ‖p‖
ζ

} . (3.67)

This is then followed by fixing pn+1 and performing gradient descent on the primal vari-

able,

un+1 =
un + τ∇ · pn+1 + τλg

1 + τλ
. (3.68)

Since we will use this primal-dual optimisation approach in several algorithms we give a

basic derivation for the above scheme. The minimum of the convex function in Equation

(3.64) is obtained at the function extremum where ∇u,pE(u, p) = 0, which we solve by a

sequence of alternating gradient descent steps:

1. Computing the derivative with respect to p i.e. ∂pE(u, p),

∂pE(u, p) = ∂p

(
〈p,∇u〉+ λ

2
||u− g||22 − δP(p)

)
(3.69)

∂p (〈p,∇u〉) = ∇u (3.70)

∂p

(
λ

2
||u− g||22

)
= 0 (3.71)

∂pδP(p) = 0 (3.72)

⇒ ∂pE(u, p) = ∇u (3.73)

Fixing the current value of variable u at un, we compute a gradient ascent on the dual

variable:

pn+1 − pn

σ
= ∇un , (3.74)

which is solved for pn+1 incorporating the constraint on p through projection onto

the unit ball, given in Equation (3.66).
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2. Computing the derivative with respect to u i.e. ∂uE(u, p),

∂uE(u, p) = ∂u

(
〈p,∇u〉+ λ

2
‖u− g‖2

2 − δP(p)
)

(3.75)

∂u (〈p,∇u〉) = ∂u (−〈u,∇ · p〉) = −∇ · p (3.76)

∂u

(
λ

2
||u− g||22

)
= λ(u− g) (3.77)

∂uδP(p) = 0 (3.78)

⇒ ∂uE(u, p) = −∇ · p + λ(u− g) (3.79)

Fixing the current value of variable p at pn+1, we compute a gradient ascent step on

the primal variable:

un+1 − un

σ
= ∇ · pn+1 − λ(un+1 − g) , (3.80)

which is solved for un+1, given in Equation (3.68).

3.5 Parallel Computation

An important element in choosing the above optimisation strategies is the efficiency and

certainly to some extent, the simplicity with which they can be implemented on modern

commodity massively-parallel computing hardware. The modern general purpose graph-

ics processing unit (GPGPU) is a descendent of graphics cards designed to efficiently per-

form the matrix-vector computations dominant in 3D graphics applications (Nvidia, 2008).

In practice, modern GPGPU hardware and parallel programming languages provide ef-

ficient computation for problems which are trivially parallelisable, i.e. algorithms which

can be modularised into independently operating local sub computations that make use

of a small local region of memory. In this section we highlight issues for the optimisation

schemes introduced above in relation to efficient implementation using GPGPU.

3.5.1 Computing Primal-Dual Updates for Convex Optimisation

The updates for the primal variable (Equation 3.68) and dual variable (Equation 3.66) use

only sparse matrix-vector multiplications and element-wise operations that can be effi-

ciently computed in-place. The core computation of the dual variable update needs the

point-wise gradient of the primal variable, and also performs the projection of the variable

onto the ball in Equation (3.67), computed using an element-wise max(.,.). This compu-

tation is performed for all elements i = x + My in parallel:
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float d_px_ = d_px[i] + du_x*tau;

float d_py_ = d_py[i] + du_y*tau;

float len = fmaxf(1, sqrtf( d_px_*d_px_ + d_py_*d_py_)/lambda);

d_px[i] = d_px_/len;

d_py[i] = d_py_/len;

Here du_x is ∂u
dx computed for element i = x + My using un as,

if (x==M-1) return 0;

else return u[i+1] - u[i];

Similarly we compute du_y from ∂u
dx . Fixing p the core computation for the primal variable

update computed at all elements i = x + My in parallel is simply:

d_u[i]=(d_u[i]+tau*div_p+tau*lambda*d_g[i])/(1.0f+tau*lambda);

which requires a point wise divergence computed as,

float div_p = dxm + dym;

where dxm is ∂px
dx computed on pn+1,

if (x==0) return p[i];

else if (x==M- 1) return -p[i-1];

else return p[i] - p[i-1];

and similarly for dym computing ∂py
dy .

3.5.2 Gauss-Newton Iterations for Parametric Optimisation

The GPGPU implementation of solutions using the iterative Gauss-Newton energy min-

imisation method outline in Section (3.3), is only slightly more involved. Looking at

the Gauss-Newton update in Equation (3.40), computation of each element in the sum-

mand of the element-wise gradient with ψ′(e(u, x0)) and the Jacobian J(u, x0) given the

current parameter estimate can clearly be obtained in parallel at each pixel u. However,

we require the summation of these elements that form the weighted normal equations,

∑u∈Ω J(u, x0)> J(u, x0) and ∑u∈Ω ψ′(e(u, x0))J(u, x0).

It is important to minimise global memory access across the parallel processors and threads

holding each partial J(u, x0) since such operations are expensive. Fortunately, as summa-
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Figure 3.4: Example tree reduction. Since the addition operator is associative and commu-
tative we can compute the summation between any pairs of the partial sum: O(log(n))
parallel steps.

tion over the vectors and matrices are both commutative and associative the result can be

obtained via a tree reduction, also called a pre-fix parallel sum, as illustrated in Figure

(3.4). We further note that for an n dimensional parameter vector, the Hessian approxima-

tion from ∑ J> J is a symmetrical n× n matrix, and therefore only the the upper or lower

triangular matrix need be reduced. While the summation is performed efficiently using

the tree-reduction, we then copy the resulting summed elements from the Hessian approx-

imation and gradient vectors to the host computer memory, where an efficient solution to

the linear system can be obtained.
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the whole reconstruction pipeline. In these

In this chapter we investigate approaches for acquiring surface measurements from a real-

time video stream where camera poses are known. In subsequent chapters we will develop

the full dense reconstruction system making use of the surface estimation methods devel-

oped in this chapter, leading to a demonstration of the advantages that can be gained by

coupling the passive surface estimation together with dense model reconstruction.

Standard sparse visual SLAM pipelines typically treat correspondences that can be ob-

tained between a set of frames as point abstractions with each pixel independent from its

neighbours. Here we will make use of the fact that dense correspondences result from

the projection of continuous surfaces into the camera frames, and therefore have continu-

81
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ity in the image plane. This basic assumption enables correspondences to be obtained at

pixels where explicit feature extraction and matching techniques would fail. Furthermore

the techniques we explore for estimating depth maps, by using all of the available image

data under the assumption of surface continuity, result in higher precision sub-pixel dense

correspondences than traditional sparse feature-based matching techniques.

4.1 Outline

Multiple view depth estimation which subsumes the more traditional stereo estimation

where a rectified and synchronised camera pair provides the input images, is one of the

most widely studied topics in computer vision due to the abundance of applications that

require surface measurements (Scharstein and Szeliski, 2001). While depth estimation

is itself often a sub component for the more complete dense reconstruction of surfaces

in a scene that will be developed in this thesis, the constrained correspondence problem

that must be solved for a single depth map is to a large extent the core of any dense

reconstruction pipeline. First we describe the specific representations used in the majority

of multi-view stereo estimation methods, which generalise stereo disparity parametrisation

for two-view correspondences used in the traditional stereo case.

4.1.1 Parametrisation of Depth

A depth map non-parametrically represents a scenes surface geometry as viewed by a

camera in the form of an image D : Ω 7→ R, where a single point in the image D(u) cor-

responds to the distance to the surface. Typically the distance is measured perpendicular

to the image plane, such that the correspondence of point x in the depth map frame ob-

serving distance d = D(x) can be computed in a second co-observing camera with relative

transform Tkr by x′ = w(x, k, d), where:

w(x, k, d) , π(KTkrK−1 ẋD(x)) . (4.1)

Alternatively there is an advantage in enabling D to instead represent inverse depth at

each pixel ξ(x) = 1
D(x) . Regular sampling in inverse depth leads to regular sampling

along the epipolar lines in the supporting frames and is a generalisation of the common

pixel disparity representation used in two view rectified stereo estimation. Given a known

minimum and maximum depth in the reference frame, the inverse depth variable can be

defined as ξ : Ω 7→ [0, 1] to represent the fixed range [dmin, dmax] as:

ξ(x) =
1

ξrangeD(x) + ξmin
, (4.2)
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where ξrange ≡ 1
dmin
− 1

dmax
and ξmin ≡ 1

dmax
. In this form, D(x) = 1 and D(x) = 0 respectively

represent the nearest and furthest depth values in the scene.

Given this representation, the problem of multiple view depth estimation is then how to

compute D in reference frame r given m ≥ 1 other frames which are co-observing the

scene.

4.1.2 Chapter Overview

Substantial reviews on the topic of stereo estimation are provided by Dhond and Aggarwal
(1989); Scharstein and Szeliski (2001); Brown et al. (2003) each using similar taxonomies

with which to categorise approaches. One critical categorisation occurs between local meth-

ods which attempt to solve for the depth map on a point by point or local area basis us-

ing only statistical properties of image intensities within the region, and global solutions

which combine the local data term with a global regularisation term relating to the so-

lution smoothness, forming an energy functional where minimum energy configurations

relate to a depth map solution.

Stereo Data Terms

In Section (2.3) we reviewed the global optimisation background of this technically ad-

vanced field, discussing the salient problems and the key features of dense depth map

estimation algorithms within the continuous optimisation setting in particular.

Since all multiple view stereo estimation techniques require the computation of a data term

component, in Section (4.2), we detail the techniques involved in computing the dataterm,

the assumptions made and associated problems that are common to approaches.

Depth Map Denoising using Convex Optimisation

In the second half of the Chapter we specifically investigate the depth map denoising

methodologies previously introduced in Chapter (1). These techniques enable the incor-

poration of the smoothness assumptions over the solution depth map within a convex

global optimisation framework. We begin in Section (4.3) with an overview of the general

approach.

In section (4.4) we restate the basic winner takes all multi-view stereo data term. We use a

basic patch based data term that is robust to local additive illumination changes together

with a simple occlusion handling mechanism for short baseline video frames.

In section (4.5) we develop the global optimisation based depth map denoising approach

providing several models to investigate the general performance possible using state-of-
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the-art convex optimisation based primal-dual formulations. We look at several smooth-

ness assumptions and cover both single and multiple input depth map denoising frame-

works. For each model we provide a primal-dual formulation resulting in a convex op-

timisation problem that is efficiently solved on the GPU using gradient descent. We are

interested in large scale qualitative differences and gross inaccuracies that occur in the

models which we highlight using a small-baseline multiple view stereo video dataset.

We continue our investigation of convex multiple stereo in Chapter (5), looking at the alter-

native strategy of linearising the data terms to produce a sequence of convex optimisation

steps which can be solved using the same techniques developed in this section. In that

chapter we will further evaluate the results obtained with the depth map denoising ap-

proach, and draw some conclusions about the applicability of the techniques for use in

dense visual SLAM systems.

4.2 Data Terms and Local Approaches

The brightness constancy assumption underlies the development of many stereo data terms.

Given two frames viewing a scene, where a reference frame image value Ir(x) has an

associated depth estimate D(x) at pixel x, the brightness constancy assumption states that

the value at the corresponding pixel in the second image should be the same if D(x)
corresponds to a scene surface co-visible in both frames,

Ik(w(x, k, d)) = Ir(x). (4.3)

Given this assumption, we can define an error function computed over a set m ≥ 1 of co-

observing views, computed for each pixel in the reference frame evaluating dissimilarity

of corresponding pixels induced by a depth estimate d:

ε(x, d) = c (Ir(x), I0(w0(x, d)), Ik(w(x, k, d)), . . . , Im(wm(x, d))) . (4.4)

In general the cost function c can be based either on combined statistics computed for

all corresponding pixels such as value variance, or by summing individual pairwise costs

computed between each view value and the reference value. The most basic stereo estima-

tion procedures use the brightness constancy assumption directly to define a photometric

error:

ε(x, d) =
m

∑
k=0

ψ(Ir(x)− Ik(w(x, k, d)) . (4.5)
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An estimate of D can then be computed by selecting the depth at each pixel that obtains

the minimum of ε:

D̂(x) = argmin
d

ε(x, d) . (4.6)

This winner-takes-all approach was illustrated in Chapter (1), and can be efficiently com-

puted using the plane-sweep algorithm given a particular discretisation over the parametrised

depth variable, (Collins, 1996).

4.2.1 Problems with Brightness Constancy

The simple winner-take-all approach makes a number of assumptions about the scene

being viewed and the imaging arrangement used in capturing the images. Foremost, it

requires that the brightness constancy for corresponding pixels holds, which is possible

when the surface material is Lambertian so that the appearance is not a function of view-

ing direction. Furthermore taking the single pixel data term minimum does not take into

account ambiguity in the data-term given finite camera resolution and measurement accu-

racy, or the multiple sources of noise between imaging the surface in one frame and the

next, especially when the camera is moving through the scene.

In reality most natural scenes comprise at best partially non-Lambertian surfaces; digi-

tal cameras have a fixed spatial resolution; the image exposure often changes to ensure

reduced image blur while optimising for the signal to noise ratio in the image; and natu-

ral scenes are often imaged under light sources which are not static. Finally the imaging

process contains a number of sources of noise, including value quantisation and sensor

noise from thermal properties of the electronics. Furthermore, the original assumption of

co-visibility of a surface region in all frames is often wrong due to object occlusions. For

these reasons the 1D cost functions ε(x, d) do not present us with a clear single minimum

and the resulting winner takes all strategy, using the single pixel dataterm based on the

brightness constancy error, results in errors in correspondence.

Local stereo methods aim to obtain a better error function ε, by increasing the distinctive-

ness of regions at the correct solution, resulting in a more clearly defined single minimum

in the function.

4.2.2 Error Function, Aggregation and Post-processing

The error and aggregation functions are defined over both the spatial extent of a reference

image region and also across the multiple views. Improvements to local error functions

can be broken into a number of distinctive elements with many algorithms making use of

the vast permutations possible with them. Review articles on the subject have introduced
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established components used by practitioners through the earlier years and include the

excellent review by Scharstein and Szeliski (2001) that systematised evaluation of the two

view-stereo algorithms. Here we look at salient differentiators that have been instrumental

in forming the modern local stereo algorithms and are most relevant to decisions in our

own work.

Region Descriptor

Replacing the single pixel comparison, an area around the target pixel can be used and

some descriptor formed within a small patch of pixels. Used in combination with a mea-

sure of the closeness of image regions under the descriptor, also called the penalisation

function.

Linear descriptors: The most basic of these is a fixed rectangular patch of neighbouring

pixels, with the error measured using a sum of squared difference (SSD). In a multiple

view depth setting this leads to the sum of sum of squared differences (SSSD):

ε(x, d) =
m

∑
k=0

m

∑
j∈n(x)

(Ir(j + x)− Ik(w(x, k, d) + j)2 . (4.7)

Here n(x) defines the set of pixel translations that define the patch of pixels centred on x.

An alternative form of the SSSD instead computes the difference on the warped patch:

ε(x, d) =
m

∑
k=0

m

∑
j∈n(x)

(Ir(j + x)− Ik(w(x + j, k, d))2 . (4.8)

SSSD is not robust to illumination changes. For this reason a normalised cross correlation

has been more widely used, (Hannah, 1974; Faugeras et al., 1993). Alternative strategies for

obtaining increased robustness to the failure of brightness constancy make use of an image

pre-processing stage, applying the symmetrical Laplacian (∇2) operator to the image, or

incorporate the invariance within the error measure, e.g. using the zero mean normalised

cross correlation. A large number of variations on this approach have been introduced

in the literature which aim to provide invariance to changes in the image intensity of

corresponding pixels across frames, Szeliski (2010).

Robust descriptors: Further work established more robust descriptors based on a non-

linear transformation of the values in a local region. The census transform (Zabih and
Woodfill, 1994) produces a descriptor by computing the differences between each pixel

value in the local patch and the central pixel value. A single bit binary representation

of the regions pixels is then obtained by comparison of the sign of the difference. Such

descriptors can be matched using the efficient Hamming distance metric and have been
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shown experimentally to be more robust than linear correlation strategies (Bhat and Na-
yar, 1996), since unlike the linear descriptors, such ordinal descriptors can tolerate any

radiometric change in intensity so long as the relative ordering of pixel values remains the

same. However, information is clearly lost in such transforms. In situations when only

subtle variations in texture exist within a region the ability to increase discrimination by

aggregation across views, possible with linear descriptors, is lost.

Penalisation Function

A second consideration involves the cost function or error norm, under which errors be-

tween pixels in a descriptor are accumulated (Szeliski and Zabih, 1999). In the case of

the simple SSSD measure above, robustness can be increased by using an m-estimator over

the quadratic photometric cost. Modelling the likelihood of the photometric error given a

model solution results in a corrupted Gaussian distribution (Black and Anandan, 1993).

The use of a truncated cost function provides robustness to the outliers that can exist in

matches using rectangular patches, which we discuss further in the next section. By ensur-

ing only high quality matches are accumulated, aggregation over the patch is more likely to

be restricted to those neighbouring pixels which do lie on the same surface with a similar

depth value.

Aggregation and Filtering

An implicit assumption of the traditional region descriptors operating over fixed spatial

patches is that all depths within the patch are the same. Such an assumption leads to

biases towards depth map solutions with regions that are fronto-parallel to the reference

image plane. In practice the pixels in a region can straddle depth discontinuities, which can

lead to occlusions in a subset of views. Moreover, the fronto-parallel surface assumption

holds only for a very restrictive set of real world scenes, since most scenes are composed of

various surfaces at out of plane orientations or containing high curvature and thin struc-

tures.

Slanted windows: If the local geometry projected into a reference frame pixel is explic-

itly parametrised as a local planar patch then an extra two degrees of freedom must be

sampled over, resulting in an increased computation time if exhaustively searching over

the cost volume for the winner-take-all minimum. However, such explicit modelling does

lead to higher quality results.Gallup et al. (2007) achieved real-time multiple view stereo

estimation, extending the plane-sweep approach to range over a selected set of sweeping

orientations, providing a more accurate and discriminative cost function from which the

winner-take-all solution can be selected.

Alternatively, segmentation of the reference image into local regions can be used together
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with a fronto-parallel patch based depth estimation within each region to initialise a set of

planes. These can then be used to recompute an oriented patch based cost and aggregation

(Tao et al., 2001; Zhang et al., 2008). Such post-processing can achieve better results for

scenes comprising planes but reduces the ability to capture curved or thin structures. Also,

if the initial depth estimation fails to capture the slanted or curved surfaces the secondary

process will not necessarily lead to an improvement.

The stereo patch-match framework introduced by Bleyer et al. (2011) makes use of an effi-

cient, iterative non-deterministic search through the parameters of a full continuous planar

parametrisation by restricting the space to search first over parameters currently used by a

pixels neighbour. The result is a useful propagation of neighbourhood information without

altering the cost associated with a per pixel solution, as occurs in the global regularisation

approaches we will discuss in the next section. Instead, since nearby pixels that lie on

the same surface will have similar plane parameters, the method simply searches for a lo-

cal minimum at locations in the parameter space biased by the solution its neighbour has

taken on in a previous iteration, converging to the per pixel local minimum of the planar

parametrised depth map. In practice the algorithm is halted prior to convergence, and

produces results with qualities approaching the global optimisation approaches which use

solution regularisation.

Weighted aggregation: A second highly successful track of work directly addresses the

issue that some pixels within a patch do not belong to the same surface as the pixel at the

center of the patch. Spatial aggregation is presented with a trade-off in setting the optimal

size of the window used. A larger window is required to increase signal to noise ratio

and discrimination amongst the many possible matches of the cost function. However,

this increases the risk of aggregating cost over pixels which lie on different surfaces, and

introduces error in the cost where regions are severely warped by projective transformation

within the patch across the multiple images. In contrast smaller windows (and in the

limit a single pixel) suffer less from incorrect aggregation, but are not very discriminative.

By altering the patch size based on measurements of the quality of correlation obtained,

researchers investigated adaptive size windows (Kanade and Okutomi, 1994; Kang et al.,
2001), leading to improvements in reconstruction of finer structures and depth boundary

pixels. Alternatively, aggregation can be performed on the cost volume directly using a 3D
weighting mask (Scharstein and Szeliski, 2001), enabling filtering across depth hypothesis

as well as within the local image space.

Yoon and Kweon (2006); Gong et al. (2007) introduced adaptive support weights making

the assumption that pixels within a patch which are closer to the center pixel and have the

same colour as the center pixel are more likely to take on a similar depth value. Hence,



4.2. Data Terms and Local Approaches 89

an adaptive support weight is produced for each pixel in patch using a combination of

pixel intensity or colour similarity and pixel proximity with the reference pixel. This ap-

proach proved extremely effective and unlike the pre-segmentation approaches that aggre-

gate within regions of unbroken colour similarity, does not rely on the hard segmentation

problem being solved. (Hosni et al., 2009) extended the adaptive support weights to bring

the concept of unbroken paths from the explicit segmentation paradigm via weighting by

geodesic distance within a patch, resulting in higher quality depth boundaries.

Hosni et al. (2011) presented a real-time capable approach based on an adaptive cost vol-

ume filtering paradigm. They achieve speed up over the previous cost volume filtering

systems by replacing the bi-lateral filter used to compute the aggregation weights with the

guided image filter of He et al. (2010). This can be efficiently implemented as a box-filter,

enabling a trivially parallelisable implementation on the GPU platform, leading to a three

order of magnitude decrease in run time over the original adaptive support weight method

of Yoon and Kweon (2006).

Occlusion handling: Often performed in a post processing stage in two view approaches,

given depth maps computed using the left and right as reference, a consistent depth in the

first image should lead to a correspondence in the second which has an associated depth

which maps back to the original first image pixel, due to the co-visibility of the surface.

Occluded pixels can therefore be detected and discarded based on a left-right consistency

check (Fua, 1991). Besides the adaptive weighting strategies that decrease errors due to

occlusion, reasoning can be performed to remove pixels occluded in the multiple views

from the cost aggregation. Specifically in the multiple view depth estimation scenario,

when m ≥ 2 possible observations of the same surface are given, the best subset of views

can be selected on the basis of matching quality. Along these lines, Kang et al. (2001)

proposed a temporal selection of the best half sequence. Assuming that the trajectory of a

moving camera is locally smooth, occlusion in one half of the sequence may be resolved in

the other with respect to the pivoting reference frame if the scene under observation forms

a single depth discontinuity tangential to the camera motion.

Post-process: A number of strategies exist to improve the depth map after it has been ex-

tracted as the local cost function minimum. In particular Scharstein and Szeliski (2001)

provide a review of the many algorithms which perform interpolation of the cost function

to obtain higher precision estimates of the data term minimum. Other techniques attempt

to use the local minimum as an initialisation for a local parametric optimisation as pre-

viously discussed for plane fitting within a segmented region. A parametric optimisation

to obtain sub-pixel precision can also be performed using standard gradient descent style

optimisations directly on the intensity data (Lucas and Kanade, 1981), although there is
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a clear link between interpolation of the cost volume and using interpolation in the im-

age space during gradient descent which often makes the extra computation redundant.

Alternatively, working directly on the estimated depth map extracted from the data term

minimum, improvements can be obtained by denoising. In practice depth map denoising

attempts to optimise a combination of the local data term minimum with a smoothness

constraint common to all global stereo estimation approaches.

4.3 Depth Map Denoising Approaches

In contrast to the full global optimisation problem using the complete multi-view stereo

data term, in this section we will instead make the simplifying assumption that the data

term is convex in the solution by following the depth map denoising (DMD) approach

from Section (3.4). While the resulting optimisation is clearly sub-optimal, it presents an

important paradigm for practical depth map estimation due to the efficiency with which the

sub problems can be solved: first we obtain the data term minimum and then solve a fully

convex denoising problem. Therefore the input to the denoising algorithm is independent

of both the number of images used to obtain the data term, and also the resolution in

quantisation of the depth variable, both of which alter the computational complexity of

minimisation with the original data term. We now describe the two main approaches to

depth map denoising.

4.3.1 Single Depth Map

Pock et al. (2007b) highlighted that many of the high quality results obtained for pub-

licly available two-view stereo datasets from (Scharstein and Szeliski, 2001), make use

of accurate segmentation using the reference image, enabling boundaries to be accurately

reconstructed. They proposed a unified framework for joint colour and depth image seg-

mentation within the Mumford-Shah (MS) segmentation model Mumford and Shah (1989),

in which multiple local minimum based data terms provide the depth map inputs which

must be jointly segmented with the reference colour image. The result is a piecewise

smooth approximation of both the colour and depth inputs.

A number of the local stereo approaches are based on the bilateral filtering method of

(Tomasi and Manduchi, 1998), where image weighted aggregation within the photometric

cost volume, is followed by extraction of the per pixel cost minimum. Despite their purely

local computation, several variations have shown state of the art performance. Based on the

insights gained in such systems, Yang et al. (2007) developed a super resolution approach

for range images, showing that given only a low resolution depth map with a high resolu-

tion colour reference frame as input they can reconstruct an approximate higher resolution
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cost volume, perform bilateral filtering on the cost volume using a colour weight computed

on the colour reference frame, and then extract a higher resolution denoised depth map as

the per pixel minimum of the smoothed volume. They provide quantitative results using

their approach as a post-processing for many of the original algorithms listed on the two-

view stereo dataset comparison page from Scharstein and Szeliski (2001). Their results

are a good demonstration of the practical benefits gained in assuming that the region con-

tinuity and edge information present in the reference image provides a strong indication

of boundaries in real-world depth maps.

4.3.2 Multiple Depth Maps

An alternative approach to computing and denoising a single depth map estimated using

all available frames is to compute multiple depth maps from subsets of the frames and then

combine them into a single depth map using a multiple image denoising approach.

Koch et al. (1998) developed a correspondence linking approach for multiple view stereo in

an attempt to combine the benefits associated with small and wide baseline stereo systems.

They compute pairwise depth maps over an image sequence using a local patch based

approach and then compute both forwards and backwards correspondences through all

depth images. Correspondence is established based on projecting the depth estimate into

the neighbouring depth frame and rejecting the link if the corresponding depth estimate

at the projected pixel location is outside of a defined distance threshold. They gain easier

correspondence with reduced occlusions from the short baseline stereo combined with an

increased triangulation angle for correspondences linked over wider baselines, resulting in

higher quality depth maps.

Merrell et al. (2007) made use of explicit reasoning with the visibility constraint that exists

between multiple depth map measurements of a scene obtained from multiple neighbour-

ing views. For a set of co-observing depth maps to be physically consistent, the transfer

of points between any pair of depth maps should not result in the measurements from

one frame occluding measurement in another. Due to noise in the measurement process

this visibility constraint is often broken, and a heuristic approach can be taken to find

each depth value in a reference frame which breaks the constraint in the least number of

neighbouring views.

Pock et al. (2011) exploit the fact that for reconstruction of distant scenes, images captured

of the scene are approximately modelled through orthographic projection. They compute

multiple depth maps from temporal pairs of images using the semi-global matching ap-

proach of Hirschmüller (2005) and project each depth estimate onto a common plane. In

contrast to the explicit fusion approach described above, they formulate a global multiple
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depth map image denoising problem, handling errors in the data term using a robust pe-

nalisation function, together with the TGV regularisation term discussed in Section (4.5.2).

In the remaining sections of this chapter we will now turn to detailing specific depth map

denoising models that we have investigated for use in the dense visual SLAM pipeline.

We begin in the next section with a description of the multi-view stereo data term that we

will use both in a depth map denoising algorithm, and then again in Chapter (5), where

we look at its use in a full global optimisation framework. Specifically, we will now look

at making use of the convex optimisation framework outlined in Section (3.4) to produce

efficient, novel, depth map denoising algorithms for use in our dense visual SLAM pipeline,

exploiting the efficiency with which the models can be computed on parallel hardware,

(Pock et al., 2008b).

4.4 Small Baseline Multi-View Stereo Data Terms

We now detail the specific data term model we will use in the convex optimisation based

depth map denoising approaches we investigate in the remaining sections of this chapter.

4.4.1 Normalised Patch Error

We obtain robustness to local additive image irradiance variations and noise by modifying

the patch based SSSD from Equation (4.7), to a local mean subtracted similarity measure

under a robust norm ψD. The penalised similarity measure between the reference r and

image k at inverse depth d is:

ρP(x, k, d) = ∑
j∈n(x)

ψD
(
Ir(x + j)− µr(x)− Ik(x′ + j) + µl(x′)

)
, (4.9)

where x′ = w(x, k, d) is the projection of into image k from reference pixel x at depth d,

and µ is a pre-computed Gaussian convolved versions of an image I using variance σ2
P:

µ(x) =
(
Nσ2

P
∗ I
)
(x) . (4.10)

The multiple view data term is then simply:

ρP(x, d) = ∑
k∈K

ρP(x, k, d) . (4.11)

We note that this operation is similar to the gain compensated patch data term used in

(Gallup et al., 2007), and it is not the same as computing the sum over warped patches

where the images have had the local average subtracted in a pre-processing step.
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As previously discussed in Section (4.2.2) aggregation over a patch as defined in Equa-

tion (eqn:normalisedpatch), assumes all frames are viewing a fronto-parallel surface, and

ignores inter-frame rotation. We have found that when using an image collection from a

temporal sliding window with a video rate stream captured from a hand held camera, that

this assumption holds quite well in practice.

4.4.2 Pixel-wise Minimum

We discretise the depth variable into m points such that d ∈ M are steps, linear in inverse

depth: M =
{

0, 1
m , 2

m , ..., m−1
m , 1

}
. A depth map is then trivially obtained as pixel-wise

minimum searching over the possible inverse depth values:

dmin
K (x) = argmin

d∈M
ρ(x, d) (4.12)

Depth Confidence: We obtain a measure of confidence for each pixel’s depth estimate fol-

lowing the approach of Matthies et al. (1989) by scaling the data term cost at the minimum

by the curvature of the data term at that point:

σ2
K(x) ∝

ρ(x, dmin
K (x))

∇2
dρ(x, dmin

K (x))
, (4.13)

where we compute the discrete ∇2
d on the data term using a 3 point central difference.

Data Term Interpolation: We obtain an interpolated depth solution using a 3-point parabola

fit centred at the data term minimum which is equivalent to performing a Newton iteration

style numerical gradient descent step using the first and second derivative :

dmin
K (x) +

∇dρ(x, dmin
K (x))

∇2
dρ(x, dmin

K (x))
. (4.14)

We note that both the depth confidence and data term interpolation make an assumption

about the locally convex nature of the data term minimum. We therefore first ensure that

the interpolation of the minimum is valid by testing that the gradient descent step is less

than one whole inverse depth interval. If this is not the case we reject the interpolation

and use the discrete minimum instead, also setting a low default confidence for the depth

estimate at that pixel.
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Surface Orientation colouring half sphere Inverse depth colouring 4m 14m

(a) Ground Truth surface normals.

yslice

xslice

(b) Ground Truth inverse depth image.

Figure 4.1: Ground truth depth map data and views of the calibrated fountain-P11 sequence
from Strecha et al. (2008) which we use to compare features of the depth map denoising
models. (a) and (b) show the ground truth surface normal and inverse depth values of ref-
erence image 5 from the data set. Also marked on (b) are locations used later in this section
at which slices through the solutions of depth map denoising algorithms are extracted for
comparison.
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(a) (b) (c) (d) (e)

Figure 4.2: Illustration of the data term only depth map estimation using the occlusion
robust data term minimum proposed in Equation (4.19). The data term is computed using
the five frame image input from the downsampled fountain-P11 data from Strecha et al.
(2008) shown in Figure (4.1). (a) Occlusion from complete data term minimum s = 0, (b)
trading off the minimum from either the complete data term or from the left or right set
s = 0.3, (c) using only the minimum from the left or right set s = 1. We demonstrate the
result of the weighted-Huber denoising model from Section (4.5) with (d) and without (e)
the cost function interpolation from Equation (4.14). In this experiment we downsample the
original dataset from 3072× 2048 to 480× 320 pixels, used for real-time capable evaluation
of a GPGPU implementation for most of the models outlined in this Chapter. A quantitative
analysis of the stereo consistency check is performed against the ground truth in Figures
(4.3) and (4.4).

4.4.3 Handling Occlusions

Since this simple data term does not explicitly take into account occlusion of the surface,

errors can accumulate when a reference pixel is observable only in a subset of frames.

Fortunately our N frames are extremely short baseline images from moving video cam-

era, reducing the size of occlusions within a small window of frames about the reference.

Furthermore, we can make a simple assumption regarding the visibility of the surface.

Choosing a reference frame in the middle of a linear trajectory with the other frames on

either side (which is reasonable for short baseline video) the simplest form of depth dis-

continuity, tangential to the camera motion, will lead to either the left or right half of

the frames having co-visibility of the surface with the reference. The left and right half

sequence data term costs are:

ρA(x, d) =

N
2

∑
k=1

ρ(x, k, d)),

ρB(x, d) =
N

∑
k= N

2

ρ(x, k, d)). (4.15)

Kang et al. (2001) proposed to take the minimum cost produced by the error induced by

the left or right frame set:

dmin
H (x) = argmin

d∈M
{min(ρA(x, d), ρB(x, d))} . (4.16)
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While this best half sequence approach improves errors at discontinuities, it unfortunately

reduces the quality of the data term minimum for surfaces that are co-visible across all

frames by reducing the number of observations by half. We can instead take the best of the

three possibilities: either the best solution is given by the left or right half sequence, or by

the estimate obtained using all of the images. Given the winning estimates from the left

and right half sequences:

dmin
A (x) = argmin

d∈M
ρA(x, d) (4.17)

dmin
B (x) = argmin

d∈M
ρB(x, d) , (4.18)

and the complete sequence dmin
K (x), we propose the following:

dmin(x) =


dmin
K (x), if min(cmin

A , cmin
B )

cmin
K

< r

dmin
A (x), if cmin

A < cmin
B

dmin
B (x), otherwise

(4.19)

Here cmin
K = ρK(x, dmin

K (x)) and likewise for cmin
A and cmin

B . The function returns dmin
K (x) for

r = 0, and the half sequence minimum dmin
H (x) for r = 1. A trade-off between the two is

obtained by choosing 0 < r < 1, enabling all frames to be used unless the cost obtained by

all frames is greater than that obtained in either frame, determined by the cost ratio.

Figure (4.2) qualitatively illustrates the improvement in using a value for r which balances

the best half sequence data term with the complete data term. In each case, settings are

fixed to use five images from the sub-sampled fountain-P11 dataset from Strecha et al.
(2008), Figure (4.1), using the highlighted frame as reference for the depth estimation. The

neighbouring ±2 frames (shown) are used in the data term only depth map estimation,

using the interpolated minimum cost value for a 3× 3 pixel mean subtracted patch data

term from Equation (4.9) with σ = 0.3. The data term is discretised into 256 inverse depth

values with the minimum and maximum depth value being set from the ground truth

model bounding box available from Strecha et al. (2008).

We analyse the effectiveness of the consistency check further in Figures (4.3) and (4.4) using

an increased image and solution resolution of 768× 512 pixels. In this case, and further

quantitative analysis with this dataset throughout this chapter, we use the higher resolution

images since it represents a resolution which is still near real-time capable on the current

top generation commodity GPGPU (requiring an increase of 2× more computation time

over the lower resolution input), but importantly which suffers less distortion in the sub-

sampled solution and ground truth geometry, enabling a more detailed analysis of the
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Figure 4.3: Data-term only without right-left consistency check. The error image (e) uses a
grey scale to encoded absolute error to the ground truth depth at each pixel up to 0.1m,
is red for solution points with > 0.1m absolute error. Green pixels encode that have no
ground truth depth. The signed error is rendered in (f) with saturation at ±0.1m error.
In (h) we compute the RMSE and image completion (solution fill) ratio given a specified
thresholding, Nmax, on the absolute error, |ε|, in the depth map.
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Figure 4.4: Data-term only with left-right consistency check. We plot the error histogram
(g) for the consistency checked depth map together with the error distribution from the
unchecked depth map. It is clear that left-right consistency check reduces errors near
occlusion boundaries.
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higher spatial frequency surface regions that are lost at a lower resolution. We compare

the pixel-wise minimum depth map with and without the left-right consistency check on

against the ground truth depth map. In Figure (4.4) We note a clear decrease in gross

outliers at depth discontinuities with the left-right consistency check on.

4.5 Depth Map Denoising with Convex Optimisation

4.5.1 First order smoothness denoising

Given the local stereo data term minimum d, we proceed to compute a denoised depth

map u, using a variational image denoising approach as introduced in Section (3.4.2). The

denoised solution is obtained by minimising a global energy with a simple pixel wise error

data term and solution smoothness based regularisation term:

min
u

{∫
Ω

ψD(u− d) dx + λ
∫

Ω
ψR(A(u))) dx

}
. (4.20)

Here the data term error measures the difference between the desired solution u and the

depth map measurement d obtained from the local stereo method. We now detail a number

of variational models that provide powerful denoising capabilities. For each model intro-

duced we will illustrate its performance on a noise corrupted synthetic depth map dataset

shown in Figure (4.5), enabling a comparison of each model solution against the ground

truth.

In Chapter (1), we saw that within a depth map denoising setting the `1 norm is the clos-

est convex model to the non-convex regularisation term that would minimise the energy

associated with underlying gradient statistics of natural depth images. Using a quadratic

penalisation on the data term ψD(s) = 1
2 s2 and Total Variation (TV) regularisation of the

solution ψR(A(u)) = |∇u|1, Rudin, Osher, and Fatemi (1992) introduced the ROF image

denoising model, demonstrated in Figure (4.7) (see Section 3.4.2 for more details on this

model):

min
u

{
1
2

∫
Ω
(u− d)2 dx + λ

∫
Ω
|∇u| dx

}
. (4.21)

TV of the function u uses the `1 norm penalisation. In contrast to a quadratic cost this

allows discontinuities in the solution to form, since for any combination of increasing

values between two function points including a complete homogeneous region followed

a jump to the second value, TV measures the same cost (Pock, 2008). Minimisation of

Equation (4.21) therefore results in solutions which are broken into piece-wise constant

regions that minimise the joint data-term and regularisation energy shown.
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Figure 4.5: Ground truth synthetic depth image with noisy corrupted version. (a) Ground
truth synthetic depth image, showing markings for the xslice = 256 and yslice = 384 slice
positions. (b) Noise corrupted version of the ground truth image, using a mixture of
Gaussian additive noise with σ = 0.2, with a uniformly random sampling of 8% of the
pixels further corrupted with a uniform random value limited to be within the valid depth
range, simulating outliers in a depth map data term. (c). Resulting error image, all values
over |ε| = 0.1 are coloured red, otherwise error magnitude is encoded from smallest to
largest using white to black values. (d) Error distribution between noisy and ground truth
synthetic images. Note we will show error histograms with a log10 scale on the y axis.
We note that the the error resulting from the uniform pixel corruption is not symmetric
reflecting the non uniform sampling of depth values in the synthetic image. (e,f) 3D normal
surface rendering of the ground truth and noisy depth images. While the valid depth range
is constrained by projection to be within 0m and 1m the ground truth has (Dmin=0.1m,
Dmax=0.9m). (g,h) Slice through x and y dimensions of the image overlaying the noisy
depth map with the ground truth value. We provide a demonstration of the denoising
capabilities of the models introduced in this section in Figures (4.8-4.10), and also provide
for comparison the result of simple Gaussian convolution in Figure (4.6).
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If the probability distribution of the data term likelihood is not Gaussian, but instead a

broader tailed distribution, we can replace the quadratic data term penalisation with the

robust `1 norm. The TV−`1 denoising model is:

min
u

{∫
Ω
|u− d| dx + λ

∫
Ω
|∇u| dx

}
. (4.22)

One of the many interesting properties of this model, shown in Figure (4.8), is its ability to

preserve contrast in the depth image. Increasing values of λ lead to removal of increasingly

larger isolated structures in the image, while preserving the absolute values of the remain-

ing image. This is in stark contrast to the ROF or full quadratic model which, though

discontinuity preserving, results in a flattening of image values as λ increases.

A generalisation of the quadratic cost and `1 norm based models is obtained using the

Huber norm, Equation (3.47), on both the regularisation and data term energy:

min
u

{∫
Ω
|u− d|δ dx + λ

∫
Ω
|∇u|γ dx

}
. (4.23)

When used in depth map denoising, on the data term the Huber norm better models depth

measurement error obtained using the local stereo methods as a corrupted Gaussian. More

striking is the effect of the small quadratic region in the Huber function when used in

the regularisation cost, resulting in removal of the severe staircase effect that results when

using the TV regularisation illustrated in Figure (4.9).

4.5.2 Total Generalised Variation

As introduced by Bredies et al. (2010), total generalised variation (TGV) regularisation, en-

ables piecewise polynomial function reconstruction of any degree in contrast to the piece-

wise constant function reconstruction possible with the TV regularisation.

Pock et al. (2011) made effective use of the TGV to create a state of the art multiple depth

map denoising, or depth map fusion, algorithm that we will return to later in this section.

They demonstrate the power of the second order variant of the Total-generalised variation

regularisation in conjunction with a denoising data term using a Huber cost function. The

single depth input version of their TGV2
α-Huber denoising model is:

min
u

{∫
Ω
|u− d|δ dx + α1

∫
Ω
|∇u− v| dx + α0

∫
Ω
|Ev| dx

}
(4.24)

where α1 = 2α0 acts on the `1 norm of the symmetrised gradient operator E over a second

variable v. The remarkable result of the second order TGV model is the ability to auto-
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Figure 4.6: Gaussian Convolution

(a) λ = 0.5 (b) λ = 0.624 (c) λ = 0.747 (d) λ = 1.4
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Figure 4.7: TV-`2
2
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(a) λ = 0.84 (b) λ = 1.18 (c) λ = 1.53 (d) λ = 4.64
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Figure 4.8: TV-`1

(a) λ = 0.84 (b) λ = 1.18 (c) λ = 1.53 (d) λ = 4.64
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Figure 4.9: Huber-`1, with the Huber parameter γ = 0.00147
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(a) λ = 0.84 (b) λ = 1.41 (c) λ = 1.97 (d) λ = 7.56
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Figure 4.10: TGV2
α − `1

matically balance the first and second derivatives on a per point basis. This is in contrast

to global optimisation models which explicitly weight the varying degrees of smoothness

manually on a whole image basis. We note that it is trivial to append the image driven

weighting to the first order smoothness error term but in practice we have found that the

TGV2
α regularisation provides superior performance without it, the model is demonstrated

in Figure (4.10).

4.5.3 Inhomogeneous isotropic diffusion

As noted in Section (4.3.1), since we are denoising a depth map computed in a reference

frame with an associated image Ir, it is reasonable to assume that some image boundaries

might correspond to depth discontinuities. By increasing the regularisation strength in re-

gions which are expected to be smooth and reducing the strength at possible boundaries,

known as image driven regularisation, we can effectively produce discontinuity preserva-

tion in the solution with similar performance to a non-convex smoothness term.

Discussed in Section (2.3.2) the majority of such image driven regularisation approaches

used in both optical flow and variational depth estimation formulations used anisop-

tropic diffusion ((Nagel and Enkelmann, 1986)) where the regularisation is directionally

weighted using a function of the image gradient. Bresson et al. (2005) demonstrated the

effectiveness of a simple scalar weighted-TV regularisation, which has been used to great
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(a) Example
reference image, Ir

(b) Weighting
function, g.

(c) Noisy data term,
d

(d) Denoised
solution u using

|∇|γ.

(e) Denoised
solution u using

g|∇|γ.

Figure 4.11: Example depth map denoising using the gHuber-`1 denoising model. Weight-
ing function (b) computed for a reference image (a), here α = 100, β = 1.6. The weighting
function reduces the regularisation energy at strong image boundaries. The result of de-
noising the multi-view data term minimum (noisy depth map) from (c) shown without
weighting of the regularisation term (d). Keeping optimisation and model parameters
constant, but using the weighted regularisation results in more accurate reconstruction at
depth discontinuities (e).

effect in high accuracy variational optical flow (Werlberger, 2012). Adding a per point

weighting into the regularisation term of the previous model produces the weighted-Huber

denoising model:

min
u

{∫
Ω
|u− d|δ dx + λ

∫
Ω

g|∇u|γ dx
}

, (4.25)

where the isotropic weighting function g(x) is computed at each pixel by:

g(x) ≡ exp−α|∇Ir(x)|β . (4.26)

Such inhomogeneous isotropic diffusion enables stronger regularisation of the depth map,

which typically would result in the removal of larger image structures. Since closed ho-

mogeneous regions within g will have corresponding boundaries with small g values the

regularisation energy is reduced on the boundary allowing discontinuities to form with

reduced cost to the global energy, illustrated in Figure (4.11).

4.5.4 Primal-Dual Formulations for Denoising

The above primal formulations of the denoising models contain Huber penalisation based

cost functions or `1 norms which are not continuously differentiable. We will now provide

the discrete primal-dual formulation of the models following the approach developed in

Chambolle and Pock (2011). The primal-dual formulations enable trivially parallelisable

gradient descent optimisation schemes to be used to minimise the global energies.
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Figure 4.12: Synthetic experiment solutions and errors. Each column shows a resulting
solution and related error for the denoising technique specified at the top of the column.
Rows from top to bottom show the solution depth map; image difference image; signed
error ε histogram for the range ±0.1m where the solution error distribution (red) is plotted
together with the original noisy input error distribution. In the final row we generate the
RMSE and image completion (fill) plots obtained for the solution pixels that have absolute
error, |ε|, within the specified magnitude: Nmax. We compute the ratio of pixels remaining
in the solution with |ε| below Nmax, together with the solution RMSE. In this experiment
we use the model parameters optimised to obtain the minimum RMSE for Nmax = 0.1 at
which point all models compared reach a completion rate of over 99%.
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Primal-Dual Weighted-Huber Denoising

We point out that several basic but interesting variations of the denoising model are gen-

eralised by Equation (4.25). In particular we abbreviate the weighted TV-`1 case using

inhomogeneous isotropic weighting and setting (δ, γ = 0) as gTV-`1. We also label the

model instance gHuber-`1 when using the weighted Huber penalisation where γ > 0.

Following the approach outlined in Section (3.4), we transform each term in Equation (4.25)

using the Legendre-Fenchel transform we arrive at a saddle-point problem:

min
d

max
p,r

{
〈r, u− d〉+ 〈p,∇d〉 − δ

2‖p‖2
2 −

γ
2 ‖r‖2

2

}
(4.27)

subject to ‖r‖∞ ≤ 1 , ‖pi,j‖ ≤ gi,jλ ,

We obtain the solution u by performing a gradient ascent on the dual variables and a

gradient descent on the primal variables. The gradient-ascent update for the dual terms

q, p is:

pn+1
i,j = Πgi,j

(
pn

i,j + σ∇un
i,j

1 + σδ

)
, (4.28)

rn+1
i,j = Πλ

(
rn

i,j + σ(un
i,j − di,j)

1 + σγ

)
(4.29)

where the constraints on the dual variables are enforced by the projection operation given

in Section (3.4). We note that the g-weighting term is assembled into the dual model by

scaling the radius of the variable projection.

Fixing the dual variable, we then update the primal variable un using gradient descent:

un+1
i,j = un

i,j + τ
(
∇ · pn+1

i,j − λrn+1
i,j )

)
(4.30)

Primal-Dual TGV2
α-Huber Denoising

The primal-dual model for the TGV2
α-Huber denoising is similarly obtained, using the

Legendre-Fenchel transform on all terms in Equation (4.24):

min
u,v

max
p,q,r

{
〈∇u− v, p〉+ 〈Ev, q〉+ 〈u− d, r〉 (4.31)

−
(

δ{|p|≤α1} + δ{|q|≤α0} + δ{|r|≤1} +
δ
2‖r‖2

2

)}
subject to ‖p‖∞ ≤ α1 , ‖q‖∞ ≤ α0 , ‖r‖∞ ≤ 1 .
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Solution proceeds iteratively, first fixing the primal variables, gradient ascent on the dual

variables is performed:

(pi,j)
n+1 = Πα1

(
(pi,j)

n + σ(∇(uh
i,j)

n − (vh
i,j)

n)
)

(4.32)

(qh
i,j)

n+1 = Πα0

(
(qh

i,j)
n + σ(E(vh

i,j)
n)
)

(4.33)

(rh
i,j)

n+1 = Π1

(
(rh

i,j)
n + σ((ui,j)

n − (dh
i,j))

1 + σδ

)
. (4.34)

Fixing the Dual variables, gradient descent on the primal variables is given by:

(uh
i,j)

n+1 =
(
(uh

i,j)
n + τ(∇ · (pi,j)

n+1 − (rh
i,j)

n+1)
)

(4.35)

(vh
i,j)

n+1 =
(
(vh

i,j)
n + τ(ET(qh

i,j)
n+1 + (ph

i,j)
n+1)

)
. (4.36)
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Figure 4.13: Performance analysis of depth map denoising algorithms on the synthetic
dataset shown in Figure (4.5). We generate the RMSE and image completion (fill) plots
obtained for the solution pixels that have absolute error to ground truth within the speci-
fied magnitude: Nmax. The fill rate is computed as the ratio of pixels in the solution with |ε|
below Nmax over the number of pixels in the reference image observed by at one other view.
The RMSE error is also computed using the average over all estimated pixels within the
absolute error bound. In all experiments shown we use the model parameters optimised
to obtain the minimum RMSE for Nmax = 0.1. At this bound all denoised solutions reach a
fill rate of over 99%.

4.5.5 Synhetic Depth Map Denoising Comparison

In Figure (4.12), and summarised in Figure (4.13) we compare the denoising techniques.

Solutions are obtained by running optimisation for each model until a solution change of
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less than 1e− 3m. We set for each model the parameters that minimise the RMSE for a set

threshold of the solution at Nmax = 0.1m absolute error. At this setting all model solutions

(excluding Gaussian convolution) reach at least a 99% solution fill rate. It is notable that

all solutions attain a modal error that is non zero; this does not occur when the depth map

is corruptive with either additive Gaussian noise or the salt and pepper noise alone.

The characteristic piecewise constant bias of the TV solution seen in column (4.12)(a) re-

sults in multiple high modes in the error distribution induced by errors at the slopping

points in the ground truth image. However, while the Huber penalty smooths the solution,

it does so at the cost increased error for the fronto parallel regions. The TGV solution

results in reduced error over all surfaces but suffers from increased errors at the depth

discontinuities, this can be seen clearly in the cumulative error plots where TGV produces

the lowest RMSE and up to Nmax < 0.0075m shown in Figure (4.13)(b).

4.5.6 MVS Depth Map Denoising Comparison

To analyse the relative performance of the depth map denoising techniques introduced in

this section we utilise the ground truth data depth map from the fountain-P11 multiple

view stereo sequence by Strecha et al. (2008), previously shown in Figure (4.1), which

provides calibrated and rectified image input. First, to give a sense of the solution qual-

ity and importantly the space of typical solutions for the above models we compare the

models qualitatively in Figure (4.14). We first sub sample the image data from 3072× 2048

to 480 × 320 which coincides with attaining real-time (20-30fps) performance using our

GPGPU implementation taking into account computation of the depth map data term and

running the convex optimisation routines to convergence when the solution changes be-

tween iterations is less than 1e−3. Since the optimisation problem is convex, the solution is

not changed by the initialising solution which we set as the data term. This simple analysis

is useful for accessing potential performance of the models in a live dense SLAM system.

We provide as input to all depth map denoising models the same input, shown in Figure

(4.2b) with details on the settings provided at the end of Subsection (4.4.3).

Using depth map reference frame 5 as the ground truth from the fountain-P11 sequence we

perform a quantitative comparison of the techniques, detailing comparative solution slices,

absolute and signed error images, error distributions and cumulative error and solution

fill rate plots detailed in Figures (4.16-4.20) and summarised in Figure (4.15). All of the

solutions clearly denoise the noisy depth map data term reducing the RMSE, drastically

culling the broad tail errors present in the input depth maps. As seen in the synthetic

de-noising examples the Huber based penalty terms rectify the constant region bias that

results in reduced reconstruction fidelity for non fronto parallel surfaces, although under
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(a) TV-`1 (b) Huber-`1 (c) gTV-`1 (d) gHuber-`1 (e) TGV2
α − `1

Figure 4.14: A summary qualitative comparison of single image, convex depth map denois-
ing models, highlighting the prominent differences produced by each model. All models
use the five view occlusion robust depth map computed from the data-term minimum,
illustrated in Figure (4.2b). Model parameters are not tuned for performance against the
ground truth depth map, but are instead set based on achieving the best performance
within the complete dense visual SLAM system, described in Chapter (7). For each model
result we show (top to bottom rows) the denoised depth map, the normal map rendering
in the image plane and Phong shaded mesh rendering shown tilted away from the image
plane, and finally the textured mesh. Mesh vertices are culled using a visibility thresh-
old to illustrate discontinuities in the depth map (the threshold is constant across results).
The distinguishing differences between each model are clearly shown: without any image
driven regularisation (a) and (b) demonstrate extremes of the Huber Model, from the `1
based TV regularisation in (a) illustrating the piece-wise constant solution bias, while (b)
shows the smoothing effect of the small quadratic component in the Huber penalisation
term. Image driven regularisation results in improvements for both regularisation set-
tings, increasing detail preservation while still suppressing noise in the data term. Finally,
in comparison with the first order smoothness terms used in models (a-d), the power of
TGV2

α regularisation is clearly demonstrated, showing smooth planar reconstruction of the
ground.
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(b) RMSE

Figure 4.15: Performance analysis of depth map denoising algorithms for reference depth
map 5 from the fountain-P11 dataset. We generate the RMSE and image completion (fill)
plots obtained for the solution pixels that have absolute error to ground truth within the
specified magnitude: Nmax. The fill rate is computed as the ratio of pixels in the solution
with |ε| below Nmax over the number of pixels in the reference image observed by at one
other view. The RMSE error is also computed using the average over all estimated pixels
within the absolute error bound. In all experiments shown we use the model parameters
optimised to obtain the minimum RMSE for Nmax = 0.1. At this bound all denoised
solutions reach a fill rate of over 90%.

the RMSE metric, although the results are perceptually different the resulting change in

reconstruction error is near negligible on this dataset. We also find that while the TGV so-

lution produces the most complete solutions at low error thresholds as seen in (4.15), that it

generally produces less accurate reconstructions in practice with errors resolving at depth

discontinuities. This is possibly due to the higher order smoothness term trading off im-

mediate jumps at such boundaries possible with TV against 2nd order smoothness that can

further reduce error in larger planar regions but that has lower bandwidth reconstruction

capabilities due to the increased derivative filter size.
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Figure 4.16: TV-`1 Solution, λ = 2. The error image (e) uses a grey scale to encoded absolute
error to the ground truth depth at each pixel up to 0.1m, is red for solution points with
> 0.1m absolute error. Green pixels encode that have no ground truth depth. The signed
error is rendered in (f) with saturation at ±0.1m error. We plot the error distribution (g)
for the solution depth map (red) together with the distribution of the depth map dataterm
used (blue). In (h) we compute the RMSE and image completion (solution fill) ratio given
a specified thresholding, Nmax, on the absolute error, |ε|, in the depth map.
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Figure 4.17: Huber-`1 Solution, λ = 2, Huber γ = 0.00159.
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Figure 4.18: TGV2
α − `1 Solution, λ = 1.667.
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Figure 4.19: gTV-`1 Solution, λ = 2 with image driven regularisation α = 10, β = 1.
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Figure 4.20: gHuber-`1 Solution, λ = 2, Huber γ = 0.00159, and image driven regularisation
α = 10, β = 1.
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4.5.7 2.5D Depth Map Fusion

In this subsection we look at the 2.5D depth map fusion approach, used previously by

Pock et al. (2011) for robust estimation of a single depth map from multiple noisy over-

lapping depth maps. Given the supporting images captured under perspective projected, we

must decide on a scheme to select subsets of images for computing the multiple depth

map measurements, which must be in a single frame of reference. While it is possible to

transform a depth map from one reference frame into another, the simplest mechanism is

to use a common reference frame r, and then compute depth maps from subsets of neigh-

bouring frames into the common reference frame, computing N depth map observations

using pairs (r, k ∈ 1..N):

dmin
k (x) = argmin

d∈M
ρ(x, k, d) . (4.37)

An obvious advantage over denoising the single summed data term minimum is that oc-

clusions can now be correctly treated as outliers over all pairwise observations using a

robust norm. The denoising energy extended to multiple depth map observations is:

min
u

{∫
Ω

∑
k∈Ir

ψD(u− dk) +
∫

Ω
λψR(∇u)

}
, (4.38)

where the summation over data-terms discards invalid pixels in dk where no valid depth

can be estimated. This occurs when all projections from the discretised depth along the

reference ray projects outside of the image bounds for frame k.

The primal-dual formulation for each of the multiple depth map denoising schemes is

obtained by introducing a dual variable for each of the depth map error terms. The primal-

dual model for the multiple image extension to the weighted-Huber denoising model in

Equation (4.25) is:

min
u

max
p,r

{
λ ∑n

k=1 〈rk, u− dk〉+ 〈p,∇u〉 − ε
2‖p‖2 − γ

2 ‖r‖2
}

(4.39)

subject to ‖r‖∞ ≤ λ , ‖p‖∞ ≤ g .

Solution proceeds by an update on the dual variable p as given in (4.28) and by a gradient
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4.21: 2.5D depth map fusion using the multi-image gTV-`1 model. Figures (a-e)
illustrate multiple-image denoising using the pairwise data term depth maps. Pair-wise
depth maps are computed into the common reference frame (without occlusion handling).
Two of the four depth maps are shown in (a) and (b), while the solution depth map is shown
in (c) with the normal map (d) and mesh rendering (e). Figures (f-j) demonstrate the multi-
image denoising using two depth map inputs from the left and right image sequences. The
data term minimum depth maps computed into the common reference frame are shown
in (a) and (b), with denoised result shown in (c), we illustrate surface smoothness and
discontinuities through the normal map (d) and the rendered surface mesh (e).

ascent update on each dual variable ri associated with a valid depth pixel:

rn+1
k =

Πλ

( rn
i +σ(un−dk)

1+σγ

)
if k ∈ Ir

rn
k otherwise

(4.40)

pn+1 = Πg

(
pn +∇un

1 + σε

)
(4.41)

Fixing the dual variables, dualisation of the sum over of the data term norms leads to a

summation over the dual variables in a primal gradient descent update,

un+1 = un + τ
(
∇ · pn+1 −∑

k
rn+1

k

)
. (4.42)

Derivation of the multiple image TGV2
α-Huber denoising model model originally devel-

oped by Pock et al. (2011) is obtained in a similar manner extending Equation (4.31).

In Figure (4.21) we qualitatively compare multiple depth map denoising using the N pair

dataterms in Equation (4.37), with the result from fusing the two depth maps computed

from the dataterm minimum of the left-right half sequences described in Subsection (4.4.3).

This enables us to assess the capability of the multiple image denoising approach to im-

plicitly cope with occlusions in comparison with the explicit selection of the per-pixel min-
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(a) t (b) t+10 (c) t+20

Figure 4.22: Frames from approximately 7 seconds into a video dataset of the Graz City of
Sights model from Gruber et al. (2010). The images are captured 10 frames apart demon-
strating the typical density of the video dataset in comparison to the high quality multiple
view datasets.

imum in Equation (4.19).

The example clearly demonstrates the trade-off that exists with the 2.5D fusion approach:

using more images in a single depth estimate leads to improved signal to noise ratio but

accumulates errors at occlusion boundaries as the baseline of images increases. Conversely

multiple depth maps from fewer frames per estimate leads to better handling of occlusion

through outlier modelling but reduces the signal to noise ratio of depths for non-occluded

regions.

4.5.8 Depth Map Denoising with Video Input

We now take the opportunity to briefly introduce the video rate multiple view stereo data

set that will be used in a number of evaluations of the full dense reconstruction pipeline

developed in Chapter (7). A key difference in the data obtained for depth estimation

from a real-time moving video camera in comparison to highly utilised statically captured

multiple view stereo datasets used in state of the art research (Scharstein and Szeliski,
2001; Seitz et al., 2006; Strecha et al., 2008) is the comparative density in the image data

that video provides. The previous fountain-P11 data set from Strecha et al. (2008) provides

a total of eleven very high resolution images calibrated to a level of accuracy which is not

likely to be achieved in a real-time visual SLAM scenario, especially when using the lower

resolution imagery required to make live computation feasible. Furthermore, we used only

five down-sampled input images from the data set in total, using ±2 neighbours of the

reference frame, since increasing the the set to ±5 tot include the total set resulted in severe

degradation in the depth maps produced. The reason for this is the wide baseline nature

of the sparse view set, which includes a large camera rotation component relative to our

chosen reference frame, breaking the assumptions needed for the simple fronto-parallel,



4.5. Depth Map Denoising with Convex Optimisation 120

(a) gHuber-`1

(b) TGV2
α-`1

(c) TGV2
α 2.5D fusion

Figure 4.23: A comparison of single and multiple image, convex depth map denoising mod-
els computed using the City of Sights video data and PTAM camera pose estimation. Set-
ting the depth map reference frame to the image shown in Figure (4.22b), we use a total
of 20 neighbouring frames in the multiple view stereo data term. Model parameters for
the single depth image denoising models (a) and (b) remain as used in the comparison
illustrated in Figure (4.14). In (c) we compute the data term minimum from the left-right
half sequences for use in 2.5D fusion. Each row shows (left to right) the solution depth
map, Phong shaded rendering of the resulting mesh with visibility culled vertices, and a
normal map and textured mapped rendering of the resulting mesh from an alternate view.

fixed window, data term to work effectively.

In contrast to the high resolution dataset, In Figure (4.22) we show three frames from a

video capture 1 of the City of Sights model developed by Graber et al. (2011) for evaluation

of real-time augmented reality computer vision applications. Video capture was performed

at 30Hz using a point grey flea2 at a resolution of 640× 480 pixels using an 80 degree field-

of-view fixed focus lens. The image data from this moving camera captured suffers from

motion blur and decreased signal to noise ratio in comparison with the previous dataset.

Furthermore no ground truth trajectory is provided for the camera poses.

The video browses over the City model for approximately 2.5 minutes making various

1We thank Gottfried Graber and Thomas Pock for providing the video of the model produced by Lukas
Gruber.
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loopy trajectories around and over the model. As illustrated by the frames shown in Figure

(4.22), the trajectory is relatively smooth over 10 to 20 second periods providing dense,

highly overlapping views of the scene. In Section (7.5) we will return to detail the ex-

perimental evaluation of real-time or live dense reconstruction systems that exploit this

density in the video input. In Figure (4.23) we demonstrate three of the depth map denois-

ing models using the video dataset. We use the real-time feature based parallel tracking

and mapping system from Klein and Murray (2008) to estimate the relative poses of the

frames, and also to provide initial structure in the scene with which to alter the minimum

and maximum depth values using in the inverse depth parametrisation.

While the piecewise affine reconstruction capabilities of the TGV based model are again

demonstrated in Figure (4.23b) in comparison to the gHuber-`1 model, we note that this

more sophisticated model requires up to 10× more iterations than the first order models

to converge to useful state. This raises an important issues that arises in attempting to

evaluate components of a live dense reconstruction system: given a fixed window of avail-

able processing time, a trade-off exists between attempting to compute the highest quality

solution over a subset of frames and computing a lower quality solution over a larger set

of frames. We will return to this in Chapter (7).
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The depth map denoising approaches described in Chapter (4) can utilise any local stereo

data term, enabling gains from state-of-the-art local stereo estimation methods to be triv-

ially incorporated. Furthermore, the denoising problem is fully convex, providing an as-

surance that regardless of the initial solution, the primal-dual optimisation approach will

converge towards the global solution for increasing iterations. There is however no guar-
antee that the per point minimum obtained from the local stereo method is correct within

some inlier noise model. If a solution exists within another local minimum or not as a local

minimum at all, the best that can be achieved is for the value to be treated as an outlier.

Regions with weak data terms effectively have the solution filled in by the regularisation

term, which can lead to gross inaccuracies. The strength of the global optimisation ap-

proaches lies in the local data term cost being placed in the context of a globally smooth

solution, enabling weak data terms to provide information where the per pixel minimum

122
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would yield an erroneous estimate.

In this chapter we develop two different multiple view stereo approaches that make full

use of the data cost volume within a global optimisation framework. We first turn to vari-

ational stereo optimisation approaches which linearise the resulting non-convex functional

using the full data term, previously introduced in Section (2.3.2). In section (5.1) we re-

view the stereo techniques using modern primal-dual based convex optimisation that have

developed from the earlier variational stereo methods.

In section (5.2) we introduce the specific convex optimisation models that we investigate,

making use of either a single pixel or patch based data term within the image weighted

gTV-`1 or Huber penalty based models or using the TGV2
α-`1 model.

In section (5.3) we investigate an alternative global optimisation approach that replaces

the linearisation of the data term with an exact search over a discretisation of the solution

variable. In combination with a regularisation term, the global energy is solved using a

form of annealing in which each iteration of the optimisation results in a reduction in

feasible solutions for the data term.

In section (5.4) we discuss the relative merits of the convex optimisation models that we

have investigated, looking at their applicability to real-time operation in a full dense recon-

struction pipeline. On that basis we outline of the stereo method we will use in our dense

reconstruction pipeline: combining both depth map denoising and multiple view stereo

formulations. While we perform no quantitative experiments in this section, focussing in-

stead on large scale differences in convergence and gross solution errors, we will go on to

evaluate the method within a full dense reconstruction context in Chapter (7).

5.1 Modern Primal-Dual Approaches

All of the variational stereo approaches outlined in Section (2.3.2) make use of primal for-

mulations of the continuous energy functional. The numerous models made use of robust

penalties in the data term to cope with outliers in the data, together with regularisation

that preserve discontinuities in the solution. However, the resulting PDE from the Euler-

Lagrange equations often required further approximation to remove singularities arising

at critical points in the gradient, discussed in Section (3.4).

Zach et al. (2007a); Pock (2008) introduced a formulation of the related optical flow energy

functional, making use of a primal-dual representation of the energy which was then used

with great success in a series of real-time capable optical flow implementations (see Section

(3.4) for an introduction to primal-dual formulations).
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Stuehmer et al. (2010) made use of the primal-dual formulation introduced in the optic

flow formulation by Zach et al. (2007a) of the multiple-view depth map estimation problem

using both an `1 penalty on a single pixel linearised brightness constancy data term and

a TV regularisation of the solution. Their formulation makes use of the ability to solve a

new energy functional that couples the two `1 terms together through quadratic term. By

introducing the quadratic coupling term the optimisation can then proceed by alternation.

The two view coupled energy is:

Eθ(D) =
∫

Ω

{
|∇D|1 +

1
2θ

(D− v)2 + λ|ε(v)|1
}

dx , (5.1)

where θ is fixed to a small constant and the original TV-L1 energy is recovered as θ → 0.

The first coupled term |∇D|1 + 1
2θ (D− v)2 is exactly the ROF model which can be solved

for a fixed value v using a gradient ascent on the convex conjugate based dual formulation

(Given in section 3.4.5). Then, fixing D the second coupled term 1
2θ (D − v)2 + λ|ε(v)|1

presents a trivial point-wise optimisation problem that can be solved exactly for the current

linearisation point of the data term ε.

Stuehmer et al. (2010) provide a solution to the multiple view data term version:

Eθ(D) =
∫

Ω

{
|∇D|1 +

1
2θ

(D− v)2 + ∑
i∈I

λ|εi(v)|1
}

dx . (5.2)

Here the summation in the data term is for each available image i ∈ I where the cur-

rent estimate of depth has a valid projection inside of the image boundary. Noting that the

derivative of each `1 penalty in the data term is a sign function, their multiple data term so-

lution involves searching directly over the set of critical points in 1
2θ (D− v)2 +∑i∈I λ|εi(v)|1

where the derivative is not defined. A minimum energy must exist at one of those points

otherwise within a region which has an analytically defined solution based on the sign of

each of the terms in the summation. The iterative alternating solution is embedded into

a coarse to fine framework and implemented on a commodity GPU architecture enabling

near real-time performance using up to 5 input views per depth map at an image resolution

of 480× 360.

Ranftl et al. (2012) recently presented a variational two-view stereo system employing a

robust `1 penalty over a census descriptor based stereo error term, together with the second

order variant of TGV regularisation developed by Bredies et al. (2010). They further ex-

tend the regularisation to use include the image driven anisotropic diffusion scheme from

Nagel and Enkelmann (1986). The depth map solution is computed using the first order

primal-dual algorithm developed by Chambolle and Pock (2011). They further use a pre-

conditioning of the saddle-point formulation to increase the speed of convergence, (Pock
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and Chambolle, 2011). They demonstrate their system in an automotive setting showing

increased robustness to large lighting variation gained from using the census descriptor, in

combination with the high quality sub-pixel solution common to variational formulations

further demonstrating the improved smoothness from TGV2
α for slanted surfaces common

in man made environments.

5.2 Models using Convex Optimisation

We now investigate primal-dual formulations for multiple view stereo using the local stereo

data term and regularisation terms demonstrated previously in a depth map denoising

setting in Chapter (4). Here we make use of a first order linearisation of the data term

given an initial estimate of the solution, resulting in a fully convex optimisation step that

is solved using the first order gradient descent technique. First we state the linearisation

of the single and patch data terms and then specify the multiple view stereo models. As

in the depth map denoising models we look to obtained a solution u, which can encode

either a depth map or inverse depth map.

5.2.1 Computing the Linearised Error

The linearised version of the single pixel multi-view stereo error function is obtained by

using a first order Taylor series expansion of Ik(w(x, k, d)) around a point d0(x):

Ik(w(x, k, d)) ≈ Ik(w(x, k, d0)) + (d− d0)∇dIk(w(x, k, d0) . (5.3)

The linearised error function ρ̃(x, k, d) is therefore:

ρ̃(x, k, d) = Ir(x)− Ik(w(x, k, d0))− (d− d0)∇dIk(w(x, kd0)) , (5.4)

where the gradient, ∇dIk(w(x, k, d0)) ,
∂Il(w(x,d))

∂d

∣∣
d=d0

is evaluated via the chain rule as:

∂Ik(w(x, k, d))
∂d

=
∂Ik(w(x, k, d))

∂w(x, k, d)
· ∂w(x, k, d)

∂KTkrK−1 ẋξ(x)
· ∂KTkrK−1 ẋξ(x)

∂ξ(x)
· ∂ξ(x)

∂d
, (5.5)

and ∂ξ(x)
∂d is the derivative of the inverse depth function, or if a solution in uniform depth

is estimated ∂ξ(x)
∂d = 1.

Given an initial solution point the linearised error term can therefore be computed and

used in any of the convex global optimisation models previously discussed. As we will see

below, in the multiple image setting optimisation will proceed similarly to the 2.5D fusion

or multiple image denoising schemes described in Chapter (4), replacing each summand



5.2. Models using Convex Optimisation 126

in the denoising error term u− dmin
k , with the linearised error function ρ̃k.

Linearising Patch Data terms

Use of the mean subtracted patch error in Equation (4.9) is more involved. The term sums

up pixels errors within a patch of pixels which are first penalised under either an `1 or

Huber penalty, yielding a non-linear derivative undefined at 0. If we use the convex con-

jugate of the norm within each patch the result is an explosion of dual variables required:

one for each pixel within each patch of each image Ik. Therefore, we will instead make

use of the primal form of the patch data term, and when using the `1 norm resort to the ε

regularised version in Equation (3.52).

Since each pixel within the patch is associated with a different solution value, we take

into account the local geometry of the patch by computing the linearisation on a warped

version of Ik, computed using the current depth map estimate. The approximated partial

derivative of the patch error can then be computed around the depth estimate of the current

solution point from the central pixel of the patch. Using penalisation function ψD(s2) the

linearised patch data term is:

ψP(ρ̃P(x, k, d)) = ∑
y∈n(x)

∂ψD(ρP(x + y, k, d))
∂ρP(x + y, k, d)

∣∣∣∣∣
d0

∂ρP(x + y, k, d)
∂d

∣∣∣∣∣
d0

, (5.6)

∂ρP(x + y, k, d)
∂d

|d0 =

(
Ik(w(x + y, k, d0))− µk(d0)

+ (d− d0)(∇dIk(w(x + y, k, d)− µgrad)

− Ir(x + y) + µr(x)
)

. (5.7)

Given the initial solution point d0, we define the warped image Iw
k = Ik(w(x + y, k, d0))

we compute:

µk(d) = µk(d0) + (d− d0)µgrad(d0) , (5.8)

where µk(d0) is Nσ2
P
∗ Iw

k . Since convolution is distributive and associative, the blurred

warped image derivatives µgrad(d0) = ∇x

(
Nσ2

P
∗ Iw

k

)
can be computed either by the gra-

dient of µk or by Gaussian convolution of ∇xIw
k .
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5.2.2 Weighted Huber-`1 Stereo

Using the Huber penalty over first order solution gradients ‖∇u‖γ weighted using the

inhomogeneous isotropic diffusion from Equation (4.26), together with an `1 penalised

data term, |ρ̃k(x, u(x))| for each point in the reference frame x ∈ Ω and summed over

multiple views k ∈ K, we obtain the weighted Huber-`1 model:

min
u

∫
Ω

{ N

∑
k=1

λ |ρ̃k(x, u(x))|+ g||∇u||ε
}

dx . (5.9)

5.2.3 TGV-Huber Stereo

Incorporating the second order TGV regularisation with the sum of the linearised data

terms each under a Huber penalty, we arrive at the multiple view stereo version of the

TGV-fusion algorithm introduced by Pock et al. (2011):

min
u,v

{ ∫
Ω

α0‖∇u− v‖1 + α1‖Ev‖1 +
N

∑
k=1
|ρ̃k(x, u(x))|ε

}
dx (5.10)

5.2.4 Primal-Dual solutions

As outlined in Section (5.1), Stuehmer et al. (2010) presented a novel solution to the TV-

`1 form of the multiple view stereo depth estimation using a uniform depth formulation.

They utilise duality on the smoothness term and solve the minimisation arising from the

sum of `1 norms on the linearised data term using a generalised thresholding approach

which requires sorting of the critical points of the solution at each iteration; a computation-

ally expensive operation for implementation on commodity GPGPU hardware, which they

achieve.

Primal-Dual Weighted Huber-`1 Stereo

If instead we use the Legendre-Fenchel transform on the sum of `1 norms used in the data

term we can avoid the computational burden of sorting the critical points of the solution

for each frame used in the data term. The full primal-dual stereo model is given by:

min
u

max
p,r

{
∑x∈Ω ∑N

k=1 〈rk, ρ̃(x, k, u(x))〉+ 〈p,∇u〉 − ε
2‖p‖2 − δ|p|≤1

}
(5.11)

subject to ‖rk‖∞ ≤ λ , ‖p‖∞ ≤ g .
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Solution of the primal-dual model begins each iteration by computing the new linearisation

of the data term in Equation (5.4), around the current solution point un. Dualisation of the

data term norm results in a trivial summing up over each re-projected dual data variable

multiplied by the corresponding data term gradient, at the cost of keeping N dual variables

in memory. This is identical to multiple image denoising solution, alternating between

gradient ascent to solve the dual variables rk, and p given in Equation (4.40), and the

primal variable gradient descent update given in Equation (4.42).

Primal-Dual TGV2
α-Huber Stereo

The primal-dual formulation for the TGV2
α-Huber Stereo model is likewise obtained by

applying the Legendre-Fenchel transform on all terms in Equation Equation (5.10):

min
u,v

max
p,q,r

{
∑

x∈Ω

N

∑
k=1
〈ρ̃(x, k, u(x)), rk〉 − 〈∇u− v, p〉+ 〈Ev, q〉+

(
δ|p|≤α1

+ δ|q|≤α0
+ δ|q|≤1 +

ε

2
r2
)}

(5.12)

subject to‖p‖∞ ≤ α1 , ‖q‖∞ ≤ α0 , ‖r‖∞ ≤ 1 .

The primal-dual model differs from the 2.5D TGV2
α depth map fusion model developed in

Pock et al. (2011) by the use of a linearised data term data term ρ̃(x, k, d). Optimisation

again proceeds by alternation of the gradient ascent of the dual variables p, q, rk with re-

projection onto the convex-sets, followed by gradient descent on the primal variable u.

5.2.5 Primal-Dual Multi-view Depth Map Model Comparison

Solution Initialisation: Iterative solution of variational optimisation methods using a lin-

earised data term are typically embedded in a coarse to fine scheme briefly discussed in

Section (2.3.2). Instead, we find that initialisation from the full resolution solution from the

weighted Huber-`1 depth map denoising model in Equation (4.23), consistently and sig-

nificantly outperformed our coarse to fine implementation in both computation time and

effectiveness in preventing the optimisation becoming trapped in a local minimum.

In Figures (5.1) and (5.2) we show the solutions resulting from optimisation using the mod-

els presented above, for the sub-sampled fountain-P11 data previously described in Figure

(4.1), and the City of Sights video frames illustrated in Figure (4.22). Models use either

the linearised single pixel error from Equation (5.4), or the mean subtracted patch error

term from (5.6), in all cases using the `1 based penalty. When using the patch based data

term, we use the same 3× 3 pixel patch as used in the depth map denoising comparison

in Subsection (4.5.6).
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(a) gHuber-`1 SP (b) TGV2
α-`1 SP

(c) gHuber-`1
Patch

(d) TGV2
α-`1

Patch
(e) gHuber-`1

DMD

Figure 5.1: A comparison of convex multiple view stereo depth map models (a-d) highlight-
ing the prominent differences produced by each model on the five subsampled frames from
the fountain-P11 dataset shown in Figure (4.1). Each model solution is initialised using the
patch based gHuber-`1 depth map denoising model solution (e) developed in Section(4.5).
For each model result we show (top to bottom rows) the denoised depth map, the normal
map rendering in the image plane and Phong shaded mesh rendering shown tilted away
from the image plane, and finally the textured mesh. Mesh vertices are culled using a
visibility threshold to illustrate discontinuities in the depth map (the threshold is constant
across results). Despite good initialisation, solutions using the single pixel (SP) linearised
data term (a,b) fail to reconstruct the ground plane. This is rectified with the use of the
mean subtracted patch based data term (c,d). The TGV2

α regularisation (d) enables true
affine reconstruction for the planar surfaces of the scene. Both patch based multiple view
stereo models (c,d) show only a minor increase in surface detail quality in comparison to
the initial depth map denoising solution (e).
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(a) gHuber`1, linearised single pixel.

(b) gHuber`1, linearised patch.

(c) TGV2
α-`1, linearised patch.

(d) gHuber-`1, depth map denoising.

Figure 5.2: A comparison of convex multiple view stereo depth map models (a-c), computed
using the City of Sights video data and PTAM camera pose estimation described in Sec-
tion (4.5.6). We initialise each of the models using the patch based gHuber-`1 depth map
denoising model (d). In (c) we compute the data term minimum from the left-right half
sequences for use in 2.5D fusion. Each row shows (left to right) the solution depth map,
Phong shaded rendering of the resulting mesh with visibility culled vertices, and a normal
map and textured mapped rendering of the resulting mesh from an alternate view. We note
that there is little overall improvement in the solution for the chosen frames using either
the single pixel (a) or patch based (b) multiple view models in comparison with the ini-
tial solution (d), whereas there is a significant improvement for the linearised patch based
TGV2

α-`1 model (c) in comparison to both of the depth map denoising solution using the
second order regularisation shown in Figures (4.23b) and (4.23c) at occlusion boundaries
near the central tower in the scene.
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In the fixed N-view stereo setting, the input frames are a known constant translation and

therefore the data-term quality, given a fixed range of depth estimation, is stable. in the

multiple view stereo case using a single moving camera, there are instead several mecha-

nisms that can be used to select which frames will be used with a given reference frame.

In this chapter and the preceding chapter, we used the simplest mechanism where the

temporally nearest N/2 frames are select around the reference frame from a video stream,

which can lead to large variations in the relative translation of frames altering the quality

of the data term, and requiring tuning of the convex model parameters. In Chapter (7)

we will return to look at the stereo estimation pipeline in the setting of full dense recon-

struction where we integrate hundreds of depth maps into a global surface model. There,

we attempt to stabilise the data term quality by automatically selecting a suitable subset

of frames from the input stream. We will also make use of the estimated depth map con-

fidence from Equation (4.13) enabling the down-weighting of depth maps with potentially

poorer quality data terms. In later chapters we will refer to the process of optimisation

using the multiple view stereo model, initialised using the depth map denoising solution

as multiple view stereo polishing.

A further point about dynamic selection of the input data set must be made in defence of

the potential benefit of the multiple view models, since we find only a small improvement

in the quality of solution on the video data set described in Figure (5.2). Specifically, in both

evaluations in Figures (5.1) and (5.2) we have used the same input frames in the multiple

view stereo model optimisation as when computing the initialising solution with the depth

map denoising model. In Chapter (7) we demonstrate that the combination of the two

models affords improvement in the solution by first using a small baseline set of frames

for depth map denoising, followed by a wider base-line set of frames for the multiple view

stereo polishing made possible by the good initialisation provided by the former method.

Practical Model with Primal Data term, Dual Regularisation

The number of variables required for the dual form of each data term can become pro-

hibitive when a large number of images is used, we have therefore also investigated the use

of the primal form of the linearised data term, which together with the convex-conjugate

form of the regularisation results in a hybrid gHuber-`1 − η model, using an η-regularised

`1 penalty:

min
u

max
p

{
λ ∑N

k=1 ∑x
√

ρ̃k(x, u)2 + η2 + 〈p, g∇u〉 − ε
2‖p‖2 − δ{|p|≤1}

}
(5.13)

subject to ‖p‖∞ ≤ g .
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Summing over the the η-regularised partial derivatives at the current solution point un

gives the linearisation of the data term derivative:

N

∑
k=1

∂ρ̃n
k (x, u0)

∂u
=

N

∑
k=1

ρ̃k(x, u)√
ρ̃k(x, u)2 + η2

∇ρk(x, u) . (5.14)

This single pixel primal data term can be trivially replaced with the linearised form of the

mean subtracted patch data term given in Equation (5.6). For either data term, the solution

is given by a gradient ascent on the single dual variable for the regularisation term with

projection back onto the convex set, followed by gradient descent on the primal variable.

While we find that the use of duality in the regularisation term results in benefits in speed

of convergence, in practice we have found that using the η-regularised form of the `1

penalty in the data term does not significantly impact the quality or convergence speed of

the depth map solution when using a large number (5 to 20) of small-baseline images.

This is despite the fact that if the η constant dominates the regularised form of the cost,

then as the error decreases, a slowing in the rate of convergence to the solution will occur

when using a gradient descent method. While further investigation is required to resolve

this, one possible explanation for the observed behaviour is that the operating range of the

penalty over a stereo error function is in practice large relative to η, which is practically the

case given the numerous sources of error present in the live stereo estimation setting from

image noise to inaccuracies in camera calibration.

5.3 Global Cost Volume Optimisation

In this section we introduce of alternative global optimisation model for using many more

frames within the data term than is feasible with the approaches described above using a

linearised data term. Specifically, we look at the advantages that explicitly computing and

storing the multiple view stereo cost volume Cr can bring, illustrated in Figure (5.3). A row

Cr(x) in the cost volume stores the accumulated photo consistency error as a function of

inverse depth d. Here, we compute an element in the cost volume using the simple single

pixel brightness constancy based term, rather than using a patch-based normalised cost, or

pre-processing the input data to increase illumination invariance over wide baselines.

Under the brightness constancy assumption, we hope for ρ to be smallest at the inverse

depth corresponding to the true surface. As discussed in Section (4.2), this does not hold

for images captured over a widening baseline or even for the same viewpoint when light-

ing changes. Using the single pixel data term we can however show the advantage of

reconstruction from a large number (100s) of video frames taken from very small baseline

over a short space of time.
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Figure 5.3: A keyframe r consists of a reference image Ir with pose Trw and data cost volume
Cr. Each pixel of the reference frame xr ∈ Ω has an associated row of entries Cr(x) (shown
in red) that store the average photometric error or cost Cr(x, d) computed for each inverse
depth d ∈ D in the inverse depth range D = [ξmin, ξmax]. We use tens to hundreds of video
frames indexed as m ∈ I(r), where I(r) is the set of frames nearby and overlapping r, to
compute the values stored in the cost volume.
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(a) (b) (c)
Figure 5.4: Plots for the single pixel photometric functions ρ(x) and the resulting total
data cost row C(x) are shown for three example pixels in the reference frame, chosen in
regions of differing discernibility. Pixel (a) is in a textureless region and not well localisable;
(b) is within a strongly textured region where a point feature might be detected; and (c)
is in a region of linear repeating texture. While the individual costs exhibit many local
minima, the total cost (thick red line) shows clear a clear minimum in all except for nearly
homogeneous regions.

In Figure (5.4), we show plots for three reference pixels where the function ρ has been

computed and averaged to form C(x). It is clear that while an individual data term ρ

can have many minima, the total cost generally has very few and often a clear minimum.

As shown in Figure (5.5), an inverse depth map can be extracted from the cost volume

by computing argmind C(x, d) for each pixel x in the reference frame. It is clear that the

estimates obtained in featureless regions are prone to false minima. As in the previous

stereo estimation models, we therefore seek an inverse depth map ξ which minimises an

energy functional that regularises the photometric data term cost with a smoothness term.

The energy functional, combining the cost volume with the weighted Huber regularisation

is:

min
ξ

{∫
Ω

C(x, ξ(x)) dx + λ
∫

Ω
g|∇ξ|γ dx

}
. (5.15)

We previously demonstrated variational optimisation approaches to minimising the above

functional that approximate the data term by linearising the data term, and solving the

resulting approximation iteratively. Typically such schemes are embedded within a coarse

to fine optimisation framework that can lead to loss of reconstruction detail and do not

guarantee avoidance of local minima. Also, when the linearisation is performed directly

in image space as in Stuehmer et al. (2010) and throughout Section (5.2), all images used

must be kept in working memory. Moreover, all images must be recalled within each

iteration of the optimisation for computing the new linearised data term. This leads to

optimisation times which scale linearly in the number of images used. In the single image

depth map denoising approaches from Section (4.5), we took advantage of extracting the

per pixel minimum of the cost volume which was then denoised. Since aggregation into

the cost volume is independent of the global depth map denoising optimisation, many
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(a) (b) (c) (d) (e)
Figure 5.5: Incremental cost volume construction; we show the current inverse depth map
extracted as the current minimum cost for each pixel row dmin

u = argmind C(u, d) as 2, 10

and 30 overlapping images are used in the data term (a-c). Also shown is the regularised
solution that we solve to provide each keyframe inverse depth map (d). In comparison
to the nearly 300× 103 points estimated in our keyframe, we show the ≈ 1000 point fea-
tures comprising the current scene structure estimate in the same frame for localisation in
PTAM (Klein and Murray (2007)) (e). In Chapter (8) we demonstrate the use of the dense
reconstruction to perform dense tracking, increasing tracking robustness during rapid cam-
era motion.

more images can be used within the depth map estimation.

In this section, we extend an alternative solution first proposed by Steinbrucker et al.
(2009) for estimation of large displacement optic flow. Here, we approximate the original

global energy functional by coupling the data and regularisation terms through an auxiliary

variable α : Ω→ R:

Eξ,α =
∫

Ω

{
g(x)‖∇ξ(x)‖ε +

1
2θ

(ξ(x)− α(x))2 +λC (x, α(x))
}

dx . (5.16)

The coupling term Q(x) = 1
2θ (ξ(x) − α(x))2 serves to drive the original and auxiliary

variables together, enforcing ξ = α as θ → 0, resulting in the original Energy in Equation

5.15. As a function of ξ, the convex sum g(x)‖∇ξ(x)‖ε +Q(x) is a small modification of the

TV-quadratic ROF image denoising model given in Equation (4.21). Crucially, although still

non-convex in the auxiliary variable α, each Q(x) + λC (x, α(x)) is now trivially point-wise

optimisable and can be solved using an exhaustive search over a finite range of discretely

sampled inverse depth values. Importantly, the discrete cost volume C can be computed

by keeping the average cost up to date as each overlapping frame Ik∈K arrives removing

the need to store images or poses and enabling constant time optimisation for any number

of overlapping images. Such an approach potentially combines both the computational

efficiency of the depth map denoising schemes with the advantages of full multiple view

stereo optimisation schemes that can make use of weaker data terms.

We now detail our iterative minimisation solution for Equation (5.16). We transform the

gHuber regularisation term using the Legendre-Fenchel transform into the primal-dual

form, and make use of the stacked vector forms of the continuous variables with d for

ξ and a for α. The resulting resulting saddle-point problem in primal variable d and
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dual variable q is coupled with the data term giving the sum of convex and non-convex

functions:

E (d, a, q) =
{
〈∇d, q〉+ 1

2θ‖d− a‖2
2+ λC (a)− δq(q)−

ε

2
‖q‖2

2

}
. (5.17)

For a fixed value d we obtain the solution for each ax = a(x) ∈ M in the remaining

non-convex function using a point-wise search to solve:

argmin
ax∈D

Eaux(x, dx, ax) , (5.18)

Eaux(x, dx, ax) =
1
2θ (dx − ax)

2 + λC (x, ax) . (5.19)

The complete optimisation starting at iteration n = 0 begins by setting dual variable q0 = 0

and initialising each element of the primal variable with the data cost minimum, d0
x = a0

x =

argminax∈M C(x, ax), we then perform the following fixed point iterations in alternation.

1. Fixing the current value of an we perform a semi-implicit gradient ascent on the dual

variable:

qn+1 = Πg
(
(qn + σq∇dn)/(1 + σqε)

)
, (5.20)

and gradient descent on the primal variable:

dn+1 = (dn + σd(GA>qn+1 +
1
θn an))/(1 +

σd

θn ) (5.21)

2. Fixing dn+1, we then perform a point-wise exhaustive search for each an+1
x in the

discretised inverse depth spaceM solving the minimisation in Equation (5.18).

3. If θn > θend update θn+1 = θn (1− βn), n← n + 1 and goto (1), otherwise end.

Accelerating the Non-Convex Solution

The exhaustive search over the the sample spaceM to solve Equation (5.18) ensures global

optimality of the iteration (within the sampling limit). We now demonstrate in Figure

(5.6) that there exists a deterministically decreasing feasible region within which the global

minimum of Equation (5.19) must exist, considerably reducing the number of samples that

need to be tested.

For a pixel x, the known data cost minimum and maximum are Cmax
x = C(dmax

x ) and

Cmin
x = C(dmin

x ). These are trivial to maintain when building the cost volume. As both
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(a) n=4 (b) n=20 (c) n=40 (d) n=60

Figure 5.6: Accelerated exhaustive search as iterations progress (a-d): at each pixel we wish
to minimise the total energy Eaux(x) (green), which is the sum of the fixed data energy C(x)
(red) and the current convex coupling between primal and auxiliary variables Q(x) (blue).
This latter term is a parabola which gets narrower as optimisation progresses, setting a
bound on the region within which a minimum of Eaux(x) can possibly lie and allowing the
search region (unshaded) to get smaller and smaller.

terms in Equation(5.19) are positive, we know that the minimum value of any cost volume

row is just Cmin
x . This occurs if the quadratic component is zero when an+1

x = dn+1
x = dmin

x .

In any case, if we set an+1
x = dn+1

x then we cannot exceed Cmax
x , resulting in the energy

bound:

Cmin
x +

1
2θn

(
an+1

x − dn+1
x

)2
≤ Cmax

x . (5.22)

Rearranging for an+1
u we find a feasible region either side of the current fixed point dn+1

u

within which the solution of the optimisation must exist:

an+1
x ∈

[
dn+1

x − rn+1
x , dn+1

x + rn+1
x

]
(5.23)

rn+1
x = 2θnλ

(
Cmax

x − Cmin
x

)
(5.24)

As shown in Figure (5.6), the search region size drastically decreases after only a small

number of iterations, reducing the number of sample points that need to be tested in the

cost volume to ensure the optimality of Equation (5.18).

More sophisticated schemes could be utilised to further decrease the number of points

visited in the cost volume optimisation. A simple extension to the above acceleration

scheme would be to make use of the fact that the global minimum is also a local minimum.

Feasible solutions are therefore zero crossings in the derivative of Eaux which are sparse.

Such a pre-processing scheme, where data term local minima are used, has previously been

demonstrated in the related image-based rendering scheme of Fitzgibbon et al. (2005), who

compute a novel view synthesis given several calibrated input views by minimising the sum

of the photo-consistency data-term error with an image patch prior. They also demonstrate

a form of alternating optimisation switching between selection of a preprocessed set of



5.3. Global Cost Volume Optimisation 138

(a) (b) (c) (d)

(e)

(a) (b) (c) (d)
Figure 5.7: Example inverse depth map reconstructions obtained from DTAM using a sin-
gle low sample cost volume with S = 32. (a) Regularised solution obtained without the
sub-sample refinement is shown as a 3D mesh model with Phong shading (inverse depth
map solution shown in inset). (b) Regularised solution with sub-sample refinement using
the same cost volume also shown as a 3D mesh model. (c) The video frame as used in
PTAM, with the point model projections of features found in the current frame and used in
tracking. (d,e) Novel wide baseline texture mapped views of the reconstructed scene used
for tracking in DTAM.

data-term local minima and the regularisation term energy minimisation.

Further work by Taylor and Bhusnurmath (2008) makes use of data-term convexification

pre-processing step. They combine a first and second order smoothness prior on the depth

map solution with a piecewise linear convex approximation to the stereo data-term error

function, forming its lower convex-hull. The resulting convex data term reduces to a set

of piecewise linear constraints that together with the smoothness terms results in a linear

program which can be optimised using the interior point log barrier method (Boyd and
Vandenberghe, 2004). In both cases the operations for both specific minimum selection

(i.e. sorting) or data-term convexification requires extra computation over the approach

described in this subsection. Further work is therefore required to understand the benefits

of more sophisticated data-term approximations in relation to the trade-off between data-

term approximation error and computational efficiency on modern GPGPU hardware.

Increasing Solution Accuracy

To obtain sub-pixel optical flow accuracy, Steinbrucker et al. (2009) increased the sampling

density of the cost function. Likewise, it would be possible to increase the density of inverse

depth samplesM to increase surface reconstruction accuracy, however this is prohibitively

expensive both in the memory requirements for the increased volume resolution, and also

for the increased computational time for the per-point search.

Fortunately, as can be seen in Figure (5.6) the sampled point-wise energy Q(x) is typically

well modelled near the discrete minimum with a parabola centred at the true minimum. We

can therefore achieve sub-sample accuracy by performing a single Newton step, previously

described in Equation (4.14) for data term interpolation, using numerical derivatives of
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(a) (b) (c) (d)

Figure 5.8: Coloured flow fields for the rubberwhale two view optical flow data set: Sin-
gle pixel data term minimum (a); regularised exact search on integer flow vectors (b);
regularised exact search with embedded interpolation using Equation (5.25), demonstrat-
ing sub-pixel flow solution without the additional computational cost in explicit data term
oversampling (c); ground truth flow field (d), ground truth flow field and colouring scheme
from (Baker et al., 2011).

Q(x) around the current discrete minimum an+1
x :

ân+1
x = an+1

x − ∇Eaux(u, dn+1
x , an+1

x )

∇2Eaux(u, dn+1
x , an+1

x )
. (5.25)

We embed this refinement step into the iterative optimisation scheme by replacing the

the discrete an+1
x with the sub-sample accurate version. It is not possible to perform this

refinement post-optimisation, as at that point the quadratic coupling energy is large (due

to a very small θ), and so the fitted parabola is a spike situated at the minimum. Post

processing based interpolation of the pure data term around the discrete (global) minimum

as performed in Equation (4.14) also results in reduced performance since the data term

without regularisation is noisy. As demonstrated in Figure (5.7) embedding the refinement

step inside each iteration results in vastly increased reconstruction quality, and enables

detailed reconstructions even for low sample rates, e.g. |M| ≤ 64. We have further applied

this optimisation technique to optical flow estimation where the cost volume is defined over

a discretisation of pixel translations instead inverse depth. We obtain sub-pixel flows using

the above interpolated scheme at no extra memory or computational cost in comparison

to the over sampling approach used by Steinbrucker et al. (2009), an example optical flow

result is illustrated in Figure (5.8).

Setting Parameter Values and Post Processing

Gradient ascent/descent time-steps σq, σd are set optimally for the update scheme provided

as detailed in Chambolle and Pock (2011). Various values of β can be used to drive θ

towards 0 as iterations increase while ensuring θn+1 < θn (1− βn). Larger values result in

lower quality reconstructions, while smaller values of β with increased iterations result in

higher quality. In Chapter (9) we utilise the optimisation method detailed in this section in

a full dense visual SLAM system, demonstrating incremental real-time scene reconstruction
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(b) RMSE

Figure 5.9: Performance analysis of depth map denoising algorithms for reference depth
map 5 from the fountain-P11 dataset comparing the gHuber-`1 depth map denoising ap-
proach from Section (4.5) with the iterated denoising model introduced in Section (5.3.1).
As described in previous evaluations, we generate the RMSE and image completion (fill)
plots obtained for the solution pixels that have absolute error to ground truth within the
specified magnitude: Nmax. It is clear from both the increased cumulative fill rate and re-
duced RMSE that the iterated model results in a higher quality depth map compared to
the original depth map denoising solution.

results. In our experiments we set β = 0.001 while θn ≥ 0.001 else β = 0.0001 resulting in

a faster initial convergence. We use θ0 = 0.2 and θend = 1.0e− 4.

Also in the real-time setting, estimating multiple depth maps using the technique, we note

that λ should reflect the data term quality and is therefore set dynamically to 1/(1 + 0.5d̄),
where d̄ is the minimum scene depth. This dynamically altered data term weighting sen-

sibly increases regularisation power for more distant scene reconstructions that, assuming

similar camera motions for both closer and further scenes, will have a poorer quality data

term.

Finally, we note that optimisation iterations can be interleaved with updating of the cost

volume, enabling the surface to be made available (though in a non fully converged state)

for use in applications in a just in time manner. We demonstrate all of these elements in

the dense tracking and mapping (DTAM) system in Chapter (9).

5.3.1 Iterated global cost volume optimisation

To investigate basic capabilities of the non-convex model further, we evaluate a modified

and to some extent simplified version of it using the fountain-P11 dataset, used throughout
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Figure 5.10: Data-term only at solution to full gHuber regularisation with iterated non-
convex data term search. λ = 2, Huber γ = 0.00159, image driven regulation α = 10,
β = 1. We plot the final (constrained search) depth map data error distribution with the
error distribution obtained with the global per pixel cost volume minimum depth value
used for initialisation of the optimisation. The error image (e) uses a grey scale to encoded
absolute error to the ground truth depth at each pixel up to 0.1m, is red for solution points
with > 0.1m absolute error. Green encode pixels that have no ground truth depth. The
signed error is rendered in (f) with saturation at ±0.1m error.
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Figure 5.11: gHuber regularised solution with iterated non-convex data term search, λ = 2,
Huber γ = 0.00159, image driven regulation α = 10, β = 1. We plot the solution error
histogram against the final (constrained search) data-term minimum depth map and the
initialising per pixel cost volume minimum depth.
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View 2 View 3 View 4 View 5 View 6 View 7 View 8

Figure 5.12: Computed absolute error images corresponding to reconstructions for fountain-
P11 reference frames 2...8 showing the initialising depth map data terms (top row) and
solutions (bottom row). The results are shown for the gHuber regularised solution with
iterated non-convex data term search.
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(b) Error magnitude distribution and visualisa-
tion over complete mesh.

(c) Complete Model Reconstruction

Figure 5.13: Reconstruction of the complete fountain-P11 scene using 7 depth maps. Fusion
of the individual depth maps is performed using Poisson surface reconstrution with default
settings and maximum octree depth 10, followed by removal faces with connected edges
greater than 0.2m. We compute the absolute error over the entire model (b) against the
ground truth rendered in (a), using the Hausdorff distance. The absolute error histogram
is shown in meters, note that the error range is halved to [0− 0.05]m encoded from white
to black grey scales to enable greater inspection of errors on the complete model; red pixels
show error magnitude above 0.05m.
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the depth map denoising Section (4.5.6). Specifically we note that the model introduced in

this section (5.3) interleaves a simple (constrained) per-pixel cost volume minimum search

together with a variational denoising step. It is therefore of interest to compare the model

using the same parameters for the photometric error as used in the pure denoising eval-

uation (4.5.6), which uses a simple 3× 3 patch based photometric cost. To that end we

use the same photometric cost function together with the gHuber− `1 model evaluated in

Figure (4.19) and trivially interleave estimation of the dataterm minimum constrained to

be within ±20 quantisation steps of the denoised depth map solution from the previous

iteration (removing the need to continuously change the search range). The solution is

seeded with the output from the gHuber-`1 model solution. We summarise analysis of the

solution against the ground truth depth map and compare the result against the original

depth map denoising result in Figure (5.9).

In Figure (5.10) we show that, at the point of solution, the raw data term exhibits greatly

decreases noise in comparison to the initialising depth map taken as the per pixel data

term minimum of the unconstrained cost volume. In particular a large reduction in out-

liers at depth discontinuities is obtained. In Figure (5.12) we show the final optimisation

result. Most notably in comparison to the depth map denoising solution in Figure (4.19),

the iterated search on the cost volume resolves errors in the ground plane, resulting in

increased solution fill rate and reduced RMSE. In Figure (5.12) a complete set of depth

maps is evaluated against the ground truth and the absolute error and outliers visualised.

For each depth map, we use five images in total with two frames arranged either side of

the reference frame into which the solution is computed. Finally, we evaluate the result of

the complete set of depth maps when fused into a single surface model. In Figure (5.13)

we triangulate each of the 7 depth maps, and remove vertices connected by edges longer

than 0.2m, this is a simple heuristic to remove grossly incorrect solution points. We then

fuse all depth maps into a single model using the Poisson surface reconstruction technique

(Kazhdan et al., 2006) using default settings and with an octree depth of 10. We compute

the Hausdorff distance between the reconstructed and ground truth models, and plot the

resulting error distribution. We note that although qualitatively the reconstructions appear

competitive with systems evaluated by Strecha et al. (2008), we can not draw a definitive

quantitative comparison on this result since the original evaluation took into account the

estimate of ground truth variance. We note that evaluation using the full resolution images

would also improve the reconstruction results over the 768× 512 resolution frames used

here.
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5.4 Real-Time Systems Discussion

Due to the value to applications of stereo estimation in a real-time setting, a large body of

work continues to deal with engineering implementations of current stereo formulations

and mechanisms to achieve higher performance. Humenberger et al. (2010) provided a

thorough overview and comparison amongst a large selection of two view stereo algo-

rithms implemented across commodity of the shelf platforms which include high perfor-

mance CPUs, digital signal processors and more recently commodity parallel processing

through the use of GPGPU. However,the majority of those systems rely on a rectified image

pair and are therefore not there directly applicable to single moving camera multiple-view

depth estimation, although such pair-wise rectified stereo estimation has previous been

demonstrated in an off-line video based reconstruction system by Pollefeys et al. (1999).

In contrast to the large body of research in obtaining stereo in the static camera setting,

there is relatively little in the way of real-time or live capable stereo estimation from a

single moving camera. Zach et al. (2006) and Gallup et al. (2007) both demonstrate real-

time capable GPU plansweep using a combination of NCC based patch data terms and

occlusion handling using the best half sequence technique for use within full scale dense

reconstruction pipelines where the stereo estimation is performed with a sliding window

of images around each reference frame, however neither of these approaches enable the

quality of depth map estimation possible in the global optimisation framework.

The primal-dual approach presented by Stuehmer et al. (2010) outlined in Section (5.1) pro-

vided the first real-time capable variational single camera depth map implementation. The

continuous optimisation formulation leads to a sub-pixel accurate depth estimate which is

important in a single camera setting where there is no intrinsic knowledge of a metric scale

of the scene, making it hard to pre-set the discretisation on depth required for discrete label

based approaches.

In this Chapter we developed several single camera depth map estimation methods, using

primal-dual formulations to produce trivially optimisable convex model that are efficiently

implemented on modern GPGPU hardware. In Section (5.2) we developed new models that

use a patch based data term in contrast to the single pixel data term used by Stuehmer
et al. (2010). We also demonstrated optimisation of the model using a full dualisation

of the primal energy in contrast to the generalised shareholding scheme used in their

system. Finally, we introduced the optimisation strategy for the model using a solution

initialisation from the gHuber-`1 depth map denoising method detailed in (4) which we

found in practice to provide superior performance to the coarse to fine framework.

Within the set of models investigated in Section (5.2) we again found that use of the total
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generalised variation regularisation framework resulted in the higher quality reconstruc-

tion of planar surfaces. However, as in the depth map denoising models investigated in

Chapter (4), computation of the second order model required substantially more process-

ing time despite initialisation of the solution close to the optimum. We are able to achieve

a approximately 10− 20Hz depth map processing rate using the gHuber-`1 model for the

dataset examples demonstrated in this Chapter using commodity GPGPU hardware with

10 to 20 frames used in the data term. We therefore have selected the combination of

the depth map denoising and multiple view patch based gHuber-`1 models for use in the

incremental dense reconstruction framework developed in Chapter (7).
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In this chapter we detail the mechanisms used to take a stream of depth map surface

measurements computed using the multiple stereo methods in Chapters (4) and (5) or from

another source such as a depth camera, and produce a consistent dense reconstruction that

replaces the point-cloud model used in the feature-based sparse visual SLAM systems.

We are specifically interested in incremental dense reconstruction applicable to real-time

operation, enabling continuous integration of frame-rate surface measurements. Moreover,

the ability to efficiently obtain a rendering of the most up to date surface reconstruction

also at frame rate, is central to our aim of closing the tracking and mapping loop in dense

SLAM; using the full predictive quality of a dense surface model to increase the efficiency

and accuracy of real-time dense reconstruction in Chapter (7) and performing featureless

tracking of the current sensor frame against the dense surface model in Chapter (8).

To that end we begin this chapter in Section (6.1) with a description of the surface mea-
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surement we assume as input to the system, pointing out the useful structure available in

a depth map that constrains the surface reconstruction problem. We provide an overview

of the available surface representations, and outline the integration and surface prediction

mechanisms associated with them

In Section (6.2) we then detail the chosen surface representation and integration mech-

anisms that satisfy the incremental integration and prediction requirements: volumetric

signed distance functions.

The second half of the chapter is concerned with computing a geometric and photometric
prediction of the scene. In Subsection (6.3) we describe simple modifications to two classic

techniques used for extracting the surface geometry from the volumetric signed distance

function. In Section (6.4) we then detail two techniques for representing and rendering

the photometric appearance of the surface required for dense passive camera tracking in

Chapter (8).

6.1 Surface Reconstruction Approaches

The ability to accurately and efficiently represent surfaces and reconstruct surfaces from

noisy data is of great importance in the engineering sciences as a whole. Surface reconstruc-

tion methods can be broadly categorised on the basis of the underlying surface representa-

tion and particular assumptions about the structure of the available surface measurements.

The most permissive type of reconstruction algorithm attempts to solve the least well de-

fined reconstruction problem, assuming nothing more than an organised point cloud as

input. The difficulty of the task is greatly increased if the point sampling is irregular as

might be obtained from a sparse structure from motion pipeline.

6.1.1 Surface Measurements from Depth Maps

Fortunately our surface measurements have far more information and structure. Specif-

ically, we can exploit the projective nature of the depth map measurement to perform a

step discontinuity constrained triangulation of the measurements into a piecewise linear

surface mesh, (Hilton et al., 1996). At time k a raw depth map Dk provides a measurement

Dk(u) ∈ R at each valid image pixel in the image domain u ∈ Ω ⊂ R2. We assume a cali-

brated camera with known intrinsic parameters K, such that under the assumption that the

depth map is computed into a rectilinear frame (details on calibration are provided in Sec-

tion (3.2), each pixel measurement can be back projected to the 3D point pk = Dk(u)K−1u̇
in the sensor frame of reference to form a vertex map vk,

vk(u) = Dk(u)K−1u̇ . (6.1)
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Since each depth map measurement represents the observed surface geometry projected

into a regular grid, we can estimate the corresponding normal vector at each grid point

u = (x, y)>, using a cross product between neighbouring map vertices in the depth map:

Nk(u) = ν
[
(vk(x + 1, y)− vk(x, y))× (vk(x, y + 1)− vk(x, y))

]
, (6.2)

ν[x] = x/‖x‖2 , (6.3)

where ν[x] normalises a vector to unit magnitude. We also define a vertex validity mask:

Vk(u) 7→ 1 for each pixel where a depth measurement transforms to a valid vertex; other-

wise if a depth measurement is missing Vk(u) 7→ 0. If the neighbouring vertices required

in Equation (6.2) are invalid we instead look for a vertex at the alternate neighbour, and

invalidate the point measurement entirely if the normal can not be estimated. Given the

surface vertex and normal estimates at each point we construct the mesh connecting each

of valid vertex with the neighbouring vertices used in computing the normal estimate un-

less there is a surface discontinuity. By computing the angle formed between the pixel ray

and the surface normal in the sensor frame of reference we estimate discontinuities where

the surface is near perpendicular to the ray.

As we will see later in this section, the explicit grid representation of the depth map pro-

vides even more information; implicitly, there is a free space measurement between a ver-

tex and the camera center. We now outline a number of surface reconstruction algorithms,

highlighting the underlying surface representations used and their applicability to incre-

mental surface reconstruction.

6.1.2 Explicit Surfaces

A large number of reconstruction methods assume that the representation of the scene

can be captured by a specific shape model such as a human body or face, or specific

architectural form, thereby turning the reconstruction problem into one of model fitting in

a much lower dimensional space (Szeliski, 2010). In our more general scene reconstruction

setting, the topology and scene type is not fixed before hand. Furthermore, within an

incremental reconstruction setting, the topology may change during reconstruction as more

data disambiguates a solution. We will therefore review those techniques which do not

require domain specific knowledge, but should attempt to exploit the more general prior

knowledge about surface continuity suitable for a variety of scenes.

Using Meshes Directly

Turk and Levoy (1994) presented a simple but efficient direct mesh method, stitching to-

gether multiple overlapping depth map meshes. They provide algorithms to remove or
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fuse redundant noisy vertices based on heuristic distance metrics to obtain a single explicit

mesh representation of the scene. Such direct mesh operations can also take place using

image space visibility constraints between depth maps (Merrell et al., 2007). In such di-

rect mesh zippering and fusion algorithms, the piecewise linear surface is captured by a

triangle mesh and operations to change surface topology are handled explicitly.

Delaunay Triangulation of multiple overlapping meshes can also make use of explicit con-

nectivity information. Forms of space carving utilise the visibility constraints available

from the depth map structure to provide constraints on the reconstructed surface (Labatut
et al., 2007). Direct and explicit meshes have an advantage of being both efficient to store

and render. Moreover, in contrast to many of the more sophisticated algorithms we outline

next, explicit mesh representation enables the full resolution of the depth map measure-

ment to be maintained in the global scene model. Hence, if a depth map is computed nearer

to the surface the resulting mesh will trivially hold a higher resolution representation of

the region in comparison with a co-observing depth map computed at a distance.

Oriented patches and Surfels

Surfaces can be represented by oriented patch samples (Szeliski and Tonnesen, 1992). By

maintaining an unstructured set of surface elements representing the locations, orientations

and scales of linear surface elements, the surface can be explicitly specified without the

need to initialise or maintain the connectivity information specified in surface meshes. This

provides great flexibility in representing complex shape of arbitrary topology and has given

rise to a number of useful surface representations. These define the continuous surface

via an interpolation, using local neighbourhoods of samples to constraint a local surface

reconstruction, for example via a moving least squares approach (Levin, 1999; Alexa et al.,
2001).

The explicit representation of the surface element also enables direct correspondences to be

computed within a dense reconstruction setting, allowing the traditional data-association

based optimisation approaches to extend beyond simple point base scene representations

(Furukawa and Ponce, 2007; Habbecke and Kobbelt, 2007; Lhuillier and Quan, 2005).

Oriented patches are also one of the dominant representations for real-time rendering of

large scale or intricate scenes, offering simple ways to reduce the scene complexity. The

popular primitive splatting framework efficiently renders such surfaces by drawing for each

element a simple 2D primitive such as a disc, in the image, that grossly represents the area

covered by the projected 3D primitive (Rusinkiewicz and Levoy, 2000; Pfister et al., 2000;

Kobbelt and Botsch, 2004).
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Explicit parametric models

Large regions of urban and office scenes can be approximated using large planar facets

(Gallup et al., 2010a; Sinha et al., 2009). Simple parametric forms can vastly reduce the

complexity of the scene model while providing a strong prior on the scene reconstruction

enabling filling of large regions with noisy or no depth measurement. Reconstruction us-

ing large scale simple primitives requires solving a joint segmentation and data association

problem, associating measurements from each depth map measurement to a particular

plane estimate. Furukawa et al. (2009) demonstrated the power of the stricter Manhattan

world prior on the scene reconstruction where all surfaces are belong to one of six orthog-

onal orientations. This holds well in practice in indoor and outdoor setting of modern

building reconstructions, but is a poor approximation in general scenes. More recently

(Flint et al. (2011)) also utilised the Manhattan world assumption, but within an online

visual SLAM system to enable maps consisting of semantically meaningful surfaces such

as walls and floors in an office environment to be more efficiently constructed.

6.1.3 Implicit Surfaces

Mesh based surface representations suffer from complexity in topological changes that

must be explicitly represented, while surfel representations remove any representation of

specific surface connectivity. If, however, representation of surface continuity is required,

surface reconstruction pipelines using oriented patches typically go on to use the surfels as

input to complete surface reconstruction methods based on an implicit surface representa-

tion.

For a surface in n dimensional space, an implicit surface S0 is defined through a scalar field

f : Rn 7→ R as the n− 1 dimensional manifold extracted as the t level set where f (x) = t:
(Osher and Fedkiw, 2002):

S0 , {x ∈ Rn| f (x) = t} . (6.4)

Hence, for zero level set t = 0. Implicit surfaces provide a mathematically elegant was to

define and work with surfaces of arbitrary topology without explicitly representing surface

connectivity.

Early reconstruction approaches computed the field by summing radial basis functions φ

centred at each point ci in the data set together with an offsetting function:

f (x) =
n

∑
i=1

aiφ(x− ci) + P(x) . (6.5)
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The resulting optimisation problem is then to find the co-efficients ai of the basis function

together with a linear offseting function, P(x), over the space. This can be seen as the

solution of a variational optimisation problem (Turk and OBrien, 1999; Hoppe et al., 1992)

or can be modelled using Gaussian Processes (Williams and Fitzgibbon, 2007).

Modern methods incorporate a number of extensions to the basic optimisation approach.

Ohtake et al. (2003) presents a complete pipeline for scattered data interpolation where

oriented point clouds are used as input which we outline here, we later use this method

in an earlier variant of a live dense reconstruction system in Chapter (9). Their multi-scale

framework defines the implicit surface as a hierarchy of compactly supported radial ba-

sis functions that interpolate locally fitted quadric surfaces within local neighbourhoods

of points. The points themselves are quantised into nodes of an octree structure. Using

unstructured point clouds, no other knowledge of how the point samples relate to the sur-

face sampling is provided and trade-off persists between producing a surface interpolation

that fills gaps of under-sampled regions and producing overly smooth reconstructions in

regions that have high sampling density.

Given an oriented point set, a point set hierarchy is recursively constructed by clustering

samples in an octree-based structure. Level k = (1, 2, . . . , M) of the hierarchy contains

eight equal quadrants. The centroid of the samples inside each quadrant is computed

together with an an averaged unit normal value. The hierarchy of centroids pk
i ∈ Pk

provides an efficient representation of the original samples, and allows a recursive function

representation to be built. Given a base function:

f 0(x) = −1 , (6.6)

a recursive interpolating function is defined:

f k(x) = f k−1(x) + ok(x) , (6.7)

where the offsetting function ok(x) is solved for each level:

ok = ∑
pk

i ∈Pk

φσk(gk
i (x) + λk

i )(‖x− pk
i ‖) . (6.8)

For a given level k, the point hierarchy is approximated by the surface f k(x) = 0, which

provides the basis for the solution at the next finest level of the hierarchy k + 1. The func-

tion gk
i (x) performs local quadric fitting for Pk. An important aspect of the interpolating

function is the strictly positive definite compactly supported basis function φσk(r) for dis-

tance r (Wendland, 1995), that has the property φσk(r) = 0 for r ≥ σ, leading to a sparse
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system of equations that is solved for coefficients λk
i . The support size σk is estimated using

the density of the original sample set in quadrant k, which ensures that larger support is

obtained in sparser areas of the point cloud leading to high quality hole filling capabilities.

Polygonisation of the zero level set, using the method of Bloomenthal (1994), is also aided

by MSCSRBF since the majority of computation when evaluating the implicit surface is

performed at previous levels of the function hierarchy.

Kazhdan et al. (2006) introduced the Poisson Surface Reconstruction (PSR) technique that

has become the most widely used approach for surface reconstruction from an unstruc-

tured but oriented set of points. Given an oriented point cloud, the PSR method solves

for an volumetric implicit surface where the indicator function is constrained to take on

the gradient at the points defined by the input oriented point samples. The problem is

posed as a sparse, well conditioned linear system of equations which enables various well

engineered and out-of-core linear system solvers to be used to perform efficient surface

reconstruction on very large scale data-sets, (Bolitho et al., 2007). More recently commod-

ity GPGPU hardware implementations of the technique have demonstrated near real-time

surface reconstruction using PSR exploiting data parallel octrees (Bolitho et al., 2009; Zhou
et al., 2011). While the approach is promising, the technique does not explicitly make use of

the free-space information provided by projective depth map surface measurements. The

state of the art data parallel octree approaches can perform real-time reconstruction and

surface extraction for nearly 0.5 million points using modern commodity hardware, but if

depth maps are generated at VGA resolution and a 30Hz frame-rate, a real-time surface

reconstruction system must be able to cope with up to 10 million new points per second,

unless some form of sub-sampling on the data is performed.

6.1.4 Volumetric approaches

Volumetric modelling methods enable representation of not only the surface manifold or

volume occupancy, but can also represent and distinguish between free space and regions

for which the occupancy is unknown. This distinction between free and unknown space

naturally arises when the observations over the surface, for example in the form of a depth

map, can provide free space information but can clearly not provide information for space

beyond the measured surface.

Occupancy Grids

Introduced by Moravec (1988) and Elfes and Matthies (1987), the vast majority of oc-

cupancy grid mapping research has been performed in robot environment mapping and

navigation, predominately in a 2D setting. Occupancy grids (in 2D) and volumes (in 3D),
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represent the environment using a discretisation of the working volume into evenly spaced

cells. The value at each cells is used to indicate whether the state of the space it represents

is occupied, free, or unknown. In a probabilistic form, by representing the map as a discrete

grid of binary random variables m(x) ∈ m, occupancy grid mapping can be formalised as

a binary state estimation problem (Thrun and Bücken, 1996; Thrun et al., 2005). Given

each sensor pose Ti associated with a measurement over the map state space zi, and as-

suming independence between the state of cell in the map representation, the problem of

obtaining a consistent map can be factorised p(m|z1:t, T1:t) = ∏x p(m(x)|z1:t, T1:t), enabling

a maximum likelihood estimate of the map to be obtained incrementally using an inverse

depth measurement model that directly provides a probability density function over the

occupancy of each cell: p(m(x) = occupied|zi, Ti).

In the 3D setting, volumetric storage requirements can become prohibitive for large scale

mapping and reconstruction operations, and since a great amount of redundancy exists in

large areas of free space, an octree representation can be utilised to great effect (Szeliski,
1993; Wurm et al., 2010). Furthermore, while 3D occupancy grids can effortlessly represent

any surface topology, a substantial saving in memory can be obtained if the topology of

the scene can be adequately approximated as homeomorphic to the disc. In this case a

height-field representation is suitable, representing the height of the occupying region in

each cell with little extra memory requirement over a 2D occupancy map, Gallup et al.
(2010b).

Surfaces are extracted from probabilistic occupancy grids as the set of modal points in the

distribution over some given occupancy threshold, resulting in a ridge detection problem.

This lack of explicitly defined interface is inconsequential to roboticists that have used

the maps acquired predominantly to avoid interaction (collision) with surfaces in robot

navigation. However, such difficulty in precisely defining the surface interface makes the

method less useful when the primary goal is to capture and render the highest quality

surface reconstruction possible.

Volumetric Signed Distance Functions

A distance function is a volumetrically defined implicit surface in the form of Equation

(6.4): as:

d(x) = min
x∈∂Ω

(ψ(x− xc)) , (6.9)

for all points x in the volume, where xc ∈ ∂Λ defines the point set over the surface in

the volume and ψ(.) is a distance metric. The signed distance function S is then defined,
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(a) (b) (c)

(d) (e) (f)

Figure 6.1: Demonstration of the union (a,d), intersection (b,e) and set subtraction (c,f) op-
erations applied to two displaced spheres using the signed distance function form. In (a-d)
a slice through the resulting implicit surfaces are shown for the surface functions (d-f). The
SDF is shown truncated within a fixed magnitude to illustrate the nature by which a surface
can be represented as a thin band around the surface interface, implicitly represented us-
ing the signed distanced. Importantly this truncated representation, when applied to depth
measurements enables a simple approach to incremental surface reconstruction, described
in this section.

(Osher and Fedkiw, 2002):

S(x) =


−d(x) iff x ∈ Λ−

0 iff x ∈ ∂Λ

d(x) iff x ∈ Λ+

. (6.10)

Here the volumetric function is divided into the two regions which we will usefully think

of here as defining the points within free space x ∈ Λ+ and points in non-observable space

, Λ−, separated by the surface at the zero level set S(x) = 0. In Figure (6.1), this implicit

surface representation for two spheres undergoing set operations in shown. Such set op-

erations can be applied to the volume values directly, enabling solid modelling operations

that would require intricate mesh operations.

Hilton et al. (1996) and Curless and Levoy (1996) independently introduced signed dis-

tance function (SDF) integration algorithms that have become the gold standard for surface

reconstruction from dense 2.5D depth map measurements. The volumetric approach intro-
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duced by Curless and Levoy (1996) in particular has a number of properties that make it

suitable for real-time incremental reconstruction.

In Chapter (1) we introduced the SDF representation and motivated volumetric truncated

SDF reconstruction by formulating it as a simple multiple 3D image denoising problem.

While the approach is intuitive and motivates later optimal SDF denoising strategies by

Zach et al. (2007b); Zach (2008), it simply asserts that each depth map can be transformed

into its truncated signed distance function form, turning the surface reconstruction prob-

lem into a volumetric denoising problem. Fortunately, Curless (1997) provided the insight

needed to understand why the volumetric representation and integration technique work

so well, deriving the weighted SDF integration approach as an optimal solution for recon-

structing a surface manifold from multiple 2.5D surface measurements.

Curless and Levoy (1996) noted that in contrast to probabilistic occupancy grid surface

extraction, the zero-level set of the SDF can be extracted in an efficient manner, since zero

crossings in the SDF are well defined. Crucially, rendering a view of the currently re-

constructed surface into a virtual camera is both simple and efficient on modern parallel

hardware using implicit surface raycasting (Parker et al., 1998). For each pixel in the virtual

camera view the associated ray is traversed, with detection of the first zero crossing along

the ray indicating the the visible surface element. We detail more efficient direct raycasting

and marching cubes iso-surface extraction techniques for extracting the surface geometry

in Section (6.3).

Gibson (1998) demonstrated that distance fields better represent high frequency surface

transitions using lower volume resolutions than occupancy representations. This impor-

tant feature stems from the implicit representation of the interface as a zero value or zero

crossing in a smooth function that can be efficiently interpolated using few samples. This

is in contrast to the step function that results from direct representation of the boundary

using explicit occupancy. The ability to define a distance field through an interpolation

of fewer samples results in a high level of redundancy in the regular grid representation.

Gibson et al. (2000) replace regular sampling with an adaptive grid and demonstrate high

levels of compression for the surface representation.

Representing and integrating surface measurements in the signed distance function form

therefore provides a highly suitable framework for handling the two basic requirements

of a live dense reconstruction frame: enabling incremental integration of the massive rates

of surface measurements acquired, and enabling rapid rendering of the most up to date

surface estimate to provide a surface prediction that we will rely on when we solve the

problem of real-time camera tracking.
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(a) (b)

Figure 6.2: A slice through the truncated signed distance volume showing the truncated
function S > µ (white), the smooth distance field around the surface interface S = 0 and
voxels that have not yet had a valid measurement(grey) as detailed in Equation (6.15). A
sample ray is drawn from the camera center intersecting the surface, illustrating the projec-
tive truncated SDF approximation with which the TSDF measurement is built. Following
the ray traversal through the volume, we colour the ray blue indicating the positive region
of the SDF; red throughout the negative SDF region and dashed yellow within the non-
represented region. The representation for the projective TSDF illustrated is Figure (6.3a)
together the associated weight function in that enables indication of regions with have no
valid TSDF values shown in Figure (6.3a).

6.2 Volumetric Signed Distance Function Integration

We now detail the volumetric SDF integration algorithm that enables frame-rate depth

map measurements to be integrated into a consistent surface representation. This ability

enables us to replace the sparse point cloud scene representations used in feature based

SLAM systems with a dense surface substrate that provides far richer surface predictions

necessary for the dense tracking methods we develop in Chapter (8).

6.2.1 Mapping as Surface Reconstruction

Each consecutive depth frame with an associated camera pose is fused incrementally

into one single 3D reconstruction using the volumetric truncated signed distance function

(TSDF) Curless and Levoy (1996). In a true signed distance function, the value corresponds

to the signed distance to the closest zero crossing (the surface interface), taking on positive

and increasing values moving from the visible surface into free space, and negative and

decreasing values on the non-visible side. The result of averaging the multiple SDF forms
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of the depth maps, aligned into a global frame, is a global surface fusion.

6.2.2 Truncation of the SDF

An example given in Figure (6.2) demonstrates how the TSDF allows us to represent arbi-

trary genus surfaces as zero crossings within the volume. We will denote the global TSDF

that contains a fusion of the registered depth measurements from frames 1 . . . k as Sk(p),
where p ∈ R3 is a global frame point in the 3D volume to be reconstructed. A discretisation

of the TSDF with a specified resolution is stored in global GPU memory where all process-

ing will reside. From here on we assume a fixed bijective mapping between voxel/memory

elements and the continuous TSDF representation and will refer only to the continuous

TSDF Sk. Two components are stored at each location of the TSDF: the current truncated

signed distance value Sk(p) and a weight Wk(p):

Sk(p) 7→ [Sk(p), Wk(p)] . (6.11)

We now discus each component of Sk(p further and provide their computation in Equations

(6.12) and (6.16). A dense surface measurement (such as a raw depth map Dk) provides two

important constraints on the surface being reconstructed. First, assuming we can truncate

the uncertainty of a depth measurement such that the true value lies within ±µ of the

measured value, then for a distance r from the camera center along each depth map ray for

pixel x ∈ Ω, r < (λDk(x)− µ) is a measurement of free space (here λ = ‖K−1 ẋ‖2 scales

the measurement along the pixel ray). Second, we assume that no surface information is

obtained in the reconstruction volume at r > (λDk(x) + µ) along the camera ray. Therefore

the SDF need only represent the region of uncertainty where the surface measurement

exists |r − λDk(x)| ≤ µ. A TSDF allows the asymmetry between free space, uncertain

measurement and unknown areas to be represented. Points that are within visible space

at distance greater than µ from the nearest surface interface are truncated to a maximum

distance µ. Non-visible points farther than µ from the surface are not measured. Otherwise

the SDF represents the distance to the nearest surface point.

Projective Approximation

Although efficient algorithms exist for computing the true discrete SDF for a given set of

point measurements (complexity is linear in the the number of voxels), sophisticated im-

plementations are required to achieve top performance on GPU hardware, without which

real-time computation is not possible for a reasonable size volume. Instead, we use a

projective truncated signed distance function that is readily computed and trivially paral-

lelisable. For a raw depth map Dk with a known pose Tg,k ∈ SE3, its global frame projective
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(a) Truncated signed distance function (TSDF) for a given depth
measurement along a single pixel.

(b) Weighting function along the pixel ray.

Figure 6.3: Diagram of the truncated SDF functions critical regions used when computing
the projective TSDF at each voxel in the volume (a). The computed TSDF approximation
is integrated into the global TSDF using an iteratively computed weighted average using
.(b) shows the basic weight function computed to representation regions which have a
valid TSDF measurement (where WDk = 1) or alternatively is not represented in the TSDF
measurement (WDk = 0)). We note that several factors are applied to the valid measure-
ment weight, e.g. a per depth map pixel weight used to down-weight lower quality depth
measurements.

TSDF [SDk , WDk ] at a point p in the global frame g is computed as:

SDk(p) = Ψ
(
Dk(x)− λ−1‖(tg,k − p‖2

)
, (6.12)

λ = ‖K−1 ẋ‖2 , (6.13)

x =
⌊

π
(

KT−1
g,k p

)⌋
, (6.14)

Ψ(η) =

 min
(

1, η
µ

)
iff η ≥ −µ

null otherwise
(6.15)

We use a nearest neighbour lookup b.c instead of interpolating the depth value, to prevent

smearing of measurements at depth discontinuities. 1
λ converts the ray distance to p to a

depth (we found no considerable difference in using SDF values computed using distances

along the ray or along the optical axis). Ψ performs the SDF truncation. The truncation

function is scaled to ensure that a surface measurement (zero crossing in the SDF) is rep-

resented by at least one non-truncated voxel value in the discretised volume either side

of the surface. Also, the support is increased linearly with distance from the sensor cen-

ter to correctly represent noisier measurements at large depths. Figure (6.3) illustrates the
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truncated signed distance function representation computed along a ray from each voxel

to the camera center. A suitable measurement weight WDk(p) can be computed assuming

the confidence of the depth estimate decreases with more obliquely viewed surfaces and

with increased viewing distance using:

WDk(p) ∝
cos(θ)
Dk(x)

, (6.16)

where θ is the angle between the associated pixel ray direction and the surface normal

measurement in the local frame. In Chapter (7) we will instead make use of the explicitly

computed confidence obtained for the multiple view stereo depth maps from Chapter (5).

The projective TSDF measurement is only correct exactly at the surface SDk(p) = 0 or if

there is only a single point measurement in isolation. When a surface is present the closest

point along a ray could be another surface point not on the ray, associated with the pixel in

Equation (6.14). Gibson et al. (2000) showed that for points close to the surface, a correction

can be applied by scaling the SDF by cos(θ). However, we have found that approximation

within the truncation region for 100s or more fused TSDFs from multiple viewpoints (as

performed here) converges towards an SDF with a pseudo-Euclidean metric that does not

hinder mapping and tracking performance.

In Sections (6.1.4) we gave an overview of the volumetric depth map fusion developed

by Curless and Levoy (1996), noting that an optimal manifold can be computed as the

weighted average signed distance function, equivalent to the multiple input volumetric

denoising solution obtained under an quadratic dataterm penalty, introduced in Section

(1.4.3), which can be computed incrementally. Defined point-wise {p|Sk(p) 6= null}, the

weighted average computation is:

Sk(p) =
Wk−1(p)Sk−1(p) + WDk(p)SDk(p)

Wk−1(p) + WDk(p)
(6.17)

Wk(p) = Wk−1(p) + WDk(p) (6.18)

No update on the global TSDF is performed for values resulting from unmeasurable re-

gions specified in Equation (6.15) resulting in Wk(p) = 0. While Wk(p) provides weighting

of the TSDF proportional to the confidence of surface measurement, we have also found

that in practice simply letting WDk(p) = 1, resulting in a straightforward average, provides

good results.
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6.2.3 Moving Average Signed Distance Functions

By truncating the updated weight over some value Wη ,

Wk(p)← min(Wk−1(p) + WDk(p), Wη) , (6.19)

a moving average surface reconstruction can be obtained enabling reconstruction in scenes

with dynamic object motion.

6.2.4 Trivial Parallelism of SDF Fusion

Although a large number of voxels can be visited that will not project into the current

image, the simplicity of the per voxel weighted average GPGPU kernel, means that oper-

ation time is memory bound, not computation bound, and with current GPU hardware

over 65 gigavoxels/second (≈ 2ms per full volume update for a 5123 voxel reconstruction)

can be updated. We use 16 bits per component in S(p), although experimentally we have

verified that as few as 6 bits are required for the SDF value. We demonstrate the real-time

performance of the technique as part of the complete KinectFusion dense SLAM system

described in Chapter (9).

6.3 Predicting Geometric Measurements

With the most up-to-date reconstruction available with continuous surface fusion comes the

ability to compute a dense surface prediction, by rendering the surface encoded in the zero

level set Sk = 0 into a virtual camera. In the remaining sections of this chapter we describe

mechanisms for computing a geometric and photometric prediction of the reconstructed

scene.

6.3.1 Surface Prediction from Ray Casting the TSDF

As we have a dense surface reconstruction in the form of a global SDF, a per pixel raycast

can be performed (Parker et al., 1998). Each pixel’s corresponding ray, Tg,kK−1 ẋ, is marched

starting from the minimum depth for the pixel and stopping when a zero crossing (+ve
to −ve for a visible surface) is found indicating the surface interface. Marching also stops

if a −ve to +ve back face is found, or ultimately when exiting the working volume, both

resulting in no surface measurement at the pixel x.

For points on or very close to the surface interface Sk(p) = 0 it is assumed that the gradient

of the TSDF at p is orthogonal to the zero level set, and so the surface normal for the

associated pixel x along which p was found can be computed directly from Sk using a
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(a) (b) (c)

Figure 6.4: Demonstration of the space skipping ray casting. In (a) and (b) we render at each
pixel the number of steps required in raycasting to obtain the surface intersection. In (a)
for each pixel the ray is traversed in steps of at most one voxel (white equals 480 steps and
black 60 steps). In (b) ray marching steps are drastically reduced by skipping empty space
according to the minimum truncation µ (white equals 70 steps and black 10 steps, resulting
in ≈ 7× speedup). Step counts can be seen to increase around the surface interface in (b)
where the signed distance function is not been truncated. (c) Normal map rendering of the
resulting surface.

numerical derivative of the SDF:

Rg,kN̂k(x) = ν∗
[
∇S(p)

]
, (6.20)

∇S =

[
∂S
∂x

,
∂S
∂y

,
∂S
∂z

]>
. (6.21)

Here ν∗[.] scales elements of the gradient and normalises the vector to unit magnitude, en-

suring correct isotropy for a given voxel resolution and reconstruction volume dimensions.

Hence Rg,kN̂k(x) is the normal of the estimated surface in the global frame predicted into

pixel x.

Since the reconstruction volume is fixed in resolution, the time for raycasting is bound by

the maximum number of steps steps required to traverse a ray from the camera center to

the volume boundary, or from the starting volume-ray intersection point when the camera

center is outside of the reconstruction volume. Therefore, in contrast with explicit surface

representation and rendering techniques, the maximum rendering time using raycasting is

independent of the scene complexity.

Classically a min/max block acceleration structure Parker et al. (1998) can be used to speed

up marching through empty space. However, in our scenario where surface rendering and

surface fusion are interleaved at frame rate, the min/max macro block structure would also

require continual updating. Instead we find that simple ray skipping provides a straight-

forward acceleration, exploiting the TSDF sparsity. In ray skipping we utilise the fact that

near S(p) = 0 the fused volume holds a good approximation to the true signed distance
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(a) (b) (c)

Figure 6.5: Rendering of a reconstructed scene with raycasting of the TSDF. In (b) the basic
raycasting result is shown using trilinear interpolation of the TSDF function. In (b) we show
the same ray-casting solution but using the analytical zero crossing intersection resulting
in higher quality surface boundaries using Equation (6.22). The normal map rendering for
the scene is shown in (c).

from p to the nearest surface interface. Using our known truncation distance we can march

along the ray in steps with size < µ while values of S(p) have +ve truncated values, as we

can assume a step µ must pass through at least one non-truncated +ve value before stepping

over the surface zero crossing. The speed-up obtained is demonstrated in Figure (6.4) by

measuring the number of steps required for each pixel to intersect the surface relative to

standard marching.

Higher quality intersections can be obtained by analytically solving a ray/trilinear cell

intersection (Parker et al., 1998) that requires the solution of a cubic polynomial. As this

is expensive we use a simple approximation. Given that a ray has been found to intersect

the SDF where S+
t and S+

t+∆t are trilinearly interpolated SDF values either side of the zero

crossing at points along the ray t and t + ∆t from its starting point, we find parameter t∗ at

which the intersection occurs more precisely:

t∗ = t− ∆tS+
t

S+
t+∆t − S+

t
. (6.22)

We compute the vertex location and associated surface normal using this interpolated lo-

cation in the global frame. Figure (6.5) shows a typical reconstruction, the interpolation

scheme described achieves higher quality occlusion boundaries at a fraction of the compu-

tational cost of fixed step ray-casting.

6.3.2 Surface Extraction with Tiled Marching Cubes

The memory and computational cost of raycasting within a fixed view frustum is a function

of the resolution of the image being rendered into and the SDF resolution, but is constant
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(a) (b) (c)

Figure 6.6: Illustration of the iso-surface extraction using a tiled marching cubes. For given
tile in the volume, we detect if there is any possibility of a zero crossing in the sub-volume
TSDF trivially by detecting blocks which contain only truncated or unrepresented SDF
values. This results in a sub-set of tiles shown in (a) that are processed using the marching
cubes pipeline. We perform detection and surface extraction for each tile sequentially.
The resolution of a single tile can be chosen to fit the available memory resources on a
given GPGPU platform while optimising for full occupancy of the computing resource.
Rows in (b) show the resulting Phong shaded renderings for a close up view of the iso-
surface extracted at three extraction resolutions: top to bottom shows full resolution at
512× 256× 256; 128× 64× 64; and 64× 32× 32 voxels. The TSDF used in this illustration
results from dense reconstruction using the pipeline detailed in Chapter (7).
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in the extracted model complexity, which ensures a constant maximum time operation

surface fusion and prediction important for frame-rate dense SLAM. However, rendering

is by definition obtained for a single view. If instead we are interested in extracting the full

iso-surface from the current TSDF, for use in visualisation of the partial or complete model

outside of the reconstruction pipeline, or to achieve a high rate of compression for parts of

the scene which have been deemed fully reconstructed, we must instead perform a global

extraction of the iso-surface.

A widely used approach to extracting a surface model in the form of a mesh from a signed

distance function is to perform polygonisation of the desired level-set using the march-

ing cubes algorithm (Lorensen and Cline, 1987). Marching cubes proceeds by taking each

neighbouring 8 SDF values, forming the vertices of a virtual cube, and determining the pla-

nar face passing through the cube that best approximates the isosurface there. The impor-

tance of the marching cubes algorithm, and later corrections to it (Nielson and Hamann,

1991), was to reduce the space of possible face configurations passing through a cube to

the deterministic set of 256 combinations, exploiting reflections and rotations, that can be

tabulated and indexed based on the level-set sign computed at the cube vertices. Hav-

ing computed the correct configuration, the intersection between the planar facet and the

cube is computed using interpolation of the signed distance function. The marching cubes

algorithm is a highly parallelisable, since classification of the face configuration can be

performed independently within each local neighbourhood. Furthermore, the truncated

signed distance function used in the surface representations here contain large homoge-

neous regions which further reduce the locations at which classification must be performed,

which is easily detected in the initial stages of the algorithm. While it is possible to copy

the SDF to host memory and perform all or part of marching cubes on the CPU, we instead

fully utilise the parallel hardware, by tiling the marching cubes over sub volumes to extract

the mesh incrementally. Figure (6.6) illustrates multiple resolution isosurface extraction of

the zero level set which is possible simply by altering the spacing used between elements

in each marching cubes.

Given the extracted mesh, fast view prediction is possible using a standard rasterising

graphics pipeline. It is important to notice the advantages of the polygonisation based

rendering pipeline in applications where the extracted mesh is reused multiple times before

any surface update is performed. The computational cost associated with performing the

initial tiled marching cubes extraction is higher than raycasting for the same resolution

of extraction, but enables fast rendering of new views. We will exploit this property for

passive image prediction in the next section where a large number of high quality geometry

views must be obtained.
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(a) (b) (c)

Figure 6.7: The geometric prediction computable from a dense surface representation pro-
vides an estimate of the scene depth (a) and surface normal (b) for every pixel in a given
reference frame. In Section (6.4) we are interested in computing a photometric (or tex-
ture) greyscale or colour value for each pixel that predicts the appearance of the associated
reference frame image (c), or any other novel view.

6.4 Predicting Photometric Measurements

Given the ability to render a geometric prediction, we now assume that for each frame in

an input video we have available both a depth and surface normal estimate at every pixel

in the associated photometrically calibrated image, shown in (Figure 6.7). In this section

we are interested in rendering into a novel view a photometric prediction. Photo-realistic

model rendering of novel views is a useful output in itself for mixed and augmented

reality applications. Here we are further interested in obtaining the predicted appearance

of a novel view for use in the dense camera tracking paradigm detailed in Chapter (8).

Traditionally, efficient rendering of a scene’s photometric appearance was achieved by com-

puting a static texture map for the surface geometry. Used within a rasterising graphics

pipeline, the texture mapped surface results in a view independent prediction of the scene

appearance. In Section (6.8) we will introduce a simple photometric fusion extension to the

volumetric SDF integration process that allows incremental construction of a static surface

texture using all available input video frames. Rendering of a novel view is then achieved

using a basic extension to any of the isosurface extraction algorithms outlined in the previ-

ous section. Such static texture maps fail to capture a number of important aspects of the

light-surface interaction in real scenes, including local illumination changes, inter-surface

reflections and global illumination properties such as radiosity and shadowing. Two dis-

tinct paradigms have been researched that overcome such limitations: physically based

rendering paradigms and image based rendering techniques.

Physically based rendering paradigms extend the modelled geometry to include accurate

surface material and light source properties in the scene. Rendering is achieved by prop-

agating light rays forwards in time starting from light sources, computing the complex
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interactions with the surfaces and generating further inter surface reflections, culminating

in the interaction of reflected, refracted and emitted rays with the modelled camera lens

forming an image (Pharr and Humphreys, 2004). Since only a small fraction of rays will

end in intersection with the camera lens the most widely used physically based rendering

systems approximate the process and reverse it by to performing ray-tracing; this process

follows the path of one light ray for each pixel of the image to be generated out into the

scene. The initial ray may give rise to a tree of several ray-surface interactions, following

to some level of approximation the evolving paths of rays as they continue to interact with

the scenes surfaces and lighting structures until a set number of ray-surface interactions

has occurred.

Image based rendering (IBR) methods provide a efficient alternative to modelling the full

physics in a scene and instead exploit the ability to interpolate the appearance of a novel

view from captured images of the scene (Szeliski, 2010). At one end of the IBR spectrum,

techniques use densely sampled images with associated poses that attempt to capture a

sampling of all possible light rays in the scene, called the light-field (Levoy and Hanrahan,

1996). At the other end of the IBR spectrum, techniques make full use of available surface

geometry to massively reduce the sampling space, performing view interpolation with a

representative set of key-frame textures. In Section (6.4.2) we detail a key-frame based

photometric prediction mechanism based on the view dependent texture mapping method

developed by Debevec et al. (1996).

6.4.1 Photometric Fusion

An approach that elegantly extends the depth map fusion algorithm in Section (6.2), simply

augments the SDF value and weight stored at each voxel with a colour parameter Ck(p)
and additional weight WC

k :

Sk(p) 7→ [Sk(p), Ck(p), WF
k (p), WC

k (p)] . (6.23)

Here we have denoted the previous weighting function for the TSDF as WF
k (p) . We can

then update the voxel colour for each surface measurement during signed distance function

integration given a corresponding depth Dk and irradiance Ik image pair. During normal

depth map fusion, each voxel p is projected into the sensor frame resulting in the pixel x,

enabling computation of the SDF value SDk(p) given the depth value Dk(x). We extend the

integration by picking up the colour value Ik(x), and compute a weighted average update,

where the weighting function is:

WC
Dk
(p) ∝ exp (−|SDk(p)|) . (6.24)
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Figure 6.8: For lambertian surfaces, voxels located at the intersection of the rays have a
correct colour average since they result from averaging corresponding pixels. The win-
dowing function updates the weight WC

k and reduces the influence of non-corresponding
pixel values at neighbouring off-surface voxels that otherwise result in blurred, erroneous
photometric predictions when extracting the colour values at interpolated isosurface loca-
tions.

This weight function decreases in value away from the currently estimate surface interface

(where the SDF value is near 0). This is required to ensure the integration of the photomet-

ric data is local to the surface element.

As discussed in section (6.1.4), surface geometry is efficiently represented using the signed

distance function through voxel interpolation. Interpolation of the colour values on the

other hand results in blurred, lower quality predictions since the colour values stored in

voxels neighbouring the zero crossing site contain a weighted average of all rays passing

through the voxel, not only those that intersect the surface element being rendered, illus-

trated in Figure (6.8).

The photometric approach leads to doubling in memory requirements, and a small increase

in computation proportional to the surface measurement area, since the window function

can be safely truncated, avoiding small value updates. Rendering a photometric prediction

is also very simple, since the colour values associated with the surface can be extracted

along with the level-set using either raycasting or marching cubes.

Figure (6.9) provides a visual comparison between the photometric fusion based rendering

and a real image masked using the geometry of the view shown in Figure (6.7). As can be
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(a) (b) (c)

Figure 6.9: Photometric fusion: (a) Real Image masked to valid geometry. (b) Rendering of
the grey value computed using photometric fusion at the corresponding isosurface location.
(c) Absolute difference between (a) and (b) showing both high frequency image prediction
error for the view and lower frequency global illumination errors. Errors result from errors
in the geometry; the use of a photometric fusion volume with a lower sampling rate to
the equivalent image space sampling rate; global illumination changes when observing the
scene; and integration of observations over non-Lambertian surfaces.

seen, the higher frequency texture is smoothed away. This results from a lower sampling

rate in the colour fusion volume than the image resolution and is alleviated when using a

higher resolution colour fusion volume. Furthermore, integration of photometric data from

observing non-Lambertian surfaces leads to an weighted average colour that is physically

inconsistent with the views used in the integration. Finally, we note that by altering the

photometric fusion to make use of the moving average mechanism previously introduced

for the SDF integration in Equation (6.19), we can increase the local photo-consistency of the

model when performing photometric fusion and prediction in a real-time moving camera

setting, by essentially tracking the local illumination over time as the camera moves.

6.4.2 Key-Frame Textures

Debevec et al. (1996) introduced view dependent texture mapping (VDTM), a hybrid image

based rendering technique that also makes use of explicitly available surface geometry.

Unlike the photometric fusion approach and standard texture mapping techniques that

construct a single texture map, VDTM uses the ability to interpolate a novel view from a

sparse set of texturing keyframes. At the heart of VDTM the method of projective texturing

enables the synthesis of a new view by warping a near keyframe texture via geometry

predicted into the virtual camera.

Projective Textures

Given a depth map predicted into a novel view and a single key-frame texture co-observing

the scene, a predicted appearance image can be obtained simply by projecting each of the
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(a) (b)

Figure 6.10: Projective textures from two views and the resulting view dependent texture
mapped model. Row (a) without predictive texture weighting, (b) using the per pixel
weighting functions. The top two views are averaged into the view synthesis. Imperfect
surface geometry and camera calibration, together with view dependence for Lambertian
surfaces result in seams forming in the synthetic view. It is recommend to zoom into the
comparison views to view the reduced seams in the weighted average.
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points in the depth map into the texture image, taking into account self occlusions. This

can be thought of as turning the texturing keyframe into a slide projector, projecting its

texture onto the global geometry. Rendering of the projectively textured scene results in

the synthesised image, illustrated in Figure (6.10a).

By using more than a single texturing keyframe, regions in the novel view for regions that

are not co-observed with a single keyframe can be covered. Synthesised pixels in the novel

view will then typically have multiple projections from overlapping keyframes which are

blended together using a weighting function.

To obtained a predicted view from a single keyframe we first predict the depth and normal

maps (Dk, Nk) into the keyframe with pose Twk and into the novel view (Ds, Ns) using

the synthetic camera pose Tws. We synthesise the pixel colour Is(x) together with a pixel

validity mask Vp(x) in the novel view using the keyframe texture Ik via the projective warp

function w (eqn. 4.1),

Is(x) =

Ik(w(x, k, Ds(x)), iff Vpk(x) = 1

0, otherwise ,
(6.25)

where we have set Vpk(x) = 1 for co-visible geometry. Vpk(x) = 0 if there is no valid

geometry in the predicted pixel, or if the surface geometry in the keyframe location is

incompatible with the predicted view geometry due to occlusion, or if there is no valid

geometry in the keyframe. Validity is trivially evaluated using a surface distance and

normal similarity check.

View Dependent Texture Mapping

Debevec et al. (1996) showed that by dynamically changing the set of key-frames used to

those nearest the virtual camera center and blending the resulting overlapping textures a

higher quality appearance prediction is gained. In comparison to a single static texture,

which is unable to capture the view dependent nature of of non-lambertian reflectance, the

set of local keyframes can approximate the local surface-light interaction. Given a dense

enough selection of texturing key-frames near to the desired novel view, the complex inter-

action between real world surface and lighting structures can be efficiently approximated.

Furthermore, VDTM and in particular real-time versions (Debevec et al., 1998; Porquet
et al., 2005) are designed for use with simple efficiently rendered geometry proxies, which

if classically textured mapped, result in large amounts of distortion and texture flattening.

By choosing texturing key-frames with a similar camera center to the novel view, projective

distortion is minimised. Finally, unlike the photometric fusion approach, IBR methods mit-
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igate sampling and interpolation issues associated with a fixed volumetric representation

of the surface colour by performing pixel transfer with interpolation in the image space at

the original resolution of keyframe texture.

In the remaining sections of this chapter we will detail the three specific components re-

quired for online fully automatic texturing: Determining the subset of video frames that

make up the texturing key-frame set; selection of a subset of keyframes for use in VDTM;

and the composition function used to reduce photometric artefacts when blending the tex-

ture predictions in the novel view.

Inserting and Selecting Key-Frame Textures

To build a VDTM model with live video we must decide online which frames should be

selected from the video for inclusion in the texturing keyframe set K. A second mechanism

is required to select which key-frames are used in the view synthesis.

Insertion: The primary goal of a key-frame insertion mechanism is to decide if a new video

frame should be inserted into a current key-frame set by some measure of the possible gain

in predictive quality that would be accrued. Klein and Murray (2007) developed a simple

but effective keyframe insertion mechanism for use in their sparse visual SLAM system

to enable efficient bundle adjustment; simplify feature description and visual correspon-

dence; and to facilitate relocalisation. Computing the closest keyframe to the new frame’s

camera center using a Euclidean distance, they attempt to distribute key-frames such that

sampling density increases proportionally to the predicted distance to the observed scene.

The camera center distance is therefore divided by the mean depth of features observed

in the new frame and the frame is added if the scaled distance is over a given thresh-

old. Unfortunately, insertion can become too conservative when the camera is moved near

to a surface which has not successfully induced predictive features either due to texture

homogeneity or visual correspondence failures due to perspective distortion.

The availability of dense surface prediction goes a long way to mitigating these problems

and enables a more definitive specification of the key-frame insertion mechanism. We can

simply replace the mean depth estimate obtained from the feature correspondences with

the minimum depth computed in the dense surface prediction, which provides occlusion

correct behaviour, independent of the image texture.

Selection: Given the key-frame set we take the nearest N keyframes using the scaled

distance metric described above. Figures (6.11) and (6.13) demonstrate a key-frame set

together with view selection.

Given multiple projected textures from the selected key-frames, a number of factors hinder



6.4. Predicting Photometric Measurements 173

(a) (b) (c)

(d) (e)

Figure 6.11: Photometric prediction for an image from the Middleburry temple data-set
used in the model reconstruction from Chapter (7). The reconstructed model geometry
is rendered with Phong Shading in (b). The set of key-frame textures showing a subset
of the frames from the complete data-set (a). Key-frame selection using the nearest 19

key-frame views are shown in (b), for the reference view with ground truth image (d).
The photometric prediction for this view is shown in (e). Note the reference image was
excluded from the key-frame set for the view prediction.
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(a) Surface visibility weight:
vsk

(b) Feathered pixel validity
mask: bsk

(c) View dependent texture
for novel view s.

Figure 6.12: Example view dependent texture map generation. Weighting masks (a) and (b)
multiply the projective texture predicted into the frame s from a key-frame k to produce
the weighted texture contribution (c). Example view dependent texture predictions using
several key-frames are given in Figures (6.10b) and (6.13).

simply averaging the predicted irradiance images together to produce the synthetic view.

Inaccuracies in the underlying geometry and imperfect camera pose estimation result in

incorrectly predicted occlusion boundaries, mapping non corresponding pixels together in

the novel view. Non-Lambertian reflectance of surfaces can also result in large differences

of brightness values on the occlusion boundaries.

View Composition and Visibility Weighting

To reduce the view composition artefacts we perform a weighted average over the se-

lected key-frames to predict the view s. Illustrated in figure (6.12), we compute a per-pixel

weighting wsk(x) to weight the predicted pixel value Isk(x) obtained using key-frame k:

wsk(x) = Vsk(x) · bsk(x) · vsk(x) · ‖tks + c‖−1
2 (6.26)

bsk(x) = (Nσ ∗Vsk)(x) (6.27)

vsk(x) =
〈

Nk(w(x, k, Dp(x))), RksK−1 ẋ
〉

. (6.28)

The surface visibility weight vsk at each pixel decreases proportionally to the angle between

the pixel ray and the surface normal Nk in the key-frame texture, while bsk down weights

the texture component at depth discontinuities. Finally ‖tks + c‖−1
2 uses the distance be-

tween novel and texturing camera centres and acts over the whole image, decreasing the

influence of the texture with increasing distance from the novel view, note c is a small

constant to limit the influence of the a reference texture if the novel and keyframe cam-

era centres are very close. The resulting photometric prediction is then obtained using a

weighted average:

Ip(x) =
1

∑k∈K wsk(x) ∑
k∈K

wsk(x)Isk(x) . (6.29)
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(a) (b)

Figure 6.13: Example Key-frame Textures available for the reconstructed City of Sights
model (a). View dependent texture mapping example of the model rendered using five
key-frame textures (b). Details on the model reconstruction are given in Chapter (7).

Figure (6.10b) provides a visual comparison between the standard projective texture based

VDTM and the per-pixel weighted version where seams in the predicted image due to

imperfect camera calibration and reconstructed scene geometry are reduced. Figure (6.13)

shows the resulting view prediction for the City of Sights model using five key-frames.

Figure (6.11) illustrates the view dependent texturing on the Middleburry Temple dataset.

6.4.3 Remarks on Photometric Prediction

Despite the reduced quality of the photometric fusion algorithm, it is clear that in compar-

ison to the key-frame based VDTM approach that it presents a simple and effective pre-

diction mechanism that can use the overwhelming amount of image data produced from a

video stream to mitigate the need to store and manage key-frames insertion and selection

or require processing of textures to remove effects of geometric error. While it is true that

in the wider context of photo-realistic rendering for novel view synthesis the key-frame

based approach renders higher quality images, we must put into context the use of the

prediction within the dense SLAM paradigm we are investigating. Within a live tracking

and mapping application, if each new frame’s image data can be utilised then the moving

average photometric fusion will to some extent enable prediction of non-Lambertian sur-

faces simply by integrating over a local window of time. In Chapter (8) we will compare

the two prediction approaches and show that the simpler mechanism is adequate for high

quality camera tracking.
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Research into multiview stereo (MVS) has resulted in a multitude of techniques that, to

some level of automation, infer the surface geometry from overlapping views from passive

cameras. Recently, the possibility of using MVS reconstruction pipelines in a real-time set-

ting has become increasingly realistic due to the massive increases in computational power

and the availability of high-quality but affordable digital video cameras. The potential for

such live dense reconstruction on commodity mobile computing platforms including smart-

phone and tablet computers offers an opportunity for numerous new applications, but also

presents interesting new challenges that must be faced to enable high quality reconstruc-

tion outside of the research lab.

MVS pipelines have traditionally been developed to compute reconstructions from a sparse

176
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set of high resolution still images, where camera calibration is achieved to a high quality

in an offline setting. Most importantly, the basic image sequences input to the system are

fixed and no user feedback is assumed. This leads to difficulties in knowing if enough

images with sufficient coverage of the scene were captured for successful reconstruction.

Live dense reconstruction (LDR) offers an alternative approach to model acquisition in an

interactive setting. Here the dense reconstruction is obtained at an interactive rate provid-

ing any-time model output during the sequence capture. A user or robot can continue to

evaluate the reconstruction and obtain more data where needed, in contrast to processing a

fixed length input sequence and acquiring the model output only after all frames have been

processed. This real-time not only puts pressure on algorithmic efficiency but also requires

increased robustness to lower quality camera calibration and, when real-time video input

is used, the system must cope with lower resolution noisier image data.

However, live dense reconstruction opens the door to applications using online model

acquisition in augmented reality and holds great promise in model based robotics. As

a perceptual layer, live dense reconstruction will be crucial for robots that must interact

with, rather than avoid, their environment; providing a stepping stone to physically pre-

dictive models of the environment. For augmented reality to become truly immersive the

correct rendering of artificial objects relies on the accurate reconstruction of surfaces and

their discontinuities. And with the advent of 3D display and printing technologies live

reconstruction will provide the ability to virtualise everyday scenes for gaming or to obtain

prototypical input for modelling and home manufacture.

7.1 Chapter Outline

The any-time feature is the single property that distinguishes a live dense reconstruction

system from multiple view stereo systems that work in a strongly offline mode. Research

into dense reconstruction has seen an explosion of systems and techniques and it is there-

fore important to understand which MVS methods are most elegantly employed within an

interactive setting. In Section (7.2) we review state-of-the-art methods developed for offline

dense reconstruction and introduce the basic methodology with which they are evaluated.

Specifically, we are interested in understanding the feasibility of the techniques within a

real-time and incremental setting.

In Section (7.3) we then focus on the much smaller number of techniques with the potential

for LDR usage that demonstrate the any-time or incremental reconstruction properties.

In particular we detail relevant work from multi-view stereo and visual SLAM systems

using the depth map fusion framework, which provides a modular reconstruction pipeline
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readily able to deal with real-time data input to produce models at interactive rates, with

immediate feedback of the current dense reconstruction.

We detail our passive reconstruction pipeline in Section (7.4), producing a dense recon-

struction in real-time using the depth map fusion framework described in Chapter (6). We

use the ability to obtain a frame-rate prediction of the dense model geometry to reduce the

computational burden of depth map estimation using the methods developed in Chapters

(4) and (4).

In Section (7.5) we then look at the challenge of evaluating such LDR. We provide a quali-

tative comparison of reconstruction results for an offline statically captured MVS data-set,

comparing the LDR pipeline to the state-of-the-art offline multi-view stereo methods, but

importantly we also evaluate the system on a newly available video data set and compare

the results obtained with the state-of-the-art LDR system developed by Graber et al. (2011).

We finish the chapter in Section (7.6) by summarising limitations of the approach developed

in the broader context of large scale dense reconstruction and visual SLAM and look to

towards research that addresses these issues.

7.2 Multi-View Stereo

The large number of reconstruction systems developed within both the computer vision

and photogrametric research communities harness numerous techniques, surface repre-

sentations and optimisation strategies. To enable comprehension of this growing body of

work Seitz et al. (2006) developed a taxonomy of multi-view stereo techniques, their cate-

gorising of methods includes the scene representation used (many of which are discussed

in Chapter 6); the photo-consistency and visibility models employed in stereo data terms

(discussed in Section 4.2.2); the shape priors or regularisation frameworks used to ensure

consistent surface reconstruction in the presence of ambiguous, missing and noisy data

(discussed in the context of depth map estimation in Section (2.3) and Chapters 4 and 5);

as well as a categorisation of the algorithm that uses these assumptions and components

to achieve the dense reconstruction, along with the initialisation requirement of the algo-

rithm. Abstracting from the taxonomy of Seitz et al. (2006) and extending to include newly

developed approaches, we separate the algorithms into three broad classes.

Direct Optimization: In this class are methods which either implicitly or explicitly com-

pute photometric cost volume given all views, followed by extraction of a surface from the

volume which is consistent with prior assumptions about the solution smoothness. Within

the class, methods differ in whether cost is computed in totality in one step followed by

extraction of the most photo-consistent surface which can be achieved by global optimisa-
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tion (Vogiatzis et al., 2005); or whether the computation of photometric cost and surface

extraction is interleaved, resulting in an iterative optimisation process. Examples include

the voxel colouring (Seitz and Dyer, 1999) and space carving (Kutulakos and Seitz, 2000)

approaches which dominated early dense reconstruction methods. In space carving, a re-

construction of the maximal surface consistent with a given photo-consistency measure,

called the photo-hull, is computed. Within the reconstruction volume, all voxels are ini-

tially labelled as occupied. The algorithm then incrementally carves away visible voxels

which are below a given photo-consistency. Another successfully developed methodology,

related to space carving, uses a partial differential equation (PDE) based gradient directed

optimisation to evolve a representation of the surface interface directly by minimising an

energy functional consisting of a photo-consistency based data term and a regularisation

term providing a prior over surface smoothness. Within this setting (Pons et al., 2005)

made use of a multi-scale optimisation framework to avoid getting stuck in local minima,

while Kolev et al. (2009) presented a globally optimal convex optimisation solution. State

of the art implementations utilising commodity parallel hardware have been developed to

speed up the expensive photo-consistency computations in both space carving (Zach et al.,
2004), and PDE based optimisation (Labatut et al., 2006b,a), demonstrating multiple orders

of magnitude reductions in computation time over CPU implementations.

Surface Fusion and Fitting: In a second broad class, multiple views are used to compute

local surface or point measurements which are there combined into a consistent surface

reconstruction. In this class, the abstraction of the passive image data from image space

into geometric measurements enables a more modular pipeline. Examples include sparse

feature extraction and matching methods which are followed by surface fitting. These

include the more sophisticated free-space carving techniques (Hilton, 2005; Pan et al.,
2009) discussed in Subsection (2.2.2). However, the dominating technique in this class

modularises the reconstruction problem into a depth map fusion pipeline: first local depth

maps are robustly estimated from subsets of the input sequence, essentially abstracting

the passive image input to geometric surface estimates, and then these depth maps fused

into a global surface model. Abstraction of images to surface measurements in the form

of depth maps enables the surface reconstruction strategies based on occupancy mapping

or volumetric SDF integration discussed in Chapter (6) to be used directly within the MVS

pipeline (Narayanan et al., 1998; Koch et al., 1998; Pollefeys et al., 2004; Zach et al., 2006;

Goesele et al., 2006) , and can further use a global optimisation framework with surface

smoothness priors (Zach, 2008; Zach et al., 2007b; Hernández et al., 2007). We review

depth map fusion techniques in detail in the next section.

Region Growing: A further important class that does not sit neatly in either of the above

classes but shares aspects of both exploits the surface patch (surfel) representation of sur-
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face geometry. Given an initial set of seed elements that can be obtained using sparse

feature extraction and matching, these methods incrementally increase the surface cover-

age by propagating the current points into neighbouring uncovered pixels (Otto and Chau,

1989), locally optimising the surface normal and depth estimated at each new pixel. Since

the surfel representation is free from a discrete volumetric representation, the region grow-

ing approach does not suffer from restrictions to the reconstruction volume. Furukawa and
Ponce (2007); Habbecke and Kobbelt (2007); Goesele et al. (2007) obtained state of the art

performance while the later authors also showed the efficiency of the surfel representa-

tion, using the approach to reconstruct entire buildings from community photo-collections.

Beljan et al. (2011); Chang et al. (2011) further demonstrated that such region growing

pipelines, while not as trivial to parallelise as the depth map fusion pipelines, can still

benefit from GPGPU implementation.

Hybrid Pipelines Many of the most successful methods combine the surface fusion and

fitting paradigm with a direct optimisation to increase reconstruction accuracy. Examples

include Vu et al. (2009) who first construct a dense point cloud using feature detection

and matching, from which they extract the coarse surface topology by computing a mesh

over the point set consistent with induced visibility constraints. They then use a direct

variational refinement of the surface mesh, minimising a regularised energy functional

with a photometric error over clusters of co-visible frames.

Similarly, Campbell et al. (2008) combined a depth map fusion pipeline with a direct

photo-consistency based optimisation of the fused surface. They compute local depth maps

using the occlusion robust normalised cross correlation stereo measure (Hernández and
Schmitt, 2004), and fuse these into a volumetric implicit surface, from which the iso-surface

is extracted using a graph cut based global optimisation. The resulting surface is then

directly optimised using the snake smoothing approach from (Hernández and Schmitt,
2004), making use of the full photo-consistency measure across co-observing views.

7.2.1 Evaluating Multi-View Stereo

To evaluate the growing variety of techniques, Seitz et al. (2006) also developed a multiple-

view data set. Complementing the two-view Middleburry stereo benchmark (Szeliski and
Scharstein, 2004), the dataset has ensured researchers have a common evaluation, enabling

specific problems over classes of algorithms to emerge and advances from new algorithms

to be highlighted. Two data sets are provided, consisting of a single reference object with

known dense geometry acquired using an active stereo system, together with a set of

calibrated image sequences captured on the Stanford light gantry, illustrated in Figure (7.1).

Dense reconstructions are evaluated for accuracy by computing a 3D Euclidean distance
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(a)

(b)

(c)

Figure 7.1: Capture Layout for MVS evaluation from Seitz et al. (2006). Three datasets are
provided for two reference objects, shown here with the temple statue. The sparse datasets
(a) have a total of 16 frames shown in red, with two redunant frames capturing the same
view. The ring datasets (b) expand to include the blue frames totalling 47 frames. The
full data set (c) comprising 312 frames also include all grey frames. Despite the potential
advantages to be gained in reconstruction using the full dataset (c) over the sparse version
(a), the majority of algorithms on Middleburry benchmark only show times for the sparse
data set.

using a triangle mesh representation of the estimated and ground truth model. Moreover,

measures of model completeness, and computation time lend to categorisation of MVS

techniques as being more or less suitable for a given application with requirements on

these qualities. Rapid developments in high resolution digital image capture, together with

a desire to compare algorithms on real world scenes lead Strecha et al. (2008) to develop a

further higher resolution dataset with ground truth geometry captured using LIDAR.

Exploiting Dense Image Sequences: An important commonality of both datasets dis-

cussed above and the majority of algorithms tested on them, is the relative sparsity of the

image sequences. This is in stark contrast the high density of frames that can be acquired

from digital video. It is particularly noteworthy that out of over 60 systems presented on

the Middlebury multi-view stereo evaluation website, only 18 show a result for the dense

sequence. This is despite the opportunity presented by the greatly increased view count

(from 47 in the ring dataset in Figure (7.1a) to over 300 in the dense version shown in

Figure (7.1c)). We note that algorithms evaluated on the dataset generally show an in-
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crease in reconstruction completeness and accuracy as a function of the number of views

used, indicating the value of increased frame density. As we will discuss in Section (7.4.2),

the availability of increased frame density need not lead to an increase in reconstruction

time since dynamic view selection can be used to select the useful subset of frames for

reconstructing regions of a model more optimally.

7.3 Live Dense Reconstruction

From those systems evaluated on the Middleburry datasets, only two demonstrate real-

time, or interactive reconstruction capability: the mesh based depth map fusion approach

from Merrell et al. (2007) discussed in Section (2.2.3) in the context of the dense visual

SLAM system developed by Pollefeys et al. (2008); the second approach by Zach (2008)

uses a volumetric signed distance function integration within a global convex optimisation

framework that we will discuss in detail in subsection (7.3.2). Both methods utilise a form

of incremental depth map estimation and fusion which is highly parallelisable, enabling

implementation of the systems on commodity GPGPU hardware.

Beyond the middleburry dataset, in Section () we discussed the free-space carving LDR

systems from Pan et al. (2009); Lovi et al. (2010), and note that the quality achievable using

these systems is far below those using the depth map fusion approach, in large part due

to the dependence on the sparse feature-based correspondences used to obtain free-space

constraints.

We have also discussed the dense video rate point cloud estimation technique developed by

Vogiatzis and Hernández (2011), that exploit the density of frames in video to obtain dense

correspondences using feature-based detection and tracking. The system was later devel-

oped into LDR system (Woodford et al., 2011), using camera pose estimation from PTAM.

The results generated by this real-time system are promising when using high resolution

motion blur free image data, however it is reasonable to believe that the reliance on sparse

feature detection and tracking will result in sparsity of the point cloud reconstruction when

presented with less accurate camera poses or motion blurred images.

Motivated by the quality of results produced by MVS systems that use depth map fusion,

and the potential for optimisation of the modular approach it defines, we will now look in

more detail at the systems that have used the depth map fusion pipeline in the multi-view

stereo setting.
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7.3.1 Volumetric Depth Map Fusion

In Chapter (6) we detailed the depth map fusion framework originally developed for recon-

struction using active depth sensors (Curless and Levoy, 1996; Hilton et al., 1996; Wheeler
et al., 1998). In this subsection we review the development of passive reconstruction sys-

tems which replaced active depth sensing with local depth map estimation. The earliest

systems were not capable of real-time performance simply due to the computational re-

strictions of the time (Koch et al., 1998) Narayanan et al. (1998); Pollefeys et al. (2004).

Over time, the re-implementation, evaluation and extension of this pipeline by a number

of researchers, taking advantage of the trivial parallelisability of the technique, has resulted

in depth map fusion being at the core of top performing systems where incremental, high

speed, reconstruction is an important goal (Zach et al., 2006, 2007b, 2008; Graber et al.,
2011).

Narayanan et al. (1998) first demonstrated the use of a passive stereo based depth map

fusion using the volumetric SDF representation in the context of dynamic scene capture.

They used multiple cameras fixed in a hemispherical arrangement overlooking a finite

volume in which reconstruction was performed. Dense depth maps were generated for a

given synchronised time instant from each of the cameras using the multibaseline stereo

method of Okutomi and Kanade (1993) and fused into a global surface reconstruction

using the SDF integration method of Curless and Levoy (1996). The final surface for

a given snapshot in time is recovered from the zero level set using the marching cubes

method of Lorensen and Cline (1987).

Pollefeys et al. (2004) presented a complete visual modelling pipeline designed for image

data captured from a hand held camera. They use feature-based structure from motion to

obtain camera poses, followed by pair-wise dense stereo estimation with correspondence

linking across multi frames to increase depth map accuracy, and to reason about occlusions.

The dense depth maps are then fused into a global implicit surface model using the SDF

integration approach.

Goesele et al. (2006) revisited the multi-view stereo problem amidst the numerous intricate

techniques that had been developed in achieving state of the art results on the newly

introduced dataset of Seitz et al. (2006). For each image in a dataset they compute a

depth map using a subset of neighbouring frames using the occlusion robust stereo method

introduced by Hernández and Schmitt (2004) with a 5× 5 pixel patch normalised cross

correlation based data cost. They refine the depth maps using an iterative interval search

where the a new depth map is estimated by restricting the discretised epipolar search

within a iteratively reduced neighbourhood of the previous depth estimate. They eliminate
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 7.2: Dense reconstruction from the Middleburry multi-view stereo datasets achieved
by passive depth map fusion reproduced from Goesele et al. (2006). (a) shows a single
frame from the temple dataset, (b) from the dinosaur dataset, which have a resolution of
640× 480 pixels. Reconstruction results are shown for the temple sequence using the sparse
(b), ring (c) and full (d) datasets with the vast range in frame sparsity shown in Figures
(7.1a- 7.1c). Similarly, reconstructions are shown for the three levels of dataset density for
the dinosaur model (g-h). The ground truth models for the rendered views are given in (e)
and (j). The increasing level of reconstruction completeness and accuracy is clearly visible
between the sparse and full datasets. Computation times (for sparse to dense datasets)
using an Intel Pentium 4 class processor were approximately 11 minutes, 34 minutes and 4
hours.

depth values with low confidence and fuse these resulting conservatively estimated depth

maps into a global surface model using the weighted SDF integration approach. This

approach has both the any-time and incremental reconstruction properties since the newest

model reconstruction is available directly after integration of a local depth map, both of

which have a bounded constant computational complexity.

While often overlooked when evaluating the method in contrast to more sophisticated

techniques, the results of local depth map fusion demonstrate the potential of dense over-

lapping input frames. Illustrated in Figure (7.2), their method shows drastic improvement

in reconstruction as the density of input frames is increased. These results show that if

the input data is of sufficient density and texture, and camera calibration is of a sufficient

accuracy for local stereo estimation to succeed (stated for this dataset to be less than 1

pixel reprojection error), then high quality dense reconstruction can be achieved by a truly

incremental pipeline.
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The method is still one of the state of the art methods on the Middlebury dataset, as one

of a select set of techniques on the benchmark website that have achieved reconstruction

from the full dataset, Figure (7.1c). The processing time for the full sequence of 312 input

images is stated at over 4 hours in 2006 on a single core Pentium 4 class process, and is

often cited for this reason in intervening years, by competing methods, as comparatively

inefficient. However, this pipeline has been shown to be eminently suitable for live or real-

time operation, and as discussed in the remainder of this section, the trivial parallelisability

and inherent modularity of the pipeline has enabled the full use of GPGPU hardware to

obtain orders of magnitude increase in reconstruction throughput.

Zach et al. (2006) simultaneously developed an efficient GPGPU approximation of the

depth map fusion pipeline of Goesele et al. (2006). Their multi-view stereo depth map

computation included a 5× 5 pixel patch based error score, which was truncated to provide

implicit occlusion handling, and operating on mean normalised input images to improve

robustness to illumination changes. They also exploit the temporal sequence of video

input with the best half-sequence frame selection method originally proposed by Kang
et al. (2001).

The plane-sweep multi-view depth estimation algorithm introduced by Collins (1996) is

trivially parallelisable on GPGPU hardware and Zach et al. (2006) combined their robust

version with an implementation of a GPGPU based volumetric SDF integration proce-

dure to obtain a considerable speed up over the CPU depth map fusion version. The

pipeline is discussed within an interactive processing framework, in which all depth maps

are computed and then integrated into the volume, so their system does not demonstrate

incremental dense reconstruction. However, they do achieve a processing rate of approxi-

mately 1 frame per second for their modified SDF integration approach. Depth maps were

computed at a resolution of 5122 pixels using a depth quantisation along each ray of 200

depth samples, and fused into a volume with a resolution of 2563 voxels. As with previous

implementations of the depth map fusion pipeline, the ability to utilise an incremental sur-

face reconstruction is hampered by a requirement to preform iso-surface extraction using

a CPU implementation of the marching cubes method. However, they enable interactive

rendering of the iso-surface using real-time volume rendering (Stegmaier et al., 2005).

7.3.2 Globally Optimal Depth Map Fusion

SDF integration using conservatively estimated depth maps results in an extremely simple

and efficient MVS pipeline. It does however have two major drawbacks. First, since neither

the depth map estimation nor the weighted SDF integration approach employ spatial reg-

ularisation, the resulting reconstruction can contain holes in regions with low texture, or if
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the signal to noise ratio is low due to sparsely overlapping views. This is vividly illustrated

by the inability of the data only depth map fusion method to correctly reconstruct the low

texture dinosaur model, even for the full dataset shown in Figure (7.2). Second, errors in the

depth map become baked into the reconstruction. While the weighted average approach

of Curless and Levoy (1996) is optimal under small amounts of Gaussian noise distributed

along the depth measurement ray, depth maps estimated using multi-view stereo depth

maps often contain non-Gaussian distributed errors.

Zach et al. (2007b) addressed both of these issues by posing dense reconstruction as a

volumetric de-noising problem. Within their globally optimal range fusion framework,

each estimated depth map is notionally transformed into a noisy volumetric measurement

consisting of the signed distance fi and weighting function wi using the projective TSDF

approximation (Curless, 1997). In the globally optimal approach, the desired volumetric

signed distance function u is obtained as the solution to minimising a 3D convex denoising

functional:

∫
Ω

{
‖∇u(x)‖1 + λ ∑

i∈D(x)
wi(x)|u(x)− fi(x)|

}
dx . (7.1)

In contrast to the weighted averaging approach, the `1 penalty over the data term pro-

vides resilience to outliers in the depth map in contrast to the non robust quadratic penalty

which must rely instead on the explicitly performed down weighting of measurements to

reduce their influence non-linearly. Furthermore, the total variation regularisation in Equa-

tion (7.1) enables areas with weak or missing data terms to be filled in. Importantly, since

the functional is convex a gradient descent optimisation can be used to obtain the solution.

Zach et al. (2007b) utilise a primal-dual formulation using the quadratic splitting tech-

nique resulting in a trivially parallelisable optimisation which is efficiently implemented

on GPGPU (see Section (5.1) for an outline on the equivalent 2D splitting based primal-dual

optimisation). They achieve a state of the art result evaluated on the Middleburry dataset

with processing times on commodity GPGPU hardware, which at less than two minutes for

the ring datasets, are orders of magnitude faster than the next best MVS method evaluated.

Recently Schroers et al. (2012) investigated the globally optimal range fusion approach

using anisoptropic regularisation and replacing the projective TSDF with a more accu-

rate approximation to the true Euclidean signed distance function demonstrating a small

increase in quality for objects with a low quality data term. Unfortunately their improve-

ment on the original technique leads to slower processing, requiring over one hour on the

temple dataset.

The globally optimal TV-`1 range fusion achieves both robustness to outliers in the surface
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measurements and enables water tight reconstruction of models despite missing data in

depth maps. However, in contrast to the weighted average depth map fusion approach that

does not require the depth map to be stored after it has been integrated, the summation

over all depth maps in the TSDF form under the `1 penalty requires revisiting the data term

in every iteration of a gradient descent on Equation (7.1). It is for this reason that Zach
et al. (2007a) was limited to evaluation on the reduced ring data sets, since global memory

needed to store the measurements was limited to the maximum memory of commodity

graphics cards at the time of the evaluation.

Zach (2008) introduced the novel TV-hist formulation removing this limitation by replacing

the data term in Equation (7.1) with an `1 penalty over a histogram of discretised signed

distance function measurements recorded at every voxel:

∫
Ω

{
‖∇u(x)‖1 + λ ∑

q∈Q
wq(x)|u(x)− q)|

}
dx . (7.2)

Here Q is the set of quantised SDF function values and the weight function wq stores the

frequency of observing a measurement q at the specified voxel. With the incrementally up-

datable histogram representation, the data term has a constant memory requirement and

the resulting globally optimisable energy functional has a computational cost for optimisa-

tion that is independent of the number of input depth maps.

Graber et al. (2011) further improved on the method by replacing the quadratic splitting

method in the original primal-dual approach with the first-order method of Pock and
Chambolle (2011), halving the required memory used for the gradient descent optimisa-

tion. Furthermore, they integrated the method into a full live dense reconstruction system.

The real-time visual SLAM system by Klein and Murray (2007) provides camera pose esti-

mation along with a set of bundle adjusted key-frames. By setting each new key-frame as a

depth map reference frame, and estimating a depth map using plane-sweep with a fixed set

of neighbouring key-frames, their pipeline interleaves integration of new surface measure-

ments into the histogram data term with a fixed number of iterations of the primal-dual

optimisation on the the regularised energy.

Most recently Wendel et al. (2012) demonstrated the system in use in a real-time distributed

processing context, enabling dense reconstruction of indoor and outdoor scenes by a micro

air vehicle. They also added a TV-`1 depth map denoising stage to the depth map estimated

pipeline, to increase resilience to noisy image data observed in data acquired from a real-

time moving camera. The hand held camera version of their live dense reconstruction

system (Graber et al., 2011), has also been demonstrated live during a recent workshop on

the subject (Newcombe et al., 2011a), where the dense reconstruction approach detailed
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in this chapter was also demonstrated. We briefly compare the results on a live dense

reconstruction data set at the end of the chapter.

7.4 Passive Reconstruction Pipeline

The volumetric TSDF reconstruction method described in Chapter (6) enables assimilation

of the massive number of surface measurements that can be estimated in each frame of a

video. Moreover, due to the density of video frames, a given surface patch can be observed

multiple times before leaving the camera frustum or becoming occluded. Since each frame

is integrated into the TSDF at frame-rate the best global surface estimate is available to

predict the next surface view given a known camera pose. In this section, we now detail

our live dense reconstruction pipeline that exploits this ability to predict and update the

current globally consistent surface at frame-rate.

7.4.1 Pipeline Overview

Figure 7.3: Pipeline Overview: The passive reconstruction pipeline broken into its main
three components. A new reference frame is selected as the next available frame from a
temporal image buffer and is then processed into a depth map using a selection of nearby
frames also within the buffer. The depth map is then integrated using weighted TSDF fu-
sion into the global model. Our reconstruction pipeline runs entirely on GPGPU hardware.

We discuss the pipeline, consisting of the three components outlined in Figure (7.3), from

the point at which a new frame furnished with an estimated pose, has become available.

In practice, real-time tracking mechanisms including the PTAM feature based tracker used

in the real-time experiments in this section and the dense tracker detailed in the following

Chapter (8), provide a quality of estimation output associated with an estimated pose.

Based on a threshold of tracking quality we therefore neglect to process frames with poor

quality pose estimate, e.g. when tracking is lost in PTAM and re-localisation is required

(Klein and Murray, 2008).

The aim of the passive reconstruction pipeline is to compute at frame rate a new depth map

using the multiple views available within a temporal window of the live frame, and to fuse

that depth map into a global model using the volumetric TSDF representation detailed

in Section (6.2). Importantly, to take advantage of the multiple-view stereo techniques

discussed in Chapters (4 and 5) we do not compute a depth map for the live frame but

instead use the frame at the center of a temporal buffer. To that end, the pipeline begins
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with selecting the next available reference frame and proceeds in three stages: (1) A surface

prediction is computed into the reference frame from the current global model. This is used

to guide a frame selection mechanism detailed in Section (7.4.2) that picks suitable frames

neighbouring the reference for the proceeding MVS pipeline. (2) A depth map is then

estimated for the reference frame using the selected multiple views. Depth map estimation

also makes use of the per-pixel prediction from the current model and is detailed in Section

(7.4.3). (3) The estimated depth map is then fused into the global model (subsection 7.4.4).

7.4.2 Depth Prediction and Frame Selection

Incremental Reconstruction

All incremental modelling pipelines must successfully address the challenge of utilising a

finite memory and processing resource while dealing with a potentially endless stream of

input images. Dense modelling using a depth map fusion pipeline, in particular, provides

a clear opportunity for open-ended incremental reconstruction, by ensuring that both the

acquisition and fusion of depth maps occurs using constant memory storage, and with

a maximum processing and memory bandwidth ensures a timely reconstruction that is

useful for the application it is serving.

To achieve this, a pipeline must make a basic trade-off. Given finite resources, and relative

to the frame rate of image capture, either a lower rate of higher quality depth maps can

be computed and fused into the reconstruction or a higher rate of lower quality depth

maps can be utilised. The computation time of a depth map is a function of the depth

map resolution and the number of pixels in total used in the optimisation, computed as

the resolution of input images times the number of frames used in the estimation. We can

therefore realise the trade-off by making a selection over those variables of image resolution

and quantity of neighbouring frames used in the estimation of each depth map, together

with selection of the input frames into which a depth map is estimated.

View Selection

Within the multi-view depth map estimation pipeline from Chapters (4) and (5), the rela-

tionship between the number and of views used in stereo estimation and its computational

cost is acute. Given a reference frame for which a depth map is to be computed, neigh-

bouring view selection is therefore a critical component in ensuring quality live incremental

operation. Video acquired using a moving camera routinely contains frames with motion

blur, image defocus, calibration errors and effects from dynamic illumination sources and

non-Lambertian surfaces which together with image noise make some frames less useful

than others. Figure (7.4) illustrates the resulting depth maps estimated for a single refer-
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(a) (b) (c)

(d) (e) (f)

Figure 7.4: Demonstration of the difference in depth map quality when using very narrow
and small baseline frames. Depth maps are computed using the multi-view stereo depth
estimation pipeline developed in Chapter (5). In (a-c) temporally consecutive frames from
the Graz City of Sights video dataset are used in the estimation of a depth map for the
central (blue) reference frame: showing a texture mapped mesh of the reconstructed depth
map with relative frame poses (a), Phong shaded mesh (b) and the depth map (c). In (d-f)
the same reference frame is used with more widely space frames leading to increases in
depth map quality for the surface observed. We note however that the baseline can not be
increased indefinitely due to the simplifying assumptions made in the patch based stereo
data term.

ence frame using two different sets of neighbouring frames using the full multi-view stereo

pipeline developed in Chapter (5). In the example, the increased baseline of the second set

results in drastically improved geometry estimation given the same processing resource

but requiring a larger temporal buffer of frames.

Hornung et al. (2008) developed the first fully automatic view selection mechanism specif-

ically for use in off-line MVS where the input image sequence is fixed in advance, noting

the interplay between modelling quality and processing times of reconstruction pipelines.

They perform a trade-off between using a greater number of observations of a scene which

enables the reconstruction of fine detail and deep concavities with reducing processing

times by discarding frames with redundant information. They adapted a greedy next

best view selection framework (Scott et al., 2003), which first builds a coarse geometry

proxy from all views using a basic occupancy grid mapping approach, and then proceeds
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to incrementally add views to an active set for use in higher quality multi-view stereo.

Views are added by reasoning about the reduction in photo-metric error that could be

achieved by including the view. Using the view selection as a pre-processing step on a

given input dataset, they demonstrated reduced processing times with equivalent or even

improved reconstruction accuracy on the full Middleburry multi-view datasets for several

MVS pipelines including the feature matching and patch expansion based MVS (Furukawa
and Ponce, 2007), surface growing (Habbecke and Kobbelt, 2007), deformable models

(Hernández and Schmitt, 2004), and volumetric graph-cuts Hornung et al. (2008).

More recently Hoppe et al. (2012) developed an online feedback mechanism for high qual-

ity structure from motion in which a sparse point cloud produced from the current SFM

result is used to build a coarse mesh-based geometry proxy over which a surface visibil-

ity measure can be computed. The result is a low quality reconstruction, updated in an

interactive manner that enables a user to decide if there are sufficient frames captured to

achieved the desired level of reconstruction in an offline setting.

Using Video Rate Input

In general, optimal view selection for any quality of metric is a combinatorial problem and

is necessarily sub-optimal given only a finite set of frames to be processed in an incre-

mental fashion. Working instead in an on-line MVS estimation setting, Gallup et al. (2008)

recognised the usefulness of dense video frame input over the comparatively sparse frames

used in offline reconstruction pipelines. Noting again the differing quality of reconstruc-

tions in Figure (7.4), the increased error in a stereo pair can be expressed as a result of

uncertainty in camera calibration and image measurements that propagates into error in

pixel correspondence εd leading to error in depth εz:

εz =
z2

b f
· εd . (7.3)

Here z is the surface depth, and b and f are the baseline and camera focal length. Gallup
et al. (2008) demonstrated that a constant error in depth can be achieved by exploiting the

density of video to set b dynamically. Video rate data enables setting of b by selecting

appropriately spaced neighbouring images relative to a given reference frame.

Predictive Frame Selection

We combine the variable baseline methodology with the predictive capability of an incre-

mentally reconstructed model to dynamically select wider or shorter baseline frames for

use in the depth map denoising framework. By computing depth maps for every input

frame we mitigate the problem of depth map frame selection, and focus instead on exploit-
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Figure 7.5: Depth Prediction and Frame Selection: Depth map prediction into reference
frame Twr, and Image Selection from rolling frame buffer.

ing the redundancy in the video rate input, to obtain high quality estimation under the

constraint of frame-rate operation. The depth prediction and frame selection mechanism is

outlined in Figure (7.5).

The frame buffer stores a rolling buffer of the last Nmax frames updated with each live

frame. The pipeline proceeds to select the frame at buffer location Nmax
2 as the next frame

into which a depth map is computed, referred to throughout this chapter as the reference

frame with pose Twr.

A surface geometry prediction is then computed from the current dense reconstruction

into a virtual frame with pose Twr. We compute a predicted range over the depth at each

pixel in the reference frame in the form of two depth maps, D+
r and D+

r , providing a per-

pixel estimate of the minimum and maximum depth given the current reconstruction. A

prediction validity mask Vr is also computed, where Vr(u) = 1 if the depth prediction for

pixel u is valid; otherwise Vr(u) = 0. Details for computing D+/−
r and Vr are given in the

next subsection.

Taking into account the extent of the reconstruction volume viewed by the reference frame,

if an estimate for a valid depth range is successfully produced into more than half of the

predictable reference frame pixels, we compute the minimum and maximum predicted

scene depth, {dmin, dmax} from D+/−
r . Using this range we select two subsets of frames

from the temporal frame buffer for use in multi-view depth map estimation.

The first subset, Bsb, will be used in a depth map denoising pipeline. Given the minimum

depth expected to be observed in the reconstructing frame, we select the n closest frames

that are within a scaled Euclidean distance δBmax /dmin of the reference camera and are

greater than δBmin /dmin apart from each other. Scaling the maximum threshold by the

distance to the predicted minimum ensures that a minimum visual angle to the closest
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(a) (b) (c)

(d) (e) (f)

Figure 7.6: Short baseline view selection mechanism: (a) Frame selection using closest tem-
poral views. (b) Resulting depth map data term minimum using frame selection from (a)
and associated confidence measure (c). (d) Dynamically selected short baseline views. (e)
Resulting depth map from improved selection in (d) and the increased confidence measure
(f). Depth maps are estimated using the normalised patch based data-term with the occlu-
sion robust data-term minimum, Section (4.4.3), and the per-pixel depth map confidence
measure is computed using Equation (4.13).

reconstructing surface is maintained, effectively fixing the expected minimum baseline;

decreasing the error in the depth map estimate according to Equation (7.3), and therefore

increasing the quality of correspondence that can be obtained. While the threshold δSmin

ensures that overly redundant views are culled.

We separate all selected views into two sets, partitioned given a reference frame with

pose Twr, that enable the occlusion robust depth map data-term minimum introduced

in Section(4.4.3) which is used in depth map denoising developed in Chapter (4). Us-

ing the frames temporally situated before and after the reference frame we compute the

camera translation delta direction vr = ν [twr+1 − twr−1], and compute the sets Bl
sb =

{Ii| 〈twi − twr, vr〉} ≤ 0 and Br
sb = {Ii| 〈twi − twr, vr〉} > 0. Figure (7.6) illustrates the selec-

tion mechanism in use showing the increased confidence in the depth estimate obtained.

A second subset Bwb is also selected for use in a multiple view stereo estimation we refer

to as MVS polishing from Chapter (5). This second depth map optimisation is initialised

with the depth map denoising solution, and exploits the redundancy in a wider baseline
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(d) (e) (f)

Figure 7.7: Demonstration of full two stage view selection mechanism in use with the depth
map denoising (DMD) and multi-view stereo depth map estimation. (a) Frame selection
using closest temporal views. (b) DMD using frame selection from (a). (c) MVS polish
using frame selection from (a). (d) Dynamically selected wider baseline frames. (e) DMD
using the improved short baseline selection from Figure (7.6) for comparison with the MVS
polish result using the wide baseline selection from (d) shown in (f). We note that using the
wider baseline view set with the MVS polish results in higher quality depth map estimates.

of views. Using the estimated minimum depth expected in the reconstructing frame, we

select the furthest m ≥ 1 frames using an increased threshold αδBmax and reduce the inter-

frame threshold. This selection scheme is motivated by the fact that the denoised depth

map provides a good initialisation to the global multi-view stereo optimisation, enabling

the exploitation of wider baseline views to obtain greater reconstruction accuracy. The

reduced inter-frame threshold enables sets of closely clustered views around the maximum

threshold distance to be selected, providing redundancy in the gradient computation used

in the linearised patch data-term in Equation(5.6). The resulting higher quality depth map

estimation is illustrated in Figure (7.7).

In Figure (7.8) we demonstrate the multi-view depth map estimation for using the left-right

view sets Bsb, computed using the view selection mechanism on a reference frame from the

Middlebury temple dataset that results in selection of 5 nearest frames to the reference from

the full dataset. The occlusion robust data term results in reduced outliers in the depth map

shown in Figure (7.8b). This can be compared to using the same frames without occlusion

handling resulting in the depth map in Figure (7.8a) shown with a reduced confidence in
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7.8: Demonstration of the depth map denoising pipeline from Chapter (4) using the
neighbouring view selection applied to a reference from the Middlebury temple dataset. (a-
c) Shows example data term minimum for the normalised patch based multi-view stereo
data term computed: (a) without explicit occlusion handling (b) using an optimal left-
right view mixture from Equation (4.19), and (c) using the minimum from the left or right
frame set dataterm minimum. Using a per-pixel depth range prediction from a partially
reconstructed model leads to reduced correspondence errors. (e) Demonstrates the data
term minimum equivalent of (a) but where the epipolar search is restricted within the
predicted interval obtained from the final model reconstruction. (f) Further uses the the
per-pixel depth range prediction with the occlusion robust data term minimum. (g) Show
the depth map denoising result applied to (f) which together with the confidence map (h)
constitute the predictive depth map input that is integrated into the TSDF surface.
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Figure 7.9: Predictive Stereo: search for the stereo data term minimum is restricted on a per
pixel basis using the predictive depth bounds. The multi-view stereo optimisation is then
initialised with the denoised depth map result.

non co-observable pixels shown in Figure (7.8d).

7.4.3 Predictive Stereo

Building on the multiple view stereo estimation techniques introduced in Chapters (4) and

(5), the predictive stereo component exposes the full potential of the incremental depth map

fusion pipeline which enables full frame predictions of the most up to date dense model in

real-time. In this subsection we begin by detailing the per-pixel prediction mechanism that

depends on the most up to date model reconstruction. We then describe the full predictive

stereo component outlined in Figure (7.9).

Per-pixel Depth Range Prediction

In Chapter (6) we detailed the incremental fusion approach that enables depth map esti-

mation and integration into a weighted volumetric TSDF surface representation. We also

detailed the ray casting prediction mechanism that enables a direct rendering of the current

surface into a virtual view, obtained as the zero level set of the implicit surface S(x) = 0.

Associated with the volumetric TSDF, the function W holds a weight at each voxel com-

puted from the integration of the uncertainty from all observations made on each voxel.

When integrating a surface measurements into the TSDF, truncation of the weighting func-

tion for negative SDF values beyond magnitude ε−S , is required to prevent interference of

front and back surfaces. Also, due to the limited uncertainty on the surface measurement

along a ray, positive SDF values are truncated beyond ε+S , while within the non truncated

region the integration of hundreds of surface measurements leads to an approximation of

the true signed distance function. As illustrated in Figure (7.10) we can render the extracted

weight function associated with the level sets of a partially complete reconstruction. Here

we look at the sets S = γ · ε−S , S = 0 and S = γ · ε+S , where the level γ enables tuning of
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(a) (b) (c)

Figure 7.10: Representation of the surface confidence is captured over increasing level sets
of the TSDF representation. Surface interfaces are shown for a partially reconstructed
model, rendering the level sets (a) S = γ · ε−S , (b) S = 0 and (c) S = γ · ε+S , where the
intensity of the pixel value on the surface represents the estimated confidence of the voxel.
The confidence for regions behind the surface which should not be directly observable
S = γ · ε−S is reduced relative to voxels in free space S = γ · ε+S .

the extracted range.

The implicit surface therefore provides not only a per-pixel depth prediction with an asso-

ciated weight, but importantly, the prediction is available for the interval ε+/−
S either side

of the zero crossing of the function. By taking a prediction either side of the zero-level set

it possible to obtain a current depth map prediction with a depth range that captures the

non-Gaussian, multi-modal nature of occlusion boundaries which is not captured explicitly

using a point or surface element based representation.

Each of the three level sets and the associated depth maps, illustrated in Figure (7.11),

can be extracted in a single ray traversal, starting with detection of the depth and weight

for S = γ · ε+S . During ray traversal, detection of the specific level set can lead to three

conditions. If a level set is not detected, no depth or weight are extracted at that pixel. If

a surface is detected at the specified level set, but the extracted weight at the interface is

below a thresholdW < εW , we also flag the prediction for the level as invalid. Otherwise,

if the level set is detected at the pixel andW ≥ εW then the weight and depth are extracted.

The resulting depth range prediction D−r , D+
r and validity mask Vr are set as follows.

Vr(u) = 0 if either any level set extraction weight value was below the specified threshold
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(a) (b) (c)

Figure 7.11: Corresponding depth map predictions with pixel validity mask for the three
extracted level sets shown in Figure (7.10). (a) Corresponds to the level set S = γ · ε−S ,
predicting the far range of the surface. Blue pixels indicate no predicted surface (estimated
free space within the reconstruction volume), green pixels indicate a predicted surface ex-
ists but with an associated confidence estimate that is under a threshold. Equivalently (b)
corresponds the zero-level set (S = 0) surface prediction, and (c) shows the predicted dis-
tance to the near surface estimate S = γ · ε+S . The TSDF representation enables prediction
of possible surface discontinuity changes given an small alteration in the surface location,
this enables high quality prediction of the possible range over which a data term should
be searched for. This view predictive capability can not be captured using a point based
scene representation even when point-covariance is estimated since the uncertainty over
the depth map given an uncertain surface is view dependent.

or free-space was detected. Otherwise, Vr(u) = 1 and the maximum predicted depth D+
r

is set to set to the ray intersection with the far surface prediction S = γ · ε−S , and D−r is set

to set to the ray intersection with the near surface prediction S = ε+S .

Predictive Depth Map Estimation

The per-pixel depth range prediction D+/−
r provides a bound on the depth measurement.

Using the short-baseline frame selection, Bsb, we therefore compute a depth map into

the reference but restrict the search for the per-pixel dataterm minimum to lie within the

bounds provided by D+/−
r . The data term minimum depth map is then denoised using the

weighted Huber-−`1 model from Section (4.5.4) producing an initial depth map D̂den
r . Next

we initialise the warp function in the continuous MVS framework from Section (5.2.2), and

make use of the wider baseline frame selection B̂mvs
r to compute the MVS polished depth

map D̂mvs
r which is used in the remaining depth map fusion component of the pipeline.
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(a) (b) (c)

Figure 7.12: Depth map uncertainty (a) and normal map estimate (c) which together the
depth map estimated for the reference frame (b), and used in the TSDF fusion. We note
that culling of estimated values with reduced visibility results shown on the reference
frame (b) results in the removal of potentially valid estimated depth map values.

In Figure (7.8) we demonstrate the potential benefit from using range prediction in com-

puting the multi-view stereo data term in comparison to using a complete search over the

maximal range of depths [dmin, dmax].

Depth Map Processing

Together with the depth map D̂mvs
r , the final output of the predictive stereo component

includes the depth map uncertainty Û den
r , computed on the data term minimum using

Equation (4.13). We also compute a surface normal estimate using the method described

in Section (6.1.1). We then measure the angle between the normal and viewing ray vectors

at each pixel, to determine depth values of low visibility which are culled if the normal is

near perpendicular to the viewing ray. In Figure (7.12) we show the resulting valid surface

measurement values on a reference image from the Middlebury temple dataset estimated

using the predictive depth estimation method. The associated depth map is shown in

Figure (7.8g) resulting from the depth map denoising and multi-view stereo depth map

estimation method.

7.4.4 Depth Map Fusion

As outlined in Figure (7.13a), the final stage of the passive reconstruction pipeline fuses

the estimated depth map into a global surface reconstruction using the volumetric SDF

approach presented in Chapter (6). Given the surface estimate uncertainty and normal es-

timates, we first compute a final depth map confidenceWm
r (u) for a pixel u in the reference
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(a)

Figure 7.13: Depth Map Fusion: Multiple view stereo depth map is integrated into the
global model using weights computed from the data term uncertainty and estimated sur-
face normals.

frame r:

Wr(u) = wvis(u) · watan(u) · Û den
r (u) , (7.4)

where wvis is the thresholded visibility measurement:

wvis(u) =

|
〈
ν
[
K−1u̇

]
, N̂mvs

r (u)
〉
| iff |

〈
ν
[
K−1u̇

]
, N̂mvs

r (u)
〉
| ≥ 0.05

0 otherwise .
(7.5)

In Section (3.2) we outlined the radial lens distortion model which we use to obtain a

rectilinear image. This is achieved in our system in practice by precomputing a warping

function from each pixel in the rectilinear image to the sub-pixel location in the original

image using Equation (3.14). The radial distortion in our wide angle lens results in pixels

in the rectified image which map outside of the radially distorted original image. The

weight watan 7→ {0, 1} provides a binary mask to zero those invalid pixels in the depth

map, since they have no contributing data. We note that in practice this is a very narrow

pin-cushioning region. Finally, the depth map is integrated into the global volume with

the pixel weighting using the incremental weighted average update in Equation (6.17).

In Figures (7.14a) and (7.14b) we show the continuous integration of depth maps into

the TSDF for the full Middlebury temple dataset. The evolving surface reconstruction

in rendered in increments of 30 integrated depth maps, rendering the surface normals,

together with a visualisation of the volumetric SDF using front-back volume rendering.

In Figures (7.15b-7.15g) we capture the state of the fusion process at three slices through the

volume for an evolving reconstruction of the temple dataset shown in full reconstructed

form in Figure (7.15a). In Figures (7.15b - 7.15d), plot the value of the truncated signed

distance for any voxel into which at least one measurement has been integrated. As sur-

face integration continues visualise a current conservative estimate of free space (show in

white), corresponding to saturation of the positive SDF, as well the decreasing region of

voxels which are yet to have any integrated measurement (shown in blue). We also visu-
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(a)

(b)

Figure 7.14: Surface reconstruction showing progression of 30 depth maps being incremental
fused into the volumetric SDF, starting with 1 depth map (left). (a) Raycast surface normal
rendering, using thresholding on the weight function Wr such that voxels with associated
weights below a confidence threshold are treated as free space. (b) Volume rendering of
the same surface evolution, where red shading highlights free space and surface interfaces
are shown as a blue to green transition.

alise the evolving interface using a scaling of the signed distance value to show positive

and negative regions, and highlight a thin band near the zero crossing (shown in red). We

progressively show the volume slice at 30 depth maps, Figure (7.15c), and then 300 depth

maps in Figure (7.15d) near model completion.

In Figures (7.15e-7.15g) we render the same surface evolution but where we utilise the

voxel weighting function Wr to threshold low confidence SDF values, also shown in blue

in the volume slices. For this reason, after one depth map is integrated the volume slices

remain empty as illustrated in Figure (7.15e). As the surface evolution progresses the

result is a conservative estimate of the reconstructed surface, as used in the prediction

mechanism detailed in the previous subsection. Comparing the final volume with and

without the thresholding, without the threshold free space errors are shown inside the

temple columns shown in Figure (7.15d), while Figure (7.15g) demonstrates that these

erroneous measurements are successfully attributed with a low confidence measurement

and can be thresholded away.
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(a)

(b) 1st (c) 30th (d) 300th (e) 1st (f) 30th (g) 300th

Figure 7.15: Complete reconstruction of the Middlebury temple model performed on the
full dataset (a). We illustrate the volume slices from which the volumetric SDF evolution
is tracked in figures (b-d) and (e-g), where each plane (top, middle, bottom) is associated
with the slices (1,2,3). In (b-d) we show the TSDF evolution where freespace is shown
in blue which zero level set show in red. (b) Shows the result after integrating 1 depth
map, followed by (c) 30 depth maps and (d) shows the near complete model with 300

depth maps integrated out of 312. (e-g) show the equivalent evolution using confidence
thresholding of the voxel weight function Wr. Confidence based thresholding results in
a a more conservative estimate of the known surface location used in model prediction
as described in Subsection (7.4.3). We will also make use of the conservatively estimated
geometry in the dense frame-model camera tracking method detailed in Chapter (8).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7.16: Reconstructed model using the full Middleburry temple sequence. Results
shown for the complete predictive pipeline including depth map denoising and MVS polish
shown in (a-d). (a,c) Model front and back views rendered with Phong shading. (b,d)
Surface normal rendering. Resulting reconstruction fusing the data term minimum only
depth maps, without depth map denoising or MVS polish are shown in (e-h), where (f,h)
illustrate the reduced confidence of the surface estimation compared with the full pipeline
confidence shown in Figure (7.10b).

7.5 Evaluating Live Dense Reconstruction

The passive reconstruction pipeline described in this chapter has been developed to exploit

the dense frame capture of real-time video. Beyond the idealised input used in highly

calibrated, fixed input, off-line MVS, the system has also been designed for interactive re-

construction, using the ability for a user in the loop to capture more data and complete the

reconstruction as required for a given live application. This ability in turn raises a number

of methodological challenges to system evaluation since one live dense reconstruction may

exploit feedback to a user in a very different way to another system, resulting in the process

in different input sequences being used.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

Figure 7.17: Qualitative comparison of reconstruction results for the full Middleburry temple
sequence. (a,b) Ground truth model. (c,d) a top performing off-line method by Hernández
and Schmitt (2004) which makes use of silhouttes. (e,f) Result from TV-hist (Zach, 2008)
as used in the live dense reconstruction system of Graber et al. (2011). (g,h) Result from
Merrell et al. (2007) available only with the 47 view ring dataset. (i,j) Reconstruction results
from the pipeline described in this chapter.

Static Image Dataset Evaluation

Of the two MVS dataset discussed in the introduction to this Chapter, the newer dataset de-

veloped by Strecha et al. (2008) provides higher quality imagery but the sequences consist

of only 20 wide baseline frames of high resolution. While we used subsampled versions

of the fountain dataset in evaluation of the depth map estimation methods developed in

Chapters (4) and (5), they are unsuitable for the pipeline developed here. In contrast, the

MVS dataset introduced by Seitz et al. (2006) provides a starting point for comparison of

our pipeline with other state-of-the-art systems due to the density of the full sequences.

In Figure (7.16) we present reconstruction results using the full Middleburry temple dataset.

System parameters include a bounding box of size of 0.12× 0.18× 0.1 meters with a res-

olution of 512× 256× 256 voxels. View selection of a maximum of 4 nearest frames was

used. Figures (7.16a-7.16d) illustrates results from the full pipeline consisting of depth map

denoising and MVS polishing followed by TSDF integration with all 312 frames. The depth
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estimation pipeline was configured with a quantisation on the solution of 200 depth sam-

ples evenly spaced in inverse depth where the frustum range was clamped to the bounding

box limits in each frame. The multi-view stereo pipeline was configured using the 3× 3

mean subtracted SSSD cost and was optimised in both the depth map denoising and MVS

polishing components using the gHuber-`1 model. In Figure (7.16e-7.16h) we demonstrate

the same reconstruction parameters but where integration of the raw depth map data term

minimum was used without de-noising or MVS polishing. In Figure (7.17) we provide

a qualitative evaluation of the reconstructed with the ground truth model and the two

systems on the evaluation page which are real-time capable alongside a state of the art

offline reconstruction result. We achieve a real-time capable live dense reconstruction on the

dataset: Computation time for the estimation and fusion of a single depth map using the

pipeline detailed is approximately 32ms using the full resolution 640× 480 image input,

and scales accordingly to approximately 20ms when the input images are cropped tightly

to the temple object. All depth map processing, fusion and rendering was performed on

an NVIDIA 680GTX GPGPU with 8 Multiprocessors × 192 CUDA Cores/MP with a total

of 1536 CUDA Cores.

Video Dataset Evaluation

Directly tackling the absence of useful evaluation aids for iterative systems, Gruber et al.
(2010) created the City of Sights evaluation framework. Their goal is to enable and improve

replicable evaluation of mixed and augmented reality research including real-time camera

tracking performance, live dense reconstruction, and various real-time graphics applica-

tions within augmented reality including object relighting. They provide a model of an

imaginary city scene comprising six buildings in both a virtual form as a ground truth

mesh model shown in Figure (7.19c), and also as digital textured blueprints which can be

printed out onto card and constructed into a physical model as illustrated in numerous

figures throughout this chapter and also shown in use in Figure (7.18a). The authors pro-

vide evaluation of the physical model and record an accuracy of 2− 3mm, with mean, root

mean square, and maximum errors of 1.93mm, 2.46mm, and 9.58mm respectively, achieved

by scanning the paper construction to an accuracy of approximately 0.12mm and using a

Hausdorff distance measure against the virtual ground truth mesh. The ability to construct

a physical model opens up evaluation of live dense reconstruction methodology in ways

which are impossible with a closed, static dataset.

In practice there are very few live dense reconstruction systems with which to compare

the results in an interactive setting. To further understand the specific qualities of eval-

uating these new systems we engaged the visual SLAM and computer vision communi-

ties with the 1st IEEE Workshop on Live Dense Reconstruction from Moving Cameras (LDRMC)
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(Newcombe, Davison, and Vogiatzis, 2011a), at the International Conference on Computer

Vision, 2011.

In Figure (7.18) we provide snapshots from the work shop where the system developed in

this Chapter was run in a live demonstration side-by-side with the system developed by

Graber et al. (2011). In both systems the parallel tracking and mapping system from Klein
and Murray (2008) provided the real-time camera pose estimates with the key-frames being

used as described in Section (2.1.2).

We also evaluated our system on a video sequence captured of the City of Sights dataset

consisting of a 3”30′ of loopy motion browsing the scene, again using pose estimates from

PTAM. In Figure (7.19a) we render the resulting model geometry computed using our

pipeline and for comparison with the reconstruction obtained using the TV − hist convex

optimization method used in Graber et al. (2011) shown in Figure (7.19b). Following the

evaluation methodology used by Gruber et al. (2010) and employed in the model recon-

struction evaluation used in Graber et al. (2011) and Wendel et al. (2012) we align the

reconstruction with the virtual ground truth model using ICP, minimising the point-plane

error (Chen and Medioni, 1992), including compensation for the scale ambiguity in recon-

struction from a monocular camera. The Hausdorff distance measure is then computed

against the ground truth mesh and we evaluate the resulting surface error, illustrated in

Figure (7.19d) with the estimated error histogram. The resulting reconstruction accuracy is

commensurate with the constructed paper model with increased error over larger stretches

of supporting geometry where the paper model can flex. There is also reduced accuracy at

surface edges. It is important to note that without improved physical model accuracy and

ground truth pose estimation, further quantitative evaluation of the system is of question-

able importance. We instead present the system as one of the first demonstrations of live

dense reconstruction and will employ further effort in understanding how such evaluations

can be formalised.
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(a) (b)

(c) (d)

Figure 7.18: Live Dense Reconstruction in practice at the LDRMC workshop at ICCV 2011

(Newcombe et al., 2011a). (a) City of Sights model by Gruber et al. (2010). Simultaneous
live demonstration on the City of Sights model with (b) Graber et al. (2011). (c) the pipeline
developed in this Chapter. (d) Live demonstration of the system by Woodford et al. (2011)

.
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(a) Model result from the pipleline described here. (b) Model result from (Graber et al., 2011).

(c) Ground truth synthetic model. (d) Surface Error between (a,c).

0 10 155

(e) Surface error (mm) histogram and colouring for (d).

Figure 7.19: Reconstructing the City of Sights from Gruber et al. (2010). (a) Reconstruction
from the pipeline described in this Chapter. (b) Result from Graber et al. (2011). (c) Virtual
ground truth model. (d) Error surface visualisation between (a) and (c). (e) Error histogram
with associated colour key for the surface error in (d), ranging from 0mm - 17mm error,
quantised into 256 bins. We note that the cited root mean square error for the constructed
paper model relative to the ground truth is approximatley 3mm (Gruber et al., 2010).
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(a) (b)

(c) (d)

(e) (f)

Figure 7.20: Top and side views of a second reconstructed Graz City of Sights dataset with
confidence map prediction (a,b) together with the normal map (c,d) and Phong shaded
rendering (e,f).
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7.6 Summary and Future Work

We have demonstrated the effectiveness of a depth map fusion paradigm in live dense re-

construction with a single moving camera, but a serious limitation of all of the depth map

fusion pipelines discussed in the introduction of this chapter, and including the method

described here, stems from the use of a regular grid implementation of the volumetric SDF,

making a trade-off between reconstruction accuracy and volume size inevitable. In Chapter

(1) we advocated dense reconstruction and dense SLAM approaches as a component within

a more complete scalable SLAM system by exploiting submapping techniques. In the light

of the advances made in the last decade into high quality dense reconstruction researchers

have begun to tackle large scale scalable dense reconstruction. In Section (9.3) we outline

recent work for real-time dense reconstruction using a commodity depth camera where the

sparsity of surfaces in the embedding volume are exploited. Advanced work by Fuhrmann
and Goesele (2011) goes beyond replacing the regular grid SDF with a multi-resolution or

adaptive tree structure. They also tackle a major problem associated with integration of

locally estimated projective depth measurements over vastly different scales of measure-

ment uncertainty, a critical problem for dense reconstruction over a large range of scales

since error scales quadratically with depth. This problem in particular is of special interest

for passive reconstruction pipelines since in principle it is possible to reconstruct objects

scaling from mountain ranges to leaves with a single moving camera.
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In this chapter we describe how to make full use of the geometric and photometric pre-

dictions available from the dense surface model and perform model based tracking of a

live sensor as it browses the scene. The result is a camera tracking pipeline that enables all

pixels in a live image to be used directly in the optimisation of the camera pose, removing

the need for the explicit feature extraction and matching components used in sparse visual

SLAM pipelines.

The chapter is composed of two halves. First we develop a model based tracking framework

for use with a single passive camera. Section (8.1) provides an overview of successful real-

time tracking methodologies. In Section (8.2) we then formulate the direct tracking method

for estimating the full SE3 pose of a single passive camera, making full use of both the

geometric and photometric predictive capabilities described in Chapter (6). We make use

of this direct tracking approach within the dense tracking and mapping (DTAM) visual

SLAM system discussed in Section (9.2), where we compare the direct tracking approach

211
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in a real-time comparison with the feature-based tracking capabilities of PTAM.

In the second half of the chapter we turn our attention to tracking using a commodity

depth sensor that provides live depth map estimates at frame-rate. In Section (8.3) we pro-

vide the background to tracking using geometric measurements alone and detail a direct

approach for depth camera tracking using only the geometric predictions available from a

dense model. In Section (8.4) we then develop a depth camera tracking pipeline that can

directly exploit a volumetric SDF representation of the surface and provide a comparison

of the basins of convergence for these trackers. In Section (9.3) we will describe the Kinect-

Fusion dense SLAM system that combines direct depth map pose estimation with surface

reconstruction, demonstrating the dense tracking and mapping components detailed in

this thesis can be used to achieve online, real-time, SLAM without the need to explicitly

extract and track features.

All of the methods developed perform a form of incremental pose estimation, and strongly

rely on the small inter-frame motion which can be expected in live frame-rate imagery as

a user or robot browses a scene. In Section (8.5) we describe a re-localisation strategy that

is used to recover the camera pose if the incremental tracking mechanisms fail.

8.1 Motivation for Dense Photometric Tracking

Tracking from a known 3D model can be accomplished in a multitude of ways that span a

range of feature-based to direct methods.

8.1.1 Monocular Model-Based Tracking

Lepetit and Fua (2005) provided an extensive overview of 3D tracking research with a

particular emphasis on methods that achieve real-time or online operation using only a

single passive video camera. As with the incremental dense reconstruction pipeline we

discussed in Chapter (6), the emphasis here is on achieving robust and accurate estimation

within a constant time frame applicable for real-time operation.

Tracking approaches can be categorised into techniques that compute a camera pose through

a form of recursive or iterative estimation, relying on the previous camera pose to produce

a strong initial estimate of the new state through a motion model, versus methods which

perform tracking by detection, producing a reliable pose estimate without the need for

such initialisation.

The online camera tracking systems that we are interested in make use of prediction mech-

anisms that drastically simplify the correspondence problem; whether correspondence is
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obtained explicitly, as in feature-based tracking frameworks e.g. extended Kalman Filter

based tracking (Davison and Murray, 1998), or when estimating the camera pose by min-

imising a whole-image error using a direct optimisation approach introduced in Chapter

(1) and detailed in this Chapter. In both types of system the ability to predict the location

of features to be matched in the live frame results in more efficient estimation, due to the

reduced image area over which the explicit correspondences are sought or by reducing the

number of iterations required to minimise the direct tracking objective function (Handa
et al., 2012). If however live tracking does fail, tracking by detection provides a solution to

the harder camera relocalisation problem; when little or no information is available about

the current camera pose.

The general framework for tracking by detection has its roots in structure from motion

estimation using robustly acquired feature correspondences introduced in its modern form

by Torr and Zisserman (1999). Geometric primitives such as points or line segments with

associated descriptors based on the photometric appearance of the model are extracted

in an off-line learning phase (Lepetit et al., 2005). Estimation of the relative transform

between the model and camera is then obtained by matching the model descriptors with

equivalent primitives extracted from the live frame leading to 2D − 3D correspondences.

Correspondence can be efficiently achieved using vocabulary trees (Nister and Stewenius,

2006) based on inverted file indexing (Sivic and Zisserman, 2003). Assuming enough

model features can be detected in a live frame, the tracking by detection framework elim-

inates any pose error accumulated in the previous frame, producing an independent pose

estimate in each new frame. While such methods have been demonstrated to work in real-

time (Lepetit and Fua, 2006), they are typically more computationally demanding than the

recursive estimation techniques that assume small inter-fame motion.

Coming out of earlier non-visual target tracking (Bar-Shalom and Fortmann, 1988), recur-

sive estimation methods instead make use of a strong prior on the incremental nature of

the pose update. Harris and Stennett (1990) introduced RAPID (Real-time Attitude and

Position Determination), the first monocular model-based tracking system to demonstrate

real-time performance. Performed either on-line or off-line, the system first extracts feature

locations in the geometric model that project to salient image features such edges. In each

new frame, the system computes an estimate of the model features using a pose prediction

through a motion model. 2D − 3D correspondences are then sought by searching locally
near the predicted feature locations. Given explicit correspondences, a Kalman filter style

update on the camera pose state is then performed. A multitude of modern systems work

using essentially the same predictive correspondence seeking framework.

Both of the approaches outlined above make use of explicit feature correspondences, and
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this leads to questions of whether a sufficient set of features can be extracted and matched

in the live frame. As we discussed in Chapter (1), the explicit correspondence using the fea-

ture extraction and matching pipeline can result in catastrophic failure for a visual SLAM

system undergoing rapid agile camera motion or when tracking through regions of low

texture. In Section (1.4) we presented an alternative direct approach that instead takes ad-

vantage of a whole image prediction from a dense generative appearance model, enabling

a pixel-wise error to be defined over the whole image for a given camera pose. Camera

tracking is then be achieved using standard gradient descent style optimisation on the en-

ergy function, obtaining an implicit dense correspondence between the surface model and

image.

8.1.2 Direct Alignment

All direct approaches formulate a pixel value based error measure between a target (model)

image and the current view under a parametrisation of motion between the images. In

this simplest case, motion between the model and current views is parametrised directly

in the image plane. For example, if the current view is nothing but an in plane 2D
translation of the model image, then from the brightness constancy assumption we have

Il(u + t) = Ir(u) for u ∈ Ω. A simple whole image error can be computed by summing

up all pixel errors under a quadratic penalty. The estimation of the parameter vector can

be achieved by searching for the t ∈ R2 that minimises this whole-image alignment error:

argmin
t∈R2

{
E(t) = ∑

u∈Ω
(Il(u + t)− Ir(u))2

}
. (8.1)

Although impractical in general, for the above 2D image motion it is possible to search a

small region of the parameter space explicitly, an example of the error surface for a local

region around a known solution was given for the image alignment example in Chapter

(1), from which the global minimum can be extracted.

Lucas and Kanade (1981) introduced the now widely used gradient descent based incre-

mental approach to solving the alignment problem. Since E(t) is non-convex in the param-

eter vector t, they first obtain a first order Taylor series expansion of Il(u + t0 + ∆t) given

an initial estimate t0. The linearised error function under a quadratic penalty function is

then readily solved for ∆t via the normal equations, that then is used to update the current

estimate t← t0 + ∆t.

Importantly, gradient descent on the whole-image error generalises to arbitrary transfor-

mation of the pixel locations. Replacing the simple translation vector by a general pixel

transform w(x, u), and inserting a robust metric ψ in place of the quadratic penalisation
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in Equation (8.1), we can define the more general error function taking as an argument a

parameter vector x ∈ Rn:

Ew(x) = ∑
u∈Ω

ψ (e(u, x)) (8.2)

e(u, x) = Il(w(u, x))− Ir(u) . (8.3)

Following the parametric optimisation approach outlined in Section (3.3), we approximate

the second order Taylor series expansion of Ew(x0 + ∆x) in Equation (3.34), replacing the

Hessian with its Gauss-Newton approximation in Equation (3.35). Setting the derivative of

this locally convex approximation to zero results in the weighted normal equations which

are then solved for the parameter increment ∆x:

∆x = −
(

∑
u∈Ω

J(u, x0)
> J(u, x0)

)−1

∑
u∈Ω

ψ′(e(u, x0))J(u, x0) . (8.4)

Here the per pixel Jacobian term J(u, x0) is:

J(u, x0) =
∂Il(w(u, x))

∂x

∣∣∣∣∣
x0

, (8.5)

and ψ′(e(x0)) computes the derivative of the penalty term wrt to the error:

ψ′(e(u, x0)) =
∂ψ(e(u, x))

∂e(u, x)

∣∣∣∣∣
x0

. (8.6)

The resulting incremental update ∆x, is then added onto the current estimate of the pa-

rameter vector:

x← x0 + ∆x . (8.7)

This new estimate is then used in an updated linearisation point of the whole image er-

ror and the optimisation is iterated. In Section (8.2.3) we will look at the coarse-to-fine

embedding of this iterative optimisation, to improve the correctness of the linearisation re-

quired for the gradient descent approach. The final parameter estimate can be acquired in

a just-in-time manner given a fixed computational budget, or otherwise when convergence

is achieved using the general criteria discussed for Gauss-Newton optimisation in Section

(3.3). We will use this formulation in remaining sections of the chapter, where we detail

the direct approach for camera pose estimation.

A number of essential works on the iterative direct estimation method have been produced.
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Irani and Anandan (1999) summarised several of the important aspects of direct tracking,

demonstrating the use of robust error functions in rejecting outliers outside of the modal

motion known as the locking property (Irani et al., 1994); the use of coarse to fine optimisa-

tion to help in convexification of the error function (Bergen et al., 1992); and replacement

of the single pixel brightness constancy based error term with more photometrically ro-

bust measures. Building on the practical success of the Luckas-Kanade technique, Baker
and Matthews (2004a) and Szeliski (2006) provided a thorough exposition of the range of

developments within the direct tracking framework, including more efficient formulations

for warp functions that form a group, resulting in the inverse compositional method re-

quiring only a single Jacobian computation (Baker and Matthews, 2004b); comparison of

techniques for robust estimation using pixel confidence weighting of the normal equations

and robust cost function (Baker et al., 2003b); robustness to linear changes in appearance

(Baker et al., 2003a); and incorporating prior knowledge on the solution into the optimisa-

tion (Baker et al., 2004a).

8.2 Direct Photometric Tracking

In this section we detail the use of the direct approach described above for estimating the

pose of a live camera. We assume that the camera is viewing a scene for which we have

obtained a (partial) dense reconstruction.

We are interested in computing the live camera pose relative to a dense model in a common

world frame of reference in which the model is anchored, Twl ∈ SE3. We will formulate all

optimisations relative to a known reference frame with pose Twr. Using the techniques

developed in Chapter (6) we can compute a geometric prediction in the form of a depth

map Dr and a photometric prediction Ir. Solving for the relative transform Tlr between the

reference and live frames, the live camera to world transform is then Twl = TwrT−1
lr .

SO3 and SE3 Incremental Parametrisation

We parametrise the desired transform Tlr = [Rlr|tlr] ∈ SE3 as a composition of transforma-

tions starting from an initial estimate T̃lr,

Tlr = exp(x̂n) exp(x̂n−1)... exp(x̂0)T̃lr . (8.8)

Here, the minimal set of rotation and translation parameter x ∈ R6s for the rigid body

transform is:

x =

(
ω ∈ R3

υ ∈ R3

)
, (8.9)
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and the operator ˆ forms the matrix:

x̂ =

(
[ω]× υ

0 0

)
∈ se3 , (8.10)

where [ω]× ∈ R3×3 is a skew-symmetric rotation component:

[ω]× =

 0 −ω2 ω1

ω2 0 −ω0

−ω1 ω0 0 .

 . (8.11)

The exponential map exp : se3 7→ SE3 takes the minimal parameter vector to the corre-

sponding Euclidean rigid body transform SE3 group (Ma et al., 2003). When x ≈ 0 the the

infinitesimal transform enables a locally valid first order linearisation of exp(x̂) to approx-

imate the transformation as a linear function of the incremental parameters x.

In the following two sections we look at estimating the 6DoF pose of a camera relative to a

known reference frame. We will start by first looking at estimation of camera motion which

is assumed to be undergoing pure 3D rotation. In this case the warp function utilised

is independent from the observed scene depth. While the motion assumption is clearly

violated by a camera under general motion, it is often the case that the largest component

of pixel displacement between live frames of a moving hand-held camera are caused by

camera rotation. We have found that by first approximating the full 6DoF problem with

the lower dimensional one, we can obtain an initial estimate of the motion parameters that

can better initialise the full SE3 camera motion, reducing the number of iterations required

for full 6DoF camera tracking.

8.2.1 Tracking Camera Rotation

For a camera undergoing pure rotation, the pixel transform from the reference frame into

the live view takes the form of a homography parametrised by the SO3 component of the

rigid body transform:

ul = π
(

KRlrK−1u̇r

)
. (8.12)

Given an initial rotation estimate R̃lr, our function is parametrised by ω ∈ R3 using the the

skew-symmetric rotation matrix in Equation (8.11):

wSO3(ur, ω) = π
(

K exp([ω]×)R̃lrK−1u̇r

)
. (8.13)
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Inserting wSO3 into the whole image error in Equation (8.2) we now perform the linearisa-

tion of Ew(x0 + ∆) around x0 = 0 with ∆ = ω; hence we compute J(u, 0) in Equation (8.5)

for wSO3 :

J(u, ω) =
∂Il(wr)

∂wr

∂wr(u, ω)

∂K exp([ω]×)T̃lru̇r

∂KexT̃lru̇r

∂ω
. (8.14)

Defining (x, y, z)> = R̂lru̇r, the resulting 1× 3 gradient vector for pixel u is computed as:

J(u, ω) =

(
∇x Il

∇y Il

)>( fx
z 0 − x fx

z2

0 fy
z − y fy

z2

) 0 z −y
−z 0 x
y −x 0

 . (8.15)

Evaluating the Jacobian at x0 = 0 together with chosen penalty term derivative (see later

Section (8.2.4) for details on this derivative), the linear system is solved for ω, and the

resulting incremental rotation is composed onto R̂lr:

R̃lr ← exp([ω]×)R̃lr . (8.16)

For warp functions that form groups including the SO3 pose estimation described above,

Baker and Matthews (2004b) introduced the efficient inverse-compositional approach that

drastically reduces the practical cost for single core processors of computing an iteration

by removing the need to recompute the per pixel terms J(0). Malis (2004) introduced

ESM (Efficient Second order Method) using a higher quality Hessian approximation in the

approximation of Ew, resulting in quadratic convergence rates and more recently demon-

strated within a visual SLAM setting for real-time spherical moasicing (Lovegrove and
Davison, 2010) and real-time planar tracking (Lovegrove et al., 2011). Within our live cam-

era tracking pipeline we utilise the trivial parallelisability of the algorithm described above,

implementing the evaluation of the Jacobian and error terms in Equation (8.5) and Equation

(8.6) on commodity GPGPU hardware as described in Section (3.5). We note that within

the parallel setting the computational cost of the direct tracking approach is dominated by

the reduction operation which is linear in the dimensionality of the reduced vector. This

provides the impetus to reduce the number of iterations required for the higher dimension

6DoF estimation, described below, by first attempting to minimise image motion resulting

from rotation alone. We make use of this two stage tracking approach within all of the

6DoF tracking systems described in this chapter.
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8.2.2 Tracking Camera Rotation and Translation

To track the full 6 6DoF of the camera we make use of the full geometric and photomet-

ric prediction and perform. We obtain the camera to world transform Twc by estimating

a relative pose Tlr between the live frame and a reference frame into which we have pre-

dicted a depth map Dr and image Ir. Baker et al. (2004b) describe the 2.5D Lucas-Kanade

algorithm, extending the forward additive approach for aligning an image into a reference

frame using a template surface representation in the form of a 3D point associated with

each pixel in the reference frame image.

Following the incremental estimation method, we assume an initial estimate T̃lr and parametrise

the warp function with x ∈ R6, transforming the geometry at each pixel in the reference

frame into the live frame:

wSE3(u, x) = π
(

K exp(x̂)T̂lrK−1Dru̇r

)
. (8.17)

This is exactly the warp function used throughout the previous depth estimation chapters,

where here we are optimising wrt the pose parameters instead of the depth. Inserting wSE3

into the whole image error in Equation (8.2) we perform the linearisation of ESE3(x0 + ∆)

around x0 = 0 with ∆ = x. Hence we compute the Jacobian J(u, 0) for wSE3:

J(u, x) =
∂Il(wr)

∂wr

∂wr(u, x)
∂K exp(x̂)T̃lrDru̇r

∂K exp(x̂)T̃lrDru̇r

∂x
. (8.18)

Defining (x, y, z)> = T̃l̂rDru̇r, the resulting 1× 6 gradient vector for pixel ur is computed

as:

J(u, x) =

(
∇x Il

∇y Il

)>( fx
z 0 − x fx

z2

0 fy
z − y fy

z2

)1 0 0 0 z −y
0 1 0 −z 0 x
0 0 1 y −x 0

 . (8.19)

Evaluating this Jacobian together with the derivative of the chosen penalty term at x0 = 0,

the weighted normal linear system in Equation (8.4) are solved for x = [υ, ω] and taken

to an element SE3 via the exponential map. Composition onto the initial transformation

estimate computes the new solution point:

T̃lr ← exp(x̂)T̃lr (8.20)
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8.2.3 Coarse to Fine Optimisation

To ensure that the quadratic approximation to the error function is meaningful and hope-

fully leads to minimisation of the original error, the inter-frame pixel displacements re-

quired to bring the images into alignment should not be too large. The criteria for too large

in practice depends on both the geometry and texture appearance present in the scene.

Given the initial transformation used in the linearisation of Il , the brightness constancy

assumption relating the images produces the equivalent optic flow constraint on a pixel:

Il(w(u, ∆x)) ≈ Il(w(u, 0)) + J(0)∆x , (8.21)

⇒ Ir(u)− Il(w(u, 0)) ≈ J(0)∆x . (8.22)

For this linearisation to hold we must ensure that the magnitude of the displacement in

pixel units is not larger than the characteristic width of the texture at the corresponding

locations in the reference and live images.

By filtering out higher frequency components we can reduce the aliasing that occurs for

pixels undergoing larger displacements (Bergen et al., 1992). This forms the basis of the

now standard hierarchical or coarse to fine motion estimation as described in the original

paper by Lucas and Kanade (1981). A considerable computational saving is also achieved

subsampling the filtered image to a sufficient resolution for representation of the frequen-

cies present.

Figure (8.1) outlines the general coarse to fine optimisation scheme for both SO3 and SE3

tracking. Looking at first at rotation only tracking: given the initial pose parameters, we

begin optimisation on the coarsest resolution of the image pyramid. The warp function at

every level of the pyramid is associated with a scaled intrinsic calibration matrix, which is

used in the linearisation of the error function. The resulting weighted normal equations

are solved for the incremental rotation parameters, and the associated SO3 rotation trans-

formation is composed onto the initial pose parameters to obtain a new linearisation point.

We continue to iterate the non-linear optimisation on the coarse pyramid level until con-

vergence criteria is met, or a fixed maximum number of iterations passes. We then move to

optimisation on the next finest resolution of the pyramid, initialising the parameter vector

with the current solution, and continue optimisation until convergence or a fixed number of

iterations have passed. We continue moving to finer levels of processing, but note that this

need not be the original image resolution since even for the large amounts of sub-sampling

in the image the linear system in each iteration can be massively overdetermined.

The coarse to fine optimisation for SE3 pose estimation utilises the dense predicted geom-

etry and requires a little more attention. As discussed in the Chapter (6), the depth map
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Figure 8.1: Dense tracking pipeline using a coarse to fine with warping scheme for both
SO3 and SE3 optimisation. Given the reference image (and for SE3 optimisation also the
geometry) pyramids and also a live image we estimate the relative transform between the
two frames starting with allignment between the coarest images. Gauss-Newton optimisa-
tion at each pyramid level requires correct scaling of the calibration matrix to account for
the change in image resolution. Optimisation proceeds in a coarse to fine manner using
the estimated pose from a previous coarser stage to initialise the linearisation of the error
function at each new level.

prediction from a partially completed model may contain pixels with no valid geometry

prediction. Given the depth map validity mask Vr we perform sub-sampling using the a

min operation on valid depth values within a 2× 2 neighbourhood. The min operation

replaces the low pass filter used in image sub-sampling to ensure that depth discontinu-

ities are not smoothed over. Pose optimisation again begins at the coarsest pyramid level.

It should be noted that after each Gauss-Newton gradient descent iteration for the SE3

optimisation, we are faced with a decision of whether to update the the predicted ge-

ometry by setting the reference frame to the current estimated pose, or to continue with

a constant reference frame. The main benefit to updating the reference frame given the

estimated camera pose, is a potentially improved geometric and photometric prediction.

Depth discontinuities that will occur with relative translation between the reference and
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estimated frames are reduced, and if using the view dependent texture mapping based

photometric prediction described in Section (6.4), the photometric accuracy of the model

can be increased as the parameters convergence on the correct solution. However, as noted

in Section (8.2.6), there is a substantial computational cost associated with predicting the

view at each iteration.

8.2.4 Robust Penalty Functions

Implementation of the tracking methods used in the preceding sections requires compu-

tation of the penalty function derivative ψ′(e(u, x0)) in Equation (8.6). A specific penalty

can be derived in a principled way given assumptions over the error distribution in like-

lihood form. The original quadratic penalty term, ψ(e(u, x0)) = 1
2 e(u, x0)2 used in Lucas

and Kanade (1981) is obtained when assuming a Gaussian distribution over error in the

its likelihood form, where the derivative is simply e(u, x0). This derivative is also known

as the influence function, since when for non-Gaussian distributed error over the likelihood,

the penalty function obtained is not quadratic, resulting in the derivative ψ′ being a non-

linear function of the error which can be viewed as weighting the residuals in the standard

least squares estimation procedure. As discussed in Section (3.4.1) the `1 penalty follows

from assuming a Laplacian distribution over the error in likelihood form, and requires ad-

ditional regularisation to ensure ∂ψ(e)
∂e 6= 0 when e = 0, but provides increased robustness

by constant weighting of residuals in comparison to the linearly increasing influence from

the quadratic penalty. The Huber penalty provides a hybrid quadratic function for an inlier

distribution, with an `1.

The Tukey bi-square function (Tukey, 1960), provides even great resilience to outliers. The

penalty is defined piecewise as:

ψ(e) =

 c2

6 (1− [1− ( e
c )

2]3) if |e| ≤ c ,
c2

6 if |e| > c ,
(8.23)

with a piece-wise influence function, ψ′ :

ψ′(e) =

e[1− ( e
c )

2]2 if |e| ≤ c ,

0 if |e| > c .
(8.24)

The tuning parameter of the bi-square function is set to c = 4.685σ, and for the Huber

parameter in Equation (3.47) is set to α = 1.345σ, using the estimated standard deviation

of the error σ. In practice we provide a parameter for a user to alter the parameter. We

have found that both the Huber and Tukey penalisation functions provide effective tracking
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performance in the presence of outliers, and provide demonstrations of their effectiveness

in this setting later on in this chapter.

8.2.5 Illumination robustness

All of the error functions described in the preceding sections assume brightness constancy,

and while the use of a photometrically calibrated camera mitigates variation caused by

changes in exposure time it can not account for variation caused by changing global illu-

mination, or when viewing surfaces which are not perfectly Lambertian.

Development of direct methods that capture a larger range of appearance variation can be

traced back to the original Lucas-Kanade paper where the generative model is extended

to include linear appearance variation modelled using a set of basis functions that modify

the original template image (Lucas and Kanade, 1981). Optimisation is then performed

on the extended set of parameters including the transform and coefficients for each of

the appearance basis functions. State of the art direct alignment approaches that can cope

with dynamic lighting scenarios go much further, obtaining illumination-invariant tracking

by exploiting 9D spherical harmonic linear representations of the image (Xu and Roy-
Chowdhury, 2007, 2008).

However, such explicit appearance modelling is unable to handle complex shadowing caus-

ing local appearance changes as well as more intricate inter-surface reflections that occur

in non-Lambertian scenes. A more computationally efficient approach attempts to first

pre-process the images to obtain illumination-invariant input which can then be aligned

under the brightness constancy assumption, without any increase in parameters. One of

the simplest models of appearance change assumes the warped reference is also altered by

a global bias b and gain G: e(u, x) = (Il(w(u, x)) · G + b)− Ir(u), which can be removed

simply by pre-processing both the reference and live frame to have zero mean with unit

variance.

Invariance to local illumination changes can be similarly achieved by pre-processing the

images to remove the low frequency variations that break the brightness constancy as-

sumption. This can be performed by subtracting the smooth texture component from a

structure-texture decomposed image (Wedel et al., 2009). Alternatively, the image Lapla-

cian energy |∇2 I|2 removes low frequency image components. Irani and Anandan (1998)

noted that while the Laplacian energy at a pixel is invariant to contrast inversion, gradient

information useful for alignment is lost when using such a rotationally symmetrical op-

erator. Instead they performed alignment with a vector image composed such that each

component is the magnitude of one dimension of the the image derivative. They further

extended the simple per pixel error to using a patch based normalised correlation, resulting
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Figure 8.2: Full dense SE3 frame-to-model tracking pipeline. We track each live frame Il
against a current predicted reference frame comprising predicted depth map Dr and pho-
tometric prediction Ir. We initialise the SE3 optimisation using an estimate of the relative
rotation between the live and previous frames using the coarse to fine SO3 optimisation.

in impressive multi-modal image alignment.

In practice we find that a simple pre-processing method suffices when using a photometri-

cally calibrated camera within a small indoor workspace scenario, and in many scenarios

we find there is no need to use pre-processing other than photometric normalisation given

the calibrated camera. When it is deemed necessary we therefore filter out low frequency

image content by subtracting from each image in the image pyramid, a Gaussian convolved

version of the image with a filter twice the standard deviation of the filter used in the sub-

sampling operation. In the following subsection we outline the full dense tracking pipeline

which includes a further mechanism to increase robustness to illumination change.

8.2.6 Frame to Model Tracking Pipeline

The complete model based tracking pipeline is outlined in Figure (8.2). We begin estima-

tion of the live pose T̃wl by initialising the parameters directly with the previous frames

pose Twp, equivalent to a constant position motion model. Then, relative to the previous

image Ip the frame-to-frame SO3 transform is estimated using the rotation only warp wSO3

(subsection 8.2.1). This rotation is composed with the live pose estimate. Using this up-

dated live pose we fix a predictive reference frame Twr ← T̃wl and compute photometric

and geometric predictions Ir and Dr with which to perform frame-to-model SE3 estima-
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tion using the full translation and rotation warp wSE3 (subsection 8.2.2), leading to the

incremental update of the reference frame and new model prediction. There is a potential

benefit in iterating the outer loop prediction-optimisation steps where the photometric and

geometric predictions are re-rendered using the optimised live pose parameters. However,

we find the using the prior frame-to-frame SO3 optimisation to obtain the initial transform

T̃wp ← Twp[R̃pl |0] typically results in the first predictive model estimate being sufficiently

close to the live pose that iterations of the outer loop do not substantially reduce error

further.

The geometry independent frame-to-frame rotation estimation typically reduces the dis-

parity between corresponding image elements efficiently, reducing the number of itera-

tions required with the more computationally expensive 6 parameter SE3 transform while

increasing the basin of convergence for the dense tracking pipeline. Furthermore, since

the whole images are used, photometric appearance variations caused by illumination or

non-Lambertian surfaces are lessened. A further route to robust tracking within the di-

rect model-based tracking framework, is to construct a reference frame using the previous

frame image in combination with the model geometry predicted into that frame. Since

consecutive frames are likely to share local degradation due to illumination changes and

motion blur, this frame-to-frame hybrid model can increase robustness for SE3 tracking.

This technique was recently demonstrated by Comport et al. (2011) to provide a good ini-

tialisation to the more standard frame-to-model tracking. In practice we did not find that

this provided significant improvement over the frame-to-frame SO3 pose initialisation.

In our pipeline, the dense photometric prediction required for SE3 tracking can be com-

puted either through direct raycasting when photometric fusion is used, or by the key-

frame based view dependent texture mapping mechanism. As detailed in Section (6.4.2)

the key-frame approach provides a sparse unstructured light-field approximation of the

scene, capturing useful predictions of non-Lambertian appearance changes. Tracking us-

ing this approximation is therefore of interest and is related to the method developed by

Heigl et al. (2000), where tracking is achieved by performing particle filtering (Isard and
Blake, 1996), using a likelihood model based on photometric predictions obtained from a

free-form light field representation of the environment (Heigl et al., 1999). Samples from

the camera pose distribution in the particle filter produce photometric predictions from the

light field, where re-weighting of the particles can be achieved by computing a simple per-

pixel difference with the live image, leading to the updated posterior distribution. From

this potentially multi-modal distribution they extract the maximum likelihood estimate of

the camera pose.



8.2. Direct Photometric Tracking 226

Basic Accuracy Comparison

In Sections (4.5.8), (5.2.5) and (7.5), we evaluated the live dense reconstruction pipeline

described in Chapter (7) using a video dataset of the City of Sights (Gruber et al., 2010).

In that experiment the camera trajectory was estimated using the bundle adjustment based

PTAM system (Klein and Murray, 2008). The reconstruction accuracy was evaluated in

Section (7.5) and shown to be near the limit of the physical paper model construction accu-

racy of 3mm RMS error. In this experiment we use the dense reconstructed model together

with the PTAM camera pose for each frame of the ≈ 2”30′ video sequence, and treat both

as pseudo ground truth data. We compare this trajectory with that obtained using the

direct SE3 tracking method described in this section, where the geometric prediction was

obtained using direct ray-casting on the volumetric TSDF, described in Section (6.3). Here

we are interested in evaluating basic accuracy of the direct tracking approach relative to

the feature-based psuedo ground truth. For each frame of video sequence we therefore

estimate a pose Tw-fuse using photometric prediction with the fusion approach from Section

(6.4.1), and a pose Tw-vdtm, using the key-frame based view dependent texturing predictions

from Section (6.4.2). In this experiment we construct the photometric model (either through

fusion or by dropping texture key-frames) using the pose estimated from PTAM. This is to

enable comparison of the direct tracking approach together with either of the prediction

methods in the best possible conditions. We compare these two trajectories against the

PTAM pose at each frame Tw-ptam, by computing a relative se3 parameters from the relative

PTAM to photometric fusion trajectory:

xptam-fuse = log(T−1
w-ptamTw-fuse) , (8.25)

and likewise for the key-frame texturing predicted sequence:

xptam-vdtm = log(T−1
w-ptamTw-vdtm) . (8.26)

Here, log : SE3 7→ se3 is the matrix logarithm that returns the 6 parameter vector repre-

senting the 3 element axis-angle rotation ω, and the inter-frame translation vector υ. The

resulting histogram of each component over the sequence demonstrates that the estimated

pose for both methods of prediction with the frame-to-model tracking pipeline generate

high quality pose estimates, shown in Figure (8.3).

Since the estimation is obtained from a monocular sequence, we note that the translation

component of each frame to world transform needed to be scaled to obtain a translation

units in meters which was possible given the scale factor estimated between the recon-

structed and ground-truth City of Sights model in Section (7.5). Both methods of photo-
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(a) υ0 error in m (b) υ1 error in m (c) υ2 error in m

(d) ω0 error in radians (e) ω1 error in radians (f) ω2 error in radians

Figure 8.3: Histograms of relative frame error translation in meters (a,b,c) and rotation in
radians (d,e,f) for the Graz City of Sights video dataset using the direct tracking approach,
and comparing the method when either photometric fusion (blue) or key-frame based view
dependent texture mapping (red line) photometric prediction was used, error is relative to
a psuedo ground truth estimated using PTAM. We plot the histograms of the se3 elements
from the relative transform computed between the psuedo ground-truth PTAM pose and
the two tracjectories obtained using direct frame-model tracking from Section (8.2.6), details
for the error computation performed are given in the main text. We note that the resulting
trajectory from either of the photometric prediction mechanisms results in a pose which
induces sub-pixel accurate flows given the model geoemtry.

metric prediction yield a pose estimate that is close to the PTAM pose. We note that the

photometric fusion approach to texture prediction surprisingly yields a less skewed error

distribution over all 6 pose parameters relative to PTAM. However, given this level of accu-

racy further experimentation is required on a synthetic dataset for which there is a ground

truth pose and geometry available since the error component is likely to be the result of

error not only in the directly estimated trajectories but also in the PTAM pseudo ground

truth.

This experiment shows the basic capability of high quality direct tracking given a model

reconstructed and textured using the pipelines detailed in the previous chapters using

the online pose estimate provided by PTAM. In Sections (9.2) and (9.4) we will go on

to demonstrate dense reconstruction results obtained where we instead interleave LDR

with direct camera tracking using the current partial reconstruction, demonstrating the
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completely dense tracking and mapping pipeline.

8.3 Direct Depth Image Tracking

There are situations where the assumptions made by the passive image based tracking

framework described in the preceding section do not hold, a trivial case of which is when

there simply is no useful measurement available, such as in complete darkness. More per-

vasive is the low level and dynamic lighting scenario presented by many modern living

rooms with large bright screens that continue to provide challenges to real world visual

SLAM systems. In other scenarios the SLAM system must cope with active dynamic illu-

mination in the scene. One recent example (Jones et al., 2010) demonstrates a mixed and

augmented reality application where a sensor pose must be tracked for the purposes of

geometry aware projection. In such an application, knowledge of the scene geometry and

live sensor pose enable live renderings of a synthetic dynamic scene to be projected onto

the surfaces that provide an illusion of being correctly placed 3D objects to a observer.

Very recently, commodity depth cameras that produce high quality active depth sensing

have become available. Cameras that use either time of flight or structured light tech-

nology typically compute a 30fps VGA resolution depth image stream. In particular the

Microsoft Kinect and Asus Xtion Pro devices provide depth camera solutions that achieve

an active sensing range of 0.4 to 7 meters with an error variance which scales with depth of

approximately 1% of the true depth measurement over the range. Moreover, the measure-

ments are extremely robust to dynamic lighting, providing high quality dense depth maps

for a range of textured or homogeneous surfaces with the exception of highly specular

mirror like surfaces. It is therefore highly desirable to perform live dense reconstruction

and dense SLAM with such devices. In this section we look at tracking from an available

dense reconstruction using only geometric surface predictions from the model and only

surface measurements obtained from a commodity depth camera. We will go on to make

use of this direct depth camera tracking in Section (9.3) where we present KinectFusion,

a fully dense SLAM system that combines the real-time volumetric TSDF reconstruction

with direct tracking.

Successfully aligning a set of 3D point clouds or depth images forms the basis of many suc-

cessful robot navigation and map building systems in robotics (Thrun et al., 2005). In com-

puter graphics, scan alignment is a critical component of model reconstruction pipelines

used in augmented reality applications in film, computer-assisted surgery, crime scene

modelling (Sansoni et al., 2009) and digital archaeology (Levoy et al., 2000).

Whether tracking a depth camera against a known environment map within a SLAM ap-
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plication or aligning scans of objects for reconstruction in a object modelling pipeline,

techniques for automatic registration of 3D data sets lie on a similar spectrum to those out-

lined for passive tracking. To achieve fully automatic registration between frames where

no information on relative alignment is available, pairwise surface matching pipelines per-

form 3D feature extraction and matching to obtain 3D − 3D point correspondences and

then solve for parameters of a specified transform such as SE3 that minimises matched

correspondence distance (Huber and Hebert, 2003). A number of fully 3D descriptors that

work only on surface geometry have been development for such pipeline which forms the

basis of 3D object recognition. Examples include spin images (Johnson and Hebert, 1999);

point signatures (Chua and Jarvis, 1997); and harmonic shape images (Zhang and Hebert,
1999); all of which attempt to produce a local transform invariant shape descriptor for a

given region of the surface model or measurement. Matching of descriptors proceeds using

a chosen metric within a robust fitting frame-work such as RANSAC Fischler and Bolles
(1981); Horn (1987) produced the original solution for obtaining the rigid body transform

from known 3D− 3D point correspondences.

When an initial transform estimate is available, blind surface matching is not need and

incremental surface alignment strategies can minimise a pairwise surface error objective

function similar to the photometric error based direct methods. The previously described

surface matching pipelines often make use of such direct alignment strategies to obtain

higher accuracy estimates, and since we make use of the strong prior on the camera trajec-

tory available from tracking real-time depth map stream, we focus solely on direct methods

here.

Horn and Harris (1991) introduced the range image analogue of the brightness constancy

constraint equation known as the elevation rate constraint equation and produced the first di-

rect alignment method for use explicitly with range images. They obtained 6DoF pose es-

timation using a least squares minimisation of the range error induced by motion between

two frames using the spatio-temporal derivatives of the whole image error. Although the

method was specifically designed to make use of small baseline motion and required no

explicit correspondence matching between frames, researchers have only relatively recently

revisited this direct formulation that was independently anticipated by Gruen (1985) and

used by Gruen and Akca (2005). Instead researchers found increased performance and

flexibility in teasing apart the implicit correspondence assumption made in a using spatio-

temporal range derivative into a modularised pipeline known as Iterative Closest Points

(ICP). In the following section we describe this well-known surface alignment strategy

with the specific modifications that make it suitable for efficient real-time depth camera

tracking.
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8.3.1 Iterative Closest Point Optimisation

Given two points clouds with an initial transform estimate, the iterative closest point algo-

rithm, developed independently by several researchers Besl and McKay (1992); Chen and
Medioni (1992) and (Zhang, 1992), interleaves two basic components until convergence:

1. Estimation of correspondences between the point clouds based on a measure of closest

proximity (distance); 2. Optimisation over the relative transform parameters that results in

minimisation of the sum over the distance metric between those correspondences.

Rusinkiewicz and Levoy (2001) provided a concise overview of the many variations of the

above two step algorithm that have been introduced. While the basic pipeline was devel-

oped over two decades ago, the core of any modern iterative surface alignment strategy

retains these key features. Below we break the two step algorithm into finer grained com-

ponents, and refer to original taxonomy produced by Rusinkiewicz and Levoy (2001) for

the numerous alternative algorithms available within each component.

1. Sampling points: Rather than using all points in both meshes, sampling strategies can

be used to reduce the set of points that will used in the rest of the pipeline. While uniform

or random sampling can reduce the set to some predefined fraction of the total points (Turk
and Levoy, 1994), more sophisticated sampling strategies make a selection based on some

measure of local distinctiveness of a points region similar to feature extraction mechanisms

and can be designed to increase the stability of the chosen error metric that will ultimately

be minimised (Gelfand et al., 2003).

2. Matching samples: In contrast to a full feature extraction and matching pipeline, the

core of the original point based ICP algorithm uses a simple heuristic to obtain correspon-

dences: given a sample in one point cloud, the closest point under a Euclidean distance in

the other is sought (Besl and McKay, 1992). Here the distance refers to a geometric dis-

tance rather than a distance of an extracted descriptor vector. Closest point computation is

computationally demanding and can be accelerated by storing the point cloud data in a k-d

tree form requiring O(log n) complexity per point look-up. Later in Section (8.4.3) we ex-

plore use of the volumetric signed distance function to avoid building such an acceleration

structure within a dense reconstruction and tracking setting.

In the following section we instead make use of a projective closest point approximation

introduced by Blais and Levine (1995) and Neugebauer (1997) that exploits the projective

depth map structure. A projective closest point is obtained using an estimated relative

transform by perspectively projecting a point from one depth map into the other and se-

lecting the point at the projection location in the image. For small inter-frame motion this

method has constant time complexity, and although clearly an invalid strategy for obtain-
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ing correspondences at depth discontinuities, holds well in practice for smoothly varying

regions.

3. Correspondence weighting and rejection: Putative matches based the closest distance

heuristic can be culled from or down weighted in the following error minimisation scheme

if the associated points are deemed incompatible. We will further discuss basic compatibil-

ity heuristics based on geometric distance of the matched points in the next section.

4. Minimisation of an error metric: The parametrised transform between the point sets is

then estimated by minimising the sum over all correspondence distances. If the selected

pairs contain no incorrect correspondences and the error over each 3D point is Gaussian

then the Euclidean point to point distance metric can be minimised using a number of

closed form techniques (Eggert et al., 1997). The original point to point distance based

ICP developed by Besl and McKay (1992) used a sum of squared distances equivalent to

a quadratic penalisation function with a Euclidean distance metric. Zhang (1992, 1994)

replaced the quadratic penalisation with more robust error metrics. If normal estimates

are available with each point, alternative distance metrics include point to tangent-plane

(Chen and Medioni, 1992):

Distpoint-plane = nr · (p0 − pr) , (8.27)

which computes the shortest Euclidean distance of the point p0 from the plane defined

by the unit normal nr passing through the point pr. More recently Segal et al. (2009)

introduced the plane-plane distance metric formulating a fully probabilistic account of the

ICP process. All distance metrics can be further modified for optimisation of an incremental

transform and solved using iterative non-linear minimisation techniques, making use of the

robust estimation process when robust penalty terms are selected, as described in Section

(8.2.4).

Fast ICP

Rusinkiewicz and Levoy (2001) performed a systematic evaluation of the variants of ICP

looking at both computational complexity of the pipelines as well as practical performance

measurements. Their evaluation led Rusinkiewicz et al. (2002) to a selection of components

most suitable for a high speed small-baseline ICP alignment of two projectively acquired

depth map measurements. They used this pipeline in the first real-time surface alignment

implementation using point clouds produced from a structured light based depth camera.

Their fast ICP pipeline consists of: A. Random sampling a sub-set of points from one mesh;

B. Projective data-association of the source points; C. Rejection of pairs which exceed a

given point-point distance threshold; D. Minimisation of the remaining sum of point-plane



8.3. Direct Depth Image Tracking 232

errors under a quadratic penalty.

Notably, this early live dense reconstruction system achieved a 10Hz rate of alignment of

near VGA resolution depth scans. However, computational limitations resulted in the need

to sample the point sets to reduce the computational load of both the data association and

the resulting non-linear optimisation procedure.

The Fast ICP pipeline is trivially paralellisable. We can therefore use the pipeline with all

data available in a single depth frame in a GPGPU implementation, increasing robustness

to outliers in the data. An illustrated overview of the fast ICP pipeline is given in Figure

(8.4). We detail the optimisation procedure in the remainder of this section.

8.3.2 Projective Data Association and Point-Plane Error

Given an initial estimate of a live pose T̃wl , and a dense surface model we can compute a

depth map reference Dr, with an associated normal map nr and a geometry validity mask

Vr described in Section (6.1.1). The depth map can be rendered using either the raycasting

or mesh based geometric prediction mechanisms from Section (6.3). Initialising the relative

reference frame to live frame transform T̃lr with R̃lr = I3×3 and t̃lr = 0, we proceed to

align the measurement depth map Dl onto the surface model, combining projective data

association with the point-plane error function in Equation (8.27) into a direct iterative

scheme. To that end, we define a whole depth image error which we will optimise using

the Gauss-Newton gradient descent approach:

Ew(x) = ∑
u∈Ω

ψ (e(u, x)) (8.28)

e(u, x) = N>r (u)(exp(x̂)vl(u′)− vr(u)) , (8.29)

Here vl(u′) is the projectively data associated live vertex at estimated pixel correspondence

u′ for the reference vertex vr(u) at pixel u with normal Nr(u):

vr(u) = K−1u̇Dr(u) , (8.30)

vl(u′) = T̃rlK−1u̇′Dl(u′) , (8.31)

u′ = wse3(u, x0) = π(KT̃lrvr) . (8.32)

Here wse3 is the same warp function as used previously in photometric tracking in Equation

(8.17), evaluated at the current transform estimate T̃lr, but where the incremental transform

exp(x̂) has been moved outside of the perspective projection. The warp function provides

the projective data association by computing the corresponding pixel in the live depth map,

pairing points between the reference and live images which currently lie on the same ray,



8.3. Direct Depth Image Tracking 233

(a) The model (grey) is rendered into the esti-
mated frame. We can sample points from this
model in image space (red dots).

(b) Projective data-association with the live frame:
Corresponding are selected by pairing points
which lie on the same ray (red-yellow dots).

(c) Each pair, has a point-plane constraint: the
surface normal estimated from the model pro-
vides the normal since it is higher quality.

(d) Each point-plane constraint provides an error
measure as the shortest distance of the live image
point to the tangent plane of the corresponding
model point.

(e) Pairs fail a point-plane compatibility if the
point-point Euclidean distance or normal-normal
angle exceed thresholds.

(f) A Gauss-Newton based iterative gradient de-
scent minimisation of the sum of point-plane er-
ror induced by the remaining pairs results in the
new pose estimate.

Figure 8.4: Fast projective data-association based ICP steps. (a) Given the initial pose es-
timate we render the reference depth map which is used for multiple iterations of the
fast ICP. Projective data association (b) followed by pair compatibility testing (c,d,e) and
minimisation of the point-plane energy (f) are iterated until convergence.
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(a) (b) (c)

Figure 8.5: Example of point-plane outliers as person steps into a partially reconstructed
scene shown rendered in (a). Outliers from compatibility checks (Equation 8.33) using a
metric surface measurement from Kinect (b). Ω(u) 6= null are shown in red, Vl(u′) are
shown in black and outliers are shown for incompatibility in normal (green) and both dis-
tance and normal (blue). In (c) we demonstrate the improved data association by perform-
ing tracking on a bilateral-filtered version of the raw depth map used in the KinectFusion
application described in Chapter (9).

illustrated in Figure (8.4b).

The above error function makes the assumption that all pixels in the reference frame have

correspondence under the initial transform in the live depth image. This is not correct

for surface elements that are occluded under the estimated transform. The use of a ro-

bust error metric in (8.28) can mitigate explicit modelling of such occlusion errors. If the

depth images are metric measurements of the surface, then we can instead use an explicit

rejection step using informative thresholds on the expected error of a matched pair such

that correspondences should have a point-to-point distance and normal-to-normal angular

difference within some thresholds, illustrated in Figure (8.4e).

To achieve this we restrict the set of vertex correspondences {vl(u′), vr(u)|Ω(u) 6= null} by

testing the predicted and measured vertex and normal for compatibility: a threshold on

the distance of vertices and difference in normal values suffices to reject grossly incorrect

correspondences, also illustrated in Figure 8.5:

Ω(u) 6= null iff


Vl(u′) = 1, and

‖T̂rlvl(u′)− vr(u)‖2 ≤ εd, and

〈R̂rl Nl(u′), Nr(u)〉 ≥ εθ .

(8.33)

Here εd and εθ are threshold parameters of the system. The quadratic penalisation function

can then be used with the remaining inlier set Ω(u) 6= null.

Computing a Gauss-Newton update as outlined in Section (3.3) we derive J(u) with the
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point-plane error function in Equation (8.29):

J(u, x) =
∂e(u, x)

exp(x̂)T̃rlvl(w(u, x))
exp(x̂)T̃rlvl(w(u, x))

∂x
. (8.34)

Defining (x, y, z)> = T̃rlvl(w(u, x)) the resulting 1× 6 gradient vector for pixel u is com-

puted as:

J(u, x) =

nx

ny

nz


>1 0 0 0 z −y

0 1 0 −z 0 x
0 0 1 y −x 0

 , (8.35)

which together with the error function derivative evaluated at x0 = 0 results in a linear

system which is solved for x and taken to an element SE3 via the exponential map. Com-

position onto the initial transformation estimate computes the new solution point:

T̃lr ← exp(x̂)T̃lr . (8.36)

Stability and validity check for transformation update As inter-frame sensor motion in-

creases, the assumptions made in both linearisation of the point-plane error metric and the

projective data association can be broken. Also, if the currently observable surface geom-

etry does not provide point-plane pairs that constrain the full 6DoF of the linear system

then an arbitrary solution within the remaining free degrees of freedom can be obtained.

We therefore perform a check on the null space of the normal equations to ensure it is ad-

equately constrained. We also perform a simple threshold check on the magnitude of the

incremental transform parameters x, to ensure the small angle assumption was not drasti-

cally broken. If either test fails, tracking is stopped and the system must be relocalised. We

describe a basic relocalisation mechanism in the final section of this chapter.

8.4 Direct Signed Distance Function Tracking

The projective data association based ICP pipeline makes use of the depth map structure

available for surface measurements obtained from depth cameras and stereo systems. If,

however, no such supporting data structure is available, acceleration of the closest point

computation is required to reduce the O(nm) computational cost for two meshes with m
and n points.

Fitzgibbon (2001) provided an important insight into the ICP algorithm, and reformulated

ICP by replacing the explicit data correspondence followed by error minimisation steps

with a direct Newton-style minimisation over the distance metric embedded in the closest
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point computation:

argmin
Tlr∈SE3

∑
ul∈Ω

min
ur
{ψ (v(ur)− Tlrv(ul))} . (8.37)

Furthermore, he noted the importance to application in dense reconstruction, where the

majority of systems that require mesh alignment to bring partial scans into a common

frame of reference utilise some form of distance function approximation to achieve a global

reconstruction. One example of which is the volumetric SDF fusion approach described in

Chapter (6). Mitra et al. (2004); Pottmann et al. (2004) developed the same direct optimi-

sation strategy but using efficient approximations to the full distance transform, including

the octree based d2-tree approximation to the distance field (Leopoldseder et al., 2003).

In either case, optimisation of Equation (8.37) can be achieved using a direct numerical

gradient descent on a discretised distance transform of the reference surface.

Since a truncated signed distance field is provided in real-time at the core of the dense

reconstruction mechanism detailed in the previous chapters, it is of interest to investigate

the potential of using it directly for dense tracking, bypassing the need to compute a geo-

metric prediction. In the following section we derive the Gauss-Newton step for the direct

distance function tracking with small modifications to account for the truncation region in

which no valid distance is available. In Section (8.4.3) we then outline a standard procedure

for computing the exact Euclidean distance function but seeded by the truncated SDF. We

then compare the convergence performance for the point-plane and both truncated and

exact direct distance function tracking methods.

8.4.1 Distance Transform Error function

The truncated signed distance transform S has zero crossings at the reconstructed surface

interface. Given a live depth map measurement Dl and an estimated transform into the

world (model) frame T̃wl we can define the error induced by the incorrect sensor pose by

directly summing up the magnitudes of the SDF values located at the transformed points

in S.

A vertex in the live image at pixel u is incrementally transformed by T̃wl exp(x̂) to obtain

the single pixel error: which can then be indexed in S:

e(u, x) = S[c(T̃wl exp(x̂)vl(u))] , (8.38)

vl(u) = K−1u̇Dl(u) , (8.39)

c(v) = Sq
v> − S0,0,0

Sr
. (8.40)
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c(v) transforms a continuous point measurement v from reconstruction units within the

reconstruction volume with origin S0,0,0 and extent or range Sr = Sx,y,z − S0,0,0 to the dis-

cretised voxel grid with resolution Sq = (qx, qy, qz).

An optimal pose will transform the whole surface measurement from the live to the world

frame, where all indexed points in S have an absolute distance value near zero, modulo

errors in S and Dl . We therefore define the whole image energy in the live frame that we

want to minimise:

Etsd f (x) = ∑
u∈Ω

ψ(e(u, x)) . (8.41)

Again we can derive the Gauss-Newton update using the approximation to the second

order Taylor series expansion of Etsd f using Equation (3.35). The resulting minimisation

requires computation of J(u) for the error function in Equation (8.41):

J(u) =
∂e(u, x)

∂x
=

∂S[c(v)]
∂v

exp(x̂)T̃rlvl(u)
∂x

. (8.42)

The current measurement transformed into the global frame is (x, y, z)> = T̃wlvl(u) and

the resulting 1× 6 gradient vector for pixel u in the live frame is computed as:

J(u, x) =
Sq

Sr

∇xS
∇yS
∇zS


>1 0 0 0 z −y

0 1 0 −z 0 x
0 0 1 y −x 0

 . (8.43)

The gradient ∇S is evaluated using finite differences, and since the truncated signed dis-

tance function has ∇S = 0 within the positive and negative truncated regions and is not

defined in unobserved regions care must be taken to use only valid TSDF values for the

gradient computation. The scale factor Sq
Sr

transforms the signed distance function gradient

from the discretised grid units into reconstruction units.

The resulting 6× 6 linear system can be solved through a Cholesky decomposition:

x = −
(

∑
u∈Ω

J(u, x)> J(u, x)

)−1

∑
u∈Ω

ψ
′
(e(u, x)J(u, x)) . (8.44)

The solution vector x is taken to an element in SE3 via the exponential map, and composed

onto the initial transformation estimate to obtain the current solution point:

T̃wl ← T̃wl exp(x̂) . (8.45)
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We note that at convergence to the true solution there is an equivalence between the direct

tracking Jacobian in Equation (8.43) and the point-plane Jacobian in Equation (8.35) since

the gradient of the SDF, which is perpendicular to the isosurface, is the surface normal.

8.4.2 Full Distance Transform

The above direct TSDF tracking approach adds only a minor modification to the optimi-

sation presented in Fitzgibbon (2001), ensuring only valid gradient computations are per-

formed within the SDF region. Unfortunately, the truncation region presents a more basic

problem for achieving high quality tracking using the TSDF representation from Chapter

(6). In reconstruction, the truncation region must be kept small to ensure front and back

surfaces do not interfere. This enables reconstruction of thinner surfaces and finer detail

and serves to reduce distortion due to the projective approximation to the TSDF used when

constructing the field. Since truncation of the distance field effectively provides only a thin

band of usable SDF gradient values near the reconstructed surface, the available basin of

convergence for the optimisation is drastically reduced. We now outline the method to

construct the true Euclidean distance field from the TSDF and demonstrate the increased

ability to achieve convergence from large baselines that it affords.

8.4.3 Computing the Euclidean Distance Transform

There is a vast literature on computing distance transforms, arising from three main re-

search communities in computational physics, computer vision and computer graphics. In

each area this has given rise to efficient approximations for computation of the distance

transform in multiple dimensions given an initial surface boundary (Jones et al., 2006).

Since we will utilise the complete distance transform for tracking purposes only we can

ignore the sign of the distance that is crucial in the dense reconstruction framework since

the error to be minimised is a function of the positive distances. We can define the distance

transform over a discrete grid G, computing the distance at each grid location p ∈ G to a

known discretised surface P ⊂ G :

S(p) = min
q∈P

(d(p, q) + f (q)). (8.46)

Here d(p, q) defines a distance metric between the point p and q and when f (p) is the

indicator function 1(q):

1(q) =

0 if q ∈ P

∞ otherwise
(8.47)

the result is the classic distance transform.
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(a) Projective TSDF,
truncation ≈ 5mm.

(b) True EDT,
truncation ≈ 60mm.

(c) True EDT,
truncation ≈ 300mm.

(d) True EDT to
boundary.

Figure 8.6: An example exact Euclidean distance transform for a partial reconstruction of a
desktop scene, obtained using the truncated signed distance function integration approach
from Chapter (6). In each figure we volume render the distance function, using a colour
mapping to highlight the shape of the field moving away from the surface interface. In (a)
we show the thin band of distance values obtained from the TSDF volume, it is clear that
the thin band used for the reconstruction results in vast sparsity throughout the volume
(white space), where no useful gradient is available for the direct tracking approach. In
(b,c,d) we render the equivalent exact distance function truncating the distance to highlight
the growing convexity of field away from the interface. Note that surface features present
on each level set (constant colour) become more prominent nearer to the interface. This
far-field behaviour of the full distance field leads to a large basin of convergence.

The simplest brute force approach directly evaluates all point pairs in d(p, q), storing the

minimum obtained for the grid point p. The complexity is O(mn) for m reference points

on a grid with n voxels, which for the size of voxel grid and mesh vertices required to

represent the surface presents an infeasibly large problem to solve in near real-time even

on modern GPGPU hardware.

When the distance metric is Euclidean, d(p, q) = ‖p − q‖2, a classic approximation from

image processing introduced by Borgefors (1986) propagates the minimum distance from

the surface boundary conditions out, called the Chamfer distance. The resulting distance

field is relatively cheap to compute with complexityO(n), independent from the number of

points representing the surface, but results in distorted fields due to metrication errors. The

distortions can be decreased by using a larger mask region, with increasing computational

expense.

Felzenszwalb and Huttenlocher (2004) established the relationship between the squared

Euclidean distance transform and its minimum convolution operator, leading the way to an

efficient O(n) computation of the exact Euclidean distance transform which we utilise here.

The essence of the method is the computation of several 1D distance transform. Letting

the 3D grid be G = (0, ..., h− 1) × (0, ..., w− 1) × (0, ..., d− 1) the 3D squared Euclidean



8.4. Direct Signed Distance Function Tracking 240

(a) EDT surface
truncation.

(b) Error prior to
outliers.

(c) ψ as quadratic
penalty.

(d) ψ as Huber
penalty.

Figure 8.7: Example tracking using the true distance field computed using the EDT on an
office desktop scene. In (a) we render the scene showing the level set of the distance field
at approximately 30mm truncation, resulting in the blob like appearance of the modelled
objects. In (b) we show an example error image in the live frame, prior to motion of hand
and arm shown in the bottom right corner of the reconstruction: red pixels indicate no valid
surface measurement while the intensity of the remaining pixels indicate the absolute error
computed in Equation (8.38). In (c,d) a hand in the scene moves presenting outliers to the
static scene. In (c) the use of a quadratic penalty term results in a biased solution, while
in (d) the Huber penalty is capable of down-weighting the outliers resulting in the correct
pose estimate.

distance transform is:

S f (x, y, z) = min
[i,j,k]∈G

((x− i)2 + (y− j)2 + (z− k)2 + f (i, j, k)), (8.48)

f (i, j, k) = 1(i, j, k). (8.49)

Noting that the squared Euclidean distance can be separated in each dimension, Felzen-
szwalb and Huttenlocher (2004) compute:

d f (x, y, z) = min
i
((x− i)2 + d f |i(y, z)) , (8.50)

d f |i(y, z) = min
j
((y− j)2 + d f |ij(z)) (8.51)

d f |ij(z) = min
k

((z− k)2 + f (i, j, k)) . (8.52)

The resulting algorithm first computes the 1D distance transform for all rows of G along a

chosen dimension for example along z in Equation (8.52). The resulting rows then define

the new function d f |ij which replaces the initial indicator function f . The distance transform

is then computed for all rows in a second dimension using d f |ij , computing d f |i in Equation

(8.51). Finally the distance transform is computed using d f |i on all rows of the remaining

dimension in Equation (8.50). The result of this final transform is a squared Euclidean

distance transform, which we convert using a square root back to the euclidean distance

metric. The complexity of the algorithm which can be used for any grid with dimension

k is O(kn) for n grid points and is trivially parallelisable since all rows are computed in-
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dependently for each dimension. We seed the initial distance transform using the square

of the thin band of SDF values from the TSDF removing the need to first extract and dis-

cretise the surface interface for computation of the indicator function f (i, j, k) in Equation

(8.52). Figure (8.6) illustrates the vast increase in available, valid, distance values obtained

by computing the true distance transform for a partial scene reconstruction. In Figure (8.7)

the EDT representation is used within the direct gradient descent approach from Section

(8.4.1), and robustness to pose estimation in the presence of outliers is demonstrated using

Huber penalisation.

8.4.4 Comparing Point-Plane, Direct TSDF and EDT Tracking

We will now compare the basin of convergence for each of the depth image tracking ap-

proaches. We note that the point-plane metric uses only the surface of a given reconstruc-

tion in the form a depth map and associated surface normal, and so together with the

projective data association mechanism, correspondences can be obtained even when there

is a significant error in the initial pose estimate, given a specific maximum error when using

the point distance and normal compatibility tests in Equation (8.33). The direct tracking

approach, does not make use of such explicit compatibility tests, using a robust penalty

function to down-weight possible outliers. However, when applied to the volumetric TSDF

it is clear that there is only a small region of error possible for a given initial pose esti-

mate outside of which the the resulting transformation of the measurement vertices into

the global frame will yield a non computable gradient. This problem is mitigated by com-

putation of the full distance field.

In Figure (8.8) we compare the convergence capabilities of each of the tracking approaches

using a funnel of convergence analysis (Mitra et al., 2004). In this analysis we reconstruct

a scene (in this case an office desktop), and then given a surface measurement with known

pose, we deterministically sample a range of pose perturbations that are used as the initial

pose estimate in each of the iterative optimisation approaches. A larger basin of con-

vergence, indicating increased tracking capability for large camera motion, results in the

ability to converge to the correct known measurement pose from larger perturbations. We

have evaluated two sampling strategies which empirically model two modes of real-time

camera tracking use. In the first analysis perturbations to the initial pose are performed

on a disc: with a translation in the camera X − Y plane and rotation around the camera

forward (Z) axis. This is similar to an exploratory motion, the sampling is shown in Figure

(8.8d). In the second analysis we perturb the camera to simulate fixating on a scene point,

useful when performing augmented reality within a fixed region of the scene. At each

point on the sampled motion arc we then further rotate the camera around its forward axis

shown in Figure (8.8h). We use all valid measurements in each iteration of the optimisation,
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(a) Point-Plane (b) Direct TSDF (c) Direct EDT (d) Layout

(e) Point-Plane (f) Direct TSDF (g) Direct EDT (h) Layout

Figure 8.8: Analysis of the basin of convergence for the direct depth map tracking ap-
proaches. Given the dense desktop scene reconstruction, shown in (d), and an initially
known pose sampled at the center of the convergence funnel we perturb the pose to the
sampled locations and run each algorithm using the measurement obtained at the initial lo-
cation. We plot a red sector for successful convergence from the sample perturbation pose.
In (a,b,c) we show the resulting convergence funnels for the pose sampling illustrated in
(d), note the convergence funnel from (c) is rendered in the illustration. The sampling
takes plots over a disc with translational increments of 100mm in the camera X-Y plane,
and incremental rotation around the camera forward axis of 40 degrees. In (e,d,g) we plot
the convergence funnel for the fixation pose layout shown in (h). Direct tracking using the
true distance transform results in a vastly increased basin of convergence over the TSDF
representation.

and allow the optimisation used in each approach a fixed maximum time within which to

converge. Convergence is marked by the estimated relative pose to the ground truth being

within a magnitude of 10mm translation and 1 degree rotation.

In summary we find that the true distance function provides a far wider basin of con-

vergence in comparison to either the direct TSDF or dense point-plane ICP approaches.

However, in a reconstruction setting, use of the true distance field would require twice the

storage requirements (assuming the same resolution of volume is used). Unfortunately

while direct tracking from the TSDF used in reconstruction presents an opportunity to re-

move that cost and gain the benefits of direct tracking, the convergence analysis shows the

small basin of convergence possible when using the truncation settings for a high quality
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reconstruction. We therefore find in practice that the dense point-plane ICP tracking pro-

vides a useful basin of convergence without requiring extra storage. We make use of the

point-plane ICP in the full dense SLAM KinectFusion system in Chapter (9).

8.5 Re-localisation

Direct approaches provide impressive tracking during rapid agile motion with concomitant

resilience to measurement blur caused by motion or defocus and graceful degradation

when faced with increasing homogeneously textured regions; but they can not prevent

tracking failure in all scenarios. When tracking does fail visual SLAM systems that rely

on incremental forms of tracking, including all of the direct approaches detailed in this

chapter, must perform re-localisation of the sensor pose relative to the model.

Relocalisation is most difficult when no prior assumption about the live sensor pose is

available or useful, including the possibility that live sensor measurements are outside of

the predictive domain of the current model, known as the lost or kidnapped robot sce-

nario in robotics. State of the art solutions to the general relocalisation problem, make use

of efficient forms of feature based pose estimation also used in the tracking by detection

pipeline discussed in this Chapter’s introduction. The feature based pipelines are effec-

tive when the live measurement provide the minimally required to solve the camera pose

with n ≥ {3, 4, 5} 2D − 3D point correspondences (Ess et al., 2007). If this is not possi-

ble, for example during exploratory motion when performing visual SLAM, an effective

approach developed by Eade and Drummond (2008) unified loop closure and the relocal-

isation mechanism so that when tracking fails, a new map is initialised in which the live

pose is tracked. Adjacency of sub-maps can then be detected and jointed in a semi-offline

manner by detecting shared features.

When information that restricts the likely pose of the sensor is available, the task is greatly

simplified. In the particular scenario we are interested in, an assumption can be made

that a human user is able to approximately reposition the sensor within some previously

visited region. With basic feedback to the user regarding the success or failure of the

relocalisation mechanism, a feedback loop between the user and the system can be set up

to attempt to guide the user to reposition the sensor near to a previously visited region. In

this interactive setting Klein and Murray (2008) demonstrated the effectiveness of a simple

key-frame based relocalisation mechanism in their Parallel Tracking and Mapping system,

which we now outline and extend.
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Algorithm 1 Keyframe relocalisation based on (Klein and Murray, 2008)
1. Key-frame detection: Compute the zero mean sum of square errors (ZMSSE) between
sub-sampled versions of the live image and each key-frame texture. The key-frame with
the lowest image error is deemed the closest key-frame.
2. SE2 Direct Alignment: An SE2 transformation is estimated using direct ESM optimisa-
tion between the live frame and the closest key-frame.
3. SE2 to SE3 upgrade: Given a small selection of possible correspondences in the live
frame, the estimated SE2 transform is projected to the nearest pose in SE3.
4. Increase 2D − 3D correspondences: Given the estimated 6DoF camera pose, the stan-
dard feature-based tracking pipeline is used to obtained further correspondences to furnish
a non-linear Gauss-Newton gradient descent on the pose parameters.

8.5.1 Dense Surface Key-frame based relocalisation

Key-frame based relocalisation strategies use the ability to capture a distribution over likely

pose parameters for the observed scene. A set of key-frames samples poses from the camera

trajectory, resulting in a distribution that is application and scene dependent. Clearly a

camera pose can not exist in physically implausible location, and occurs only by being

moved there by the user. By storing a sampling of the trajectory poses together with a basic

descriptor capturing the image data found at each pose, a lost camera can be relocalised

by searching for the key-frame most similar in description to the live frame, followed by

initialisation of an iterative camera tracking mechanism initialised using the pose of the

key-frame, in the hope that the initial pose is close enough to live pose to enable tracking

convergence. The key-frame re-localisation mechanism introduced by Klein and Murray
(2008) and used in PTAM performs four consecutive steps outlined in Algorithm (1).

During browsing of the scene, we build the key-frame set using the same insertion mech-

anism described in Section (6.4.2) for use in the view dependent texturing pipeline, il-

lustrated in Figure (8.9). Unlike the feature-based PTAM, in our system we are able to

furnish each key-frame with a dense geometry prediction. We can therefore synthesise

steps 2, 3 and 4 from Algorithm (1) into a single procedure by replacing those steps with

a dense SE3 tracking stage given the initial pose of the key-frame. In the case where no

convergence is obtained over the current key-frame set, we can then proceed to sample

synthetic key-frames by computing a photometric and geometric prediction of the model

into a sampled pose. Finally, we note that while we focus on relocalisation in the passive

camera tracking scenario here, the same mechanism can be used for relocalisation in the

depth camera tracking pipeline by replacing the tracking component with one of the depth

camera tracking approaches from Section (8.3).

Our dense SE3 tracking pipeline simplifies the relocalisation mechanism, but is clearly only

useful in a limited workspace. Successful relocalisation using the mechanism outlined here
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Figure 8.9: An example set of key-frames, illustrating the non-parametric distribution that
it provides over the camera pose. Note there is no possibility of finding a camera pose in a
location that the camera cannot have physically visited.

is achieved when the basin of convergence governed by the selected key-frames covers

the workspace. This provides an insight into a potentially more efficient approach to key-

frame selection specifically for relocalisation. Computational and memory costs associated

with relocalisation using the approach outlined here grow linearly with the number key-

frames, and even when utilising more sophisticated feature based detection mechanisms it

is desirable to reduce the number of frames used in the offline feature exaction process if

possible (Dong et al., 2009). A sufficient number of key-frames could be defined as the set

which maximises the combined basin of convergence given a direct optimisation method

over a given workspace with the minimum number of key-frames. Given this, we could

exploit the dense geometric and photometric predictive capabilities of the dense model to

sample synthetic key-frames to achieve exactly this aim in the future.
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In this chapter we describe four dense SLAM systems built from the tracking and mapping

components detailed in the previous chapters of this thesis. We begin the chapter in Section

(9.1) with an outline of the live dense reconstruction (LDR) system (Newcombe and Davison,

2010) which combines real-time feature-based tracking and mapping with dense surface

estimation. Given calibrated imagery we compute overlapping depth maps from dense

optical flow correspondences between the frames which are stitched together into a global

surface model. While this earlier system enables geometry-aware augmented reality, it

lacks the ability to improve the dense reconstruction over time or to exploit the dense

surface representation within the core of the visual SLAM system for pose estimation.

These are the key developments of the three further systems described here.

In Section (9.2) we describe the dense tracking and mapping (DTAM) system (Newcombe
et al., 2011c) that replaces the redundant optic flow computation used in the earlier LDR

246
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system with a more efficient depth estimation described in this thesis. DTAM also re-

places the sparse feature extraction and mapping visual SLAM component with direct

whole-image alignment based camera pose estimation. Direct image alignment between

the predicted dense surface model and the live image enables tracking throughout rapid

agile camera motion in cases where motion blur artefacts lead to failure of sparse feature

based tracking. The use of highly parallel general purpose GPU (GPGPU) techniques is

at the core of all of our design decisions, allowing live dense surface reconstruction and

dense tracking at frame-rate.

The advent of commodity depth cameras has removed the need to solve the hard depth

inference problem required in many computer vision applications. In Section (9.3) we

describe the KinectFusion pipeline (Newcombe et al., 2011b), a fully dense SLAM system

that jointly estimates the surface geometry and camera pose in real-time using all avail-

able measurements from a commodity depth camera. We replace the stitched depth map

scene representation used in DTAM and LDR with a volumetric signed distance function

enabling continuous updating of the surface topology. We exploit real-time dense surface

predictions from the model to achieve robust camera tracking using direct whole depth-

image alignment. We also provide experimental results that demonstrate drift-less tracking

and resilience of the system to when used with reduced computing resources and measure-

ment quality. The section closes with an overview of the extensions that have been reported

in the literature, along with our own extensions to enable larger scene reconstructions using

sub-mapping techniques.

We finish with Section (9.4) where we return to a single passive camera scenario. The final

system builds on the dense SLAM concept developed in KinectFusion to enable volumetric

SDF surface reconstruction to operate with the real-time depth maps computed using the

multi-view stereo techniques developed in this thesis. We interleave surface reconstruction

with the real-time camera tracking used in DTAM, directly tracking from the continuously

updated geometric and photometric predictions available from the dense scene model.

We demonstrate the fundamental capability of the single camera visual SLAM system, in

contrast to active or fixed stereo systems: the ability to perform reconstruction across a

range of scales with a single sensor.

In tables 9.1 to 9.4 we specify the main components that are used each of the systems de-

scribed in this chapter. Specifically, we tabulate the use of four major algorithmic compo-

nents use, that in combination, specify the main differences between the systems described

here. In table 9.1 we state the type of surface representation used. Table 9.2 maps which

dense depth map estimation techniques are used. Table 9.3 maps out the camera pose es-

timation technique; and finally 9.4 states the use of surface reconstruction techniques used
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in each system.

Surface Representation, Chapter 6

Dense SLAM Algorithm Sparse Point
Cloud Global Mesh Dense Key frames Global Implicit

Surface
(9.1) Live Dense Reconstruction X X X* X

(9.2) Dense Tracking and Mapping X – X* –
(9.3) KinectFusion – – – X

(9.4) Passive Surface Fusion – X X X*

Table 9.1: Overview of Surface Representations Used.

Depth Map Estimation, Chapters 4 and 5

Dense SLAM Algorithm
Variational

Optical Flow
correspondences

Variational Stereo
(full data term

search)

Variational Stereo
(depth map
denoising)

Variational Stereo
(Linearised data

term)

Structured
Light

(9.1) Live Dense Reconstruction X – – – –
(9.2) Dense Tracking and Mapping – X – – –
(9.3) KinectFusion – – – – X

(9.4) Passive Surface Fusion – – X X –

Table 9.2: Overview of Dense Depthmap Estimation Algorithms Used.

Camera Pose Estimation, Chapter 8

Dense SLAM Algorithm
Sparse Feature
tracking and
keyframe BA

Direct frame to
dense Keyframe

(RGB)

Direct frame to
model (RGB)

Direct frame to
model Alignment

(Depth)
(9.1) Live Dense Reconstruction X – – –
(9.2) Dense Tracking and Mapping X X* – –
(9.3) KinectFusion – – – X

(9.4) Passive Surface Fusion – – X –

Table 9.3: Overview of Camera Trajectory Estimation Algorithms Used.

Surface Reconstruction, Chapters 6 and 7

Dense SLAM Algorithm
Truncated signed
distance function

fusion
Piecewise Depth map

(9.1) Live Dense Reconstruction – X

(9.2) Dense Tracking and Mapping – X

(9.3) KinectFusion X –
(9.4) Passive Surface Fusion X –

Table 9.4: Overview of Surface Reconstruction Algorithms Used.

9.1 Live Dense Reconstruction

In this system we combine real-time single passive camera tracking and sparse feature

mapping from the parallel tracking and mapping system developed by Klein and Murray
(2007) with a concurrently operating dense surface estimation pipeline to enable live dense
reconstruction of desktop scale workspaces.
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Figure 9.1: LDR system outline. Live dense reconstruction pipeline overview. (1) Online
structure from motion provides real-time camera pose estimates and a point map. (2) An
implicit surface is fitted to the point map, and the zero level set is polygonised into a coarse
mesh. (3) Local bundles of cameras with partial visible surface overlap are selected around
reference frame. (4) The base model surface is sampled at every pixel in a given reference
frame, and deformed into a photo-consistent dense local model using dense correspon-
dence measurements. (5) All local reconstructions are integrated into the global surface
model and redundant vertices are trimmed.

9.1.1 Method

An overview of the LDR pipeline is illustrated in Figure (9.1). The LDR pipeline consists

of five components which run in a loosely coupled concurrent form. As outlined in Fig-

ure (9.1)(1), a real-time camera pose is estimated within a sparse feature-based structure

from motion pipeline, simultaneously providing a point-based map representation of the

observed scene. As new points are added to the point map, a continuously updated im-

plicit surface base model is computed and polygonised to provide a dense but approximate

estimate of the scene’s surfaces, providing a coarse geometry proxy in the form of a mesh,

Figure (9.1)(2). Given two camera poses, this coarse but dense surface proxy enables a pre-

diction of the image correspondences between those frames that we use in the high quality

surface reconstruction pipeline.

The coarse surface reconstruction is further used to select bundles of frames which have

partially overlapping observations of the scene shown in Figure (9.1)(3), each comprising

a single reference frame with known pose in the world frame Twr and image Ir together

with several neighbouring frames. Each camera bundle is fed to the dense reconstruction

process, Figure (9.1)(4), which produces a dense depth map in the reference view Dr. A



9.1. Live Dense Reconstruction 250

depth map is computed by minimising the re-projection error of dense correspondences

computed using variational optical flow between the reference and neighbouring views,

we initialise the variational optimisation with the predicted optical flow obtained from the

coarse surface proxy. Finally, each dense depth map is then triangulated and transformed

into the global frame, creating a set of overlapping meshes that form the global surface

model, Figure (9.1)(5). In the following subsections we briefly describe each of the compo-

nents and provide results from LDR in Section (9.1.2).

Real-time Structure from Motion

Drift-free camera tracking is provided by PTAM (Klein and Murray, 2007), relying on

measurements of hundreds of features per frame, and interleaved with repeated bundle

adjustment optimising a set of selected key-frame poses and a point-cloud scene map.

Tracking and bundle adjustment operate in parallel using two CPU threads. High quality

points are determined in PTAM using inlier/outlier feature re-matching counts. We collect

the highest quality 3D points from PTAM’s map obtained from features matched at the

original image resolution to pass on to the dense reconstruction pipeline.

Base Surface Construction

Given the 3D point cloud from PTAM we further estimate the surface normal at the point

using knowledge of feature co-visibility obtained from PTAM as determined by key-frames

observing each point. We make a rough initial surface normal estimate for each point by

averaging the optic axis directions of the key-frames in which it is visible. We now aim

to estimate an initial continuous scene surface which will form the basis for dense surface

reconstruction.

As discussed in Chapter (6), surface reconstruction from oriented point samples has re-

ceived considerable attention in both the computer vision and graphics communities. Im-

plicit surfaces provide topologically agnostic shape representation, represented in an em-

bedding function S : R3 7→ R such that the reconstructed surface is represented as the

(zero) level set of the function S(x) = 0 . A reconstructed mesh is extracted by polygonis-

ing the function’s zero level set using a marching cubes technique (Lorensen and Cline,

1987) or a continuation style polygonisation method (Bloomenthal, 1994).

In our application, speed is crucial in obtaining an up to date base model. Globally optimal

non-parametric surface fitting techniques originally suffered from high computational cost

of solving large, dense systems of equations (Turk and OBrien, 1999; Kazhdan et al., 2006).

In more recent years large reductions in the computational cost of reconstruction have

traded global optimality for hierarchical, coarse-to-fine solutions. In particular, radial basis

functions with finite support have enabled the dense system of constraints to be made
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sparse. We use a state of the art multi-scale compactly supported radial basis function

(MSCSRBF) technique for 3D scattered data interpolation by Ohtake et al. (2003) discussed

in Section (6.1.3). This method combines some of the best aspects of global and local

function approximation and is well suited to the sparse, coarsely oriented point cloud

obtained from the PTAM point cloud, in particular retaining the ability to interpolate over

large, low density regions. We extract the coarse surface mesh using the implicit surface

polygonisation method from Bloomenthal (1994). In practice we are able to run base

surface reconstruction every time a new key-frame is generated, maintaining an up-to-date

base model.

High Quality View-Predictive Optical Flow

Each reference frame has a grey-scale image Ir and SE3 pose matrix Twr, together with

n ≥ 1 other nearby calibrated comparison frames Ii∈(1...n). This set of frames constitutes a

camera bundle. A method for automatically selecting the frames in a camera bundle from

the live stream is outlined later on in this section.

Due to the small baseline nature of neighbouring frames in video we use high accuracy,

variational optimisation based optical flow algorithm to obtain dense, sub-pixel quality

correspondences between the reference and comparison views. Large improvements to

variational optical flow solutions have been gained by utilising an `1 data fidelity norm

and a Total Variation regularisation of the solution u : Ω 7→ R2:

min
u


∫
Ω

λ|I0(x)− I1(x + u(x))|dx +
∫
Ω

|∇u|dx

 . (9.1)

Details of solutions to minimising Equations (9.1) are given in Pock (2008) and Zach et al.
(2007a) with further implementation details of the highly optimised GPGPU solution we

use provided in Wedel et al. (2009). This two-view optical flow energy is the unconstrained

form of the convex stereo energy described in detail in Chapter (5). Here, λ provides a

user-controllable trade-off between the data fidelity and regularisation terms.

We initialise the optic flow estimation by warping the reference image via the current coarse

surface estimate into the comparison frame, performed efficiently on GPU hardware using

projective texturing. Dense correspondence are then obtained by applying optical flow

estimation between each synthesized image for a comparison camera and the real image capture.

Each correspondence field is thereby constructed by summing the estimated optic flow to

the predicted flow field.

It is important to note that a valid spatio-temporal derivative must exist across each pixel

in the coarsest level of the multi-scale optical flow optimisation for a correspondence to
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(a) (b) (c)

(d) (e) (f)

Figure 9.2: Example surface from depth map reconstruction using model predictive op-
tical flow between two images (a) in comparison to the optical flow without base mesh
initialisation (d). A rotation around the optical axis induces large displacements of upto
150 pixels resulting in errors in the raw flow field shown in (d). The ego-motion induced
rotational component of the flow field is eliminated using view prediction. The polygo-
nised results are shown with associated per-vertex error measures (b,e; red indicates high
photo-consistency).

be estimated there, which places a limit on the largest displacement measurable between

corresponding image points. Wider baseline dense correspondences are obtained using the

model predictive optical flow since the distance to corresponding pixels is reduced wherever

the base model is approximately correct, including removal of the rotational flow compo-

nents induced by a rotational difference between the reference and comparison view, in-

creasing the opportunity for a valid spatio-temporal derivatives across the images. Figure

(9.2a) illustrates the improved correspondence field produced by model predictive optical

flow.

Depth Map Estimation

A reference frame depth map, Dr, is computed by minimising the reprojection error of each

reference pixel xr and with the correspondence in each neighbouring view i obtained from
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the optical flow ui:

Dr(ur) = argmin
d∈R+

n

∑
i=1

ψ(π(KTriK−1 ẋr · d)− xi) (9.2)

xi =xr + ui(xr) . (9.3)

Assuming co-observation of a surface patch projecting into a reference and neighbouring

view, an optimal depth d0 + d∗ results in no displacement error between the predicted pixel

projection, and the corresponding pixel xi in view i. Given n ≥ 1 correspondence field(s),

we can therefore obtain the per-pixel depth estimate by iterative non-linear least squares

estimation of Equation (9.2).

Stuehmer et al. (2010) pointed out that the use of n ≥ 1 explicitly obtained optical flow

fields followed by minimisation of the re-projection error described here is unnecessary

for depth map estimation. Indeed, as described in detail in the multiple-view depth map

estimation methods described in Chapter (5), the single degree of freedom per pixel op-

timisation problem presented by Equation (9.2) can be formulated to minimise the pixel

value error directly, using all of the n neighbouring views within a single data-term. This

is in contrast to estimation of 2n− 1 extra variables obtained from full 2D correspondence

across n views. It is interesting to note however that the optical-flow based depth map

estimation provides a potential benefit during surface estimation in the presence of noisy

pose estimation. In such a scenario the extra degrees of freedom enable correspondence to

be obtained in cases where the epipolar constrained data-terms might result in incorrect

matches. Ultimately the full correspondence field provides the required data for a full joint

optimisation over all camera poses together with the depth map.

Iterating Model Prediction

We further utilise the model predictive optical flow by performing multiple iterations of

the reconstruction algorithm. Prior to triangulation of a depth map we perform depth map

denoising using the g-weighted Huber-`1 model described in Section (4.5). The denoised

depth map is then triangulated and the surface normals estimated using the approach

outlined in Section (6.1.1), the mesh is then transformed into the global frame replacing the

original surface model and leading to an improved view prediction. The optical flow based

depth map estimation is repeated on the updated model, ultimately increasing photo-

consistency in the reconstructed model. Figure (9.3) illustrates the results of processing a

second iteration.
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(a) (b)

(c) (d)

Figure 9.3: A local surface reconstruction using a total of four images of resolution 640× 480
pixels. Reconstruction after one iterations and associated error measures (a). A second
iteration results in high photo consistency (b). The resulting Phong shaded reconstruction
(c) and a synthesised view using the reference camera image to texture the surface model
(d).

Surface Errors

For each vertex of the triangulated depth map we assign a vector E(x) = [Es(x), Ev(x)]
of measures of reconstruction fidelity. Es(x) is the per vertex mean reprojection residual

resulting from minimisation of Equation (9.2), while Ev(x) = |
〈
K−1 ẋ, N(x)

〉
| is a measure

of the visibility of the surface element in the reference view, computed by the inner product

of the reference pixel ray with the surface normal computed in the reference frame.

Local Model Integration

A number of algorithms have been developed to enable the fusion of multiple depth maps

as discussed in detail in Chapter (6). Here we simply overlay depth maps transformed

into the global frame of reference and remove vertices from newly estimated depth maps

that are found to be within a given distance threshold of an already mapped vertex. Given

a newly triangulated depth map, we render the currently integrated dense reconstruction
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Figure 9.4: Full scene reconstruction obtained during live scene browsing. Eight camera
bundles each containing four images including the reference were used for reconstruction.
Each colour indicates a region reconstructed from a single camera bundle.

into the reference view and remove the vertices in the new vertex map where the distance

to the current vertex is within εdist of the new depth value. We also remove less visible

vertices with high solution error in the new mesh where Ev(x) < 0.9 and Es(x) > 1e−3. In

Figure (9.4) we illustrate how sub-maps that are stitched together to form a reconstruction

of a desktop scene.

Camera Bundle Selection

Each local reconstruction requires a camera bundle, consisting of a reference view and

neighbouring views, and we aim to select camera bundles to span the whole scene au-

tomatically. As the camera browses the scene the integrated model is rendered into the

virtual current camera, enabling the ratio of pixels in the current frame that cover the cur-

rent reconstruction to be computed. We maintain a rolling buffer of the last 60 frames and

camera poses from which to select bundle members. When the current reconstruct covers

less than one third of the live frame image a new reference frame is initialised into which

a depth map will be estimated.

Given the new reference frame pose we obtain a prediction of the surface co-visibility with

each subsequent frame. The method for view selection is based on obtaining the largest

coverage of different translation only predicted optical flow fields computed by analysing

the histogram of a coarse flow field predicted into the neighbouring views using the base

surface. The result is a set of n cameras with disparate translations that scale with the

distance to the visible surface and that are distributed around the reference view. The

automatically selected views increase the sampling of the spatio-temporal gradient between

the predicted and real comparison views, reducing effects of the aperture problem in the

optical flow computation used in the dense reconstruction.
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Figure 9.5: Use of the desktop reconstruction for advanced augmented reality, a car game
with live physics simulation. Far right: the car is seen sitting on the reconstructed surface.
The other views are stills from our video where the car is displayed with the live camera
view, jumping off a makeshift ramp, interacting with other objects and exhibiting accurate
occlusion clipping.

9.1.2 Results

Our results have been obtained with a hand-held Point Grey Flea2 camera capturing at

30Hz with 640× 480 resolution and equipped with an 80
◦ horizontal field of view lens.

The camera intrinsics were calibrated using PTAM’s built-in tool, which includes radial

distortion modelling. All computation was performed on a Xeon quad-core PC using one

dedicated GPU for variational optic flow computation, and one GPU for live rendering and

storage of the reconstructions.

The results are best illustrated by the videos available online 1 which demonstrate extensive

examples of the reconstruction pipeline captured live from our system. Here we present a

number of figures to illustrate operation. Figure 9.4 demonstrates the sub-mapping based

reconstruction, including a number of low texture objects, obtained using four comparison

images per bundle from a slowly moving camera, also shown in Figure (9.6) with an insert

image of scene being reconstructed. . To give an indication of scale and the reconstruction

baseline used, here the camera was approximately 300mm to 700mm from the scene and

the automatically selected comparison frames were all within 50mm of the reference frame.

The reconstruction quality demonstrates that the model predictive optical flow provides

1http://www.doc.ic.ac.uk/~rnewcomb/CVPR2010/

http://www.doc.ic.ac.uk/~rnewcomb/CVPR2010/
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(a)

Figure 9.6: Scene rendering using diffuse Phong shading with inset image over view of the
scene reconstructed also shown in sub-map form in Figure (9.4).

accurate sub-pixel correspondence.

Figure (9.5) demonstrates use of the global dense surface model in a physics simulator. Our

dense reconstruction permits augmented reality demonstrations far beyond those of Klein
and Murray (2007) that are restricted to a single plane and do not provide synthetic ob-

ject occlusion or interaction. The reconstruction was made in under thirty seconds as

the camera naturally browsed the scene resulting in faster camera motion in this exper-

iment slightly reduces image and therefore reconstruction quality compared to the more

controlled setting used for reconstruction of the scene in Figure (9.6). However, this recon-

struction is representative of live operation of the system and is highly usable for geometry

aware augmented reality.

9.1.3 Summary

In this system we presented a pipeline which enables automatic live dense reconstruction

in the context of live camera tracking, enabling geometry aware augmented reality with a

single camera, but the system is lacking in a number of ways. Most importantly, the sur-

face representation with the depth map estimation approach outlined here does not permit

continuous updating of a previous reconstructed surface region. This results in incorrectly

estimated surface topology wherever the base proxy is grossly inaccurate. Also, as previ-

ously noted, the method of solving for each depth map in the reconstruction using optical

flow results in a more computationally expensive optimisation problem than is required if

a static scene is assumed. Finally, as stated throughout this thesis, the availability of a dense

surface model opens up the ability to perform camera tracking using a direct optimisation

approach, which the LDR system here does not achieve.
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Figure 9.7: DTAM system outline.

9.2 DTAM: Dense Tracking and Mapping in Real-time

We build on the LDR from Section (9.1) in two specific ways: we replace the depth map

estimation pipeline that used computationally expensive view-predictive optical-flow with

the more efficient multi-view depth map estimation from Section (5.3), enabling us to in-

corporate hundreds of video frames of live video into the computation of a single depth

map. Furthermore, we fully exploit the ability to compute a geometric and photometric

rendering of the scene into a live frame enabling the robust whole image alignment of the

live image with the dense model to estimate the camera pose without requiring explicit

feature extraction and matching.

9.2.1 Method

As presented in Figure (9.7), the overall structure of our algorithm is straightforward. Given

a dense model of the scene, represented with a partially overlapping set of textured depth

maps, we use direct whole image alignment against that model to track camera motion

at frame-rate (9.7)(1). Tightly interleaved with this, we update and expand the model

by determining scene regions which have not yet been represented in the model (9.7)(2),
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(a) (b) (c)

Figure 9.8: The scene is represented as an overlapping set of textured depth maps.

inserting and refining the dense textured depth maps using historically tracked camera

frames (9.7)(3). Once bootstrapped, the system is fully self-supporting and no feature-

based skeleton or tracking is required. In the following sections we outline the components

of the DTAM pipeline.

Scene Representation

The scene model comprises two connected sets of overlapping dense keyframes which hold

geometric and photometric representations of the scene as a collection of depth maps com-

puted during live camera motion, depicted in Figure (9.7). Elements of the first set are

called reconstruction active keyframes denoted as K∗i∈0..k. Each active keyframe consists of a

reference image Ir with known pose Twr and a data cost volume Cr that stores the average

photometric error. We will use this in the global optimisation based depth map estimation

technique described in Chapter (5) to compute a depth map Dr for the keyframe using tens

to hundreds of video frames collected from nearby and overlapping real-time frames. The

depth map estimation technique enables a depth to be computed incrementally denoted

D∗r during estimation, interleaving the update of the associated cost volume with optimi-

sation to find the optimal depth map. Once a depth map has been fully estimated we

convert the active keyframe into a reconstruction complete dense keyframe denoted Ki∈0..l ,

containing only the depth map Dr, reference image and camera transform. The memory

used in the cost volume storage are then released to be used in a new active keyframe. A

sample keyframe is shown in Figure (9.8). We provide more details on keyframe insertion

and management at the end of this Section.

Dense Tracking

Given a dense model consisting of one or more keyframes, we can synthesise novel photo-

consistent views over wide baselines by projecting the entire model into a virtual camera.

Since such a model is maintained live, we benefit from a fully predictive surface represen-



9.2. DTAM: Dense Tracking and Mapping in Real-time 260

Figure 9.9: Motion blur in a scene with few trackable features. A dense scene model enables
whole image alignment to continue tracking despite motion blur.

Figure 9.10: Linear velocities for DTAM (blue) and PTAM (red) over a challenging high
acceleration back-and-forth trajectory close to a cup. Areas where PTAM lost tracking
and resorted to relocalisation are shown in green. In comparison, DTAM’s relocaliser was
disabled. Notice that DTAM’s linear velocity plot reflects smoother motion estimation.

tation, handling occluded regions and back faces naturally. We estimate the pose of a live

camera by finding the parameters of motion which generate a synthetic view which best

matches the live video image using the two stage pipeline detailed in Section (8.2.6). The

pipeline first estimates a constrained inter-frame rotation estimation using the direct align-

ment method of Lovegrove and Davison (2010). From lower levels within an image pyra-

mid computed on the live and previous frames we obtain the rotational odometry, offering

resilience to motion blur since consecutive images will have common artefacts including

motion blur which are not modelled explicitly. This lower dimensional optimisation is also

more stable than 6DoF estimation when the number of pixels considered is low, helping

to converge for large pixel motions, even when the true rotation is not strictly rotational.

Second, we initialise 6DoF full pose refinement against the model as detailed in Section

(8.2.2). In Figures (9.9) and (9.10) we provide an illustration of the improved resilience that

dense tracking provides against motion blur in scenes with low texture regions. Tracking

throughout camera defocus is demonstrated in Figure (9.15).



9.2. DTAM: Dense Tracking and Mapping in Real-time 261

(a) (b)
Figure 9.11: Excerpt from video of the live running DTAM system, tracking robustness to
unmodelled dynamic scene motion in the live image. An augmented reality car appears
fixed rigidly to the world as an unmodelled hand is waved in front of the camera (a).
Pixels in green are used for tracking whilst blue correspond to unmoddled scene regions
and yellow are rejected (hand / monitor / shadow) using a Tukey penalty term.

In Section (8.2), we detail the forward-composition based whole image alignment method

that tracks the live image Il by minimising the pixel error induced from a current model.

We robustify the optimisation against outliers in both geometric (depth map) and photo-

metric predictions using the Tukey penalty term, modelling the pixel error distribution as

a corrupted Gaussian with uniform outlier distribution. We reject pixels with image error

magnitude above a user defined threshold, altering the variance of the inlier distribution

to ensure that gross outliers from moving objects and variations between the photomet-

ric prediction and live frame caused by non-Lambertian surface reflectance and lighting

fluctuations are rejected from the error function, shown in Figure (9.11).

Depth Map Estimation

The reconstruction framework is targeted at a live setting, where hundreds of narrow-

baseline video frames are the input to each depth map. We gather photometric informa-

tion sequentially in a cost volume, and incrementally solve for regularised depth maps

via a novel non-convex optimisation framework with elements including accelerated exact

exhaustive search to avoid coarse-to-fine warping that can result in convergence of poor

quality local minima. Full details of the depth map estimation process are provided in

Chapter (5), Section (5.3).

One of the main modes of use of the DTAM system is in geometry aware augmented

reality, in which a live dense reconstruction of a workspace scene is first reconstructed to

a user defined level of completeness. The scene model is then used in a dense tracking
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(a) 2 Images (b) 10 Images (c) 30 Images

(d) Regularised dense depth map. (e) Feature-based PTAM map.

Figure 9.12: The data term is incrementally constructed using consecutive frames from the
live image stream. In (a,b,c) we show the depth map data term minimum for an increasing
number of images, while in (d) and (e) we compare the partial scene model estimated for
the reference frame with the sparser point map from PTAM, illustrating the increase in
data available in a dense-key.

only mode to provide occlusion masking in mixed reality graphics pipelines and sufficient

surface representation of the scene for physical simulation of basic interactions with the

static surfaces. In this setting we harness the ability of a system user to gather a high

quality data term by manoeuvring the camera whilst using the feedback provided from

the interleaved depth map optimisation process showing the convergence process of the

depth map estimation, as illustrated in Figure (9.12) for a single depth map. An example

of the interleaved cost volume update and optimisation process is shown in Figure (9.13).

Dense Keyframe Selection and Insertion

Depth map estimation is performed on the currently selected active key-frame K∗c which

is either selected from a current active set or inserted into the set by reasoning about the

visibility of the current scene reconstruction given the newly estimated live camera pose.

Given the current scene model comprising semi and fully converged triangulated depth
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(a) (b) (c)

(d) (e) (f)

Figure 9.13: Interleaved depth map cost volume acquisition with optimisation. Given a
partial reconstruction of the scene a dense keyframe is added. Depth map estimation for
the keyframe then proceeds by interleaving the addition each subsequent video frame into
the depth map cost volume with a fixed set of optimisation iterations. In (a,b,c) we show
the increasing completeness of the textured scene model as more data is added to the cost
volume and optimisation proceeds. In (d,e,f) we show the corresponding regularised dense
key-frame depth map D∗r with the final solution shown in (f). We note that the textured
scene model can make use of the incomplete depth map after only a small number of data-
terms have been added into the cost volume by thresholding away regions which are yet
to converge.

maps, together with the live camera pose, we compute a live prediction of the currently

modelled geometry. A new key-frame is added when the number of pixels in the previ-

ous predicted image without visible surface information falls below some threshold. This

key-frame insertion mechanism is arguably better founded than heuristics used in feature

based systems which can not reason about the visibility of the current model in the live

frame and instead rely on inter key-frame distance based insertion metrics. We also utilise

the predicted minimum and maximum scene depth from the current model to set the

depth range of newly inserted key-frame cost-volumes, enabling efficient quantisation of

the inverse depth parametrised data-term.

If there is already sufficient coverage from the scene model and there are remaining active

key-frames, the system must choose which of the key-frames should be selected to continue
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depth map estimation. For each active key-frame we compute an average of co-visible

points between the key-frame and live frame, and transform the average into the live frame.

The active key-frame is chosen based on the average point that projects closest to the live

frame image center. Since each data-term cost volume requires a significant amount of

memory we store only a limited number of the most recently used active key-frames in

GPU memory. We update the GPU memory from host-CPU memory resident active key-

frames, swapping between the memories as required to enable many more active frames

to be used in the system.

The annealing procedure used in the alternating depth map optimisation of Section (5.3),

requires a fixed number of iterations to achieve a suitable level of depth map convergence.

We deterministically interleave the data-term update of the active cost volume with a fixed

set of 30 iterations of the primal-dual optimisation procedure, converting the key-frame

into the reconstruction’s complete form upon convergence with a user defined number of

frames used in the data-term. We set the number of input frames between 30 and 200

images per depth map but note that a second DTAM mode enables prolonged data-term

collection, by enabling the user to specify where a new key-frame is inserted and when to

stop optimisation. We found that this semi-automatic reconstruction process allows a user

to achieve a higher quality scene reconstruction by using a slower camera motion to reduce

motion blur artefacts in the images while also increasing camera pose accuracy.

Model Initialisation

The system is initialised using calibrated imagery obtained from PTAM (Klein and Mur-
ray, 2007), continuing to track the live camera pose and update an initial keyframe which

is added at a user-defined time. DTAM is then switched to the fully dense tracking and

mapping pipeline. Initialisation need not be performed at frame-rate, but only within a

reasonable time frame for the one-time key-frame initialisation in a live setting. There-

fore a joint-optimisation that estimates both an initial set of camera poses and a single

dense depth map could replace the current sparse-feature based bootstrapping (Szeliski
and Kang, 1993), potentially improving the ability to initialise the system in feature poor

environments.

9.2.2 Results

We have evaluated DTAM in the same desktop setting where PTAM has been successful. In

all experiments, we have used a Point Grey Flea2 camera, operating at 30Hz with 640×480

resolution and 24bit RGB colour. The camera has pre-calibrated intrinsics. We run on a

commodity system consisting of an NVIDIA GTX 480 GPU hosted by an i7 quad-core CPU.

We provide an illustration of the live running system demonstrating the ability of DTAM,
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Figure 9.14: Example geometry aware augmented reality with a car. Completing the scene
reconstruction shown in Figure (9.13), the dense surface model is used in an augmented
reality game enabling the desktop to be driven over by a virtual car with simulated physical
interaction over the static scene. We show an overview of the scene that is reconstructed in
the top left corner of the figure (green box), and illustrate the large scale over which dense
tracking with the model is performed: following the virtual car with the live camera as it
drives up a ramp constructed from a book, and coming to stop atop of the graphics card
currently running the DTAM computations (bottom right, red box).

with particular interest for augmented reality use where it is desirable to maintain quality

tracking throughout high speed agile motion (Figure 9.9), altering camera focus (Figure

9.15) and dynamic scene interaction (Figure 9.11).

Geometry Aware Augmented Reality

We present a qualitative comparison of the live running system including extensive tracking

comparisons with PTAM and augmented reality demonstrations in an accompanying video

http://youtu.be/Df9WhgibCQA, with extracted stills of an physical car simulation driving

over a reconstructed desktop scene shown in Figure (9.14).

9.2.3 Summary

While the ability to render a dense surface prediction provides numerous benefits over

a sparse feature-based scene representation, in particular for robust camera tracking, the

system described in this section lacks the ability to continuously update regions of the

scene which have previously been represented with a single depth map. While overlapping

depth maps can represent any surface topology in principle, the fixed nature of each depth

map results in errors in the reconstruction which cannot be updated to incorporate newer

http://youtu.be/Df9WhgibCQA
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(a) DTAM: augmented reality car. (b) PTAM: showing point map overlay.

(c) DTAM: dense tracking succeeds throughout
camera defocus.

(d) PTAM: detected features during defocus prior to
complete tracking failure.

Figure 9.15: Tracking benefits from the predictive capabilities of a dense model with regard
to occlusion handling and multi-scale operation, making it much more robust and at least
as accurate as any feature-based method; in particular, performance degrades remarkably
gracefully in reaction to motion blur or camera defocus.

measurements, for example when the camera is brought closer to the scene, or if the scene

structure alters over time. Furthermore, each depth map is anchored to the reference frame

pose used to create it which is fixed after initial estimation, hence although tracking is drift-

less relative to a fixed model, the system has no way to prevent the build up of camera drift

that inevitably accumulates when jointly mapping and tracking extended scenes.
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9.3 KinectFusion: Dense SLAM with a Depth Camera

The advent of commodity depth sensors has ushered in a new era in the application of com-

puter vision in the real-world. Affordable depth cameras based on structured light stereo

estimation such as the Primesense design used in the Microsoft Kinect and Asus Xtion

cameras removes one of the computationally demanding components of low level vision

required in many higher level vision applications, and in particular the single camera LDR

and visual SLAM systems previously discussed in Sections (9.1) and (9.2). In this section

we exploit this new capability to focus on an investigation in scene representation: lifting

the limitations imposed by the explicit mesh based scene representations used in those

single camera systems that prevented a truly incremental and continuous reconstruction of

the scene.

The system described in this section, KinectFusion, is a dense SLAM pipeline which per-

mits real-time, dense volumetric reconstruction of complex room-sized scenes using a

hand-held commodity Kinect sensor. The core components of the system are the volumet-

ric truncated signed distance function surface reconstruction and the dense whole-depth

image pose estimation frameworks described in this thesis. While the depth measure-

ments used in this system are provided by an active depth camera, the pipeline that was

developed provided insights into dense surface scene representation, reconstruction and

tracking in general, and led to both the LDR system described in Chapter (7) that performs

incremental surface reconstruction from video, and finally to the single camera dense vi-

sual SLAM system introduced in Section (9.4).

With KinectFusion, users can simply pick up and move the depth camera to generate a

continuously updating, smooth, fully fused 3D surface reconstruction. Using only depth

data, the system continuously tracks the 6DoF pose of the sensor using all of the live data
available from the Kinect sensor rather than an abstracted feature subset, and integrates

depth measurements into a global dense volumetric model. A key novelty is that tracking,

performed at 30Hz frame-rate, is always relative to the fully up-to-date fused dense model, and

we demonstrate the advantages this offers.

9.3.1 Method

In Figure (9.16), we outline the KinectFusion pipeline that combines the volumetric trun-
cated signed distance function (TSDF) integration approach to dense surface reconstruction

described in Chapter (6), together with the dense ICP depth map frame to model tracking

described in detail in Chapter (8). Unlike the previously described dense visual SLAM

systems, KinectFusion performs real-time continuous surface reconstruction, enabling the
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Figure 9.16: KinectFusion Pipeline Overview.
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(a) 2 Frames (b) 30 Frames (c) 100 Frames

Figure 9.17: KinectFusion reconstructing a person. In (a,b,c) we show the partial reconstruc-
tions after integrating 2, 30 and 100 frames into the model, also illustrating the state of the
available model with which frame-to-model tracking is performed.

correct topology of the surfaces to be refined over time from continuous observations of the

surface. The four components of the KinectKusion have been designed to take advantage

of GPGPU hardware, enabling all depth measurements to be used both the dense recon-

struction and tracking at frame-rate. In Figure (9.16)(1) we pre-process the raw live depth

map which is then tracked against the most up to date surface prediction (9.16)(2), using

a point-plane metric based whole image ICP with projective data association. Given the

live frame pose estimate we fuse the surface measurement into a global truncated signed

distance function representation of the scene, Figure (9.16)(3). We then render a prediction

of the current surface estimate that will be used in tracking the next sensor frame, Figure

(9.16)(4). In Figure (9.17) we illustrate the incremental reconstruction process which we

now describe in more detail.

Surface Measurement

A live surface measurement comprises a raw depth map Dl obtained from the commodity

structured light sensor, providing calibrated depth measurements Dl(u) ∈ R+ at each

image pixel u ∈ Ω. We apply a bilateral filter (Tomasi and Manduchi, 1998) to the raw

depth map to obtain a discontinuity preserved depth map with reduced noise DB
l , which is

used in estimation of the the surface normals using the method described in Section (6.1.1),

yielding a live measurement normal map estimate Nl .

Surface Reconstruction Update

Each consecutive depth frame, with an associated live camera pose estimate, is fused incre-

mentally into one single 3D reconstruction using the volumetric truncated signed distance

function (TSDF) described in Chapter (6). In a true signed distance function, the value
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corresponds to the signed distance to the closest zero crossing (the surface interface), tak-

ing on positive and increasing values moving from the visible surface into free space, and

negative and decreasing values on the non-visible side. The result of averaging the SDF’s

of multiple 3D point clouds (or surface measurements) that are aligned into a global frame

is a global surface fusion. We use the trivially parallelisable projective truncated signed

distance function (TSDF) fusion described in detail in Section (6.2).

Surface Prediction

With the most up-to-date reconstruction available comes the ability to compute a dense

surface prediction by rendering the surface encoded in the zero level set of the TSDF into

a virtual camera. As detailed in Section (6.3), rendering of a predicted surface depth and

normal map can be achieved efficiently and directly on GPGPU hardware either for a

specific view through iso-surface raycasting or using full iso-surfce extraction via marching

cubes, followed by rendering of the view with a rasterising graphics pipeline.

Live Sensor Pose Update

We utilise the full predictive capabilities of the up to date surface model for real-time sensor

pose estimation using a direct whole depth image alignment. Rendering the updated

model into a predicted live sensor frame, simply taken here as the previous frame pose

estimate (constant position motion model), we therefore predict the depth and normal

map D̂l and N̂l and obtain the current live pose estimate using the bilaterally filtered depth

and normal map surface measurement with the dense point-plane based ICP described in

Section (8.3). In contrast to previous depth map based SLAM (scan-matching) systems, we

take advantage of full GPGPU acceleration to enable use of all of the data in a depth image

without needing to sub-sample or sparsify the data. The resulting fully dense system scales

gracefully with higher and lower resolution input data, as demonstrated in the following

experimental section.

9.3.2 Experiments

We have conducted a number of experiments to investigate the performance of our system.

These and other aspects, such as the system’s ability to keep track during very rapid mo-

tion, are illustrated extensively in an accompanying video http://youtu.be/quGhaggn3cQ.

Metrically Consistent Reconstruction

Our tracking and mapping system provides a constant time algorithm for a given area of

reconstruction, and we are interested in investigating its ability to form metrically consis-

tent models from trajectories containing local loop closures without requiring explicit joint

http://youtu.be/quGhaggn3cQ
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(a) Frame to frame tracking

(b) Frame-Model Partial Loop

(c) Frame-Model Full Loop

(d) Full Loop Duplicated M times

Figure 9.18: Circular motion experiment to highlight the SLAM characteristics of our system as the sensor
orbits a table. For each tracking mode we show the estimated sensor trajectory (every 4th of N frames is
shown) (left row), together with a closer view highlighting reconstruction quality with normal map rendering.
Details of the experiment are given in the main text.
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optimisation over the camera pose and scene structure state. We are also interested in the

ability of the system to scale gracefully with different processing and memory resources.

To investigate these properties we conducted the following experiment. The Kinect sensor

was placed in a fixed location observing a tabletop scene mounted on a turntable. The

turntable was then spun through a full rotation as depth data was captured over ≈ 19

seconds, resulting in N = 560 frames. For the purposes of our system, if the reconstruction

volume is set to span solely the region of the rotating scene. The resulting depth image

sequence obtained is obviously equivalent to the Kinect having been moved on a precise

circular track around a static table, and this allows us to easily evaluate the quality of

tracking. All parameters of the system are kept constant, using a reconstruction resolution

of 2563 voxels unless stated otherwise.

The N frames of depth data captured were then processed in each of the following ways:

1. Frames 1 . . . N were fused together within the TSDF using sensor pose estimates ob-

tained with our frame-to-frame only ICP implementation.

2. Frames 1 . . . L, L < N were fed through our standard tracking and mapping pipeline,

forming an incomplete loop closure. Here, sensor pose estimates are obtained by the

full frame-model ICP method.

3. Frames 1 . . . N were fed through our standard tracking and mapping pipeline result-

ing in a complete loop closure around the table. Again, sensor pose estimates are

obtained by frame-model ICP.

4. Frames 1 . . . N were fed not just once but repeatedly for M = 4 loops to the standard

tracking and mapping pipeline. This was possible because the sensor motion was

such that frame 1 and frame N were captured from almost the same place.

5. Finally, for comparison, a new longer dataset of MN frames was processed, where a

user moved the sensor over the scene without precise repetition.

Our main motivation in performing experiments 2, 3 and 4 is to investigate the conver-

gence properties of the tracking and mapping scheme, as no explicit joint optimisation is

performed.

Figures illustrating the resulting sensor trajectories and reconstructions are given in Figure

(9.18). In Figure (9.18a) we demonstrate the result of frame-to-frame depth map tracking,

where the pose of each new frame is estimated by registration against just the last frame.

Rapid accumulation of errors results in the non-circular trajectory and poor reconstruction

is apparent (though see later Figure 9.21a where frame-skipping is shown to improve this).
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(a) M=1 (b) M=2 (c) M=4

Figure 9.19: Close up view of loop closing frames in circular experiment as the data from
a single loop is repeatedly fed to our system. We see (a) initially good alignment after
one pass improving through (b) two passes to finally (c) the frames are extremely closely
registered after four passes.

In Figures (9.18b-9.18d) we use the full frame-to-model tracking approach following the

settings described above.

In Figure (9.18b) processing is halted with the loop two-thirds complete. Figure (9.18c)

shows loop closure, where the last frame processed is a duplication of the first frame and

should have an identical ground truth location. We highlight these two frames, and they

are seen almost overlapping (red and black) alongside excellent trajectory (see also Figure

9.19) and scene reconstruction quality. Some small artefacts in the reconstruction induced

by loop closure can be seen (the diagonal slash across the books in the bottom-right). In

Figure (9.18d) we have taken the same data from (9.18c) and fed it repeatedly (M = 4 times)

to the algorithm to investigate the convergence properties of our system. We now see even

better alignment between the loop closing frames, and reconstruction artefacts reduced.

Note that this can be compared with the reconstruction from the same number of MN
different frames of the same scene obtained from hand-held sensor motion in Figure 9.20.

By pushing a single loop sequence of depth maps through the pipeline several times we

are able to inspect further the quality of trajectory convergence, since after loop closure the

the ground truth poses for the first frame of the sequence are identical. In Figure (9.19) we

render the initial frame after M = 1, M = 2 and m = 4 loops of the sequence demonstrating

the converging pose estimation.

While the turntable experiments demonstrate interesting convergence of the system with-

out an explicit joint optimisation of the parameters, the real power in integrating every

frame of data is the ability to rapidly assimilate as many measurements of the surfaces

as are possible, (experiment 5). Figure (9.20) shows the surface reconstruction where

NM = 560× 4 different frames were acquired from a free moving Kinect sensor. While the

same algorithmic parameters were used, including reconstruction volume, the increased

range of viewpoints result in a reconstruction quality superior to the turntable sequence.
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(a) (b)

Figure 9.20: Agile sensor motion based reconstruction of the same scene, with the same
reconstruction volume but MN different images. Here we see better reconstruction quality
due to each depth map offering independent data and a greater range of viewpoints. Model
rendered with (a) Phong shading and (b) normal map shading.

A natural extension to a frame-to-frame (scan matching) ICP-based SLAM system is to

drop keyframes and perform tracking relative to the keyframe. Using such anchor scans

reduces drift. This is clearly demonstrated in Figure (9.21a) where we sub-sample the N
frames to use every 8th frame only. While the drift is drastically reduced in comparison to

Figure (9.18a), the frame-to-model tracking approach presents a drift free result with the

same input data as illustrated in Figure (9.21b). Our frame-to-model alignment mitigates

a number of hard problems that arise in a fully fledged keyframing system, including

deciding where to drop keyframes, and how to detect which keyframe(s) to track from.

An important aspect of a useful system is its ability to scale with available GPU memory

and processing resources. Figure (9.22) shows the reconstruction result where the the N
frames are sub-sampled in time to use every 6th frame, and 64 times less GPU memory is

used by reducing the reconstruction resolution to 643.

Processing Time

Figure (9.23) shows results from an experiment where timings were taken of the main

system components and the reconstruction voxel resolution was increased in steps. We

note the constant time operation of tracking and mapping for a given voxel resolution

independent of scene surface complexity.

Observations and Failure Modes

Our system is robust to a wide range of practical conditions in terms of scene structure and

camera motion. Most evidently, by using only depth data it is completely robust to indoor
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(a) Frame to frame tracking (b) Frame to model tracking

Figure 9.21: (a) Frame to frame vs. (b) frame to model tracking, both using every 8th frame.
There is a drastic reduction in drift compared to Figure (9.18a) where all frames are used.
But the frame to model tracking results in drift-free operation without explicit global opti-
misation.

lighting scenarios. The accompanying video of the system in live operation demonstrates

a variety of agile motion, with tracking successful through rapid motion. The main failure

case in standard indoor scenes is when the sensor is faced by a large planar scene which

fills most of its field of view. A planar scene leaves three of the sensor’s 6DoF motion

unconstrained in the point-plane linear systems null space, resulting in tracking drifting or

failure.

9.3.3 Geometry aware AR

The dense accurate models obtained in real-time open up many new possibilities for AR,

human-computer-interaction and robotics. For example, the ability to reason about changes

in the scene, utilising outliers from ICP data association (see Figure 8.5), allows for new

object segmentation methods. These segmented objects can be tracked independently us-

ing other instances of ICP allowing piece-wise rigid tracking techniques; and physics can
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(a) (b)

Figure 9.22: A reconstruction result using 1
64 the memory (643 voxels) of the previous figures,

and using only every 6th sensor frame, demonstrating graceful degradation with drastic
reductions in memory and processing requirements.

be simulated in real-time on acquired models directly from the TSDF volumetric represen-

tation (see Figure 9.24 and accompanying video). For AR, the dense model also provides

an ability to handle truer occlusion boundaries between real and virtual for rendering. We

investigated each of these application possibilities in Izadi et al. (2011).

9.3.4 Spatially Extended KinectFusion

The current system works well for mapping medium sized rooms, objects and workspaces,

with volumes of ≤ 7m3. However, the reconstruction of large-scale models such as the

interior of a whole building raises a number of additional challenges. Firstly, the current

dense volumetric representation requires too much memory to enable real-time operation

on commodity hardware. More importantly, very large exploratory sequences would lead

to reconstructions with inevitable drift which would be apparent in the form of misalign-

ments upon trajectory loop closures. These are classic problems in SLAM with good solu-

tions for sparse representations, but which require new thinking for fully dense modelling.

In this subsection we overview new state-of-the-art work which builds on the KinectFusion

results discussed in this section.

Sub-Mapped KinectFusion

We have examined the use of basic sub-mapping techniques within the KinectFusion pipeline

extending the system to achieve out-of-GPU-core reconstruction capabilities for mapping

of small offices and rooms with reduced GPGPU hardware, or extending the size of recon-

structions possible on state of the art platforms. The system is limited in practice by the
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Figure 9.23: Real-time cumulative timing results of system components, evaluated over a
range of resolutions (from 643 to 5123 voxels) as the sensor reconstructs inside a volume
of 3m3. Timings are shown (from bottom to top of the plot) for: pre-processing raw data;
multi-scale data-associations; multi-scale pose optimisations; raycasting the surface predic-
tion and finally surface measurement integration.

Figure 9.24: Thousands of particles interact live with surfaces as they are reconstructed.
Notice how fine-grained occlusions are handled between the real and virtual. Simulation
works on the TSDF volumetric representation, and runs on the GPU alongside tracking
and mapping, all in real-time.

available storage capacity of the computer main memory hosting the GPGPU device. We

focus here on the sub-mapping representation which enables a pose graph optimisation so-

lution to correct for camera drift, which we do not describe here. Example reconstructions

are illustrated in Figures (9.25) and (9.26) obtained without global pose-graph optimisation.

Hybrid surface representation: Our hybrid scene representation augments an active set

of tiled KinectFusion volumes into which new depth maps are fused. Each volume is

currently fixed in both spatial resolution and extent at the beginning of the reconstruction.

These volumes are combined in the hybrid representation with inactive volumes which

are stored in CPU memory and are represented for surface rendering and camera tracking
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Figure 9.25: Two views from a partially complete reconstruction obtained using our sub-
blocking extension to KinectFusion. The live camera is shown with a blue camera frustum
together with a surface measurement in silver. The room measures approximately 10× 7×
3 meters, and is captured here with a virtual reconstruction volume of 20483 voxels.

purposes on the GPU using a triangle mesh of the current level set. Real-time tracking is

performed against the complete hybrid surface prediction combining the surface interface

extracted from each of the active sub-blocks’ zero-crossings together with the surface mesh

from inactive blocks extracted using marching cubes.

Sub-block insertion, selection and updating: We initialise a new KinectFusion block by

analysing the ratio of data in the new sensor frame not intersecting the current set of

blocks. This is efficiently performed by computing the bounding box of the input data

and rounding up to the nearest quantised block, then binning the data into sub-blocks

and initialising a new sub-block at the the bounds of the block which contains surface

measurements projecting to the largest area in the image space. We choose current sub-

blocks using the same criteria applied to surface measurements. In practice we can insert

and keep active a number of sub-blocks filling the available memory of the GPGPU device.

Active sub-blocks are then updated using the standard KinectFusion mapping method.

Prior to swapping any currently active sub-block out of GPU memory, we extract the zero-

level set for use in the hybrid surface representation. The TSDF volume is then copied

into Host CPU memory. Importantly, our dual representation enables revisiting previous

sub-blocks, which if activated are copied from host to GPU memory where surface fusion

can continue on the TSDF volume.

Towards Scalable Dense SLAM: The sub-block volume and resolution can be altered prior

to mapping according to user needs, trading off reconstruction accuracy, real-time tracking

performance and reconstruction scale, limited only by the rate of drift in the system. In the

near future we plan to utilise a pose-graph based optimisation on sub-block transforma-
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Figure 9.26: Living Room Reconstruction using the key-block extension. Note the partially
complete wall shows drift that occurred over the course of the camera trajectory.

tions to achieve large scale globally consistent dense SLAM.

Further Extensions

A number of other researchers have also extended KinectFusion to enable larger scale map-

ping. Zeng et al. (2012) exploit the sparsity of the truncated SDF representation, developing

a real-time GPU implemented octree formulation and octree raycasting to replace the regu-

lar grid approach to storing and rendering the implicit surface. They are able to double the

resolution of a given reconstructed volume using the approach, also achieving double the

frame-rate for real-time raycasting required for frame-model tracking. However, they do

not tackle the important problem of drift and loop closure for larger scale reconstructions

possible with the system.

Whelan et al. (2012b) have developed a spatially extended version of KinectFusion, Kintin-
uous. In contrast to the original approach they add a mechanism to move the center of the

TSDF volume to ensure reconstruction of unmapped space as the camera frustum moves

away from the original working volume. If the camera pose translation exceeds a specified

threshold they translate the working volume holding the TSDF in a cyclic buffer. Repre-

sented surface regions at the volume boundary which fall outside of the re-centred TSDF

are extracted and represented as a point-cloud. They have employed a pose-graph repre-

sentation of the extracted point-cloud, which together with a loop closure detection mech-

anism enables correction of drift. Finally, while their system does not represent the surface

outside of the current working volume with a TSDF, they have experimented with rein-

tegrating the extracted point-cloud back into the working volume. Whelan et al. (2012a)
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further develop the tracking used in the system, augmenting the depth only ICP tracking,

which can fail in areas of few geometric features. They include a vision based direct whole

image alignment using techniques similar to those developed in Chapter (8) and used in

DTAM.

Roth and Vona (2012) also developed a moving volume KinectFusion system, but focus on

the improved visual odomoetry ability provided by the frame to model tracking. Given

an updated camera pose relative to the current volume they integrate the new depth map

and then remap the entire volume using a trilinear interpolation into the new camera pose

frame of reference. Therefore, the working volume remains fixed to the live camera frame

of reference.
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Figure 9.27: Passive Fusion Pipeline Overview.

9.4 Surface Fusion and Tracking from Real-time Video

We now return to real-time dense reconstruction from live video obtained from a single

moving camera. The principal advantage of a completely passive single camera pipeline is

an ability to work across reconstruction scales. This is in contrast to active depth cameras

and fixed multi-camera devices, which depending on the technology used, have limitations

on both the short and long range capabilities of depth measurement. In Chapter (7) we

demonstrated that accurate dense reconstructions can be achieved on commodity hardware

using a single live moving camera as the only measurement device. In this last chapter

we provide preliminary results for a system that combines the real-time multi-view stereo

pipeline with direct whole image alignment based camera tracking. The resulting system is

similar in principle to KinectFusion, where all available image data is used in a feature-less
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manner for both dense reconstruction and tracking.

9.4.1 Method

As outlined in Figure (9.27), the dense surface fusion and tracking from real-time video

pipeline combines the depth map fusion system detailed in Chapter (7) with the direct

model to whole image alignment approach developed in Chapter (8). As with KinectFu-

sion, the passive image pipeline uses the geometric prediction available from the current

dense reconstruction, but also requires a dense photometric prediction which we obtain

here using either the photometric fusion or view dependent texture mapping (VDTM) ap-

proach detailed in Chapter (6).

Tracking the Live Image

The dense tracking component, Figure (9.27)(1), uses the current dense model with both

a photometric and geometric prediction following the direct method described in Section

(8.2) using the frame-frame SO3 and frame-model SE3 estimation methods. Recalling the

use of a conservative surface estimation from the current implicit surface described in

Section (7.4.2), where we threshold the surface prediction using the per voxel weight, we

further re-weight the per-pixel SE3 direct alignment error function using the current surface

model confidence extracted at the surface interface:

e(x, u) =W tr
r (u)(Il(wSE3(u, x))− I tr

r (u)) . (9.4)

Here W tr
r (u) is the predicted confidence of the surface element rendered into the tracking

reference frame pixel u, and minimisation of the whole image error proceeds under a

chosen penalty function for parameters x̂ ∈ se3. Failure to achieve tracking convergence

leads to initialisation of the keyframe based re-localisation mechanism with the last known

pose. Normal tracking resumes after convergence of the pose estimate from a keyframe as

described in Section (8.5).

Photometric Prediction

Photometric prediction is achieved either using photometric fusion or VDTM. When using

VDTM we use the titled marching cubes extraction on every other frame to obtain a surface

model that is efficiently rendered into the set of selected texturing frames, ensuring we

keep the predicted geometry associated with the texture up-to-date. Given the live pose

we then decide whether to add the frame into the VDTM key-frame set using the insertion

mechanism, Figure (9.27)(5), described in Section (6.4.2).
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Predictive Depth Map Fusion

Successfully tracked frames are added into the dense reconstruction image buffer, which

together with a predicted depth map rendered into the new reference frame establishes

the required input for the multi-view predictive depth map fusion pipeline components

shown in Figure (9.27(2-4)) and detailed in Chapter (7) which uses the predictive multi-

view stereo methods from Chapters (4) and (5). If using the photometric fusion mechanism

for texture modelling, we further integrate the associated depth map reference image into

the appearance component of the volumetric reconstruction at this time.

System Initialisation

The fully dense tracking and mapping pipeline requires an estimation of the camera pose

for at least two frames from which an initial depth map can be estimated and fused into

the volumetric surface representation, along with providing a calibrated texture frame to

enable direct whole image alignment. In practice, as in the DTAM system (Section (9.2), we

make use of the high quality feature-based pose estimation from the PTAM system. After

2 to 3 seconds of calibrated image input to the depth map fusion pipeline we then switch

to the fully dense pipeline.

9.4.2 Preliminary Results

We provide preliminary results captured from the live operating system. In all cases,

video input was set to a resolution of 640× 480 with a frame rate of 30Hz from a point-

grey flea2 device. We use automatic exposure control, and fix all other settings of the

camera including gain and colour balance, photometrically calibrating the camera with the

fixed settings using the technique outlined in Section (3.2). Each video image is therefore

photometrically normalised enabling the photo-consistent reconstructions using either the

photometric fusion or view dependent texture mapping pipelines, used in direct tracking,

to work with the varying exposure of each frame. Specific details and comments on each

of the reconstructions obtained are provided demonstrating operation on a range of indoor

office scenes including a cluttered desktop in Figure (9.29d), close up reconstruction of a

toy pangolin (9.28), the inside of a computer with numerous cables (9.30) and a larger scale

office view in Figure (9.31).

The figures illustrate the typical quality of reconstructions possible, ranging in reconstruc-

tions with bounding volumes from 0.2 × 0.1 × 0.1m3 to 3 × 3 × 2.5m3 which we further

demonstrate in the accompanying videos. We note that we provide these reconstructions

to demonstrate not only the modelling capabilities of the surface representation used, but

also by demonstrating the consistent, drift free, which result from the combination of the
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(a) (b) (c)

Figure 9.28: Reconstruction of a toy pangolin on desktop. Demonstrating the small scale,
high detail reconstruction possible with a single camera. The reconstruction bounds were
approximately 0.2× 0.1× 0.1m which was represented using a volume with a resolution of
480× 256× 256 voxels. We show the normal map and Phong shaded rendering of the re-
constructed geometry in (a,c), together with the photometric prediction for a virtual in (c).
Here we have made use of the view dependent texture map based photometric modelling.
The scene contains a number of challenging surfaces for passive dense reconstruction. No-
tably reconstruction of the desktop surface and mixed paper-cellophane bag (back of the
pangolin) and back-plate of a computer (beneath the pangolin) have been reconstructed,
despite their secularity; this is a consequence of using very short baseline imagery from the
live video in the multi-view stereo pipeline, which can make use of the weak data-terms
by using multiple nearby frames. The reconstruction required approximately 1 minute of
real-time operation.

dense tracking and reconstruction components, we illustrate the system performing dense

visual SLAM with a single camera.
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(a) (b)

(c) (d)

Figure 9.29: Reconstruction of a cluttered desktop scene. Providing a basic comparison
point with the previously described live dense reconstruction systems. A resolution of
480× 384× 384 voxels was used to represent the scene shown with a bounding volume
of approximately 1.5× 1× 1m3, we note regions below the desktop have been clipped for
the illustration. Here we demonstrate photometric fusion for tracking, showing the geom-
etry with Phong shading in (a,c) and corresponding photometric predictions for the virtual
views in (b,d). This example demonstrates the pipeline operating to reconstruct surface
regions varying texture characteristics, requiring approximately 1 minute reconstruction
time, with a loopy motion, repeatedly visiting areas in the scene. Notably, the desktop sur-
face texture is clearly non discriminative (also shown in a close up reconstruction in Figure
(9.28) ); while numerous objects with homogeneous texture on the desktop include white
paper and a purpose printed gradient image, a reference wooden cylinder with a slanted
top and dark paper coffee cups; all of which are successfully reconstructed despite having
few discernible features. This ability stems from the use of ultra-small baseline imagery
used in the multi-view depth map estimation on a scene with constant global illumination.
In this setting the convex depth estimation methods are able to use small variations in the
pixel intensity. We note that the the highly specular surfaces in the reconstruction: a mobile
phone screen (bottom left) and the keyboard and mouse, do show reduced reconstruction
quality.
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(a) (b)

(c) (d)

Figure 9.30: Partial reconstruction of a computer with many small cables. This scene
presents a number of challenges for passive dense reconstruction, and demonstrates well
the power the implicit surface representation used, which effortlessly handles the intricate
topology of the scene geometry. The scene volume of approximately 0.7× 0.7× 0.5 was
captured with a resolution of 384× 384× 256 voxels, requiring approximately 30 seconds
real-time operation. This reconstruction again demonstrates in several reconstructed re-
gions of the scene that dense multi-view stereo using the ultra-small baseline imagery pro-
vided by video rate data enables reconstruction of very low texture objects. In this scene,
we see a mixture of cables as well as near-texture-less black and blue plastics, correctly
reconstructed.
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(a) (b)

(c) (d)

Figure 9.31: Reconstruction of an office scene. We demonstrate a larger scale reconstruction
in this example, noting the different range of reconstruction scale captured between this
scene and coins on the desktop in Figure (9.28). Here the reconstruction captures a volume
of approximately 3× 3× 2.5m3 using a resolution of 4803 voxels. We note a number of use-
ful results in the reconstruction. There is further demonstration of successful reconstruction
in homogeneously textured regions such as the floor; chair; table and objects; black suit-
case on the floor; and cardboard boxes; but also illustration of reconstruction capability
in repeated textured regions shown for the chequerboard pattern, although the emboss-
ing artefacts in the reconstructed surface of that region shows the active use of the image
weighting in the multi-view stereo pipeline. The browsing camera remained at least 1 me-
ter from the far wall during reconstruction resulting in the lower quality reconstruction of
the white board and wall there, but it is not clear that a high quality of reconstruction and
tracking would be obtained by moving closer to that region, since the board presents a large
specular surface. Reconstruction has not been successful for the highly specular computer
case (top right), although the photometric prediction of the region (b,d) still demonstrates
high photo-consistency. This reconstruction required approximately 2 minutes of scene
browsing.
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9.5 Video Appendix

This appendix lists the accompanying videos for demonstrations from systems in this chap-

ter and also for the demonstration of a number of working components from chapters

throughout this thesis.

Live Dense Reconstruction with a Single Moving Camera.
CVPR 2010, Newcombe and Davison (2010).
http://youtu.be/CZiSK7OMANw

DTAM: Dense Tracking and Mapping in Real-time. ICCV
2011, Newcombe, Lovegrove, and Davison (2011c).
http://youtu.be/Df9WhgibCQA?hd=1

KinectFusion: Real-time Dense Surface Mapping and Track-
ing. ISMAR 2011, Newcombe, Izadi, Hilliges, Molyneaux,
Kim, Davison, Kohli, Shotton, Hodges, and Fitzgibbon
(2011b) and KinectFusion: Real-time 3D Reconstruction and
Interaction Using a Moving Depth Camera. UIST 2011,
Izadi, Kim, Hilliges, Molyneaux, Newcombe, Kohli, Shot-
ton, Hodges, Freeman, Davison, and Fitzgibbon (2011),
http://youtu.be/q8jfgTilFmo

Key-Block extension to KinectFusion outlined in Section
(9.3.4)
http://youtu.be/InYNITya7zg?hd=1

http://youtu.be/CZiSK7OMANw
http://youtu.be/Df9WhgibCQA?hd=1
http://youtu.be/q8jfgTilFmo
http://youtu.be/InYNITya7zg?hd=1
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Incremental reconstruction of the Graz City of Sights, using
the video rate incremental LDR detailed in Chapter (7), with
view dependent texture mapping from Section (6.4.2).
http://youtu.be/eWoHMfRjo-M?hd=1

Incremental reconstruction of the Middlebury MVS Temple
dataset. Also using the video rate incremental LDR detailed
in Chapter (7), with view dependent texture mapping from
Section (6.4.2).
http://youtu.be/6fiGePRp6HU?hd=1

Incremental desktop reconstruction using the Surface Fusion
and Tracking pipeline from real-time video outlined in Section
(9.4)
http://youtu.be/qBEI0yKih18?hd=1

Incremental desktop with computer reconstruction using
Surface Fusion and Tracking pipeline from real-video pipeline
outlined in Section (9.4)
http://youtu.be/FKtJ-5yuGxs?hd=1

http://youtu.be/eWoHMfRjo-M?hd=1
http://youtu.be/6fiGePRp6HU?hd=1
http://youtu.be/qBEI0yKih18?hd=1
http://youtu.be/FKtJ-5yuGxs?hd=1


10
Conclusions

In this thesis we have brought together several branches of research from the field of

computer vision to develop systems capable of dense visual SLAM. Dense tracking and

mapping components naturally arise from the representation of a scenes surfaces, while

feature-based methods more naturally arise from an abstraction of the surface to a point

cloud model. There has long been interest in the relative merits of feature-based and dense

(direct) methods (Irani and Anandan, 1999; Torr and Zisserman, 1999; Triggs et al., 1999),

but unlike feature based techniques, the use of dense methods within visual SLAM has

been limited. The restricted processing resources imposed by real-time operation seemed

to preclude dense methods in previous monocular SLAM systems, and indeed the recent

availability of powerful commodity GPGPU processors is a major enabler of our approach

in both the reconstruction and tracking components. While the benefits of a dense surface

representation for applications which require surface estimates is clear enough, we believe

that there has been less understanding of the advantages dense models can provide within

online visual SLAM. We have seen that the availability of a dense scene model, all the time,

enables many simplifications of issues with point-based systems, for instance removing the

need for wide baseline feature matching; enabling reconstruction of surfaces in low texture

regions; naturally handling occlusions in tracking; and providing graceful degradation for

tracking when presented with image blur due to rapid motion.

290
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10.1 Contributions to Dense SLAM

Dense Surface Measurements

In Chapters (4) and (5) we developed techniques to estimate a real-time depth map from a

single moving camera. The multi-view stereo depth maps are computed by exploiting the

massive amounts of information available in calibrated short-baseline video together with a

prior assumption about the resulting smoothness of the depth map. Specifically we used a

variational framework to enable depth maps to be obtained as the solution of an optimisa-

tion process, combining data and regularisation terms, (Pock, 2008). This has allowed us to

incorporate our prior assumptions about the smoothness of physically realistic depth maps;

to resolve structure information in the video images that would otherwise be ambiguous or

noisy. In particular we have built on solutions using continuous convex optimisation based

formulations, using primal-dual models that combine a data and regularisation term that

provide a trade-off between efficient computability and model accuracy.

Within this framework we presented three convex optimisation based multi-view stereo

depth map estimation methods that take as input calibrated video. Our depth map de-

noising (DMD) approach explicitly extracts and denoises a data term only depth map. The

data term depth map is efficient to compute and can leverage explicit occlusion handling

over the small-baseline video rate data. We then looked at the minimisation of the full

multi-view stereo energy functional. We used a linearisation of the multi-view stereo error

function and presented a modern primal-dual multi-image solution to the classical varia-

tional stereo problem. We made use of the DMD result to initialise the solution in place

of the traditional coarse-to-fine optimisation strategy. Finally, we investigated an alterna-

tive solution to the full MVS depth map energy functional that replaces the linearisation

of the error function with an exact search over the solution space by taking advantage of

the ability to solve two constrained optimisation problems in alternation. In each case, the

abstraction from the image to the geometric surface measurement, in the form of a dense

depth map, demonstrated that far more structure was available from a real-time single

moving camera than is so often extracted in feature based visual SLAM systems.

Non-Parametric Surface Models

In Chapter (6) we built on the incremental surface reconstruction and prediction capa-

bilities of the volumetric signed distance function range fusion approach by Curless and
Levoy (1996). This reconstruction technique has been used to great effect in offline active

measurement and multi-view stereo reconstruction methods, where the implicit surface en-

ables the capture of arbitrary surface topology. This power to represent intricate real-world

surfaces, is accompanied with the ability to perform incremental surface fusion of new
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measurements into the reconstruction, making use of the spatial structure and free-space

information available in projectively acquired depth map measurements. Furthermore, the

implicit surface representation enables both high quality representation and fast prediction

of the surface in an any-time manner through raycasting the iso-surface, enabling synthetic

views of a partial surface reconstruction to be rendered into a given camera frame. This

combined ability of surface representation, integration and prediction, all available at a

constant time cost for a given volume – independent of the complexity of the model within

the volume, provides the measurement prediction and map updating properties required

for a dense SLAM pipeline. In that chapter we also developed photometric prediction

mechanisms that augment the geometric model to provide photo-consistent predictions of

the scene into novel views.

In Chapter (7) we combined the video rate depth map estimation from Chapters (4) and

(5) with the incremental surface reconstruction and demonstrated incremental live dense

reconstruction. The ability to produce a prediction of surface geometry from the current

reconstruction allows us to do more than simply passively integrate the measurements. In-

stead we demonstrate the use of the implicitly captured uncertainty in the surface represen-

tation; providing a bound on the data term search used in the multi-view stereo estimation

process. This results in a reduced computational cost of the dense depth map estima-

tion, but also reduces ambiguity in the data term enabling reconstruction of less highly

textured surfaces. The resulting live dense reconstruction system made use of calibrated

video input, with camera pose estimates provided by PTAM (Klein and Murray, 2008).

We point out that such systems will require new methods of evaluation for real-world use

over comparison with the traditional offline statically acquired multi-view stereo datasets.

The availability of real-time feedback from the reconstruction process results in a dynamic

operation with the user attempting to fill-in the reconstruction depending on the needs

of the application and properties of the scene being modelled, e.g. regions of less texture

or fine structure require different camera operation to those in more highly textured or

geometrically homogeneous areas.

Insights from Short-Baseline Stereo and Live Dense Reconstruction

We have found that the combination of video rate short-baseline stereo estimation, together

with continuous surface fusion, results in a non obvious capability to improve reconstruc-

tion of scene regions that can posses smooth or repeating textured surfaces; surfaces with

reflections beyond pure diffuse; and containing wiry or otherwise self occluding geometry.

Specifically, each of these produce problems for MVS systems due to the difficulty of ob-

taining or resolving correct correspondence between image regions across multiple views.

Clearly, changes in lighting in the scene caused by shadowing, other active lighting sources,
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or when the surface reflectance is not only Lambertian, cause photometric changes in image

appearance. In attempting to achieve robustness to such variations, descriptors trade-off

against a reduction in the discriminability of an image region. Robustness to such variation

is often achieved by removing low frequency information in a region, however when the

image region is only weakly textured or smooth (and the signal is contained in the low

frequency components), the signal to noise ratio of the descriptors decreases. The size of

descriptor can also be increased, but this often encodes an assumption about the shape of

the surface in the region, and reduces the spatial precision with which correspondence can

be attained.

Fortunately at video frame rate or more generally when capturing with a very short-

baselines, image variations due to illumination changes are greatly reduced between views.

In this scenario even what appears to be homogeneously textured surfaces may in fact have

useful low frequency gradient information caused by shadowing, global lighting or surface

texture. Such information is informative for forming a consistent mode in the stereo pho-

tometric likelihood When comparing image regions over short baselines using absolute

differences with a single pixel, or otherwise with a very small image patch, and weak

illumination invariance.

Short-baseline stereo observations also result in reduced geometric distortion of observed

surfaces between views and increase the co-observability of surfaces. This results in an in-

creased signal to noise ratio when using the simple single pixel or small patch data terms,

enabling smaller structures and fine details or wiry objects to be brought into correspon-

dence. The ability to integrate multiple observations from many different angles with a

short-baseline within a live dense reconstruction frame provides a means for users to fur-

ther reduce any aperture problems. Given real-time feedback users can mitigate the issue

by moving the camera to obtain any usefully constraining overlapping views.

Integration of depth maps across multiple short-baselines can further enable estimation of

surfaces with specular reflections as long as there is a diffuse component to the surface

reflection. As more views are integrated, the number of multiple views that consistently

observe the diffuse reflection in the same (correct) location produces a minima in the photo-

metric cost function which (ignoring saturated pixel values) corresponds to a surface point

that has greater photoconsistency than any of the minima caused by specularities, since

the diffuse component colours are consistent across views while specularities can change

colour (Lee and Bajcsy, 1992; Lin et al., 2002).
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Whole Frame Tracking

In Chapter (8) we developed dense tracking pipelines that use the ability to predict the

geometry and appearance of a surface model into every sensor pixel. The result is the

replacement of the feature extracting, matching and tracking pipeline of the sparse visual

SLAM systems with the optimisation of the camera pose using a direct formulation of

photometric image error. Our passive camera tracking approach builds on the 2.5 model

alignment work from (Baker et al., 2004b) to develop the full 6DoF model-to-frame track-

ing. We also developed the dense depth map tracking pipeline in the context of tracking a

commodity depth camera, also formulating the frame-to-model dense tracking approach,

showing the relationship between the direct passive methods and dense iterated closest

point methods.

Real-time Dense SLAM Systems

In Chapter (9) we demonstrated the use of these components in new dense SLAM systems.

We first presented our earlier live dense reconstruction system that extended PTAM, mak-

ing use of the video rate pose estimation and sparse point based scene model from which

an overlapping set of depth maps were attached. We then presented three new dense SLAM

systems that show an incremental progression towards a fully dense visual SLAM system.

In DTAM, we brought dense tracking into the loop, making use of the dense geometric

and photometric predictions available from textured depth maps. In KinectFusion we ex-

plored our fully dense, incrementally updatable SLAM pipeline exploiting the availability

of commodity depth cameras to provide the depth measurements. We moved beyond the

patchwork of depth map scene representation to combine the volumetric SDF fusion and

prediction framework with dense ICP based depth map tracking and demonstrated that it

is possible to obtain a consistent constant time dense SLAM result, without any form of

explicit feature extraction and matching. Finally we demonstrated that the same approach

can successfully be used in a single moving camera setting combining the real-time pre-

dictive multi-view stereo, surface integration, prediction and tracking to produce a dense

visual SLAM pipeline.

All of the dense SLAM components have been developed in the context of utilising the

massive compute capability of commodity general purpose parallel hardware that devel-

oped from the graphics card processing pipeline (Nvidia, 2008). Specifically, each of the

components described in this thesis has a large amount of fine grained parallelism. Such

computations require only local interaction of the solution values obtained in simple static

homogeneously laid out memory structures. This is the case for the data term computa-

tion and optimisation of the variational multi-view stereo methods; the surface integration

and prediction mechanisms; and also the whole-image error computations required in the
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dense tracking components. These dense SLAM pipelines will continue to benefit from the

advances made in massively parallel hardware over the coming years.

10.2 Future Work

There are number of exciting research questions and engineering directions we are inter-

ested in taking with this work which we now outline.

10.2.1 Formulating Online Dense SLAM

Looking at both the KinectFusion system from Section (9.3) and the equivalent single pas-

sive camera system presented in Section (9.4), we note the alternating form of optimisation

over the dense surface model and camera parameters that it performs: given the current

estimate of the dense surface the camera parameters are estimated and fixed; then, given

a previously fixed set of camera poses the surface model is updated. This form of SLAM

with structure and motion estimation factorised into independent optimisations is clearly

only optimal under the assumption that each optimisation does yield an optimal estimate.

However, since the system clearly demonstrates the ability to operate drift free under the

various office environments demonstrated more work must be done to understand un-

der what conditions such a simple optimisation can achieve consistent mapping, not least

because such a factorised approach to tracking and mapping is very efficient.

We must therefore develop formulations for the complete dense SLAM problem, reflecting

the bundle adjustment formulation for the feature based joint optimisation approach. The

formulation must express the full explicit joint optimisation for a consistent and global

dense surface model together with parameters of a camera trajectory. Given formulations

of the full dense SLAM problem, we can begin to understand how we might achieve an

online optimisation for dense SLAM in a principled way; whether through a form of filter-

ing, keyframe representation or lower level sparsification of the resulting optimisation as

is often performed in SLAM (Dellaert and Kaess, 2006; Thrun et al., 2005). What is made

clearer by the results from this thesis is that a solution to online dense SLAM does exist.

Furthermore, given the results of the systems developed in this thesis that achieve consis-

tent mapping and tracking using the most basic SLAM factorisation possible, we should

be optimistic of the potential benefits that a more principled formulation might bring.

10.2.2 Getting More from Each Pixel

Beyond developing a principled dense SLAM formulation, we also look toward incorpo-

rating lower level physical priors into a dense visual SLAM system. A single moving
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camera is an incredibly rich source of information and the dense visual SLAM components

developed in this thesis only make use of some of the information available in a pixel.

Specifically an assumption of Lambertian surfaces is pervasive throughout the work, and

yet the dense visual SLAM results from Section (9.4) demonstrate that it is possible, by

exploiting the video rate data, to perform dense surface reconstruction even when there

is a large specular component in the image of the non-Lambertian regions. One possi-

ble direction is therefore to exploit the ability to reconstruct these semi-specular surfaces

and to use the surfaces themselves as a further means of observing structure in the scene

which is not directly observable. For example, surface light fields (Wood et al., 2000),

which require an estimated surface geometry proxy, enable efficient representation of all

the surface-light structure interactions. Given such a surface light field capture, it is pos-

sible to further decompose the surface reflectance into a diffuse and specular component

and use the specular component to infer the positions and properties of the non directly

observed lighting structures in the scene. Such a rich reconstruction of the scene would

provide further contextualisation of the dense data terms used throughout the components

in this thesis.

10.2.3 Sparsifying Dense SLAM: Pixels, Surfaces and Objects

A number of interesting avenues of research are open in understanding how we might

make better use of the available data in all components of the dense SLAM pipeline. Within

the dense tracking pipelines, there is an opportunity to reduce the massive amounts of

redundancy in the normal equations, by deciding on a frame by frame basis which pix-

els would provide maximum information for robust and accurate solutions (Dellaert and
Collins, 1999).

Within dense mapping we previously noted the potential for using more efficient repre-

sentations of the signed distance function, exploiting the compressibility of the implicit

surface representation to scalable mapping. Such extensions were discussed in Section

(9.3.4), noting recent extensions to KinectFusion including the signed distance function oc-

tree work by Zeng et al. (2012). However, representing the dense surface in such a global

form presents a serious challenge in handling drift that can be baked into the map. Issues

regarding drift in global representations of the dense reconstruction must be resolved to

make such a scalable representation truly useful.

Perhaps the most exciting direction of research, building on the ability to obtain high

quality dense reconstructions in real-time, is the possibility to begin to extract and exploit

higher level structures from the non-parametric representation (Pauly et al., 2008; Cohen
et al., 2012). By detecting possible symmetries and repetition in the scene it is possible to
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introduce, when supported by the data, parametric abstractions of the scene even up to

the level of whole objects, rooms and buildings. For instance, having reconstructed a chair

in the scene it would be very useful if later observations of a similar chair type elsewhere

could provide a strong prior on reconstruction, or enable tracking capabilities on objects

which are too far from the sensor to provide useful data for live dense reconstruction from

which the camera can be tracked. Such a system would require two new components

in the dense SLAM pipeline: one which actively looked to compress the current scene

reconstruction, resulting in a higher level basis representation or segmentation of those

representable regions of the scene; and second a mechanism that enabled detection of the

objects in the scene that be used to contextualise the reconstruction to make use of the

extraction structures. Dynamically building an object hierarchy from surface elements to

object primitives on-line, presents enormous opportunities to compress the dense scene

reconstruction, handle moving objects in the scene, enable reconstruction of object which

have only few or low quality observations, and enable scalable life long mapping and

tracking capabilities.

.
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