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Abstract—An interesting recent branch of SLAM algorithms
using vision has taken an appealing approach which can be
characterised as simple, robust and lightweight when compared
to the more established and complex geometrical methods.
These lightweight approaches typically comprise mechanical
odometry or simple visual odometry for local motion estimation;
appearance-based loop closure detection using either whole image
statistics or invariant feature matching; and some type of efficient
pose graph relaxation. However, such algorithms have so far been
proven only as localisation systems, since they have not offered
the semantic demarcation of free space and obstacles necessary
to guide fully autonomous navigation and exploration. In this
paper we investigate how to apply and augment such approaches
with other lightweight techniques to permit fully autonomous
navigation and exploration around a large and complicated
room environment. Our approach uses only odometry and visual
sensing, the latter being provided by a rig of multiple standard
cameras without the need for precise inter-camera calibration.
A particular focus of our work is to investigate the camera
configurations which are most valuable to permit the capabilities
needed by autonomous navigation, and our solution neatly assigns
each camera a well-defined specialist role.

Index Terms—Computer Vision, Robotics, SLAM, Multi-
Camera Rig.

I. INTRODUCTION

Computer vision is an increasingly appealing sensing

modality for mobile robotics, and a number of successful

SLAM systems involving vision as the primary outward-

looking sensor have been recently presented. In particular,

besides the more standard feature-based reconstruction ap-

proaches, there have been several systems which have solved

the visual SLAM problem using much ‘simpler’ lightweight

techniques which combine local trajectory estimation (via

either wheel or simple visual odometry), visual place recog-

nition, and pose graph optimisation (e.g. [13]). However, in

either paradigm few systems have gone further than tackling

localisation, and few real visual SLAM systems have been

proven in autonomous navigation.

In this paper we present a method based on a combination of

lightweight vision techniques which permits robust, automatic

and repeatable mapping and navigation around a large room. In

this scenario, there are several demands placed on the robot’s

sensing systems:

• Local trajectory estimation.

• Place recognition to detect re-visits (loop closures) and

permit global map optimisation.

• Detection and avoidance of obstacles in the robot’s close

proximity.

• Global free-space mapping for path planning.

Here we describe a novel combination of lightweight meth-

ods to provide all of these capabilities using odometry together

with multi-camera visual sensing. Our use of a rig of multiple

standard cameras is based on the observation that while a wide

field of view is often desirable for SLAM and relocalisation,

the other requirements placed on a vision system when the

goal is full autonomous navigation are not easily satisfied by

a single omnidirectional camera. These cameras often have a

limited and low resolution view of downward angles below

the horizontal necessary for free space and obstacle detection,

which, when looking more to the future, could be a limitation

for tasks like object recognition or human interaction.

Pre-calibrated multi-camera rigs in a single unit which offer

good resolution across a wide field of view are available, such

as Point Grey’s Ladybug, but they are expensive, as well as

inflexible since they cannot be reconfigured. The advantage of

multiple specialised sensors in high performance autonomous

systems has been proven in robots such as the DARPA Grand

Challenge vehicles or Willow Garage’s PR2. In our work, we

choose to use just cameras rather than other outward-looking

sensor types, but retain the idea of multiple cameras mounted

in a weakly coupled way and which provide specific functions

as part of a whole navigation solution, without requiring a

tedious inter-camera calibration procedure.

We demonstrate automatic localisation and mapping, and

autonomous navigation in a goal-directed scenario where the

robot is able to move repeatably between any pair of points

indicated in the map. Further, we demonstrate full autonomous

exploration; the robot is dropped into the room with no

knowledge or a large cluttered room and is able to explore

autonomously to build a consistent map of the whole area

suitable for autonomous navigation.

II. RELATED WORK

A. Lightweight Vision-Based SLAM

The lightweight approaches we study in this work have at

their core a coarse metric-topological environment model, but

they can still enable accurate and autonomous navigation.

The single most important function provided by vision

within such a system boils down to image retrieval, where

the most recent image is compared against all previous lo-

cations in the environment model. The use of colour and

texture information encoded in global histograms for image

representation has proven successful for topological robot

localisation [16, 18]. More recently, purely appearance-based

topological place recognition approaches based on the “Bag

of words” paradigm and inspried by information retrieval

techniques have been proposed [2, 4]. These are however

more computationally demanding, as they require expensive

feature descriptor calculations and matching, and we consider



them unnecessary in the context of our robot’s local navigation

problem.

Although a rig of multiple standard cameras is seemingly

good alternative to a single omnidirectional device, the use

of such rig for SLAM has been subject of little research,

presumably because of the difficulty of extrinsic calibration.

In our previous work [3] we showed that autonomous external

calibration of a camera rig with no overlapping views was

indeed possible, and [10] demonstrated SLAM using an eight

camera rig. While such geometric work on fused multi-camera

SLAM will doubtless continue, in the present paper we aim

to use each of the cameras for one or more specialised tasks

without the need for global extrinsic calibration.

B. Integrated Visual SLAM and Autonomous Navigation

There have only been few visual SLAM systems using

standard cameras which enable fully autonomous navigation.

Davison and Murray’s early visual SLAM system based on

fixating active stereo [6] was used for real-time position-based

navigation, but the feature map generated was too sparse to

permit reliable reasoning about free and occupied areas of

space. With the advent of feature-based robot SLAM systems

with much increased feature density, there have recently been

some attempts at performing free-space mapping based on

semi-dense point clouds. Notably, systems like [15] offer good

possibilities for free-space detection (at least in highly textured

areas with many feature points), and enable autonomous

navigation and exploration.

C. 2D Free Space Mapping using Vision

On the assumption that our robot moves on a ground plane,

2D free space mapping is critical to allow obstacle avoidance

and path planning.

This problem has been studied not only for robot navigation

but also in road detection for vehicles to aid autonomous

driving. Some approaches attempt to define the drivable area

either using offline machine learning techniques such as Sup-

port Vector Machines [17] or by a combination of geometry

information and offline learning [1]. Such techniques cannot

however be directly transposed to the indoor 2D free-space

detection problem, because in this context there is no such

thing as a general geometric pattern for the boundary of the

drivable area that can be retrieved in each image based on

(potentially learned) a priori information.

Successful methods for obstacle avoidance and free-space

mapping for mobile robot navigation rely solely on the use of

colour information [9], or infer a planar homography mapping

image pixels to 2D floor coordinates under a ground plane

assumption [19, 11]. The authors of [12] propose to make

use of multiple cues to calculate horizontal lines defining

the boundary between floor and walls, which is well suited

to corridors, but presumably not adapted in case of more

complicated structure.

III. METHOD

We divide our whole framework into five main sections

which are all interconnected:

• Rig camera placement.

• Map representation and loop-closure detection.

• Global map relaxation.

• Free space mapping.

• Autonomous navigation, obstacle avoidance and path

planning.

A. Rig Camera Placement

Our robot’s vision capability is to be provided by a rig

of up to four standard cameras, each with a lens offering

approximately 80◦ horizontal field of view. There are many

possible choices for the configuration of these cameras, since

they must support the various tasks required by loop closure

detection, free-space mapping and exploration, and we have

examined the trade-offs of different set-ups. Notably, the

final configuration chosen is adapted to the characteristics of

the office environment used, where movements can be quite

restricted and the distance to the objects relatively short (e.g.,

when traversing narrow corridors between two desks).

In principle, an extremely wide field of view, up to the

maximum full cylindrical field of view offered by a single

omnidirectional camera, is well suited to relocalisation: not

only does this enable the capture of a good variety of ap-

pearance data to act as a fingerprint for a location, but it also

permits recognition of previously-visited places independent

of the orientation of the robot. However, when this wide field

of view is provided not by a single omnidirectional camera

but by a rig, we found that additional difficulties arose.

We experimented extensively with histogram-based place

recognition (see the next section) with an ad-hoc four-camera

rig designed such that the cameras were mounted horizontally

with maximum angular spacing (i.e. at the corners of a

square). However, the performance in recognising locations

with different robot orientations was disappointing. This was

partly due to the fact that the four cameras used left gaps

or ‘blind spots’ in the cylindrical field of view which would

not necessarily align when the robot had made a rotation.

Another significant point was that the actual distance between

the camera centres on the robot was often significant compared

to the distance to objects and furniture in the indoor scene, so

unmodelled parallax effects came into play.

We found that a good pragmatic solution to camera place-

ment for loop closure detection in an indoor scene is to have

one horizontal camera facing forwards, and one backwards

(see Figure 1). This configuration is able to detect the vast

majority of loop closure events the robot will encounter,

because in restricted spaces, when a robot revisits a place it

is very likely to do it either moving in the same or exactly

opposite direction to before. Yes, there will be possible loop

closure events sometimes missed when the robot crosses a

previous path at right angles. But in fact, such a crossing

might well be difficult to reliably detect in any case, as it may

correspond to a wide open area where several significantly

distant positions at the centre of it have similar appearance,

making recognition ambiguous and localisation inaccurate.



Fig. 1. Robot camera configuration consisting of a three camera rig where
camera C is used for obstacle avoidance and free space mapping and the
cameras A and B are used for loop closure detection.

Together with the front/back camera combination for loop

closure detection, we added a third camera pointing down

at the ground in front of the robot for free space mapping.

As detailed later, we experimented with the downward angle

of this camera where there is a trade-off between immediate,

local obstacle detection capability and a more forward view

suitable for planning. There is an interesting feedback in play

here between the image matching for relocalisation required

by SLAM and free space mapping which permits autonomous

robot guidance. A free space detection solution which is

working well will enable the robot, when exploring or re-

visiting, to navigate in a precise way by for instance moving

repeatably half-way between gaps or along corridor passages.

This makes loop closure detection easier, since the robot is

likely to very precisely revisit locations.

B. Map representation and Loop Closure Detection

Our approach does not assume any prior knowledge about

the environment except that is traversable by a wheeled robot

and that its visual appearance is descriptive enough.

As the robot autonomously explores or is being driven

through an environment, it builds a topological or graph

representation of the area. A topological map is a very practical

and desirable model for navigation, since it imposes a discrete

structure on a continuous space, and because it easily enables

the use of different low level (graph relaxation) and high level

(path planning) algorithms.

In this undirected graph G = (V,E), a vertex V = (INt , Xt)
represents a physical location in the environment which stores

all the images I from N cameras of the rig at time t as well as

the global position of the robot Xt = (xt, yt, θt) (2D position

plus heading direction). Each edge Et in the graph stores

the relative 2D transformation between nodes Xt and Xt+1.

A new vertex is initialised when the distance traveled from

the previous position is greater than some threshold β (using

the internal odometry of the robot), or when the dissimilarity

between consecutive images is above a threshold α.

Our approach for image comparison relies on a global

descriptor implemented in the form of a 1D grey-level his-

togram. Such minimalistic single-signature place characterisa-

tion enables reasonable discrimination, while on the other hand

only requiring frugal computational resources. The signature

of a location is obtained by sticking the images of both

forward and backward cameras next to each other into a single

mosaic which serves as the support for the calculation of the

descriptor. Different methods for comparison were tested as

well as multi-dimension histograms including cues such as

gradients, color or intensity, obtaining the best results using

EDM [14] over 1D histograms of grey intensities.

Loop-closure detection is achieved by comparing the most

recent location signature against all the previously visited

locations. Thanks to the compactness and simplicity of place

characterisation, such an exhaustive retrieval procedure can

be executed efficiently. Once a candidate for loop closure is

found, time consistency is ensured to cope with perceptual

aliasing. To this end, we perform a comparison of the ap-

pearance of 7 locations Lrecent = {Vi−3, . . . , Vi, . . . , Vi+3}
centred in time around the location of interest Vi, with

7 locations Lprevious = {Vj−3, . . . , Vj , . . . , Vj+3} similarly

sampled around the potentially loop-closing location Vj . This

yields a 7 × 7 matrix C =
∑

i,j=1,...,7 Cij , where each entry

corresponds to the distance (in appearance-space) between

locations Vi ∈ Lrecent and Vj ∈ Lprevious. Note that the

procedure has to be postponed until the locations Vi+1, Vi+2

and Vi+3 are visited and added to the map.

Asserting the time-consistency of a potential loop-closure

requires an evaluation of the entries of C which takes care of

the heading direction of the robot (see Figure 2). However,

because of the configuration of the rig retained in our ap-

proach, we only need to distinguish between situations where

the relative orientation from one passing to another is either

0 deg or 180 deg. Therefore, we review the scores of all the

elements on both diagonals of C, and only if they are all

below some threshold for one diagonal the loop-closure is

accepted. This is enforcing the consistency of the appearance

over neighbouring locations in time around both the location

of interest and the potential loop-closing location in such a

way that the relative orientation of the robot between the 2

passings is properly taken into consideration.

C. Graph Relaxation and Map Optimization

Due to the topological nature of our map representation

we can optimize the poses by minimising the error between

robot positions every time a loop closure is found. Every time

a new graph relaxation is applied the map becomes more

consistent to the real metric map and therefore becomes usable

for navigation and path planning. In our approach we used

TORO [8] which provides a highly efficient gradient descent-

based error minimisation for constrained graphs.

In order to enable accurate obstacle avoidance and path

planning, a global free space map M of the environment is be-

ing built incrementally as the robot navigates (see Section III-

D for details about free space detection). To this end, we

associate to every keyframe of the robot trajectory a relative

local free space map Mt, every vertex of the graph G being

now represented as Vt = (INt , Xt,Mt), which is a simple 2D

occupancy grid with a resolution of 1cm2 per cell and whose

origin is anchored according to the position and orientation of

Xt. To ensure the consistency between topological and global



Fig. 2. Loop Closures using two cameras: forward and backward. a) represents a loop closure found with a difference in robot orientation of 180 deg with
respect to the matching node. b) represents a loop closure found with the same robot orientation as the matching node. The top row in figures a) and b)
indicates the current frame and the bottom row the matching node or keyframe. The single image at the left of figures a) and b) shows the matrix consistency
check, with the bright red indicating strong matching along either the forward or backward diagonal.

free space maps, M is updated based on the optimised vertex

positions whenever the topological graph is relaxed.

It is true that with our featureless technique for loop-

closure detection, an accurate position of the robot is not

obtained right away. Yet, this is important to impose precision

which improves the graph of poses after relaxation. Therefore,

to obtain a good relative position estimate at loop-closure

between current Xt and past Xp poses, we approximate the

displacement ∆P = (∆x,∆y,∆θ) between them by aligning

the contours of their respective local free space maps Mt and

Mp, which can be simply done by solving a cost function

minimising the distance between points in those contours:

FC1C2 = min(
∑

i,j

dist(PC1

i , PC2

j )), (1)

where the function dist(·, ·) is evaluated obtaining the 2D

Euclidian distance between all the points in PC1

i and PC2

j .

When the robot revisits a location with an opposite direction

to the one of the previous passing, it is difficult to match

the free space maps, as they do not overlap very much. In

such situation though, we can still approximate the relative

orientation between the two views by calculating the mean

horizontal optical flow between the corresponding images

(obtained by the loop closure detection) and this relative

orientation is used in the loop closure constraint.

D. Free Space Mapping

We have developed an accurate algorithm which incorpo-

rates geometry and colour information. Our solution assumes

that the robot is moving on a plane which is the same over

the whole room, and that the floor is made of large regions

with homogeneous colour.

Under the floor planarity assumption, it is possible to map

the image pixels of a downward looking camera to the 2D

cells of a local free space map of the visible floor in front

of the robot. This transformation Hf is a homography which

is calibrated once each time the is fixed to the robot by the

simple procedure of matching four artificial landmarks on the

floor with the corresponding pixel positions in the image.

The inverse mapping H−1
f can be employed to retrieve from

the image the RGB value Xi associated to any floor cell i

visible in front of the robot, so as to determine if this cell

is free of obstacles or not. This is done here by calculating

the log-likelihood ratio of occupancy, as follows (statistical

dependency on the model is omitted for simplicity):

ln
P (Ci = F |Xi)

P (Ci = O|Xi)
= ln

P (Xi|Ci = F )

P (Xi|Ci = O)
+ln

P (Ci = F )

P (Ci = O)
(2)

where Ci is the class of cell i (F for “floor”, O for

“obstacle”). We assume constant empirically fixed priors, and

a uniform “obstacle” likelihood model, while the “floor”

likelihood model is a mixture of L gaussians similar to the

one used by Thrun et al. [5] for road detection:

P (Xi|Ci = F ) =

1
∑L

j=1 wj

L
∑

j=1

wj

1

(2π)
3

2

√

|Σj |
exp−0.5(Xi−µj)

′Σ−1

j
(Xi−µj)

(3)

where µj ,Σj , wj respectively are the mean, covariance

matrix and mixing coefficient parametrising gaussian i. When

the occupancy ratios have been calculated for every cell, the

model parameters are updated according to the procedure

proposed in [5], using only those cells whose ratio is above

some threshold. Initially, the gaussians are learned in the very

first frame using only a small region at the bottom-centre of the

image (that is assuming that at startup, the corresponding area

on the floor is free of obstacles and is a good representative

sample of the overall appearance of the floor).

For better robustness and more efficient planning during

navigation, the local occupancy grids corresponding to several

consecutive robot poses are fused together (see Figure 3):

not only does this provide a medium-sized free space map

around the robot which is more suited to navigation, but also

makes it possible to filter out incorrect obstacle detections due

to inaccurate probability scores in the presence of noise in

the image or illumination changes in the scene. Similarly, as

already mentioned, a global free space map M of the explored



environment can be computed at anytime by fusing all the

individual local occupancy grids (see Figures 5 and 6).

Fig. 3. The image on the left shows part of a map which has been
incrementally built, the region inside the marked area is the current frame
being mapped which corresponds to the image on the right.

E. Autonomous Navigation and Exploration

We use the Dynamic Window Approach (DWA) [7] to plan

smooth motions of the robot around nearby obstacles. Having

estimated the free space around the robot based on a local

window of a fixed number of recent keyframes, the local

occupancy map is binarized to obtain boundaries between free-

space, obstacles and unexplored areas. Every cell detected as

an obstacle boundary in our map is used in DWA to plan the

next velocity commands. DWA plans the best route from a

current robot position to a target location, avoiding obstacles,

and therefore requires the definition of robot goals. We have

considered it outside the scope of this paper to investigate

ideal exploration strategies, finding that a heuristic technique

was sufficient in our application. A goal is randomly selected

relative to the robot position and around a square window of

3m× 3m. If the robot has spent much time around the same

area then a goal is selected further away.

It is also important to obtain a balance between mapping

unexplored areas and obtaining accurate maps. Every time the

robot has mapped an area completely it revisits previous places

within the mapped area to find potential loop closures. By

doing this we try to correct drifts in the odometry and also

every cell is corrected according to the new robot position.

IV. EXPERIMENTS AND RESULTS

We have developed our experiments in an office of size 10×
10m using a Pioneer robot platform. As can be seen in figure

4, this environment represents a challenging scenario with

strong perceptual aliasing and multiple narrow spaces (88cm),

making both localisation and autonomous navigation difficult.

The quality of our approach is demonstrated by performing

manual and autonomous navigation with incremental and real-

time free space mapping and loop closure detection.

Our first experiments consider the effect of loop closure

detection over map precision: it is well known that odometry-

based robot position estimation will continuously drift over

time, until a loop-closure is detected and the inconsistency is

compensated for. To safely navigate, it is therefore extremely

important to correct the map accordingly every time as pos-

sible. As can be observed in the top left image of Figure 5,

Fig. 4. Office environment with strong perceptual aliasing and challenging
navigable spaces.

Ground truth comparison (cm)

Robot Pos Ground truth Robot Pos Ground truth

(182, 0) (180, 0) (96, 445) (90, 450)

(212, 145) (210, 150) (-246, 487) (-240, 480)

(425, 143) (420, 140) (89, -325) (90, -330)

(512, -271) (510, -270) (-280, -326) (-270, -330)

TABLE I

EVALUATION OF LOCALISATION ACCURACY.

a constructed map using only odometry information with no

loop-closure detection is highly inaccurate, and it would be

almost impossible to navigate autonomously or to use the map

for further high-level tasks. When loop-closures are detected

with only one camera (top right image), then it can be observed

that both the robot trajectory and the map are significantly

more accurate. When using two cameras, the number of loop

closure detections increases, and so the map becomes even

more accurate (see Figure 5, bottom).

We have investigated the impact of the downward looking

angle of the camera used for free space detection on the quality

of the map (Figure 5, bottom images). We have found that if

the camera is oriented such that it is only covering a very

restricted region (i.e., within 20cm to 110cm) in front of the

robot, then, the obtained map is very detailed, enabling very

accurate obstacle localisation. However, such very downward

looking angle penalises motion planning, as it only provides

very local information, with obstacles being detected very late,

only when the robot is very close to them (see the bottom right

part of the figure). When the camera is covering a larger region

(i.e., within 60cm to 450cm) in front of the robot, further

away obstacles can be detected, enabling more efficient motion

planning, over a wider time window, leading to smoother robot

trajectories (bottom left of the figure).

To measure the metric quality of our free space map, we

have picked 8 random robot positions distributed over the

whole room, and compared their coordinates in the map with

ground truth obtained by manually measuring the coordinates

of these points on the floor. This comparison, presented in

Table I, demonstrates the accuracy of our solution, with a mean

2D error of 6.39cm, and a max error of 10.77cm.

With our system the robot was able to successfully achieve

several autonomous navigation runs of approximatively 20min.

Figure 6 shows examples of global free space maps, providing



Fig. 5. Free Space Map built by driving the robot manually (700 keyframes).
Top left: map without loop closures, top right: map with loop closures coming
from the camera facing forward, bottom left: map with loop closures from
both cameras, bottom right: map built using a camera facing to the floor.

a comparison of the two downward looking angles already

used earlier, again proving the superior accuracy of the proxi-

mal sensing configuration. The purpose of this experiment is to

demonstrate the reliability of our complete solution compris-

ing simultaneous localisation, mapping, free space detection

and navigation: the exploration strategy here is deliberately

simplistic, and used only as a proof of applicability of our

solution (more advanced policies would certainly result in

more efficient exploration).

Fig. 6. Free Space Map built autonomously using 2500 keyframes

V. CONCLUSIONS

We have shown that lightweight vision-based techniques,

previously shown to be effective for surprisingly high per-

formance localisation, can be augmented to be similarly ef-

fective for fully autonomous robot navigation. Our system

puts together odometry-based trajectory estimation, front/back

vision-based loop closure detection, free space identifica-

tion from a local obstacle detection camera and a forward-

looking camera, and local and global occupancy mapping.

Our approach relies on an ad-hoc rig of multiple standard

cameras, and we have investigated the role each camera should

effectively play for the best performance, but in future work

it may be worth considering taking the specialisation route

further and creating a system with heterogeneous camera types

with even more elaborated configurations and roles.
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