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Abstract—Cameras are often a good choice as the primary
outward-looking sensor for mobile robots, and a wide field of
view is usually desirable for responsive and accurate navigation,
SLAM and relocalisation. While this can potentially be provided
by a single omnidirectional camera, it can also be flexibly
achieved by multiple cameras with standard optics mounted
around the robot. However, such setups are difficult to calibrate.

Here we present a general method for fully automatic
extrinsic auto-calibration of a fixed multi camera rig, with no
requirement for calibration patterns or other infrastructure,
which works even in the case where the cameras have com-
pletely non-overlapping views. The robot is placed in a natural
environment and makes a set of programmed movements
including a full horizontal rotation and captures a synchronized
image sequence from each camera. These sequences are pro-
cessed individually with a monocular visual SLAM algorithm.
The resulting maps are matched and fused robustly based on
corresponding invariant features, and then all estimates are
optimised full joint bundle adjustment, where we constrain the
relative poses of the cameras to be fixed. We present results
showing accurate performance of the method for various two
and four camera configurations.

I. INTRODUCTION

It is now widely accepted that cameras are highly suitable

sensors for providing mobile robots with the situational

awareness they need to navigate and operate autonomously

in the real world. Although the geometrical shape of the

scene around a robot does not immediately pop out of

cameras in the same way as from a depth sensor such as a

laser range-finder, it has been convincingly shown that with

appropriate processing they can be used both to estimate

motion accurately and recover detailed 3D geometric infor-

mation about a scene (e.g. [17]). This seems to be only the

beginning of the role cameras can play in robotics, however,

since ongoing progress in computer vision indicates that

the detailed photometric information they offer has almost

unlimited potential for problems such as dense volumetric

reconstruction and object recognition.

A clearly desirable characteristic of a sensing system for

situational awareness is a wide field of view, and the advan-

tages of wide-angle vision have been proven for instance both

in geometric SLAM [10] and appearance-based place recog-

nition. Wide angle vision can be achieved by single cameras

with special optics such as fish-eye lenses or catadioptric
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Fig. 1. Our goal is automatic extrinsic calibration of an arbitrary
set of cameras mounted rigidly on a mobile robot and without external
infrastructure. The cameras may or may not have overlapping fields of view,
but will observe common parts of the surrounding scene as the robot makes
a loopy motion including 360◦ rotation. We make monocular SLAM maps
of the invariant feature points observed individually by each camera, match
features robustly, perform 3D alignment to fuse these into a single joint
scene map, and globally optimise enforcing rig rigidity.

systems, which can sometimes be elegant and practical.

However, all such cameras will suffer from relatively poor

angular resolution, since the pixels available must be spread

thinly. Another alternative is an active camera system, with a

mechatronic platform providing pan/tilt rotation of a narrow

field of view camera; but this option suffers from the serious

disadvantage that views of highly separated angles cannot be

simultaneous and the robot loses the ‘eyes in the back of its

head’ that true omnidirectional vision provides.

Now that cameras and their supporting electronics are

getting cheaper and smaller, mounting multiple cameras

around a robot in a ring or other configuration is highly

feasible, clearly offering the potential for both a wide field

of view and high angular resolution. A multi-camera rig

will in general not be fully equivalent to a single wide-

angle camera in terms of imaging geometry since it will

have multiple optical centres, but this is not a problem for

applications such as navigation as long as the locations of

those optical centres is known, and may even be an advantage

in inferring depth information. Indeed, a multi-camera rig is

fully reconfigurable and can be set up to provide the field of

view needed, and if necessary regions where camera views

overlap for stereo observation.

For a multi-camera rig to be useful, it is critical to know

the relative poses of the cameras. The aim of this paper is

therefore to propose an automatic procedure to achieve this



extrinsic calibration of the rig, by using SLAM techniques as

a robot makes a small set of programmed motions through a

natural scene. Multi-camera rigs, particularly those involving

extruding cameras and mounts, are prone to moving as the

result of vibrations or knocks. While it would be ultimately

desirable to detect and correct this online during normal

operation, the next best is to have an automatic calibration

procedure which can easily be run whenever needed. Note

that commercial multi-camera systems such as the Point Grey

Ladybug, which are factory-calibrated, feature expensive,

heavy and bulky rigid casings to ensure that the calibrated

configuration does not change once the rig is out in the

real world. In such a systems, a whole calibration room,

with targets in all directions would be needed for pattern-

based calibration. Our approach tackles the non-straight

forward part of multi-camera calibration, the extrinsics of

non-overlapping cameras.

Our method (outlined briefly in Figure 1):

• Is fully automatic, needing no human intervention be-

tween starting the robot motion, image capture and

when the calibration result is returned.

• Requires no a priori known scene structure.

• Solves primarily for the relative poses (up to scale)

of the cameras, which can be arbitrarily located and

oriented in 3D on the robot’s structure.

• Assumes known individual intrinsic parameters.

• Assumes synchronised capture across the multiple cam-

eras, but they can have varying types and optics.

II. RELATED WORK

To estimate intrinsic camera parameters, classic methods

make use of calibration patterns to provide external metric

information [22] and are well-tested and accurate. However,

it is also possible to auto-calibrate camera intrinsics without

a pattern if additional assumptions are made, most usually

that several images of a rigid scene taken by a camera

with unchanging parameters are available and between which

correspondences can be obtained. Under such conditions,

enough constraints are available from image feature mea-

surements to uniquely determine the calibration constants.

For instance, Pollefeys et al.[19] solved for intrinsic camera

parameters as part of a complete off-line structure from mo-

tion algorithm. A more recent approach using SLAM-based

probabilistic filtering allowed auto-calibration estimates of

camera internal parameters to be refined sequentially [3].

Most work on extrinsic calibration has focused on the

case of stereo rigs, designed such that two or sometimes

more cameras have highly overlapping views and simulta-

neously observe mostly the same parts of a scene. Calibra-

tion methods based on external metric targets are relatively

straightforward to formulate for this problem, allowing both

intrinsic and extrinsic calibration to be unified (e.g. [6]), and

are therefore prevalent practically. More relevant to the goal

of our paper are methods which can perform extrinsic auto-

calibration of stereo rigs presented with general, unknown

scenes. For instance, extending the approach of [22], Luong

and Faugeras [16] proposed to calibrate a stereo rig using

point correspondences between the two cameras when the

system undergoes a series of displacements in an a priori

unknown rigid scene. The resulting estimated extrinsic pa-

rameters are determined up to a scale factor. Similar work

on solving the stereo-camera calibration problem using cor-

respondences information includes [11]. Another interesting

approach is also presented in [20] where a central EKF-

SLAM filter fuses the information coming from a stereo

camera rig to obtain the extrinsic parameters.

There has been relatively little work on auto-calibration

in the case we are considering in this paper, multi-camera

rigs designed primarily to provide a wide field of view and

which may therefore have little or even no image overlap.

In fact, even using metric patterns to calibrate such rigs is

challenging because the patterns must accurately surround

the whole rig in the form of a ‘calibration room’ or similar.

Different solutions have been proposed to achieve such

behavior. For instance, in order to accurately calibrate an

eight camera rig for SLAM purposes, Kaess and Dellaert [10]

designed a semi-automatic procedure which involved placing

the robot in a special scene with calibration targets on three

walls and capturing a number of images manually before

feeding these to automatic target matching and optimisation

procedures. A complicated semi-automatic procedure was

also proposed in [9], where a calibration grid is presented

in front of each camera individually, at several positions,

while a laser measurement system is used to determine the

3D coordinates of the grid’s corners. From this geometrical

information, and taking advantage of point correspondences

over images of the grid in the different cameras, calibration

parameters can be determined.

The two above approaches require significant user impli-

cation to obtain the calibration parameters. A simpler yet

still semi-automatic solution was proposed by Li et al. [13],

where calibration can be achieved in unprepared natural

or man-made scenes. A three-step procedure sequentially

determines the centre of distortion of the setup (assuming

a single unique optic centre for all the cameras), the indi-

vidual intrinsic parameters of each camera, and the relative

camera orientations (under a unique optic centre assumption,

where relative camera poses differ only by a rotation). The

procedure however still requires user intervention, with the

manual specification of point correspondences between the

views of two neighboring cameras. In one more recent

solution a planar mirror is used to make a single calibration

object visible to all the cameras. However, even though the

method allows for both intrinsic and extrinsic calibration, the

approach would appear inconvenient in practise.

The work we have found which is most similar to our

current approach is that by Esquivel et al. [5], who explicitly

tackle auto-calibration of a non-overlapping rig and present

some limited results obtained using real image sequences.

They perform individual structure from motion computation

for each camera separately, determining a trajectory for each

as the rig moves. These trajectories are then locally aligned in

3D and the transformation determined estimate of the relative

camera poses. A similar method that tackles the problem



by tracking a moving object and matching trajectories is

presented in [1]. Also, in [18] a system with two wear-

able forward and backward facing stereo is developed. The

individual stereo rigs are calibrated in a standard way using a

calibration pattern. The relative calibration between the rigs

is achieved automatically via trajectory matching.

These techniques are more limited since they rely only on

trajectory matching rather than aiming to build a globally

consistent feature map within which the multi-camera rig

is located as our method does. Our method, via its final

global optimisation, implicitly takes advantage of the same

trajectory matching behaviour, but is able to fully digest all

of the other information available.

A final relevant paper is the recent work of Koch and

Teller [12], who automatically learn about how feature

motion in the images of a multi-camera rig relates to the

rig’s motion as it is carried by a person, but stop short of

aiming to determine full geometric extrinsic calibration.

III. METHOD

Our method in detail consists of the following steps:

1) Cameras are attached to a mobile robot in arbitrary

positions and orientations, and locked into place. After

this, all the following operations are fully automatic.

2) The robot makes short pre-programmed movement,

such as turning on the spot through 360◦ rotation

or driving in a small circle, capturing synchronised

video streams from the cameras as it moves through

an unprepared environment.

3) The video sequence from each camera is fed to a

modified version of the MonoSLAM algorithm [4].

Individually for each camera, MonoSLAM estimates

camera motion and builds a 3D map of visual feature

locations up to scale. Each feature is characterized by

a SURF descriptor [2].

4) Each full video sequence is decimated into regularly

spaced keyframes. Each camera’s map and motion

estimates are then refined individually using bundle

adjustment over these keyframes.

5) Candidate feature correspondences between each pair

of individual maps are obtained via thresholded match-

ing between their SURF descriptors.

6) Initial alignment of the maps’ relative 3D pose and

scale is achieved using 3D similarity alignment and

RANSAC [7], with sets of three correspondences be-

tween maps derived from the SURF matches used to

generate hypotheses. A reliable set of correspondences

between each pair of maps, satisfying both descriptor

matching and geometrical correspondence, is deduced,

and the monocular maps are fused into a single joint

map each of whose features has been mapped by one

or more cameras.

7) This initial joint map is used as the starting point

for full bundle adjustment optimisation to estimate the

relative poses of the cameras, 3D positions of scene

points and motion of the robot.

We will now explain each of these steps in detail.

A. Robot Motion and Sequence Capture

The set of cameras whose extrinsic calibration is required

are fixed to the robot in the desired configuration, and it

commences a set of pre-programed movements, controlled

by odometry, of duration around 1–2 minutes. The robot

captures a synchronised sequence of images from each

camera, typically at a fixed frame-rate.

When the cameras used are of the same type, it is often

possible to synchronise capture using capabilities provided

by the manufacturer — many IEEE 1394 cameras for

instance will sychronise by default when attached to the

same bus. In the case that cameras of different types or

otherwise unsynchronisable cameras were required to be

used, a somewhat tedious but still fully automatic procedure

to achieve the same effect would be to program the robot

to move in a stop-start fashion, making many small motions

instead of a single continuous one and stopping to request

one image from each of the cameras every time it stopped.

There are no absolute requirements for the type of

robot motion used; there are many different types of robot

(wheeled, legged, flying. . . ) with different type of movement,

and our method is in principle applicable to any of these.

However, there are certain characteristics which are desir-

able. To be practical and straightforward the motions used

should be simple and short, but from an estimation standpoint

there is a clear advantage to ‘loop closing’ motions where

the robot makes a full rotation while moving. As is well

understood in SLAM research, this will remove drift and

permit tightly converged individual camera maps. Also, it

maximises the chances of many feature correspondences

between the multiple cameras since cameras pointing at

different horizontal angles will come to view all of the same

scene elements (occlusion notwithstanding). Even if there

is no overlap between the images simultaneously captured

from the different cameras, there will be overlap between

the monocular maps built.

Similarly, our algorithm places no specific requirements on

the scene around the robot such as the presence of calibration

objects, but there are some favourable characteristics which

will lead to easier and more accurate operation. A highly

textured scene which offers many trackable features across

the whole field of view of the cameras is best, and it will

also be helpful if this texture is not overly repetitive to aid

unambiguous matching. The depth of the main elements of

the scene should ideally also be relatively small compared

to the size of the robot’s motion in order that parallax can

be observed and 3D locations of the features determined.

B. Single Camera Mapping Using MonoSLAM

The first processing step of our method consists of es-

timating the structure of the scene and the robot’s motion

from each camera individually. For this we use a slightly

modified version of MonoSLAM [4], a sequential 3D visual

SLAM algorithm for monocular cameras based on the EKF.

MonoSLAM is able to routinely build maps within room-

sized domains, including the capability to automatically close

loops induced by rotation (Figure 2 (top row)).



Fig. 2. Top: MonoSLAM in operation, showing processing of an image
stream from a single camera on a robot which has made nearly a full 360◦

rotation, highlighting feature tracking and 3D map creation. Bottom: adding
SURF features to a MonoSLAM map: from all the SURF features detected
in a frame (left), up to one new feature from each cell of a regular grid is
added to the map (right).

The first modification is the use of SURF features [2]

rather than the Shi-Tomasi image patches MonoSLAM nor-

mally relies on. The motivation of this modification is to

allow for invariant feature description, which will be crucial

for the later step of getting map-to-map correspondences.

We choose SURF because of its proven recognition perfor-

mances and reasonable computational demand.

The second modification is to MonoSLAM’s map manage-

ment policy, also with the aim of improving inter-map match-

ing performance. Instead of the random feature initialisation

strategy originally used in MonoSLAM, the image is divided

into a regular grid as shown in Figure 2 (bottom row). At

each frame of the sequence, if one of the cells of this grid is

unoccupied by a feature in the existing map, the most salient

SURF feature detected in that region is initialised into the

map (i.e., the one with the highest Hessian score, see [2] for

details). By ensuring that features are initialised right across

the field of view of each camera, we maximise the chances of

detecting a decent number of corresponding features between

the individual maps. In order to ensure that the feature scale

do not affect significatly in the measurement accuracy, we

only use SURF features from the first 2 octaves of the image

pyramid, which are therefore well located in the images

C. Bundle Adjustment of Single Camera Maps

MonoSLAM uses EKF processing and outputs filtered

maps which may include linearisation errors. Therefore, we

look to refine the maps for each camera individually to get as

much accuracy as we can in the structure and camera poses

of each map before attempting 3D alignment. We use the

free software library SBA for this purpose [14].

To save on computational load at the expense of a rel-

atively small loss in accuracy, at this stage we decimate

the full image sequences processed by MonoSLAM into

keyframes regularly spaced in time, and in the rest of the

Fig. 3. Bundle adjustment of an individual camera map generated by
MonoSLAM. Here the 3D map generated by MonoSLAM and that after
bundle adjustment is shown reprojected into one of the keyframes (left) and
in 3D (right). In each view, the green points are after bundle adjustment
and red/purple are before. Reprojection accuracy across the full keyframe
set clearly improves after bundle adjustment.

method we use only these. By controlling robot’s motion at

a constant speed we ensure that the keyframes are spatially

well distributed. It has been well proven in small scale

structure from motion that a set of well chosen keyframes

is quite sufficient for accurate camera motion estimation

and scene reconstruction so we are confident that regularly

decimating the sequence is a very sound procedure with

regard to accuracy. This has most recently been confirmed

in [21].

Each keyframe image is saved along with the 2D feature

measurements made in that image by MonoSLAM and the

camera position estimate from MonoSLAM at that time

instant. After the robot completes its trajectory, the vector

of 3D features position estimates Ŷ , the estimated camera

poses Ĉ, and the vector of 2D keyframe measured feature

positions X are used in a bundle adjustment (BA) procedure

for map refinement. The above quantities, which are input to

the BA procedure, can be written in expanded vector form

as follows:

Ĉ = [ĉ0, . . . , ĉm]

Ŷ = [ŷ0, . . . , ŷn]

X = [x00, . . . , x0m, . . . , x10, . . . , x1m, . . . , xnm]

, (1)

where ĉi is the estimated 6DoF camera pose of keyframe

i, ŷj is the estimated 3D position of feature j, and xij is

the measurement corresponding to feature j in the image

of keyframe i. The prediction x̂ij of this measurement can

be obtained through a standard camera projection function

h(ĉi, ŷj), while the noise associated with this measurement,

modeled by the Gaussian distribution N(0, σ2

x), is repre-

sented by the 2 × 2 matrix Σxij
= diag(σ2

x, σ
2

x). Concate-
nating all predicted measurements in a single vector leads

to the estimated measurement vector X̂ , with corresponding

measurement noise encoded by the diagonal matrix ΣX

formed by concatenating all individual Σxij
matrices. Then,

the vector of parameters to be optimized is given by P̂ =
[Ĉ, Ŷ ]. In BA we look to minimize the Mahalanobis distance

ǫTΣ−1

X ǫ (i.e., the weighted re-projection error), where ǫ =
X − X̂ [14].

The results of individual map bundle adjustment can be

confirmed if necessary from a console within our application

whereby the keyframe sequences from each camera are easily



browsable with a slider and the reprojections of the optimised

point locations can be checked for stability (see Figure 3).

D. Inter-Map Correspondences from SURF Descriptors

Now that we have built individual feature maps for each

camera, we must start to align them in order to produce

a single joint map of the environment around the robot.

First we find candidate correspondences between the features

in each pair of individual maps. Exhaustively, the SURF

descriptors of all features fa of map A are compared with

those of all features fb of map B. During this procedure,

the closest match in map B for a given feature fa in

map A is determined by the closest-to-second-closest ratio

proposed in [15], by comparing (using the L2 norm) the

SURF descriptors associated to the features.

E. Confirming Correspondences and Finding Initial 3D Map

Alignment using RANSAC

The goal of this step is to determine which of the inter-

map correspondences between two maps suggested by SURF

matching are geometrically consistent and therefore highly

likely to be correct, and to compute an initial estimate of

the cameras’ relative poses. From a set of at least three

feature correspondences between any two maps, the rigid

body similarity transformation between those maps (and

therefore between the cameras which made them) can be

hypothesized. We therefore run a RANSAC procedure where

at each iteration three candidate SURF correspondences are

chosen, a similarity transformation is calculated, and then

the rest of the candidate correspondences are checked for

consistency with this (via a Euclidean distance threshold)

when the transformation is applied. Note that the potential

transformation between the maps is a similarity (we must

solve for scale as well as rotation and translation since) they

have been built by monocular cameras.

While there are various techniques for aligning 3D point

sets, here we use generic non-linear optimisation via the

Levenberg-Marquardt algorithm as in [8] to minimise the

distance between transformed points, as computed by the

following similarity transformation:

(yi)A = sRBA(yi)B + tBA , (2)

relating a feature’s coordinates yi in maps A and B via

rotation matrix R
B
A , translation vector tBA and scale change s.

This alignment calculation is carried out for each random

choice of three correspondences, and inlier scores for each

candidate correspondence are counted up until a maximum

number of RANSAC iterations. The final set of correspon-

dences with the highest inlier counts are then used to make

a final similarity estimate between the pair of maps. In

experiments we normally obtain between 10 and 20 accurate

correspondences between each pair of maps.

F. Global Bundle Adjustment

Now that the individual maps from each camera have

been aligned in 3D, an initial estimate is available of the

relative pose of the cameras on the robot. However, this

estimate relies heavily on the correspondences which have

been obtained between the maps using SURF and RANSAC,

and the number of these correspondences may be quite low.

As a consequence, the resulting transformation may not be

very accurate. There is still potential for improvement, by

applying global bundle adjustment of robot motion, scene

structure and relative camera poses together. Importantly, in

this optimisation we enforce the constraint that the relative

camera poses are constant, this being enabled since we know

that our keyframes were captured in a synchronised manner.

After alignment and matching of the individual camera

maps, we can work with the concept of a single joint map

which is the union of the individual maps. Many of the

features in this map will have only ever been observed by one

of the cameras (features with no inter-map correspondences),

while others (those successfully matched in the previous map

alignment step) will have been observed by two or more

cameras. Nevertheless, all of the features and all of the

measurements in keyframes are useful in joint optimisation.

We formulate global bundle adjustment with the following

state and measurement vector elements:

1) The set of estimated camera poses Ĉ = [ĉ0, . . . , ĉm]
associated to the keyframes of one camera, called the

reference camera1. In particular, the pose ĉ0 will define

the origin of the absolute reference frame for all the

estimated quantities.

2) The set of estimated relative camera poses T̂ = {T̂ i},

where T̂ i is the estimated rigid body transformation

from the reference camera to the ith camera on the

robot. Note that each transformation is a 6DoF trans-

formation made up of rotation R̂i , translation t̂i

components. Because all the features are expressed in

global coordinates, the scale between maps is not tak-

ing into account this time. Note also that the estimated

transformations do not depend on time, modeling the

fact that cameras are rigidly fixed on the rig.

3) The set of 3D coordinates estimates for the features of

the joint map Ŷ = [ŷ0, . . . , ŷn].
4) The set of measurements X = {(xij)k}, where (xij)k

is the measurement corresponding to feature j in the

ith keyframe of camera k. The prediction ˆ(xij)k of a

measurement can be obtained through the composition

of a similarity transformation and a standard camera

projection hk(ĉi, ŷj , T̂ k): the feature ŷj must first

be transformed into the coordinate frame of the ith

keyframe of camera k, i.e. by the means of ĉi and T k,

before being projected into the corresponding image.

The vector of parameters to be optimised is given by

P̂ = [Ĉ, T̂ , Ŷ ]. Again, we look to minimise the Mahalanobis

distance ǫTΣ−1

X ǫ (i.e., the weighted re-projection error),

where ǫ = X − X̂ . Correctly formulating bundle adjustment

in this way means that all of the useful information can be

sucked out of the data available. The relative poses of the

robot’s cameras are estimated not just based on the structure

of the scene, but also based on the motion of the robot, by

1Note that any of the cameras mounted on the robot can be selected here.



Fig. 4. The three experimental configurations of a two-camera rig, with
relative horizontal angles of 0◦, 90◦ and 180◦.

enforcing the rigidity of the relative camera transformations

over the trajectory of the robot.

IV. EXPERIMENTS

As our method is valid for any number of cameras

mounted rigidly on a robot, we have currently been able

to test it with different configurations of two cameras, and a

four camera set up. We ran the experiments in two normal

university rooms with no modification and each with size

around 5 × 5 metres. The robot’s pre-programmed motion

was as a turn on the spot controlled in a saw-tooth manner,

such that the robot would rotate by left 90◦, right 45◦, left

90◦ again and so on until it had completed somewhat more

than a full rotation.

In most experiments, this motion was completed in around

1 minute and image capture was at 15Hz. After execution

of MonoSLAM, the sequences were decimated by a factor

of 40 to leave only keyframes to be used in the rest of

the algorithm. We used a set of Point Grey Flea2 cameras,

which are able to synchronise automatically across the IEEE

1394b bus. The cameras were fitted with identical wide angle

lenses giving a field of view of around 80◦, having had their

intrinsic parameters (including substantial radial distortion)

calibrated individually using a standard calibration pattern-

based method.

To perform verification of our experimental calibrations

against ground truth, we used the commercial photogramme-

try software Photomodeler (Eos Systems Inc.) to manually

make a surveyed model of the rooms in which experi-

ments were carried out from a set of high resolution digital

photographs, with additional scale information provided by

manual measurements. Images taken from our camera rig

were then matched into this model to obtain estimates of the

camera positions within the room and therefore their relative

pose.

A. Different Configurations of Two Cameras

The camera calibrations used in our three experiments with

two cameras are shown in Figure 4, and we present results

from each of these in the following sections.

1) Parallel Cameras Facing Forwards: The first exper-

iment, to confirm operation in a standard binocular stereo

camera configuration, featured approximately parallel cam-

eras facing forwards mounted on the left and right of

the robot. All steps of the algorithm were carried out as

explained in the previous sections, and we concentrate on

the results of the final global bundle adjustment.

Fig. 5. Effects of the final BA procedure, parallel cameras sequence: the
images of the first and second row show the improvement in the estimated
transformation between the two cameras (left column: before BA; right
column: after BA), while the images of the second row show the reduction
in reprojection error (see text for details).

Figure 5 demonstrates the effects of the final BA proce-

dure. The first row of the figure shows a 3D view of the

camera rig before (left) and after (right) the final BA. As it

can be seen, the transformation between the two cameras is

improved after the final BA: in the right image, the cameras

look coplanar, whereas in the left image, one camera is

slightly in front of the other. The improvement is proven

quantitatively in the second row of the figure, which shows

the re-projection errors of features into the maps, taking into

account all of the estimated transformations, in one video

frame before and after the final global BA. After BA (right),

the projected map points (circles) match more accurately the

image positions of the measurements (crosses) than in the

left image. The mean squared reprojection error achieved

with this configuration was 0.90 square pixels.

2) Non-Overlapping Cameras Separated by 90◦.: In the

second experiment, the cameras faced horizontally but at

around 45◦ to the left and right of the forward direction

of the robot respectively. Figure 6 shows the improvement

in reprojection error during global BA in this experiment,

achieving an mean squared error of 1.4 square pixels.

3) Non-Overlapping Cameras Separated by 180◦.: In the

third experiment the cameras were mounted horizontally on

the left and right of the robot, but with the right camera point-

ing approximately forwards and the left camera backwards.

In Figure 7 we can see that after global BA the estimate of

the cameras’ relative pose was accurate, with a mean squared

reprojection error of 0.807 square pixels.



Fig. 6. Effects of the final BA procedure, 90◦ cameras sequence in terms
of camera pose and reprojection error (left: before BA; right: after BA.)

Fig. 7. Effects of the final BA procedure, 180◦ cameras sequence in terms
of camera pose and reprojection error (left: before BA; right: after BA.)

B. Omnidirectional Four Camera Configuration

In this experiment we show that our method is applicable

to any number of cameras rigidly attached to the robot. We

set up two slightly divergent stereo pairs with no overlap

between the front pair and the back pair, as illustrated in Fig-

ure 8. As in our previous experiments, we performed all the

stages mentioned in section III including a full optimisation

in which the global map, the motion and the transformations

between each camera and the reference frame are globally

optimised.

Rig Configuration with Two Cameras

Parallel 90◦ 180◦

Photomod 2.88◦ ± 0.5◦ 94.72 ◦ ± 0.5◦ 176.14◦ ± 0.5 ◦

Our System 1.38◦ ± 0.22◦ 94.10◦ ± 0.83◦ 174.69◦ ± 0.43◦

TABLE I

ANGLES BETWEEN CAMERAS ESTIMATED BY OUR APPROACH AND

PHOTOMODELER FOR THE THREE TWO-CAMERA EXPERIMENTS.

Rig Configuration with Four Cameras

Camera1 2 Camera1 3 Camera1 4

Photomodeler 25.20◦ 173.76◦ 156.96◦

Our System 25.30◦ 174.71◦ 157.20◦

TABLE II

ESTIMATED ANGLES BETWEEN CAMERA 1 (REFERENCE CAMERA) AND

THE OTHER THREE CAMERAS FOR THE FOUR CAMERA EXPERIMENT.

C. Ground Truth Comparison

Our system computes the full relative 3D pose (up to

scale) between the cameras in each experiment, but for

ground truth comparison the most straightforward parameter

to analyse is the total relative rotation angle between the

two camera frames. For each of the experimental scenarios

presented above, we computed this angle and compared it

with the relative angle determined by registering several pairs

of camera images within the 3D model of the room obtained

using Photomodeler. Table I presents for comparison the

angles obtained with our system and Photomodeler for the

two camera configurations, including an assessment of the

standard deviation we observed over multiple runs of our

whole system on the same image data.

We certainly see gross agreement, but we are inclined to

believe that the not insignificant different is due to limitations

of our use of Photomodeler rather than a weakness of our

method. The Photomodeler estimates were achieved from

matching in just a few image pairs from our robot against a

relatively sparse 3D point model, whereas the estimates from

our method were achieved from global optimisation of long

sequences with all the correct constraints applied. We are

therefore inclined to put much more trust in the reprojection

measures we obtained in experiments, all of which were in

the range 0.8–1.5 pixels RMS. Considered as an angle in

our 640 × 480 resolution images over an 80◦ field of view,

this corresponds to an angular error of around 0.1◦ and we

believe that this is much more indicative of the accuracy of

our method.

For the four camera configuration we present results com-

paring angles between our reference frame (camera1) and the

other cameras (see Table II). We can see that the differences

between the angles obtained by Photomodeler and our system

are smaller than for the two camera configuration, indicating

as expected that using more cameras adds more constraints

to the final global optimisation.

V. CONCLUSIONS

We have presented a fully automatic algorithm for general

multi-camera rig calibration which does not require cali-

bration targets or other infrastructure. Well known SLAM

techniques are used to build monocular feature maps as the

robot makes controlled movements. These maps are matched

and aligned in 3D using invariant descriptors and RANSAC

to determine the correct correspondences. Final joint bundle

adjustment is then used to refine estimates and take account

of all feature data. We have demonstrated the accurate ability



Fig. 8. Experiment with an omnidirectional four camera configuration (top-left: manual Photomodeler, top-middle: photograph of robot, top-right: automatic
result from our system). The bottom images show the reprojection of features in the maps of cameras 2, 3 and 4 respectively from the global map into
keyframes of camera 1. Note the high quality alignment between these points and scene corners, indicating excellent registration accuracy.

of the method to recover the configuration of a camera rig

with two and four cameras in a variety of configurations.

It would be interesting and beneficial to determine the

intrinsic parameters of the individual cameras as part of the

full calibration procedure, rather than requiring them to be

known a priori. It would be straightforward to include and

optimise these parameters in the final bundle adjustment step,

but the problem is that the construction of individual camera

maps using MonoSLAM would be inaccurate without well

known intrinsics for each camera. This could be tackled

using the approach recently proposed by Civera et al. [3]

for sequential auto-calibration of a single camera.
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