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Abstract. Visual tracking in endoscopic scenes is known to be a difficult
task due to the lack of textures, tissue deformation and specular reflec-
tion. In this paper, we devise a real-time visual odometry framework to
robustly track the 6-DoF stereo laparoscope pose using the quadrifocal
relationship. The instant motion of a stereo camera creates four views
which can be constrained by the quadrifocal geometry. Using the previ-
ous stereo pair as a reference frame, the current pair can be warped back
by minimising a photometric error function with respect to a camera
pose constrained by the quadrifocal geometry. Using a robust estimator
can further remove the outliers caused by occlusion, deformation and
specular highlights during the optimisation. Since the optimisation uses
all pixel data in the images, it results in a very robust pose estimation
even for a textureless scene. The quadrifocal geometry is initialised by
using real-time stereo reconstruction algorithm which can be efficiently
parallelised and run on the GPU together with the proposed tracking
framework. Our system is evaluated using a ground truth synthetic se-
quence with a known model and we also demonstrate the accuracy and
robustness of the approach using phantom and real examples of endo-
scopic augmented reality.

1 Introduction

Visual odometry is the process of determining the position and orientation of
a camera moving in 3D space using only the associated image data. In mini-
mally invasive surgery (MIS), visual odometry is an element of surgical vision
that enables endoscope/laparoscope tracking without additional hardware such
as optical or electromagnetic trackers [16]. Such tracking is crucial for image-
guided surgery because the accuracy of camera tracking dominates the stability
of applications such as registering a preoperative model to the surgical site [3] or
building a mosaic for dynamic view expansion [17]. By using a visual odometry
approach it is possible to overcome the hand-eye calibration and to reduce error
propagation while simplifying clinical translation.



Camera tracking based on photometrics in endoscopic scenes is difficult be-
cause of the homogeneous appearance of certain tissues, tissue deformation and
severe specularities caused by the strong illumination intensity. Previous works
have adopted a sparse feature based simultaneous localisation and mapping
(SLAM) approach to stereo laparoscope tracking [6,11]. In such systems, salient
features build a long-term map in order to globally correct for camera drift, but
however they are severely affected by large highlights and lack of scene rigid-
ity. Recent dense approaches have shown promising results where the camera
tracking benefits from using the entire image data resulting in a very robust mo-
tion estimation even without bundle adjustment in a texture-poor or occluded
scene [5, 12].

In this paper, we propose a dense approach for real-time stereo laparoscope
tracking. Our method uses a combination of stereo reconstruction, which is ef-
fective at recovering snapshots of the surgical site geometry [9], and quadrifocal
tracking. Benefiting from recent GPU technology and parallelisable optimisation
algorithms, the proposed dense visual odometry can reach real-time performance.
We validate the proposed approach by a ground truth study using a photo real-
istic surgical scene rendition. We also demonstrate the robustness of the tracking
on a real phantom video as well as in vivo clinical MIS sequences.

2 Method

The proposed system for dense stereo visual odometry has two main components:
1) stereo reconstruction and 2) quadrifocal tracking. The first reconstruction step
is crucial because it initialises point correspondences for the later quadrifocal
warping. Importantly both components rely purely on photometric information.

2.1 Preliminaries

Consider an image function I(p) : ΩI → R where the p = (u, v) is the pixel
location in the domain ΩI ⊆ R2. In the rectified stereo geometry, point pl in the
left image has its correspondence pr = (u − d(pl), v) in the right image found
by the disparity function d : ΩI → Rd, where Rd is the range of the disparity
in subpixel accuracy.

To represent variables in the two-view stereo, it is convenient to consider the
set of image measurements in a vector form such that I = (Il, Ir)

> is a vector
of stacked intensity values. The stereo disparity can be represented in a similar
way, i.e., D = (dl,dr)

> which also implicitly defines the correspondence set P .

2.2 Dense stereo reconstruction

The task of stereo reconstruction is to optimise the disparity function d in order
to establish point correspondence P across the stereo pair. We exploit the re-
cent real-time stereo reconstruction algorithm [4], which optimises a variational
energy function with respect to d:



d̊ = arg min
d

Er(d), where

Er(d) =
∑

p∈ΩI

{
‖γ(p)∇d(p)‖ε + λC(p,d(p))

}
. (1)

The data term C is a 3D disparity cost-volume which is built up by zero-mean
normalised cross-correlation (ZNCC) to save the photometric similarity between
left and right pixels within the determined disparity range Rd.

The variational model is regularised by disparity gradient, which takes the
assumption that the disparity shall be smooth in areas of homogeneous appear-
ance. To preserve discontinuities, which usually occur along image edges, we
adopt the anisotropic diffusion tensor for the weighting function:

γ(p) = exp(−α|∇I(p)|β)nn> + n⊥n⊥
>
,

where n is the normalised image gradient n = ∇I(p)
|∇I(p)| and n⊥ its perpendicular

vector and α and β define the weighting strength [18]. The effects of the data
and the regularisation term are controlled by the λ.

The energy function is optimised by a GPU-implemented primal-dual algo-
rithm which provides a linear convergence rate O(1/N) [2]. The optimisation
parameters are determined by preconditioning which significantly reduces the
number of iterations to converge [13]. Note that the Eq. 1 is a first-order total
generalized variation (TGV) model which is only able to reconstruct fronto-
parallel structure [14]. However we have observed that instead of applying a
rather expensive second-order TGV to reconstruct the affine structure, using
the Huber-norm ‖ · ‖ε for the regulariser term is a good approximate to avoid
the staircasing effect caused by L1-norm, which is sufficient for reconstructing
general endoscopic scenes.

2.3 Dense stereo camera tracking

The camera motion x is minimally parameterised by se(3) Lie algebra. Specif-
ically the 6-vector x = (ν, ω) ∈ R6 consists of ν ∈ R3 for the linear velocity
and ω ∈ R3 for the angular velocity of the motion. The smooth and invertible
rigid-body transformation T ∈ SE(3) based on the 6-vector can be obtained by
the exponential map of g(x):

T(x) = exp(g(x)) =

(
R t
0 1

)
∈ R4×4,

where R ∈ SO(3) and t ∈ R3. Details of the SE(3) Lie group and its generator
function g can be found in [15].

Given a reference frame pair I∗ and the reconstructed disparity D, we can
track the camera by continuously registering the current frame pair I with the



reference pair using a generative model called quadrifocal warping w(P∗,Trl,

Kl,Kr; T̊). The T̊ ∈ SE(3) is the current pose with respect to the reference
one in camera coordinate. We assume that the stereo laparoscope is calibrated
in advance and the intrinsic matrices Kl, Kr and the extrinsic matrix Trl are
constant.

The registration warping with respect to the camera motion x can be ob-
tained by optimising the photometric energy function:

x̊ = arg min
x

Et(x), where

Et(x) =
∑
P∗∈R∗

(
I
(
w(P∗; T(x)T̂)

)
− I∗

(
P∗
))2

. (2)

All the corresponding pixels from the reference frame pair form the set R∗ =
{{p∗l ,p∗r}1, {p∗l ,p∗r}2, . . . , {p∗l ,p∗r}n} which mutually includes the left and right
matching pair with in total n number of correspondences used for tracking. The
optimisation incrementally updates the warping motion T̂ ← T(x)T̂ toward
the minimum. It is assumed that the truth motion parameter x exists so that
∃x̊ : T(̊x)T̂ = T̊.

Quadrifocal geometry To maximally exploit the stereo image data for track-
ing, the quadrifocal geometry is a constraint for associating geometric entities
across the four views. However, instead of adopting the rather complicated
quadrifocal tensor, two trifocal tensors are decoupled from the four-view in or-
der to bring the quadrifocal geometry constraint into the optimisation [5]. Fig. 1
shows an example of the trifocal geometry for the left view. Note that we will
elaborate only the left trifocal tensor, and the right one is exactly its inverse.

A trifocal tensor T = [T1(x), T2(x), T3(x)] is a 3× 3× 3 matrix. Each slice in
the tensor is defined by Tj = ajb

>
4 (x) − a4b

>
j (x) where aj are the columns of

Trl and bj(x) are the columns of the motion matrix T(x). We use the point-
line-point configuration in which the correspondent line lr = (−1,−1, u+v) with
each of the three tensor slices form the columns of a homography matrix:

H (x) = [H1(x),H2(x),H3(x)] and Hj(x) = T >j (x)K−1r lr.

The corresponding point pl in the current image can be simply obtained by the
homography transformation of the reference point p∗l . We can now define the
warping function in Eq. 2 for each correspondence as:

w(p∗l ; x) = π
(
KlH (x)K−1l

[
p∗l
1

])
, (3)

where π is the dehomogenisation function projecting a point to its image coor-
dinate.



Light source

Fig. 1: Point-line-point trifocal geometry: The point p∗l in the left reference frame
is transformed to the point pl in the left current frame using the homography
formed by back-projecting the corresponding line l∗r , which defines an incidence
relation p∗l ↔ l∗r ↔ pl.

Note that the incremental update motion T(x) is applied to the centralised
pose Tc at the middle of the stereo-rig baseline as shown in Fig. 1. This estab-
lishes a canonical coordinate for the stereo geometry, in which the left and right
camera poses can be obtained via:

Tc = explog(Trl)/2, Tl = T−1c and Tr = TcT
−1
rl . (4)

Robust tracking The original energy function in Eq. 2 is the standard least-
square method which assumes the residuals have a zero-mean Gaussian distri-
bution. However, the residual distribution is usually not Gaussian, especially
when there are outliers appearing in the scene. For example, occluding objects
which do not belong to the original reconstructed model, lighting changes or
specularities will generate a considerable number of outliers.

We can instead reformulate Eq. 2 in terms of using a different norm ρ(r). For
a least-square norm, ρ(r) = 1

2r
2:

Erobust(x) =
∑
P∗∈R∗

ρ
(
I
(
w(P∗; T(x)T̂)

)
− I∗

(
P∗
))
. (5)

We use the non-convex Tukey M-estimator which essentially rejects outliers
above the tuning threshold [19]. This results in very robust tracking even with
the appearance of instruments occluding the endoscopic scene.



Rapid motion Because the Tukey norm is not a convex function, one cannot
expect to find the true global minimum. Furthermore the linearization with
respect to the parameters se(3) only holds for small camera motions. To make
the method more robust towards rapid camera motions we adopt a common
coarsetofine scheme.

Optimisation We adopt the efficient second-order minimisation (ESM) algo-
rithm for optimising Eq. 5. ESM is mainly the combination of a forward and an
inverse compositional algorithm, which can avoid local minima and takes fewer
iterations to converge [10]. The optimisation of quadrifocal warping can be easily
framed using ESM due to the fact that the warping is simply two homography
transformations in which the warped current image pair and the reference im-
age pair have a linear relationship. Dense tracking by warping a 2.5D surface
projection image has no such property and can only use the first-order forward
compositional algorithm [1,12].

The ESM optimisation for solving Eq. 5 is performed with an iteratively
reweighted least squares (IRLS) scheme, which will require three Jacobians: JI∗ ,
JI and Jw, the Jacobians of the reference image, the current image and the warp-
ing function (Eq. 3) respectively. It can be shown that the overall approximate
second-order Jacobian can be derived as:

J =
(JI + JI∗)

2
Jw. (6)

Derivations of these Jacobians can be found in [5]. Using the common normal
equation solver with IRLS, the update parameter x can be obtained by :

x = −(WJ )+W(I − I∗), (7)

where the W is the diagonal weighting matrix determined by the Tukey M-
estimator and (·)+ is the pseudo-inverse operator.

2.4 Reference frame selection

The proposed dense stereo visual odometry has the advantage that the recon-
struction can be done any time to provide a dense model for the quadrifocal
tracking without the need of a bootstrapper. However, reconstructing a model
for every frame is unnecessary and in fact frame-to-frame tracking is suscepti-
ble to drift. To constrain tracking and prevent drift, we adopt frame-to-model
tracking which is essentially the same concept as the keyframe strategy in visual
SLAM systems [8, 12].

Whether a subsequent stereo frame pair is selected as the reference frame
is based on two criteria: 1) if the overlay between the warping image and the
reference image is below a threshold; 2) if the root-mean-square error of Eq. 5



is larger than a threshold. The first criterion occurs when the scope explores a
sufficiently large area of the scene, so that there is not enough of the previous
reference model in view. The second criterion can also be associated with insuf-
ficient overlap one but it is additionally useful that when the scene is invaded
by other objects and we have to immediately reconstruct a new reference model
for tracking.

3 Empirical Studies

The system is implemented in C/C++ and CUDA running on a Nvidia GeForce
GTX 670 with 2GB GPU memory. The real video sequences are acquired from
da Vanci robot’s stereo endoscopy with size 720 × 576 and downsampled to
360× 288. The stereo reconstruction for two frames takes about 100ms and the
tracking for per subsequent stereo pair takes about 40ms.

3.1 Sythetic ground truth study

In order to have a ground truth dataset, we use POV-Ray for realistic rendering
for a bladder and a pelvis phantom model. The luminance is intentionally set as
using a point light source and materials with strong specularity to simulate the
real surgical scene where the only light source is at the middle of the endoscopy
cameras as shown in Fig. 1. Fig. 2a shows a realistically rendered stereo frames.
Following the same methodology in [7], we use the proposed approach to track a
real phantom model using the da Vinci robotic platform as shown in Fig. 3b to
generate a realistic camera motion. We then use this camera trajectory to render
the ground truth sequence. The ground truth trajectory is shown in Fig. 2c.

The first frame is used as the reference frame for tracking the rest. The
methodology for the validation is to add white noise to the reference model with
different standard deviation and observe how this will affect the tracking. Fig. 2b
shows the tracking errors along the x-axis under different level of white noise. It
reveals several important results. Firstly, as the green curve shows, tracking with
a perfect model gives almost no drift but in practice a perfect reconstruction is
never achievable. The blue curve is closer to the real situation where we have
a decent reconstruction but not perfect. Due to using the imperfect model, the
camera drifts about 0.5mm after tracking for 100 frames. The cyan curve shows
that with a very bad reconstructed model, the tracking can still work but with
a significant drift.

3.2 Real sequences

To validate the proposed approach on real data, we use a phantom and a clinical
endoscopy sequence to conduct a qualitative evaluation. The phantom is an
anatomical pelvis and prostate model from Educational and Scientific Products
Limited with added surrounding tissue features made from coloured silicone and
outer areas filled with polyeurathane expanding foam to avoid unrealistic sharp
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Fig. 2: The ground truth study. (a) The realistically rendered stereo frames with
a pelvis and bladder models. (b) The displacement of the tracked x-translation
away from the ground truth. (c) The trajectories. The figures are best viewed
on screen with colour and zoomed in.

edges as shown in Fig. 3a. Fig. 3c shows the reconstructed disparity map of the
Fig. 3b where the depth discontinuity around the instrument is preserved. With
this well-reconstructed model, when the instrument starts to move, the robust
estimator assigns low weight for the tracked pixels which do not belong to the
model or even completely rejects them, as shown in Fig. 3d.

(a) (b) (c) (d)

Fig. 3: (a) The painted plastic phantom. (b) A viewport from the da Vanci robot’s
endoscopy. (c) The reconstructed disparity map used for quadrifocal tracking.
(d) The Tukey M-estimator weighting image where the blue pixels are rejected
and gray pixels from black to white corresponds to the weight value from 0.1 to
1.0.

The proposed dense approach can be applied to a variety of applications.
We demonstrate augmented reality (AR) using the reconstructed dense model.
As shown in Fig. 4a, we can draw text on the dense model and maintain their
position on the surface. Note that this is not possible for sparse feature approach
in which there is no a dense geometry to be drawn on. This method could be
useful as it allows surgeons to tag AR annotation in the endoscopic scenes.
Fig. 4b shows another application where we augment the preoperative models
into the endoscopic scene.



Another useful function of the robust tracking using a dense model is to
detect occlusions. As shown in Fig. 4c and Fig. 4d, the dense reference model
provides a strong prior to reject the occluding instrument which is judged directly
by Tukey’s weight. When a new reference model is added, the occlusion can be
also detected by comparing the depths between the tagged markers and the
new model. Note that in Fig. 4d, those specularities are also rejected for the
quadrifocal tracking. The tracking quality can be observed in the supplementary
video1.

(a) (b) (c) (d)

Fig. 4: (a) Text drawn on the 3D dense reconstructed model. (b) Preoperative
models augmented into the in vivo endoscopic scene. (c) An example for occlu-
sion detection. (d) The Tukey weights of (c) showing that the pixels from the
invading instrument together with the specularities are mostly rejected.

4 Conclusions

In this paper, we proposed a dense visual odometry method for tracking the mo-
tion of the stereo laparoscope in MIS by using quadrifocal constraints. The dense
approach has been shown to achieve promising results for synthetic, phantom
and clinical data even in sequences with instruments occluding the surgical site.
Promising applications of the proposed technique include image-guided surgery
with AR overlay onto the laparoscopic images. In our future work we will focus
on building a fully dense SLAM system with keyframes refined by pose graph op-
timisation to accurately maintain a global map while efficiently selecting known
keyframes for tracking.
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