
Real-Time Dense Stereo Reconstruction

Using Convex Optimisation with a Cost-Volume
for Image-Guided Robotic Surgery�

Ping-Lin Chang1, Danail Stoyanov3, Andrew J. Davison1,
and Philip “Eddie” Edwards1,2

1 Department of Computing
2 Department of Surgery and Cancer

Imperial College London, United Kingdom
{p.chang10,a.davison,eddie.edwards}@imperial.ac.uk

3 Centre for Medical Image Computing and Department of Computer Science
University College London, United Kingdom

danail.stoyanov@ucl.ac.uk

Abstract. Reconstructing the depth of stereo-endoscopic scenes is an
important step in providing accurate guidance in robotic-assisted mini-
mally invasive surgery. Stereo reconstruction has been studied for decades
but remains a challenge in endoscopic imaging. Current approaches can
easily fail to reconstruct an accurate and smooth 3D model due to tex-
tureless tissue appearance in the real surgical scene and occlusion by
instruments. To tackle these problems, we propose a dense stereo re-
construction algorithm using convex optimisation with a cost-volume to
efficiently and effectively reconstruct a smooth model while maintaining
depth discontinuity. The proposed approach has been validated by quan-
titative evaluation using simulation and real phantom data with known
ground truth. We also report qualitative results from real surgical im-
ages. The algorithm outperforms state of the art methods and can be
easily parallelised to run in real-time on recent graphics hardware.

1 Introduction

An important challenge in robotic-assisted laparoscopic surgery is the 3D re-
construction of the observed surgical site. The recovered 3D scene can provide
a rich source of information for visualisation and interaction, enabling vision-
based camera tracking and registration to a preoperative model for surgical
navigation [2, 6, 7]. With the da Vinci surgical system the presence of a stereo-
scopic laparoscope means that computational stereo is a practical and feasible
approach to in vivo reconstruction [3, 15]. However, surgical scenes are chal-
lenging for 3D reconstruction algorithms because of texture-poor appearance,
occlusions, specular reflection and discontinuities due to instruments.
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Reconstruction of the stereo-endoscopic view for surgical navigation has been
an active area of research for over a decade [6,7]. Much of the prior work has fo-
cused on beating heart surgery [3,5,9,15], where the reconstructed heart surface
could be used for motion stabilisation or registration to a preoperative model. To
achieve smooth and robust stereo reconstruction, methods have been proposed
that use a parametric surface description [5] to overcome texture homogeneity.
Alternatively region growing starting from sparse features has been reported [15]
and thin-plate spline interpolation of robust features [9]. A sophisticated frame-
work which uses a hybrid CPU-GPU algorithm to fuse temporal reconstruction
into a global model has been proposed [10]. In all cases the aim is to approach
real-time reconstruction, and to this end GPU implementations and parallelisa-
tion are necessary.

In this paper, we build on recent advances in computer vision and the use of
variational techniques to efficiently and effectively reconstruct stereo-endoscopic
scenes using stereo image pairs. This is achieved by constructing a cost-volume
with a reliable data term and performing convex optimisation to solve a Huber-L1

model. The proposed algorithm can also be effectively parallelised on the GPU
for real-time performance. Compared with the state of the art, the proposed
approach yields more accurate reconstruction in empirical studies. We illustrate
this with extensive validation using synthetic and phantom data with known
ground truth and qualitative results from in vivo robotic surgery sequences.

2 Proposed Approach

The first step of the proposed algorithm is to construct a 3D cost-volume us-
ing a pixel-wise data term with respect to the disparities. An efficient convex
optimisation for solving a Huber-L1 model is then performed by decoupling the
model into a Huber-L2 model and the cost-volume, which can be resolved by a
primal-dual algorithm and exhaustive search alternately.

2.1 Cost-Volume Construction

In definition, a cost-volume C : ΩC → R, where ΩC ⊆ R3, is a discrete function
which maps a 3-vector to a cost value. In rectified stereo matching the cost-
volume is also called the disparity space image (DSI) [12] which is defined as

C
(
x, u(x)

)
= ρ

(
Il(x), Ir(x

′)
)
. (1)

The stereo images are assumed to be undistorted and rectified in advance.
Functions Il and Ir : ΩI → R3 are the left and right colour image and ΩI ⊆ R2.
As per convention, the Eq. 1 takes the left image as reference and stereo matching
is performed in the right image, and thus x = (x, y)� and x′ = (x− u(x), y)�.
The function u : ΩI → D maps a pixel location to a set of discrete integer dis-
parities within a range D = [dmin, dmax]. The cost-volume C is then constructed
using all of the disparities for each pixel in the image domain ΩI . The size of
the cost-volume is therefore |ΩI | × |D|. Note that the resolution of the disparity
|D|, dmin and dmax are dependent on scenes and camera profiles.
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Robust Data-Fidelity Term. In a pure vision-based reconstruction problem,
the function ρ in the Eq. 1 can be an arbitrary photometric measure which
defines the data-fidelity term. The data fidelity is essential since the later convex
optimisation significantly relies on it.

We illustrate the effects of different measures with a simulation stereo pair
generated by a textured cone model as shown in Fig. 1a. Raw reconstruction is
achieved using a winner-takes-all scheme which extracts the disparity pixel-wise
according to the minimum cost. The simplest absolute difference (AD) measure
gives a very noisy raw reconstruction as shown in Fig. 1b. To reduce the noise, one
may adopt the sum of absolute differences (SAD) or sum of squared differences
(SSD) which aggregate costs locally. Alternatively, applying more sophisticated
edge-preserving local filtering can yield an even better result [8, 10]. Fig. 1c
shows the result after bilateral filtering (BF) is applied to Fig. 1b. However, our
empirical studies have shown that if the original measure is error-prone, the later
aggregation in the cost-volume space can increase the error, which results in poor
data-fidelity. This commonly happens in textureless regions, half-occluded areas
and where the illumination changes.

In contrast, zero-mean normalised cross-correlation (ZNCC) implicitly per-
forms the aggregation using a window patch, so correlation is calculated over a
pixel neighbourhood. This results in a measure more tolerant to different camera
gain or bias and can also provide better fidelity in textureless regions. Fig. 1d
shows the raw reconstruction using ZNCC. In this work we therefore use ZNCC
as the data term measure to construct the cost-volume.

(a) (b) (c) (d)

Fig. 1. The raw reconstruction results using a winner-takes-all scheme with the cost-
volume. (a) The simulated ground truth textured model. (b) The raw reconstruction
using AD. (c) The result after applying BF to (b). (d) The raw reconstruction using
ZNCC.

2.2 Huber-L1 Convex Optimisation with the Cost-Volume

Starting with the coarse reconstruction, the unknown disparity function u is
further optimised by solving a Huber-L1 variational energy functional which
takes the cost-volume as data term and an image-driven weighted Huber-norm
as a regulariser term. This is defined as

E(u) =

∫

ΩI

{
w(x)‖∇u(x)‖ε + λC(x,u(x))

}
dx, (2)
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where

‖ · ‖ε =
{

‖·‖2
2

2ε if ‖ · ‖2 ≤ ε
‖ · ‖1 − ε

2 otherwise.
(3)

The Huber-norm ‖·‖ε allows the regulariser to constrain the gradient of disparity
to a L2 norm within a range ε and out of that range a L1 norm forming a total
variation (TV) model so that ε can adjust the degree of undesired staircasing
effect and is normally set to 0.01 [16]. The effect of the regulariser is adjusted by
λ. To design an image-driven anisotropic regulariser which can maintain disparity
discontinuity across image edges, the function w is defined as:

w(x) = exp(−α‖∇I(x)‖2). (4)

Specifically, where a region has high edge magnitude, the output of this weighting
function becomes low, which reduces the effect of the regulariser. We can flexibly
adjust the support of the exponential function by setting variable α.

Since Eq. 2 is non-convex in the data term and only convex in the regulariser
term, to discover the global minimum, conventional approaches for optical flow
or variational reconstruction algorithm resort to coarse-to-fine scheme [16]. This
requires a good initial state for the global minimum to be found. In addition,
reconstruction of coarser layers can lose details in the scene. By contrast, having
a cost-volume helps us to avoid the expensive warping scheme. Following a recent
large displacement optical flow algorithm [13], we decouple the data term and
regulariser term by an auxiliary function a : ΩI → D to form a new energy
functional:

E(u, a) =

∫

ΩI

{
w(x)‖∇u(x)‖ε +Q(u(x), a(x)) + λC(x, a(x))

}
dx, (5)

where

Q(u(x), a(x)) =
1

2θ
(u(x) − a(x))2. (6)

The first part w(x)‖∇u(x)‖ε + Q(u(x), a(x)) is actually a Huber-L2 model [1]
which is similar to TV-L2 Rudin-Osher-Fatemi model [11] and its global mini-
mum can be found by using an efficient primal-dual algorithm [1, 4] for solving
the u. Given a temporary solution u, the global minimum of the later part
Q(u(x), a(x)) + λC(x, a(x)) can be simply found by performing an exhaustive
search on a(x) among the disparities in the cost-volume. θ should be set as a
small number to ensure a(x) � u(x) when the algorithm converges.

The primal-dual algorithm works in continuous space so can directly achieve
sub-pixel accuracy. Furthermore, the rate of convergence is O(n) [1] which means
we need only a few iterations to finish the process. This yields a very efficient and
effective convex optimisation in contrast to a traditional global method such as
the graph cuts. Following the cone model example in Fig. 1, Fig. 2 shows the con-
vergence curves of the Huber-L1 convex optimisation using different measures.
ZNCC requires much fewer iterations to converge. The reconstruction result is
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Fig. 2. Left: Convergence of the primal-dual algorithm using different measures as data
term. The mean absolute error is calculated by comparing the reconstructed depth with
the ground truth depth. Right: The result after the Huber-L1 convex optimisation.

also shown in Fig. 2. One can observe the point cloud is now much smoother and
the staircasing effect due to the discrete cost-volume has been largely eradicated.

3 Empirical Studies

All experiments are conducted on a workstation equipped with 3.1 GHz quad
cores CPU and one NVIDIA GeForce GTX 670 graphics card with 2 GB global
memory. To maximally exploit the power of parallel computation, all the calcu-
lations including the cost-volume construction and the convex optimisation are
implemented in CUDA. Currently the proposed reconstruction approach is able
to run at 20 fps with the resolution |ΩI | = 360× 288 and |D| = 32.

We first conduct a noise study to evaluate the robustness for different mea-
sures. The proposed approach is then quantitatively evaluated using a
cardiac phantom dataset with an independent ground truth. Images in real
robot-assisted laparoscopic prostatectomy are reconstructed for qualitative eval-
uation. In all experiments, only the disparity range D is dynamic and the rest
of parameters for the convex optimisation are set as constants {ε, α, θ, λ} =
{0.01, 0.5, 0.1, 50}. The convex optimisation is finished in 150 iterations or if the
energy function appears to have converged.

3.1 Noise Study

To investigate the robustness of different data terms, we intentionally add white
noise to the stereo images of the cone model shown in Fig. 1a. In this experiment
the disparity range is set as D = [50, 80]. The resulting reconstruction mean
absolute errors (MAE) under different noise variance are reported in Table 1. The
results show that there is not much difference between different measures when
the image is clean. However, when the noise level becomes large, the measure
using simplest pixel-to-pixel AD degrades significantly. In contrast, AD+BF and
ZNCC, which perform local cost aggregation, remain accurate in the presence of
noise. ZNCC has the best performance in all cases.
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Table 1. Under different degrees of noise σ, the reconstruction MAE (mm) compared
with the ground truth after the convex optimisation using different data-fidelity terms
for the stereo pair of the cone model

σ = 0 σ = 0.01 σ = 0.015 σ = 0.02

AD 0.121 0.623 0.877 2.035

AD+BF 0.121 0.189 0.798 1.521

ZNCC 0.102 0.185 0.661 1.487

3.2 Cardiac Phantom Experiment

The proposed algorithm is quantitatively evaluated by two cardiac datasets col-
lected from [14] which have an associated registered CT model as ground truth
as shown in Fig. 3. It should be noted that the ground truth is generated by a
3D/2D point-based registration algorithm, which will inevitably introduce some
errors.

Before doing the reconstruction, the stereo image pair are rectified by the
provided camera calibration. We further remove the black background by setting
an intensity threshold, since such a background does not occur in real surgical
images and also it may cause bias when comparing different algorithms. The
disparity images are cropped by 15 pixels at the image borders when doing the
statistics. In this experiment the disparity range is set as D = [0, 30].

In Table 2, the MAE and root mean square error (RMSE) to the ground truth
point are reported for different real-time dense algorithms using a single stereo
pair. The corresponding standard deviation among all frames is also reported.
The reconstruction results for a single frame are shown in Fig. 3.

Structure propagation using sparse feature points (SPFP) [15] is a real-time
quasi-dense method and fast cost-volume filtering (FCVF) [8] is a local
edge-preserving filtering method. A recent real-time dense reconstruction us-
ing temporal information (DRTI) algorithm [10] that produces highly accurate
reconstruction is also compared, and we compare results of MAE with the best
results quoted in their paper. It is evident that our algorithm outperforms the
others.

Table 2. Statistics of different algorithms with respect to MAE, RMSE and the per-
centage of reconstructed points compared with the ground truth

Proposed
Approach

SPFP [15] FCVF [8] DRTI [10]

Cardiac1
MAE(mm) 1.24 ± 0.89 2.36 ± 0.92 4.87 ± 0.87 1.45
RMSE(mm) 1.85 ± 0.82 3.876 ± 0.87 8.24 ± 0.92 N/A
Density(%) 100 92 100 N/A

Cardiac2
MAE(mm) 1.47 ± 1.23 3.20 ± 1.15 5.37 ± 1.53 1.53
RMSE(mm) 2.658 ± 1.47 4.85 ± 1.82 7.73 ± 1.56 N/A
Density(%) 100 90 100 N/A
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Fig. 3. The cardiac phantoms datasets. The disparity maps showing the reconstruc-
tion results from left to right: Ground truth, the proposed approach, SPFP [15] and
FCVF [8].

3.3 Qualitative Evaluation in in vivo Images

To qualitatively evaluate the performance of the proposed approach on in vivo
images, endoscopic stereo images from real robot-assisted laparoscopic prosta-
tectomy are reconstructed as shown in Fig. 4 and in an accompanying video1.
The overall geometry is well captured. Specular highlights may still cause some
mis-matching, which can be resolved by fusing temporal models, and we will
investigate this idea as part of our future work.

Fig. 4. Qualitative evaluation of the reconstruction results using the proposed ap-
proach. The images are obtained from stereo endoscopic camera in real robot-assisted
surgery. We recommend to view these images on-screen and zoomed in.

4 Conclusions

In this paper, we have proposed an efficient and effective dense stereo reconstruc-
tion method using convex optimisation with a cost-volume. Empirical studies
have shown that our reconstruction results outperform the current state of the
art methods for endoscopic images and can also run in real-time on the GPU.
This is a significant advancement towards improved vision-based tracking of the
endoscope and is an important step towards providing image guidance to en-
doscopic procedures. In our future work, we will be developing dense camera
tracking techniques and will extend the current algorithm to fuse a sequence
of video images. This will improve the reconstructed model and provide more
advanced means for tackling the occlusion at instrument-tissue boundaries.

1 http://www.doc.ic.ac.uk/~pc3509

http://www.doc.ic.ac.uk/~pc3509
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