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Abstract—In Simultaneous Localisation and Mapping
(SLAM), it is well known that probabilistic filtering approaches
which aim to estimate the robot and map state sequentially
suffer from poor computational scaling to large map sizes.
Various authors have demonstrated that this problem can be
mitigated by approximations which treat estimates of features in
different parts of a map as conditionally independent, allowing
them to be processed separately. When it comes to the choice of
how to divide a large map into such ‘submaps’, straightforward
heuristics may be sufficient in maps built using sensors such
as laser range-finders with limited range, where a regular
grid of submap boundaries performs well. With visual sensing,
however, the ideal division of submaps is less clear, since a
camera has potentially unlimited range and will often observe
spatially distant parts of a scene simultaneously.

In this paper we present an efficient and generic method
for automatically determining a suitable submap division for
SLAM maps, and apply this to visual maps built with a single
agile camera. We use the mutual information between predicted
measurements of features as an absolute measure of correlation,
and cluster highly correlated features into groups. Via tree
factorisation, we are able to determine not just a single level
submap division but a powerful fully hierarchical correlation
and clustering structure. Our analysis and experiments reveal
particularly interesting structure in visual maps and give
pointers to more efficient approximate visual SLAM algorithms.

I. INTRODUCTION

As a moving camera (or multi-camera rig) explores its

environment, each measurement of the image location of a

repeatably observable scene feature provides a probabilistic

constraint on its location relative to the camera. It is well

understood that many such measurements captured over a

long image sequence, in combination with the assumption

that most elements of the scene are static, suffice to permit

stable estimates of the camera’s 3D trajectory as well as a

3D map of the locations of the observed features. The most

accurate solution to this estimation problem will be obtained

by a batch optimisation approach which seeks the estimates

which are most globally consistent with the measurements

— a methodology known as bundle adjustment in the pho-

togrammetry and computer vision communities [26], and

now generalised by SLAM researchers in graph optimisation

frameworks which are able to incorporate all types of sensory

input [25], [10].

A. Sparsification for Real-Time Visual Mapping

In robot vision, there has been a natural emphasis on

visual localisation and mapping methods which are able to

run not as off-line optimisation but as sequential procedures

potentially implementable in real-time on modest computing

hardware. Real-time operation inevitably requires some form

of approximation or sparsification of full global optimisation,

since it soon becomes infeasible to repeatedly find a globally

optimal solution based on the ever-growing volume of data

acquired from a live camera. Some real-time methods which

can be classed as visual odometry (e.g. [19], [21]) choose

to ‘forget’ information from past measurements beyond a

sliding time window. The result is highly accurate local

motion estimation due to the ability to cope with a large

number of feature measurements per frame, but drift over

extended sequences. This problem has recently been suc-

cessfully mitigated by the use of ‘keyframes’: a subset of

representative images and camera poses selected from the

continuous stream and subject to global optimisation with

the rest of the trajectory related to these [16], [17].

Alternative real-time methods for visual mapping based

on sequential probabilistic filtering (e.g. [7], [11]) aim to

‘summarise’ the information gained from past images with

a probabilistic state. This uncertain estimate of the camera

and map state can be combined with the information from

each new image in a weighted average of fixed complexity

at each time-step. It turns out however that the accurate

probabilistic representation of uncertainty which is required

here is computationally expensive in a way which scales

poorly with the number of mapped features. For this reason

methods such as [7] only map features relatively sparsely.

The most successful solution to this problem has been,

as in real-time SLAM research using other sensors (e.g.

[1], [2], [4], [15], [24]), to split a large map into several

conditionally independent visual submaps which can be pro-

cessed separately (e.g. [6], [12]). Perhaps the most successful

approach has been Eade and Drummond’s sophisticated real-

time monocular SLAM system [12], [13] which connects

submaps (here called ‘nodes’) with a higher level graph

structure estimating their relative locations.

So keyframes or submaps are sparsifying approximations

which permit real-time implementation of globally consistent

mapping. But in the case of either keyframes or submaps,

there remains the question of how to choose their locations

and scope.



B. The Special Character of Visual Maps

A little consideration makes it clear that visual sensing is

not in general conducive to a straightforward division of a

scene into block-like submaps for the purposes of efficient

map processing, as has proven successful with other sensors.

Laser range-finders and sonar sensors have strictly limited

ranges of measurement, and setting submap sizes which

relate closely to this is a sensible strategy — features located

farther apart than this range will not be simultaneously

observed. There are other potential heuristic strategies for

the choice of submap boundaries: an upper bound on the

number of features, or bounded uncertainty (or deviation

from linearity as in [12]) within a submap. In keyframe

approaches, all of the scene elements visible from a particular

camera pose are implicitly grouped together for the purposes

of estimation, independent of their distance from the camera.

This can cope with a range of depths, but is still a somewhat

arbitrary grouping.

Consider for instance the example of a large, cluttered

room (perhaps a cafeteria), browsed and mapped by a mobile

camera carried by a robot or person. The camera will view

parts of the room from different distances to obtain different

levels of detail: a table may be framed from close-up, or the

camera may move even closer to inspect particular objects.

The periphery of these views though may simultaneously be

filled with distant walls or even the outside scene beyond

the windows. Different features in a scene tend to have

more strongly correlated estimates in a map when they are

regularly co-observable by the moving sensor, but this is

not always the case if they give different information about

camera location. Similarly, features in almost the same scene

location but measured from different camera positions may

be uncorrelated.

C. Determining Hierarchical Map Structure

In this paper we propose a straightforward and absolute

measure for the level of correlation between features in

a mapping scenario based on the mutual information of

predicted measurements. We show that this automatic in-

ference of structure can in fact easily go beyond a single

level of submaps to deduce a full hierarchy of correlation

relations via a tree decomposition. In fact, many of the

most exciting recent approximate but super-efficient SLAM

algorithms [14], [22], [23] are tree-like in nature, showing

the additional power this gives.

The tree structure encodes a hierarchy of correlation levels

between features which permits their grouping into sets with

a user or application-settable coarseness or fineness, from

one extreme where all features are considered as independent

and unrelated to the other where they will all be grouped

together. In between, features will be accumulated into

clusters which gradually join into a single whole.

It is important to note that the hierarchical structure which

our method discovers is that of the probabilistic map, not

the a fundamental property of the scene itself. The structure

depends on the motion of the camera, priors which we have

about how the camera moves, and its imaging properties

such as resolution and field of view. In a map built using

an omnidirectional camera, for instance, we might expect

simultaneously observable features on opposite sides of a

robot to be regularly highly correlated in measurements and

that they would be clustered together, while in a map built

using a camera with a narrow field of view they would

be distant in the tree. We consider that this dependence on

the specifics of the camera and motion is a strength of the

approach, not a weakness.

II. MEASUREMENT PREDICTION AND MUTUAL

INFORMATION

The basis for our analysis of visual map structure is the

pairwise mutual information (MI) between candidate image

feature measurements at each frame of a filtering sequence.

Mutual information can be understood as an absolute, nor-

malised measure of degree of correlation. Strictly, the MI of

two uncertain variables is the number of bits of information

expected to be gained about one of them upon determining

the precise value of the other.

Following the formulation of [8], we consider making

image measurements of a scene of which the current state

of knowledge is modelled by a probability distribution over

a finite vector x stacking camera and map parameters. In

an image, we are able to observe measurable projections

of the scene state which we call features. A measurement

of feature i yields the vector of parameters zi; for instance

the two-dimensional image location of a point feature. A

likelihood function p(zi|x) models the measurement process

for a particular camera and feature type.

When a new image arrives, we can project the current

probability distribution over the state parameters x into

feature space to predict the values and distributions of all

the possible feature measurements which can be made.

In SLAM, this current distribution will be the result of

the application of a motion model representing temporal

dynamics or odometry sensing to the distribution resulting

from the previous frame. By building the stacked vector

zT =
(

z1 z2 . . .
)⊤

containing all candidate feature

measurements, we can calculate the joint density over all

measurement predictions:

p(zT ) =

∫

p(zT |x)p(x)dx . (1)

This joint prediction can be used for probabilistic data

association (matching), in either batch [20] or sequential [3]

forms. These algorithms benefit from the fact that the level

of correlation between the predictions of different feature

locations is high typically, since they all depend on common

parts of the scene state x — most significantly, uncertainty in

camera location induced by the motion model. The pairwise

mutual information between the predicted feature locations

is a normalised measure of these correlations.

Following the notation of Mackay [18], the (MI) of



variables zi and zj is:

I(zi; zj) = E

[

log2

p(zi|zj)

p(zi)

]

(2)

=

∫

zi,zj

p(zi, zj) log2

p(zi|zj)

p(zi)
dzidzj . (3)

By this general definition, the MI between two candidate

measurements can be calculated whatever the functional

forms of p(x) and p(zi|x).
We can now define the Mutual Information (MI) matrix

as in (4), so that every off-diagonal entry is calculated based

on the covariance relating the predicted measurements in zT .

The MI matrix represents the expected information gain of

a candidate measurement given the exact state of another. If

N is the total number of candidates then:

I(z) =











∗ I(z1; z2) . . . I(z1; zN )
I(z2; z1) ∗ . . . I(z2; zN )

...
...

...
...

I(zN ; z1) I(zN ; z2) . . . ∗











. (4)

This matrix is the basis for all of the analysis we will

conduct later to determine map structure. The matrix is

symmetric and the elements on the diagonal are meaningless,

and therefore filled with ∗’s.
The MI matrix has values for every pair of observed fea-

tures on each frame, and we can use it to analyse correlations

on a frame by frame basis. When tracking a sequence, we

can build up a model of measurement correlations between

all features in the map by accumulating average mutual

information scores for each combination of two features in a

large MI average matrix. Note here that any features which

are never co-observed will have a mutual information score

of zero in this matrix. Features that have been covisible

throughout a substantial number of frames and have been

moving consistently share high mutual information links,

whereas features with significant depth difference in the

scene will have a corresponding parallax difference in image

space and therefore weaker mutual information.

An important point about this information-theoretic mea-

sure of correlation is that it gives a valid, absolute value

for arbitrary combinations of features of any type. In [8] an

example is given where the mutual information for a joint

set of edge and point features is used to sensible guide active

search.

A. Gaussian Case

While the MI formulation is valid for any type of distri-

bution, in this section we derive the specific form for the

case where the PDFs describing knowledge of x and zT

can be approximated always by single multi-variate Gaussian

distributions. The measurement process is modelled by zi =
hi(x) + nm, where hi(x) describes the functional relation-

ship between the expected measurement and the scene state

as far as understood via the camera measurement model, and

nm is a Gaussian-distributed vector representing unmodelled

effects (noise) with covariance Ri which is independent for

(a) Complete MI graph (b) Chow-Liu tree approximation

Fig. 1. The approximation of a joint PDF p(z1, z2, . . . , z6) by second or-
der conditionals and marginal distributions yields a tree. Here, (a) shows the
complete MI graph where thicker links represent higher mutual information
between the nodes they connect, and (b) is the optimal such approximation
maximising the total information preserved in the tree as suggested by Chow
and Liu.

each measurement. The vector zT which stacks the predicted

measurements can be calculated along with its full covariance

S, usually known in tracking parlance as the innovation

covariance matrix:

zT =







ẑ1

ẑ2

...






=







h1(x̂)
h2(x̂)

...






(5)

S=









∂h1

∂x
Px

∂h1

∂x

⊤

+ R1
∂h1

∂x
Px

∂h2

∂x

⊤

. . .
∂h2

∂x
Px

∂h1

∂x

⊤ ∂h2

∂x
Px

∂h2

∂x

⊤

+ R2 . . .
...

...









(6)

The correlations between different feature predictions mean

that generally S will not be block-diagonal but contain off-

diagonal correlations between the predicted measurements of

different features.

With this single Gaussian formulation, the mutual infor-

mation in bits between any two predicted measurements zi

and zj can be calculated according to this formula ([8]):

I(zi; zj) =
1

2
log2

|Pzizi
|

|Pzizi
− Pzizj

P
−1
zjzj

Pzjzi
|

, (7)

where Pzizi
, Pzizj

, Pzjzj
and Pzjzi

are sub-blocks of S. This

representation however can be computationally expensive as

it involves matrix inversion and multiplication so we simplify

the formulation that was used in [3] which exploits the

properties of mutual information:

I(zi; zj)=H(zi) − H(zi|zj)=H(zi) + H(zj) − H(zi, zj)(8)

=
1

2
log

2

|Pzizi
||Pzjzj

|

|Pzizi
Pzjzj

− Pzizj
Pzjzi

|
. (9)

III. TREE FACTORISATION

A probabilistic estimate of the values of a set of variables

{z1, z2, . . . , zN} given background information I is most

generally specified by a joint density function over all of

those variables:

p(z1, z2, . . . , zN ) = f(z1, z2, . . . , zN ) . (10)



(a) Complete MI graph (b) Level 1: 6 single-node trees

(c) Level 2: 2 trees (d) Level 3: Chow-Liu tree

Fig. 2. Building the Chow Liu tree in a real scene. In (a) is the graphical
representation of the Mutual Information matrix for this frame. Every link
represents presence of mutual information between the features it connects,
with thickness corresponding to magnitude. The process of building the
Chow Liu tree as an approximation to this graph is bottom-up, so at level
1 in (b) we have 6 different trees each comprising of a single feature. In
level 2 in (c) each tree is grouped with the tree that is most information
dependent. Finally in (d) all features lie in one tree, the Chow Liu tree.

One possible approximation to a general joint probability

density is the factorised form in (12).

p(z1, z2, . . . , zN ) = p(zN )
N−1
∏

i=1

p(zi|zi+1 . . . zN )(11)

≈ p(zN )

N−1
∏

i=1

p(zi|zi+1) (12)

Figure 1 shows that this approximation can be interpreted as

a tree-shaped model of probabilistic links between variables

(each link representing a conditional density function of just

the two connected variables). Chow and Liu showed in their

1968 paper [5] that a full, joint probability density of a set

of variables can be optimally approximated as a product of

second-order conditionals and marginal distributions (as in

(12)) chosen to minimise the difference in Kullback-Leiber

divergence. The first-order dependency tree yielding from

this selection of links between variables is equivalent to the

maximum spanning tree1 of the Mutual Information graph

(the weights in this graph are defined by the elements of the

matrix in (4)).

IV. INFERRING HIERARCHICAL STRUCTURE FROM THE

TREE

Have deduced undirected tree structure linking the fea-

tures, there remains the question of how to use this to

infer hierarchical clusters. One option would be to somehow

choose a root feature and then ‘hang’ the tree from this.

By choosing a number of levels down from this root we

could fix where to lop off branches, all nodes further down

each branch forming a cluster. Alternatively, we could use a

1The acyclic path connecting all nodes in a weighted graph which yields
the maximal sum of weights.

(a) Planar scene (b) Scene with different depths

Fig. 3. Clustering features based on data obtained from a single frame. In
(a) is a typical frame of the Keble College Sequence, tracking features on
the wall. Since this is a planar scene, the distribution of mutual information
of features with each other is uniform, therefore the clustering result is
based on image proximity. On the other hand in (b) is a scene with more
interesting structure hence the clusters are also based on depth of features.

threshold on the MI scores on branches of the tree, cutting

all those weaker than a certain value to divide the tree

into clusters. In experimentation, while this approach has

some nice properties it tends to leave many features alone

in clusters of one.

Instead, here we propose a simple bottom-up procedure

where features are progressively grouped in a manner similar

Chow and Liu’s original algorithm to build the spanning

tree. The goal being to identify image regions of high

mutual information density, we consider an example where

N features have been tracked in a sequence of frames and

start join features together. We start off as if these features

were completely uncorrelated. All off-diagonal entries in the

MI matrix would then be zero and therefore at this stage we

have N different trees each comprising of a single feature.

Jumping a level up the hierarchy, the aim is to link each tree

to the tree with which it is sharing the strongest tie so that

no cycles are introduced. Repeating this process, we reach

the root of the hierarchy where all features lie in the same

tree, the Chow Liu tree. Figure 2 shows a real, simplified

example of the step-by-step building process of this tree.

Following the analysis to infer the scene structure in a

single frame, we can expand this idea to a sequence of

frames. Keeping a running average of the mutual infor-

mation links between features in the map, we accumulate

information on features that were coobserved at any instant.

We can then build the Chow Liu tree over the whole map

to automatically discover areas of high mutual information

density in a hierarchical manner. It is worth noting that

at any frame we only need to calculate the MI matrix of

the measurable features in that frame, therefore the cost is

tractable, since all data needed is evaluated in image space.

V. RESULTS

We demonstrate our algorithm on several different visual

maps generated from a hand-held camera using a standard

configuration of the freely available MonoSLAM system

for real-time single camera SLAM [7], [9]. MonoSLAM

uses the Extended Kalman Filter (EKF) to incrementally

construct a probabilistic map of visual point features repre-

sented by a single joint Gaussian distribution. At each new

frame MonoSLAM selects features for measurement based



Fig. 4. Discovering the map structure of an exploratory sequence taken
in Liddon Quad of Keble College. At the top of the root of the tree (top
image) is a single map containing all 329 features tracked during the 2500
frame sequence. Moving down the hierarchy each map splits into several
submaps until each feature lies in a different submap (bottom image).

Fig. 5. Submapping in a corridor sequence tracked with a forward-looking
camera. Here are two intermediate levels of the tree hierarchy where features
are visible in both sides of the camera’s trajectory, therefore left and right
hand side features are grouped into the same submap. The submaps formed
here have overlaps due to the covisibility of features belonging to different
submaps during tracking, in contrast to the Keble sequence in figure 4 where
submaps are more discrete since the camera is looking sideways. Note that
the feature uncertainties are not displayed here for the sake of clarity.

on whether they are predicted to lie within the camera’s

field of view and whether the camera is predicted to be

within a set of bounds for each feature on motion (inducing

scale changes and warping) where correlation matching is

expected to be possible. The innovation covariance matrix S

is calculated on every frame of MonoSLAM as part of the

active feature matching (data association) process so there

is little additional computational cost incurred by our tree

construction algorithm.

We present analysis of several single frames and extended

sequences at 30Hz which draw attention to the behaviour

of the algorithm and indicate the valuable role it can play

in automatic submap definition. Finally, we compare our

method to naive submapping through a quantitative analysis.

The video accompanying this paper, illustrates the run-time

clustering in selected parts of the sequences discussed in this

section.

A. Single Frame Analysis

As a proof of the concept of this paper, we performed the

simplest application of our tree-based clustering; a Chow-Liu

tree is built using data from a single frame only.

Once the correlations between features have been settled

and the map has converged, then so are the mutual informa-

tion links between them. Therefore, building the Chow-Liu

tree we can infer clusters that are conceptually consistent.

Image 3 is a demonstration of grouping features based on

their proximity in image space in the case of a planar scene

and the distinction of background/foreground features in a

scene with significant depth positions.



(a) Corridor Clusters in frame 184

(b) Corridor Clusters separate in frame 208

Fig. 6. Typical clusters in the corridor sequence. In (a) there are 2 clusters
present (bright green and red). The arrow points to a link that breaks in (b)
after 24 frames, since the features it used to connect no longer seem to be
moving in the same way as before. As a result a new (darker green) cluster
is formed to distinguish the features on the left wall from the ones on the
right. Tracking in a corridor-like sequence with a forward-pointing camera,
means that the distant features will appear near the centre of the image and
grouped together with features they appear to be close by in image space.
As the camera moves further such features gradually move away from each
other changing the distribution of mutual information links in the Chow Liu
tree, therefore changing the structure of clusters.

However, the interest here is to infer meaningful and con-

sistent submaps through time, where features are constantly

added, deleted and updated in the map, hence follows the

analysis on sequences of frames.

B. Sequence Analysis

1) Sideways Exploration: Here we analyse a segment

of the image sequence of Clemente et al. [6] taken by a

hand-held camera moving sideways around a large college

quadrangle, moving at a steady walking speed constant

speed while observing a wall at approximately constant

depth. We call the sequence exploratory because the camera

moves progressively and does not return to previously visited

positions in the segment. This sequence is of interest because

its simple nature makes the ‘ideal’ map structure a clear case

of approximately regular metric division, as implemented

explicitly in [6] by bounding the number of features in each

submap at a fixed value.

Figure 4 shows the grouping of features at all levels

of the Chow-Liu tree formation; each feature belongs to a

different submap at the leaves of the hierarchical tree, and

then they gradually team-up to form a single submap. Due

to the roughly constant speed of the camera and the regular

presence of features on the observed wall, the distribution of

mutual information links is uniform and therefore the clusters

forming in the intermediate levels of the hierarchy are fairly

similar in size.

(a) Hierarchy Level 3 of 4

(b) Hierarchy Level 2 of 4

Fig. 7. Clustering using accumulated mutual information of features over
a sequence of frames. Both (a) and (b) show the same scene of tracking
features with significant difference in depth estimates. Images on the right
show the 3-D view of the map and on the left are the corresponding camera-
views with positions and uncertainties of features projected in image space.
The links displayed are the segments of the Chow-Liu tree present at the
corresponding level of hierarchy. In (a) the two clusters demonstrate the
background-foreground separation as suggested by the feature uncertainties
(far features have much smaller uncertainty than closer ones as they are
only expected to move by a small amount in image space from one frame
to the next). Moving a step deeper in the hierarchy, these clusters split into
smaller ones in (b) showing regions of higher mutual dependency.

(a) Beginning of sequence (b) Zoom in poster detail

(c) End: cluster detail (d) End: main clusters

Fig. 8. Maintaining the scene’s detail in the tree structure. At the beginning
of the sequence in (a), all measurable features appear to lie on a plane, hence
are grouped in a single tree. In (b) the camera zooms in the poster and more
features are initialised to track the close-up view. In (c) and (d) is the final
tree structure at the end of the sequence. In (d) it is evident that all detail-
features of the poster have been clustered in a distinct group from the rest
of the features, and (c) shows more detail one level down the tree hierarchy.



Fig. 9. Comparing the quality of our clustering method with naive
submapping. On the left is the camera view with the features tracked in
this frame (colour depicts cluster membership) and on the right are the
matrices of pairwise mutual information links between all features in the
map built so far. Brighter pixels denote stronger mutual information links
in measurement space. The true matrix of all such links is displayed in the
blue box as the ‘Full MI’. The other two matrices display approximations
to the Full MI according to the submapping scheme used. It is evident
that our clustering method preserves far more structure in the distribution
of MI links rather than the naive approach due to the careful selection of
the cluster partition. Here, splitting the map in two clusters with the naive
approach we capture 55% of all the links of the Full MI whereas using our
Chow-Liu tree based method we capture 81%.

2) Forward Exploration: The next example is an ex-

ploratory sequence from a forward-moving hand-held cam-

era. The additional interest here is in the presence of features

close to the centre of expansion in the middle of the image

which are very distant and therefore remain visible for long

periods of time while the main quantity of features towards

the edges of the image quickly pass out of the field of view.

Figure 6 shows an example where distant features near the

centre of the image appear close by in image space, therefore

belong to the same tree but as the camera moves closer, the

link between them breaks to form two different clusters on

each side of the wall. Figure 5 is a full map view of all the

features tracked along the corridor and the clusters formed.

The difference with the Keble sequence map presented above

is that features appear in both sides of the trajectory here

as the camera is facing forward, and also, there is overlap

between clusters in state space due to their covisibility in

image space.

3) Loopy Browsing of a Scene with Various Depths:

Here is an example of our clustering method applied on a

scene with a substantial disparity in depth. Figure 7 shows

a typical frame of the sequence co-viewing close-by and

distant features through a cafeteria’s window. The features on

the window frame appear close to the features outside the

window in image space, but the correlation between these

two groups is weakened over time due to their difference in

parallax thus are clustered in separate submaps.

4) Level of Detail in a Natural Scene: In this experiment

the camera is moved forward from a position in the middle

of a room to closely inspect a poster and wall first seen

from the distance. As the camera approaches, features are

mapped increasingly densely on the surface of the poster.

Meanwhile, features initialised while the camera was distant

from the wall become unmeasurable and are deselected by

MonoSLAM.

(a) Sideways exploration (b) Forward exploration

Fig. 10. The distribution of pairwise MI links before and after submapping
using either naive or our Chow-Liu tree based clustering methods. In the
sideways exploration sequence the camera is constantly exploring new areas
therefore the block-diagonal structure of the MI links in (a) whereas in (b)
features initialised early in the image remain visible for a long time building
correlations with other features seen along the camera’s path.

C. Quantitative Analysis

As a means of demonstrating the effect of selecting the

cluster partitions carefully, we superimpose naive submap-

ping with our Chow-Liu tree based clustering method at

different levels of the clustering hierarchy when tracking for

1000 frames in each of the sequences 1 to 3 of subsection

V-B. At the end of each sequence, we record the effect of

partitioning the map into an equal number of submaps in

both clustering schemes (naive submapping splits the map

into regular-sized clusters of features, in the order that they

were initialised into the system). Each scheme provides an

approximation of the distribution of the pairwise MI links

between all features, therefore as a comparison measure we

use the ratio of the sums of the MI links preserved over all the

MI links present in the whole map. The table below, shows

these ratios as percentages at each level of the hierarchy built

using our clustering approach.

Pairwise measurement MI captured

HIERARCHY SUBMAPS NAIVE APPROX CHOW-LIU APPROX

Scene with various depths

4 of 4 1 100 % 100 %

3 of 4 2 50.78 % 84.50 %

2 of 4 7 21.43 % 35.67 %

1 of 4 38 0 % 0 %

Sideways exploration

4 of 4 1 100 % 100 %

3 of 4 4 74.70 % 93.83 %

2 of 4 10 51.67 % 75.38 %

1 of 4 60 0 % 0 %

Forward exploration

4 of 4 1 100 % 100 %

3 of 4 3 74.51 % 85.47 %

2 of 4 18 33 % 43.70 %

1 of 4 111 0 % 0 %

For all three sequences, the highest hierarchy level corre-

sponds to the whole map, therefore there is no approximation



at all whereas in the lowest hierarchy level every submap

contains a single feature preserving no links between them.

The results demonstrate that in all cases, selecting the

submap partitions carefully pays off in terms of achieving a

better approximation to the full map. The biggest difference

between the two submapping schemes is recorded when

splitting in two the map built for the Scene with various

depths where submapping with the Naive approach the

preserved MI links sum up to 51% of the total MI present in

the whole map, whereas our approach preserves 85% of the

initial distribution. Figure 9 shows an example frame of the

sequence along with a visual representation of the matrix of

MI links before and after each approximation. The mostly

exploratory nature of the other two sequences results in a

sparser distribution of links in the map as demonstrated in

Figure 10 therefore the loss of both approximation is smaller.

VI. CONCLUSION

We have shown that straightforward calculation of the

mutual information of feature measurements, temporal av-

eraging and tree construction provide a computationally

efficient way to automatically extract the full hierarchical

correlation structure of a visual map as it is built.

Our experiments show that the resulting hierarchical struc-

ture displays characteristics which agree with the expected

behaviour in ‘obvious’ cases such as simple exploration

where regular division is appropriate, but which also capture

much more subtle effects in scenes and camera motions with

large ranges of depth or level of detail. Future work involves

developing a filter based on this submapping approach for

efficient SLAM. Also we will consider exploiting appearance

information along with geometry to refine the definition of

submaps as a means of perhaps understanding the semantic

nature of each submap.
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