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Abstract. It has recently been demonstrated that the fundamental com-
puter vision problem of structure from motion with a single camera can
be tackled using the sequential, probabilistic methodology of monocu-
lar SLAM (Simultaneous Localisation and Mapping). A key part of this
approach is to use the priors available on camera motion and scene struc-
ture to aid robust real-time tracking and ultimately enable metric motion
and scene reconstruction. In particular, a scene object of known size is
normally used to initialise tracking.
In this paper we show that real-time monocular SLAM can be initialised
with no prior knowledge of scene objects within the context of a powerful
new dimensionless understanding and parameterisation of the problem.
When a single camera moves through a scene with no extra sensing, the
scale of the whole motion and map is not observable, but we show that
up-to-scale quantities can be robustly estimated.
Further we describe how the monocular SLAM state vector can be par-
titioned into two parts: a dimensionless part, representing up-to-scale
scene and camera motion geometry, and an extra metric parameter rep-
resenting scale. The dimensionless parameterisation permits tuning of
the probabilistic SLAM filter in terms of image values, without any as-
sumptions about scene scale, but scale information can be put back into
the estimation if it becomes available.
Experimental results with real image sequences showing SLAM without
an initialisation object, different image tuning examples and scenes with
the same underlying dimensionless geometry are presented.

1 Introduction

Structure From Motion (SFM) [5], classically solved as batch process, has re-
cently been reformulated as a sequential probabilistic estimation problem, prop-
agating and benefitting from available priors along an image sequence. The
probabilistic approach is based on SLAM techniques from the mobile robotics
field, using either the Extended Kalman Filter (EKF) [3, 6] or particle filtering
methods such as FastSLAM [4]. This rigorous Bayesian approach is producing
a significant improvement both in matching robustness and computation speed.
Systems built using commodity cameras and computers have shown real-time 30
fps. robust performance in indoor or outdoors scenes with a hand-held camera.
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It is a well known fact in SFM that a moving calibrated camera observing a
scene can recover scene geometry and camera motion only up to a scale factor
— scene scale is an non-observable magnitude if only bearing measurements are
made. Unlike SFM, probabilistic SLAM methods use prior information: a camera
motion model, scene depth priors and some known structure. These priors both
aid sequential tracking (by defining search regions) and enable the computation
of a metric scene scale. In particular, current monocular SLAM methods [3, 6]
have used extra information in the form of a known initialisation object to fix
scene scale.

In this paper we show that this non-visual information is in fact not essential
for solving the tracking problem and that no known target object needs to be
added to the scene. While this means that overall scene scale cannot intrinsically
be recovered, real-time tracking can still proceed — and if extra information does
become available later, scale can be put back into the scene map.

This is enabled by a novel understanding of the monocular SLAM problem,
based on the Extended Kalman Filter (EKF), in terms of dimensionless param-
eters. The new parameterisation is derived using Buckingham’s Π theorem [1]
which relies on the necessity for dimensional correctness in any formula and
hence any estimation process. Our monocular SLAM algorithm therefore recov-
ers dimensionless, up-to-scale geometry, and also provides benefits by allowing
previous tuning parameters to be rolled up into a canonical set which give an
important new understanding of the uncertainties in the system now in pixel
units. These parameters in the image provide a natural way of understanding
image sequences, irrespectively of the frame rate and actual scene size.

Further, we show that alongside the main dimensionless part of the SLAM
state vector we can add an extra parameter representing metric scale. During
tracking, vision-only measurements do not reduce the uncertainty in the scale
parameter but only in the dimensionless scene geometry. However, any mea-
surement containing metric information such as odometry, a feature at a known
depth or the distance between two features can be added when available and
will correctly affect both the scale and the dimensionless scene geometry.

2 Monocular SLAM Estimation Process

The state of the system in EKF SLAM is traditionally represented by a state
vector x, composed of a group of parameters referring to the camera motion, xv,
and n others representing every feature in the map, yi [7, 2].

x = (xv,y1,y2, . . . ,yn)
⊤

(1)

In hand-held camera monocular SLAM, a smooth camera motion is usually
supposed. The motion model in this paper is the same as in [3]: a constant
velocity model with unknown acceleration inputs, aW

k and αC
k . These linear and

angular accelerations are represented by zero mean known standard deviations
(σa and σα) Gaussian noise . The camera state vector includes camera location,
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rotation quaternion, and linear and angular velocities:

xv =
(

rWC ,qWC ,vW , ωW
)

(2)

The equation that updates the state camera vector at every step is:

fv =









rWC
k+1

qWC
k+1

vW
k+1

ωC
k+1
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rWC
k + vW

k ∆t + aW
k ∆t2

qWC
k × q(ωC
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k ∆t2)

vW
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k ∆t
ωC

k + αC
k ∆t









(3)

Inverse depth parametrization for point features [6] is also used in this pa-
per. This parametrization codes features by the ray extracted at first feature
observation (defined by the 3D location of the optical centre of the camera and
azimuth-elevation angles) and the inverse depth along this ray:

yi = (ri, θi, φi, ρi) = (xi, yi, zi, θi, φi, ρi) (4)

When a feature is newly initialized from a monocular camera, only informa-
tion about the ray can be retrieved. As no information is available about depth,
an initial inverse depth Gaussian prior on ρi ∼ N (ρ0, σρ0

) is applied in order
to cover with 95% probability the range of depths from the closest possible to
infinity.

We propose to split the state vector into a metric parameter d — unobserv-
able with only-vision measurements — and a dimensionless scene and camera
part. Doing this, the state vector is partitioned according to observability with
a monocular camera. Camera measurements will reduce scene geometry uncer-
tainty, but not the uncertainty in the metric parameter d.

x =
(

d,ΠWC
r ,qWC,ΠW

v ,ΠC
ω ,Πy1

, . . .
)⊤

(5)

The mapping from the state vector to metric scene geometry is a non-linear
computation involving the dimensionless geometry and the parameter d:

rWC = dΠWC
r , vW = dΠW

v ∆t, ωW = dΠW
ω ∆t (6)

yi = (dΠxi, dΠyi, dΠzi, θi, φi,Πρi/d) (7)

3 Buckingham’s Π Theorem Applied to Monocular

SLAM

Buckingham’s Π Theorem [1] is a key theorem in Dimensional Analysis. It states
that physical laws are independent of units. Given a dimensionally correct equa-
tion involving n quantities of different kinds: f(X1,X2,X3, ...,Xn) = 0 the ex-
isting relationship between the variables can be expressed also as:
F (Π1,Π2,Π3, ...,Πn−k) = 0 where Πi is a reduced set of n − k independent
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dimensionless groups of variables, and k the number of independent dimensions
that appear in the problem.

The monocular estimation process can be expressed as a function:

(

rWC ,qWC ,vW , ωW ,y1, . . . ,yn

)⊤

= f(σa, σα, σz, z,∆t, ρ0, σρ0
, σv0, σω0) , (8)

where vector z stacks all the image measurements along the image sequence.
Table 1 summarizes all the variables involved in monocular SLAM estimation
and and their units.

r q v, σv0 ω, σω0 z,σz aW , σa αC ,σα xi, yi, zi θi, φi ρi, σρ0

l 1 lt−1 t−1 l−1 lt−1 t−1 l−1 1 1 lt−2 t−2

Table 1. Dimensionless parameters and the corresponding variables involved

Based on the equation above, dimensionless groups must be chosen. The
parameters ρ0 and ∆t are the parameters of the two dimensions involved (length
and time) chosen to form the dimensionless groups. (Table 2).

Πr Πq Πv Πω Πρi
Πσv0

Πσω0
Πσρ0

Πz Πσz Πσa Πσα

rρ0 q vρ0∆t ω∆t ρi

ρ0
σv0ρ0∆t σω0∆t

σρ0

ρ0
z σz σaρ0∆t2 σαρ0∆t2

Table 2. Dimensionless numbers and the corresponding involved variables

4 Dimensionless Monocular SLAM Model

The state vector is composed of dimensionless parameters defining camera loca-
tion, rotation and velocities, and the map features:

xv = (Πr,q,Πv,Πω)
⊤

Πyi
= (Πri , θi, φi,Πρi

)
⊤

(9)

The dimensionless state update equation is:

fv =
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(10)

Next the monocular camera measurement equation is detailed. First, features
coded in inverse depth must be converted to 3D points in the world reference:

ΠW
h = Πri + Πρi

m(θi, φi) , (11)

where m(θi, φi) is the unit vector defined by the pair of azimuth-elevation angles.
These world-referenced 3D points are converted to the camera frame:

ΠC
h = RCW (ΠW

h − Πr) , (12)
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and then are projected into the camera using the pinhole model:

υ =
ΠC

h |x
ΠC

h |z
ν =

ΠC
h |y

ΠC
h |z

(13)

Finally, camera calibration including radial distortion is applied to obtain
pixel coordinates from angular coordinates.

There camera measurements clearly do not involve the size of the scene. If
the metric parameter d has to be estimated, other types of measurements must
be made. For instance, the equation that gives the distance between two points:

D(P1,P2) = d
√

(Πy2
|x − Πy1

|x)2 + (Πy2
|y − Πy1

|y)2 + (Πy2
|z − Πy1

|z)2(14)

5 Image interpretation of dimensionless parameters and

image filter tuning

The most representative of the dimensionless parameters can be seen in Figure
1. Their geometrical interpretation as camera angles is detailed here.

1/ ρ0 1/ ρ0

∆ tσa
2

Π a Π r
zΠα σ z

r

(b)(a) (c) (d)

Fig. 1. Dimensionless monocular SLAM parameters.

Figure 1(a) shows the dimensionless parameter Πσa. The product σa∆t2

represents the effect of the acceleration noise on the camera location. This value
divided by 1/ρ0 gives the angle represented in the figure. This angle can be seen
as the parallax allowed to a feature at depth 1/ρ0 due to camera acceleration.

The camera angular acceleration covariance in Figure 1(b) can clearly be
interpreted as an angle between frames, and can be mapped to image pixels.
Image measurements and image noise, in Figure 1(c) are directly measured in
the image, so they are already dimensionless angles.

The translation estimate, Πr (in fig 1(d)), can also be seen as the angle
defined by the translation between frames and the initial inverse depth.

As a consequence of this interpretation, EKF tuning is greatly simplified.
Image values, observable in an image sequence, replace non-observable 3D real
world values. Tuning parameters are related to image motion and no assumptions
on the 3D scene are done.
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6 Real Image Results

Real image experiments without adding any target to the scene has been per-
formed. The first one shows how the scale of the scene in usual monocular SLAM
depends on the prior knowledge of the scene. The second one illustrates the use
of image tuning and the reduction in the number of tuning parameters. In the
third experiment, the same image tuning is used in two different sequences which
have different metric qualities but lead to the same image motion. All of the se-
quences have been recorded with a IEEE 1394 320×240 monochrome camera at
30 fps. A wide angle lens is used.

6.1 Dependence of scene scale on a priori parameters

Fig. 2. Left: sample. Centre: EKF SLAM estimation result ρ0 = 0.5m−1. Right: EKF
SLAM estimation result ρ0 = 0.1m−1.Feature uncertainty in red and blue, the camera
uncertainty in cyan and the camera trajectory in yellow.

The same sequence was processed with the dimensional EKF SLAM algo-
rithm varying the ρ0 parameter. Figure 2 shows the estimation for ρ0 = 0.5m−1

and ρ0 = 0.1m−1. Notice that the estimated depth of the scene (the distance be-
tween the camera and the points in the bookcase) tends to be at the depth prior
(2m and 10m). The two estimated scenes have the same form, the difference
is just the scale of the axis. If ΠWC

r = ρ0r
WC and Πyi

were estimated using
the dimensionless monocular SLAM proposed, these two experiments would be
normalized into one, in which normalized depth tends to be at dimensionless ’1’,

6.2 Image tuning in a pure rotation sequence

This sequence is a pure camera rotation in a hallway. Dimensional monocular
SLAM should have been tuned with real camera accelerations and depth priors.
As these values are not observable, they need to be assumed. Dimensionless
monocular SLAM is tuned directly with image values.

Two experiments with the same Πσa = 0, Πσz = 1pxls values but different
tuning in Πσα: a)Πσα = 2pxls, and b)Πσα = 4pxls has been performed (Fig.3.)
Because of the image tuning, their effect can be directly seen in the 95% image
search regions size for the map features.
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Fig. 3. Pure rotation image search regions. Left: sample image. Centre: Πα = 2pxls.
Right:Πα = 4pxls.

It is important to notice that, in the previous paragraph, neither 3D scene
assumptions nor time between frames ∆t are needed in the filter. The tuned
values are the allowed image motion between frames due to camera linear and
angular acceleration and image noise.

6.3 The same image tuning for different sequences

Two translational sequences have been recorded walking along a corridor and
looking at the wall. In the first one, the distance from the wall was 2.5 metres. In
the second, the distance from the wall was twice (5 metres), the distance walked
along the corridor the same, and the walking velocity was double (therefore, the
number of frames of the second sequence is half the first one). Although they
are two different experiments, the image motion in both sequences is the same,
and dimensionless monocular SLAM has to be tuned with same values. In this
experiment, these values were: σz = 1pxl, σa = 2pxl and σα = 2pxl. Notice
again the simplicity of image tuning compared with 3D tuning, in which you
have to imagine the depth prior and the 3D accelerations, unobservable with a
single camera. Figure 4 shows the results of both estimations.

The dimensionless estimated translation can be interpreted as the translation
in units of the initial depth prior. As the wall is twice as far in the second
sequence, the second sequence’s estimated translation is half. It can also be
noticed that, as the normalized translation is smaller in the second experiment,
the normalized 3D point positions are estimated with less accuracy and have
larger uncertainty regions.

7 Conclusions

Up-to-scale results from real-time, EKF based monocular SLAM without an
initialisation target are presented. As no known points are included in the es-
timation, the real size of the scene cannot be recovered. Nevertheless, a scaled
estimation is obtained, its size depending on priors introduced to the filter.

In order to represent the non-observability of the real size of the scene, a
new monocular SLAM parameterisation is presented. This approach separates
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Fig. 4. Two equivalent sequences. First and last images and 3D estimated geometry

the geometric problem of estimating a point map and camera motion up to
scale from the unobservable real size of the map and motion. A parameter that
codes the real size of the scene is added to the state vector, but single-camera
measurements do not involve this value. As a consequence, its value cannot be
estimated with single camera measurements.

Buckingham’s theorem was used to build the dimensionless state vector in
this new EKF approach. A geometrical interpretation of the dimensionless pa-
rameters as angles allows a simplified tunning of the filter: the number of tuning
parameters is reduced and no 3D assumptions of the scene are made.
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