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Abstract

Random Sample Consensus (RANSAC) has become one of the most successful techniques
for robust estimation from a data set that may contain outliers. It works by constructing
model hypotheses from random minimal data subsets and evaluating their validity from the
support of the whole data. In this paper we present a novel combination of RANSAC plus
Extended Kalman Filter (EKF) that uses the available prior probabilistic information from
the EKF in the RANSAC model hypothesize stage. This allows the minimal sample size to
be reduced to one, resulting in large computational savings without the loss of discriminative
power. 1-Point RANSAC is shown to outperform both in accuracy and computational cost
the Joint Compatibility Branch and Bound (JCBB) algorithm, a gold-standard technique
for spurious rejection within the EKF framework.

Two visual estimation scenarios are used in the experiments: First, six degrees of freedom
motion estimation from a monocular sequence (Structure from Motion). Here, a new method
for benchmarking six DOF visual estimation algorithms based on the use of high resolution
images is presented, validated and used to show the superiority of 1-Point RANSAC. Sec-
ond, we demonstrate long-term robot trajectory estimation combining monocular vision and
wheel odometry (Visual Odometry). Here, a comparison against GPS shows an accuracy
comparable to state-of-the-art visual odometry methods.

1 Introduction

The establishment of reliable correspondences from sensor data is at the core of most estimation algorithms
in robotics. The search for correspondences, or data association, is usually based first stage on comparing
local descriptors of salient features in the measured data. The ambiguity of such local description leads to
possible incorrect correspondences at this stage. Robust methods operate by checking the consistency of the
data against the global model assumed to be generating the data, and discarding as spurious any that does
not fit into it. Among robust estimation methods, Random Sample Consensus (RANSAC) (Fischler and
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Figure 1: RANSAC steps for the simple 2D line estimation example: First, random hypotheses are generated
from data samples of size two, the minimum to define a line. The most supported one is selected, and data
voting for this hypothesis is considered inlier. Model parameters are estimated from those clear inliers in a
second step. Finally, the remaining data points consistent with this latest model are rescued and the model
is re-estimated again.

Bolles, 1981) stands out as one of the most successful and widely used, especially in the Computer Vision
community.

This paper introduces a novel integration of RANSAC into the Extended Kalman Filter framework. In order
to highlight the requirements and benefits of our method, the RANSAC algorithm is first briefly exposed in
this introduction for the simple case of 2D line estimation from a set of points contaminated with spurious
data (see Figure 1). After that, the same simple example will be tackled using the proposed 1-Point RANSAC
algorithm (Figure 2). It is important to remark here that we use this simple example only to illustrate in
the simplest manner our approach, and will later on fill in the details which make 1-Point RANSAC into a
fully practical matching algorithm.

Standard RANSAC starts from a set of data, in our simple example 2D points, and the underlying model that
generates the data, a 2D line. In the first step, RANSAC constructs hypotheses for the model parameters
and selects the one that gathers most support. Hypotheses are randomly generated from the minimum
number of points necessary to compute the model parameters, which is two in our case of line estimation.
Support for each hypothesis can be computed in its most simple form by counting the data points inside
a threshold (related to the data noise), although more sophisticated methods have been used (Torr and
Zisserman, 2000).

Hypotheses involving one or more outliers are assumed to receive low support, as is the case in the third
hypothesis in Figure 1. The number of hypotheses nhyp necessary to ensure that at least one spurious-free
hypothesis has been tested with probability p can be computed from this formula:

nhyp =
log (1− p)

log (1− (1− ε)m)
, (1)

where ε is the outlier ratio and m the minimum number of data points necessary to instantiate the model.
The usual approach is to adaptively compute this number of hypotheses at each iteration, assuming the
inlier ratio is the support set by the total number of data points in this iteration (Hartley and Zisserman,
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Figure 2: 1-Point RANSAC steps for the simple 2D line estimation example: As a key difference from
standard RANSAC, the algorithm assumes that an a priori probability distribution over the model parameters
is known in advance. This prior knowledge allows us to compute the random hypotheses using only 1 data
point, hence reducing the number of hypotheses and the computational cost. The remaining steps do not
vary with respect to standard RANSAC in Figure 1

.

2004).

Data points that voted for the most supported hypothesis are considered clear inliers. In a second stage,
clear inliers are used to estimate the model parameters. Individual compatibility is checked for each one of
the rest of the points against the estimated model. If any of them is rescued as inlier, as happens in the
example in Figure 1, the model parameters are re-estimated again in a third step.

Figure 2 illustrates the idea behind 1-Point RANSAC in the same 2D line estimation problem. As the
first key difference, the starting point is a data set and its underlying model, but also a prior probability
distribution over the model parameters. RANSAC random hypotheses are then generated based on this prior
information and data points, differently from standard RANSAC hypothesis solely based on data points. The
use of prior information can reduce the size of the data set that instantiates the model to the minimum size
of one point, and it is here where the computational benefit of our method with respect to RANSAC arises:
according to Equation 1, reducing the sample size m greatly reduces the number of RANSAC iterations and
hence the computational cost.

The order of magnitude of this reduction can be better understood if we switch from the simple 2D line
estimation example to our visual estimation application. According to (Nistér, 2004), at least five image
points are necessary to estimate the 6 degrees of freedom camera motion between two frames (so m = 5).
Using formula 1, assuming an inlier ratio of 0.5 and a probability p of 0.99, the number of random hypotheses
would be 146. Using our 1-Point RANSAC scheme, assuming that probabilistic a priori information is
available, the sample size m can be reduced to one point and the number of hypotheses would be reduced
to 7.

Having an a priori probability distribution over the camera parameters is unusual in classical pairwise
Structure from Motion which assumes widely separated views (Hartley and Zisserman, 2004), and methods
like standard RANSAC which generate hypotheses from candidate feature matches are mandatory in this
case. But in sequential SfM from video (such as (Davison, 2003; Klein and Murray, 2008; Mouragnon et al.,



2009)), smooth interframe camera motion can be reasonably assumed and this used to generated a prior
distribution (prediction) of the motion. For the specific EKF implementation of sequential SfM used in this
paper, this prior probability is naturally propagated by the filter and is straightforwardly available.

The rest of the paper is organised as follows: first, related work is described in Section 2; the proposed
algorithm is then described in its most general form in Section 3 and the details for the visual application
are given in Section 4. Experimental results are shown in Section 5, including pure visual estimation and the
monocular and wheel odometry combination. Finally, discussion, conclusions and future work are presented
in sections 6, 7 and 8.

This paper builds on previous work in (Civera et al., 2009). The specific contributions of this journal version
are: First, to extend the 1-point RANSAC initial raw idea from (Civera et al., 2009) to a fully detailed
algorithm in which 1-point RANSAC is efficiently embedded in the standard EKF. Second, the proposal
of a benchmarking method for 6 DOF camera motion estimation. And third, an extensive experimental
validation of the algorithm. With more detail, the new experimental results benchmark our proposal against
5-point RANSAC and JCBB both in accuracy and cost using the proposed benchmarking method. Also, a
real-time 1.3 kilometres long visual odometry experiment combining wheel odometry and camera information
has been added.

2 Related Work

2.1 Random Sample Consensus (RANSAC)

Although RANSAC is a relatively old method, the literature covering the topic continues up to the present.
RANSAC (Fischler and Bolles, 1981) was introduced early in visual geometric estimation (Torr and Murray,
1993) and has been the preferred outlier rejection tool in the field. Recently, an important stream of research
has focused on reducing the model verification cost in standard RANSAC (e.g. (Raguram et al., 2008; Chum
and Matas, 2008; Capel, 2005; Nistér, 2005)) via the early detection and termination of bad hypotheses.
The 1-point RANSAC algorithm proposed here is related to this stream in the sense that it also reduces
the hypothesis generation and validation cost. Nevertheless, it does so in a different manner: instead of
fast identification of good hypotheses among a large number of them, the number of hypotheses is greatly
reduced.

Incorporating probabilistic information into RANSAC has rarely been discussed in the computer vision
literature. Only very recently Moreno et al. (Moreno-Noguer et al., 2008) have explored the case where
weak a priori information is available in the form of probabilistic distribution functions.

More related to our research, the combination of RANSAC and Kalman filtering was proposed by Vedaldi
et al. in (Vedaldi et al., 2005). Our method might be considered a specific form of Vedaldi’s quite general
approach. They propose an iterative scheme in which several minimal hypotheses are tested; for each
such hypothesis all the consistent matches are iteratively harvested. No statement about the cardinality of
the hypotheses is made. Here we propose a definite and efficient method, in which the cardinality of the
hypotheses generator size is 1, and the inlier harvesting is not iterative but in two stages. Finally we describe
in reproducible detail how to deal efficiently with the EKF algorithm in order to reach real-time, splitting
the expensive EKF covariance update in two stages.

RANSAC using 1-point hypotheses has also been very recently proposed in (Scaramuzza et al., 2009) as the
result of constraining the camera motion. While at least 5 points would be needed to compute monocular
Structure from Motion for a calibrated camera undergoing general six degrees of freedom motion (Nistér,
2004), fewer are needed if the motion is known to be less general: as few as 2 points in (Ort́ın and Montiel,
2001) for planar motion and 1 point in (Scaramuzza et al., 2009) for planar and nonholonomic motion. As a
clear limitation of both approaches, any motion performed out of the model will result in estimation error. In



fact, it is shown in real-image experiments in (Scaramuzza et al., 2009) that although the most constrained
model is enough for RANSAC hypotheses (reaching then 1-point RANSAC), a less restrictive model offers
better results for motion estimation.

In the case of the new 1-point RANSAC presented here, extra information for the predicted camera motion
comes from the probability distribution function that the EKF naturally propagates over time. The method
presented is then in principle not restricted to any specific motion, being suitable for 6 degrees of freedom
estimation. The only assumption is the existence of tight and highly correlated priors, which is reasonable
within the EKF framework since the filter itself only works in such circumstances.

2.2 Joint Compatibility Branch and Bound (JCBB)

Joint Compatibility Branch and Bound (JCBB) (Neira and Tardós, 2001) has been the preferred technique
for spurious match rejection within the EKF framework in the robotics community, being successfully used
in visual (e.g. (Clemente et al., 2007), (Williams et al., 2007)) and non-visual SLAM (e.g. (Fenwick et al.,
2002)). Unlike RANSAC, which hypothesizes model parameters based on current measurement data, JCBB
detects spurious measurements based on a predicted probability distribution over the measurements. It
does so by extracting from all the possible matches the maximum set that is jointly compatible with the
multivariate Gaussian prediction.

In spite of its wide use, JCBB presents two main limitations that 1-Point RANSAC overcomes. First, JCBB
operates over the prediction for the measurements before fusing them. Such a probabilistic prediction is
coming from the linearization of the dynamic and measurement models and the assumption of Gaussian
noise; so it will presumably not correspond to the real state of the system. 1-Point and in general any
RANSAC operates over hypotheses after the integration of a data subset, which have corrected part of the
predicted model error with respect to the real system.

The second limitation of JCBB concerns computational cost: the Branch and Bound search that JCBB uses
for extracting the largest jointly compatible set of matches has exponential complexity in the number of
matches. This complexity does not present a problem for small numbers of matches, as is the case in the
references two paragraphs above, but very large computation times arise when the number of spurious grows,
as we will show in the experimental results section. The computational complexity of 1-Point RANSAC is
linear in the state and measurement size and exhibits low cost variation with the number of outliers.

Two recent methods are also of interest for this work. First, Active Matching (Chli and Davison, 2008) is a
clear inspiration for our method. In Active Matching, feature measurements are integrated sequentially, with
the choice of measurement at each step driven by expected information gain, and the results of each mea-
surement in turn used to narrow the search for subsequent correspondences. 1-Point RANSAC can be seen
as lying in the middle ground between RANSAC and JCBB which obtain point correspondence candidates
and then aim to resolve them, and Active Matching with its fully sequential search for correspondence. The
first step of 1-Point RANSAC is very similar to Active Matching, and confirming that integrating the first
match highly constrains the possible image locations of other features, but afterwards the methods of the
algorithms diverge. A problem with Active Matching in (Chli and Davison, 2008) was the unreasonably high
computational cost of scaling to large numbers of feature correspondences per frame, and 1-Point RANSAC
has much better properties in this regard, though very recently an improvement to Active Matching has also
addressed this issue in a different way (Handa et al., 2010).

Paz et al. (Paz et al., 2008) describe can approach called Randomized Joint Compatibility (RJC) which
basically randomizes the jointly compatible set search, avoiding the Branch and Bound search and ensuring
an initial small set of jointly compatible inliers at the first step via Branch and Bound search in random sets.
Only afterwards, the joint compatibility of each remaining match is checked against the initial set. Although
this approach lowers the computational cost of the JCBB, it still faces the accuracy problems derived from
the use of the predicted measurement function before data fusion.



2.3 Structure from Motion and Visual Odometry

Structure from Motion (SfM) is the generic term for 3D estimation from the sole input of a set of images
of the imaged 3D scene and the corresponding camera locations. SfM from a sparse set of images has been
usually processed by pairwise geometry algorithms (Hartley and Zisserman, 2004) and refined by global
optimization procedures (Triggs et al., 2000). Estimation from a sequence has been carried out either by
local optimization of keyframes (Klein and Murray, 2008; Mouragnon et al., 2009), or by filtering (Davison
et al., 2007; Eade and Drummond, 2007). In our work we apply 1-Point RANSAC to filtering based SLAM
using the EKF inverse depth parametrization of (Civera et al., 2008).

Visual Odometry, a term coined in (Nistér et al., 2004), refers to egomotion estimation mainly from visual
input (monocular or stereo), but sometimes also combined with mechanical odometry and/or inertial sensor
measurements. The variety of approaches here makes a complete review difficult; some visual odometry
algorithms have made use of stereo cameras, either as the only sensor (e.g. (Comport et al., 2007)) or in
combination with inertial measurements (Konolige et al., 2007; Cheng et al., 2006). Among the monocular
approaches, (Mouragnon et al., 2009) uses a non-panoramic camera as the only sensor. Several others
have been proposed using an omnidirectional camera, e.g. (Scaramuzza et al., 2009; Tardif et al., 2008).
The experiment presented here, combining a non-panoramic camera plus proprioceptive information for
estimation of large trajectories, is rarely found in the literature.

2.4 Benchmarking

Carefully designed benchmark datasets and methods have come into standard use in the vision community,
e.g. (Scharstein and Szeliski, 2002). Robotics datasets have only recently reached such level of detail,
presenting either detailed benchmarking procedures (Kummerle et al., 2009) or datasets with reliable ground
truth and open resources for comparison (Smith et al., 2009; Blanco et al., 2009).

The RAWSEEDS dataset (RAWSEEDS, 2010), which include monocular and wheel odometry streams for
large scale scenarios, will be used for the Visual Odometry experiments of the paper. While being suitable
to benchmark very large real-image experiments, robotic datasets face two main inconveniences: First,
the robot motion is planar in all the datasets, thus not allowing to evaluate full six-degrees-of-freedom
motion estimation. And second, GPS only provides translational data and angular estimation cannot be
benchmarked. Simulation environments, like the one described in (Funke and Pietzsch, 2009), can provide
the translational and angular ground truth for any kind of camera motion. Nevertheless, those simulation
environments usually cannot represent full real world complexity.

The benchmarking method proposed and used in the paper overcomes all these limitations. It consists of
comparing the estimation results against a Bundle Adjustment solution over high resolution images. Full 6
DOF motion can be evaluated with low user effort (only the generation of a Bundle Adjustment solution is
required), requirements for hardware are low (a high resolution camera) and any kind of motion or scene
can be evaluated as the method operates over the real images themselves.

This approach is not entirely new: the use of a global Bundle Adjustment solution to benchmark sequential
algorithms has already been used in (Eade and Drummond, 2007; Mouragnon et al., 2009). The contribution
here is the validation of the algorithm, effectively showing that the Bundle Adjustment uncertainty is much
lower than the sequential methods to benchmark. As another novelty, global Bundle Adjustment is applied
over high resolution images, further improving accuracy. While it is true that a Bundle Adjustment solution
still may suffer from scale drift, it will be much lower than that of the sequential algorithms. Also, scale
drift can be driven close to zero by carefully chosing the images over which to apply Bundle Adjustment to
form a well-conditioned network (Triggs et al., 2000), so the validity of the method is not compromised.



3 1-Point RANSAC Extended Kalman Filter Algorithm

Algorithm 1 outlines the proposed novel combination of 1-Point RANSAC inside the EKF framework in its
most general form, and we describe this in detail in this section. The language used here is deliberately
general in the belief that the described algorithm may be of application in a large number of estimation
problems. The particular scenarios of the experimental results section (real-time sequential visual odometry
from a monocular sequence, either with or without additional wheel odometry) are discussed in detail in
section 4.

Algorithm 1 1-Point RANSAC EKF
1: INPUT: x̂k−1|k−1,Pk−1|k−1 {EKF estimate at step k − 1}
2: th {Threshold for low-innovation points. In this paper, th = 2σ pixels}
3: OUTPUT: x̂k|k,Pk|k {EKF estimate at step k}
4:

{A. EKF prediction and individually compatible matches}
5: [x̂k|k−1,Pk|k−1] = EKF prediction(x̂k−1|k−1,Pk−1|k−1,u)
6: [ĥk|k−1,Sk|k−1] = measurement prediction(x̂k|k−1,Pk|k−1)
7: zIC = search IC matches(ĥk|k−1,Sk|k−1)
8:

{B. 1-Point hypotheses generation and evaluation}
9: zli inliers = [ ]

10: nhyp = 1000 {Initial value, will be updated in the loop}
11: for i = 0 to nhyp do
12: zi = select random match(zIC)
13: x̂i = EKF state update(zi, x̂k|k−1) {Notice: only state update; NO covariance update}
14: ĥi = predict all measurements(x̂i)
15: zthi = find matches below a threshold(zIC , ĥi, th)
16: if size(zthi ) > size(zli inliers) then
17: zli inliers = zthi
18: ε = 1− size(zli inliers)

size(zIC)

19: nhyp = log(1−p)
log(1−(1−ε))

20: end if
21: end for
22:

{C. Partial EKF update using low-innovation inliers}
23: [x̂k|k,Pk|k] = EKF update(zli inliers, x̂k|k−1,Pk|k−1)
24:

{D. Partial EKF update using high-innovation inliers}
25: zhi inliers = [ ]
26: for every match zj above a threshold th do
27: [ĥj ,Sj ] = point j prediction and covariance(x̂k|k,Pk|k, j)
28: νj = zj − ĥj

29: if νj>Sj−1
νj < χ2

2,0.01 then
30: zhi inliers = add match j to inliers(zhi inliers, zj) {If individually compatible, add to inliers}
31: end if
32: end for
33: if size(zhi inliers) > 0 then
34: [x̂k|k,Pk|k] = EKF update(zhi inliers, x̂k|k,Pk|k)
35: end if



3.1 EKF Prediction and Search for Individually Compatible Matches (lines 5–8)

The algorithm begins with standard EKF prediction: the estimation for the state vector xk−1|k−1 at step
k− 1, modeled as a multidimensional Gaussian xk−1|k−1 ∼ N

(
x̂k−1|k−1,Pk−1|k−1

)
, is propagated to step k

through the known dynamic model fk

x̂k|k−1 = fk
(
x̂k−1|k−1,uk

)
(2)

Pk|k−1 = FkPk−1|k−1F>k + GkQkG>k . (3)

In the above equation uk stands for the control inputs to the system at step k, Fk is the Jacobian of fk with
respect to the state vector xk|k−1 at step k, Qk is the covariance of the zero-mean Gaussian noise assumed
for the dynamic model and Gk is the Jacobian of this noise with respect to the state vector xk|k−1 at step
k.

The predicted probability distribution for the state xk|k−1 can be used to ease the correspondence search
process by Active Search (Davison et al., 2007). Propagating this predicted state through the measurement
model hi offers a Gaussian prediction for each measurement:

ĥi = hi
(
x̂k|k−1

)
(4)

Si = HiPk|k−1H>i + Ri , (5)

where Hi is the Jacobian of the measurement hi with respect to the state vector xk|k−1 and Ri is the
covariance of the Gaussian noise assumed for each individual measurement. The actual measurement zi
should be exhaustively searched for inside the 99% probability region defined by its predicted Gaussian
N
(
ĥi,Si

)
by comparison of the chosen local feature descriptor.

Active Search allows computational savings and also constraints the matches to be individually compatible
with the predicted state xk|k−1. Nevertheless, ensuring geometric compatibility for each separated match zi
does not guarantee the global consensus of the whole set. So, still the joint compatibility of the data against a
global model has to be checked for the set individually compatible matches zIC = (z1 . . . zi . . . zn)> previous
to the EKF update.

3.2 1-Point Hypotheses Generation and Evaluation (lines 9–22)

Following the principles of RANSAC, random state hypotheses x̂i are generated and data support is computed
by counting measurements inside a threshold. It is assumed that we are considering problems where the
predicted measurements are highly correlated, such that every hypothesis computed from one match reduces
most of the correlation in the measurement prediction, with inlier uncertainty close to the measurement
noise. The threshold is fixed according to a χ2 test with significance α = 0.05.

As the key difference with respect to standard RANSAC, random hypotheses will be generated not only based
on the data zIC = (z1 . . . zi . . . zn)> but also on the predicted state xk|k−1 ∼ N

(
x̂k|k−1,Pk|k−1

)
. Exploiting

this prior knowledge allows us to reduce the sample size necessary to instantiate the model parameters from
the minimal size to define the degrees of freedom of the model to only one data point. The termination
criteria of the RANSAC algorithm, stated in Equation 1, grows exponentially with the sample size and means
a great reduction in the number of hypotheses.



Another key aspect for the efficiency of the algorithm is that each hypothesis x̂i generation only needs an
EKF state update using a single match zi. A covariance update, which is of quadratic complexity in the
size of the state, is not needed and the cost per hypothesis will be low. Hypothesis support is calculated by
projecting the updated state into the camera, which can also be performed at very low cost compared with
other stages in the EKF algorithm.

3.3 Partial Update with Low-Innovation Inliers (lines 23–24)

Data points voting for the most supported hypothesis zli inliers are designated as low-innovation inliers. They
are assumed to be generated by the true model, as they are at a small distance from the most supported
hypothesis. The rest of the points can be outliers but also inliers, even if they are far from the most supported
hypothesis.

A simple example from visual estimation can illustrate this: it is well known that distant points are useful
for estimating camera rotation, while close points are necessary to estimate translation (Civera et al., 2008).
In the RANSAC hypotheses generation step, a distant feature would generate a highly accurate 1-point
hypothesis for rotation, while translation would remain inaccurately estimated. Other distant points would
in this case have low innovation and would vote for this hypothesis. But as translation is still inaccurately
estimated, nearby points would presumably exhibit high innovation even if they are inliers.

So after having determined the most supported hypothesis and the other points that vote for it, some inliers
still have to be “rescued” from the high-innovation set. Such inliers will be rescued after a partial state and
covariance update using only the reliable set of low-innovation inliers:

x̂k|k = x̂k|k−1 + Kk

(
zli inliers − h′

(
x̂k|k−1

))
(6)

Pk|k = (I−KkHk) Pk|k−1 (7)

Kk = Pk|k−1H>k
(
HkPk|k−1H>k + Rk

)−1
. (8)

Hk = (H1 . . .Hi . . .Hn′)
> stands for the Jacobian of the measurement equation h′

(
x̂k|k−1

)
that projects

the low-innovation inliers into the sensor space. Rk is the covariance assigned to the sensor noise.

3.4 Partial Update with High-Innovation Inliers (lines 25–35)

After a partial update using low-innovation inliers, most of the correlated error in the EKF prediction is
corrected and the covariance is greatly reduced. This high reduction will be exploited for the recovery of
high-innovation inliers: as correlations have weakened, consensus for the set will not be necessary to compute
and individual compatibility will suffice to discard inliers from outliers.

An individual Gaussian prediction hj ∼ N
(
ĥj ,Sj

)
will be computed for each high innovation for every

match zj by propagating the state after the first partial update xk|k through the projection model. The
match will be accepted as an inlier if it lies within the 99% probability region of the predicted Gaussian for
the measurement.

After testing all the high-innovation measurements a second partial update will be performed with all the
points classified as inliers zhi inliers, following the usual EKF equations.

It is worth remarking here that splitting the EKF update does not have a noticeable effect on the com-
putational cost. If n is the state size and m the measurement vector size, and in the usual SLAM case



where the state is much bigger than the locally measured set n >> m, the main EKF cost is the covariance
update which is O

(
mn2

)
. If the update is divided into two steps of measurement vector sizes m1 and m2

(m = m1 + m2), this covariance update cost stays almost the same. Some other minor costs grow, like the
Jacobian computation which has to be done twice. But also some others are reduced, like the measurement
covariance inversion which is O

(
m3
)
. Nevertheless, the effect of the latter two is negligible and for most

EKF estimation cases the cost is dominated by the covariance update and remains approximately the same.

4 1-Point RANSAC Extended Kalman Filter from a Monocular
Sequence Input

As previously stated, the proposed 1-point RANSAC and EKF combination will be evaluated in this paper
for the particular case of visual estimation from a monocular camera. In this section, the general method
detailed in Section 3 specializes to this specific application.

4.1 State Vector Definition

The state vector at step k is composed of a set of camera parameters xWCk
and map parameters yW . All

of these are usually referred to a static reference frame W , although there are some advantages in referring
them to the current camera frame Ck (Section 4.4 describes this latter approach);

x̂Wk =
(

x̂WCk

ŷW

)
; PW

k =
(

PW
Ck

PW
Cky

PW
yCk

PW
y

)
. (9)

The estimated map yW is composed of n point features yWi ; yW =
(
yW>1 . . . yW>n

)> .Point features are

parametrized in inverse depth coordinates yWi,ID =
(
XW
i YWi ZWi θWi φWi ρi

)> and converted to Euclidean

parametrization yWi,E =
(
XW
i YWi ZWi

)> if and when the projection equation becomes linear enough, as
described in (Civera et al., 2008). The inverse depth parametrization stores in its six parameters the 3D
camera position when the feature was initialized

(
XW
i YWi ZWi

)>, the azimuth-elevation pair
(
θWi φWi

)>
encoding the unit ray pointing to the feature and its inverse depth along the ray ρi.

4.2 Dynamic Model

The dynamic model applied to the camera depends on the information available. For the case of pure visual
estimation from a monocular sequence, a constant velocity model is sufficient for smooth hand-held motion
(Davison et al., 2007). The camera state is then formed by position rWCk

, orientation qWCk
, and linear and

angular velocities vW and ωCk :

xWCk
=


rWCk

qWCk

vW

ωCk

 . (10)

The constant velocity model fv equations are as follows:



fv =


rWCk+1

qWCk+1

vWCk+1

ωCCk+1

 =


rWCk

+
(
vWCk

+ VW
)

∆t
qWCk
× q

((
ωCCk

+ ΩC
)

∆t
)

vWCk
+ VW

ωCCk
+ ΩC

 , (11)

where VW and ΩC are zero-mean Gaussianly distributed velocity noise coming from an impulse of acceler-
ation.

When other sensorial information apart from the monocular sequence is available, it should be incorporated
as input to the dynamic model. In this paper, the combination of monocular vision plus wheel odometry

is analyzed. In this case, the camera state only needs to contain position and orientation xWCk
=
(

rWCk

qWCk

)
.

In this paper, the classical model for a differential drive robot (Borenstein et al., 1996) has been chosen to
model its dynamics.

4.3 Measurement Model

The measurement model used in the experiments of the paper is a pinhole camera model plus a two param-
eters radial distortion (Civera et al., 2008). The camera is assumed to be calibrated in advance. Inverse
depth and Euclidean points in the state vector are first transformed to the camera reference frame:

hCk

i,ID = RCk

W

(
qWCk

)ρi
 XW

i

YWi
ZWi

− rWCk

+ m
(
θWi , φ

W
i

) (12)

hCk

i,E = RCk

W

(
qWCk

) (
yWi,E − rWCk

)
, (13)

where RCk

W

(
qWCk

)
represents a rotation matrix computed from the state quaternion and m is the function

converting azimuth-elevation angles to a unit vector. Points in the camera frame are then projected using
the standard pinhole model:

hu =
(
uu
vu

)
=

 u0 − f
dx

hC
x

hC
z

v0 − f
dy

hC
y

hC
z

 . (14)

Here f stands for the focal length of the camera and (u0, v0)> are the image centre coordinates. The
imaged point is finally transformed using the two parameter κ1, κ2 model below, resulting in the distorted
measurement hd = (ud, vd)

>

(
uu
vu

)
=
(
u0 + (ud − u0)

(
1 + κ1r

2
d + κ2r

4
d

)
v0 + (vd − v0)

(
1 + κ1r

2
d + κ2r

4
d

) )
rd =

√
(dx (ud − u0))2 + (dy (vd − v0))2 . (15)
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(b) Camera-centered EKF estimation. The camera loca-
tion uncertainty is close to zero, as the reference is always
attached to it. Uncertainties for features in its vicinity yi

will be also kept low, so measurement model linearization
errors will be kept small for the whole estimation.

Figure 3: Camera-centered and World-referenced EKF estimation.

4.4 Camera-Centered Estimation

It is well known that the usual EKF SLAM formulation, referred to a world reference frame, is only valid
for local estimation in the surroundings of a sensor. Figure 3(a) illustrates the problem of this formulation:
as the sensor moves away from the world reference, and if a pure exploratory trajectory is performed, the
uncertainty of the estimation will always grow. Eventually it will reach a point where large linearization
errors will cause inconsistency and filter divergence.

Figure 3(b) illustrates an alternative approach that alleviates this problem, that was first presented for EKF
SLAM in (Castellanos et al., 2004). It basically consists of referring all geometric parameters to a reference
frame attached to the camera. Uncertainty in the locality of the sensor will always be kept low, greatly
reducing the linearization errors associated with the measurement model. The camera-centered approach
was first used for visual EKF estimation in (Civera et al., 2009); and has been thoroughly benchmarked in
(Williams, 2009).

The modifications with respect to world-centered visual SLAM are now given in detail. First, the state
vector is composed of the location of the world reference frame xCk

W and the map of estimated features yCk ,
both expressed in the current camera reference frame:

xCk

k =
(

xCk

W

yCk

)
. (16)

The location of the world reference with respect to the current camera xCk

W =
(

rCk

W

qCk

W

)
is coded with its

position rCk

W and quaternion orientation qCk

W . When odometry information is not available and a constant

velocity model is assumed, velocities should also be included in the state xCk

k =


xCk

W

vCk

ωCk

yCk

.

For the prediction step at time k, the world reference frame and feature map are kept in the reference frame
at time k−1 and a new feature xCk−1

Ck
that represents the motion of the sensor between k−1 and k is added:



xCk−1

k|k−1 =

 xCk−1
W

yCk−1

xCk−1
Ck

 (17)

The predicted camera motion is represented in terms of position and orientation, represented via a quaternion:

xCk−1
Ck

=

(
rCk−1
Ck

qCk−1
Ck

)
. (18)

The 1-point RANSAC EKF algorithm is applied with minor changes. The dynamic model of the system is
applied over the motion relative to the previous frame contained in xCk−1

Ck
, either using the constant velocity

model in equation 11 (in which case velocities should be kept then in the state as described above) or wheel
odometry inputs. The measurement model described in Section 4.3 is modified only at its first step: as
the map yCk−1 is now in the previous camera frame Ck−1, Equations 12 and 13 change features from the
previous to the current camera frame using relative motion in xCk−1

Ck
.

The algorithm proceeds then as explained in Section 3. At the end of the algorithm, after the second update,
a rigid transformation is applied to change the reference frame from the previous camera to the current one.
The world reference location is updated:

rCk

W = RCk

Ck−1

(
qCk−1
Ck

)(
rCk−1
W − rCk−1

Ck

)
(19)

qCk

W = qCk−1
W × qCk

Ck−1
, (20)

and the parameters representing motion from the previous to the current frame xCk−1
Ck

are marginalized out
from the state. Inverse depth and Euclidean map features are also affected by this composition step:

yCk

i,ID =


RCk

Ck−1

(
qCk−1
Ck

) X
Ck−1
i

Y
Ck−1
i

Z
Ck−1
i

− rCk−1
Ck


m−1

(
RCk

Ck−1

(
qCk−1
Ck

)
m
(
θ
Ck−1
i , φ

Ck−1
i

))
ρi

 ; yCk

i,E = RCk

Ck−1

(
qCk−1
Ck

)(
yCk−1
i,E − rCk−1

Ck

)
. (21)

The covariance is updated using the Jacobians of this composition function JCk−1→Ck

PCk

k = JCk−1→Ck
PCk−1
k J>Ck−1→Ck

. (22)

5 Experimental Results

5.1 Benchmark Method for 6 DOF Camera Motion Estimation.

The first step of the method takes an image sequence of the highest resolution, in order to achieve the
highest accuracy. In this paper, a 1224× 1026 pixels sequence was taken at 22 frames per second. A sparse



subset of n camera locations xC1
BA are estimated by Levenberg-Marquardt Bundle Adjustment with robust

likelihood model (Triggs et al., 2000) over the correspongding n images in the sequence {I1, . . . In}. Images
are manually selected to ensure they form a strong network. The reference frame is attached to the camera
C1, corresponding to the first frame of the sequence I1. For the experiments in the paper, 62 overlapping
camera locations were reconstructed by manually matching 74 points spread over the images. 15− 20 points
are visible in each image.

xC1
BA =

 xC1
1,BA
...

xC1
n,BA

 , (23)

xC1
i,BA =

(
XC1
i,BA Y

C1
i,BA Z

C1
i,BA φ

C1
i,BA θ

C1
i,BA ψ

C1
i,BA

)>
. (24)

Each camera location is represented by its position
(
XC1
i,BA Y

C1
i,BA Z

C1
i,BA

)>
and Euler angles(

φC1
i,BA θ

C1
i,BA ψ

C1
i,BA

)>
. The covariance of the solution is computed by back-propagation of reprojection

errors PC1
BA =

(
J>R−1J

)−1, where J is the Jacobian of the projection model and R is the covariance of the
Gaussian noise assumed in the model.

The input sequence is then reduced by dividing its width and height by four. The algorithm to benchmark is
applied over the subsampled sequence. The reference frame is also attached to the first camera C1, which is
taken to be the same first one as in Bundle Adjustment. Images for which a Bundle Adjustment estimation
is available are selected and stored xC1

i,MS , each along with its individual covariance PC1
i,MS directly extracted

from the EKF at each step.

As the reference has been set to the same first image of the sequence, the Bundle Adjustment and sequential
estimation solutions only differ in the scale of the reconstruction. So, in order to compare them, the relative
scale s is estimated first by minimizing the error between the two trajectories. The Bundle Adjustment
trajectory is then scaled xC1

BA = fscale

(
xC1
BA

)
and also its covariance PC1

BA = JscaleP
C1
BAJ

>
scale.

Finally, the error is computed as the relative transformation between the two solutions:

e = ⊕xC1
BA 	 xC1

MS ; (25)

and the corresponding covariance of the error is computed by propagating the covariances of the global
optimization and sequential estimate:

Pe = JeBAP
C1
BAJ

>
eBA + JeMSP

C1
MSJ

>
eMS . (26)

It was checked in the experiments in the paper that the covariance term from Bundle Adjustment,
JeBAP

C1
BAJ

>
eBA, was negligible with respect to the summed covariance Pe. Since this is the case, it is our

opinion that the Bundle Adjustment results can be considered as a reliable ground truth to evaluate sequen-
tial approaches. In the following figures, only uncertainty regions coming from filtering, JeMSP

C1
MSJ

>
eMS are

shown.

The same subsampled sequence was used for all the experiments in the following Sections 5.2 and 5.3. The
camera moves freely in six degrees of freedom in a computer lab, with the maximum distances between camera
locations around 5 metres. Filter tuning parameters were equal for all the experiments: motion dynamic and



(a) Sample images from the sequence used for
benchmarking.
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Figure 4: Images extracted from the sequence used in the experiments and reference camera positions
extracted.

measurement model noise were kept the same, the number of measured features in the image was limited to
30 and all the thresholds (e.g. for feature deletion, cross-correlation, inverse depth to Euclidean conversion
and initialization) were also kept the same. The reader should be aware that despite all of care taken, the
experiments are not exactly the same: One of the reasons is that the outlier rate is different for each method;
some methods need to initialize more features in order to keep measuring 30. Nevertheless, in the opinion of
the authors, this is the fairest comparison as the algorithms try always to measure always the same number
of points and hence gather an equivalent amount of sensor data.

Figure 4 shows example images from the sequence used in the following two sections for 1-point RANSAC
and JCBB benchmarking. The 62 camera locations from the 2796 images long sequence are also displayed.
Results for different experiments using this benchmarking method have been grouped for better visualization
and comparison: Figures 5 and 7 show estimation errors for different tunings of 1-point RANSAC and JCBB;
and 9 details their computational cost. All the experiments in the paper were run on an Intel(R) Core(TM)
i7 processor at 2.67GHz.

5.2 1-Point RANSAC

First, the performance of 5-point and 1-point RANSAC is compared, in order to ensure that there is no
degradation of performance when the sample size is reduced. Figures 5(a) and 5(b) show the errors of both
algorithms with respect to the reference camera motion, along with their 99% uncertainty regions. It can be
observed that reducing the sample size from 5 to 1 does not have a significant effect either on the accuracy
or the consistency of the estimation. On the contrary, the figure even shows 1-point outperforming 5-point
RANSAC. We attribute this to the fact that the theoretical number of hypotheses given by equation 1 was
not inflated in our experiments, unlike in classical SfM algorithms (Raguram et al., 2008). By increasing the
number of iterations, 5-point RANSAC results comes close to 1-point; but we find it remarkable that without
this augmentation 1-point RANSAC already shows good behaviour. The standard deviation of image noise
was chosen to be 0.5 for the experiments, as subpixel matching is used.

While the accuracy and consistency remains similar, the computational cost is much higher for the usual
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(a) 5-point RANSAC, σz = 0.5 pixels
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(b) 1-point RANSAC, σz = 0.5 pixels
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(c) 1-point exhaustive hypothesis, σz = 0.5 pixels
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(d) 1-point RANSAC, σz = 0.2 pixels

Figure 5: Camera location error (in thick blue) and uncertainty (in thin red) for different RANSAC con-
figurations. Similar error and consistency is shown for 5-point and 1-point RANSAC in Figures 5(a) and
5(b) respectively. Figure 5(c) also reports similar results for exhaustive hypothesis testing. Figure 5(d)
shows smaller errors as a result of making 1-point RANSAC stricter by reducing the standard deviation of
measurement noise.
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(a) Number of iterations along the
sequence for 5-point RANSAC.
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(b) Number of iterations along the
sequence for 1-point RANSAC.
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(c) Number of iterations along the
sequence for exhaustive hypothe-
ses generation.

Figure 6: Number of iterations for 5-points and 1-point RANSAC. Notice the several orders of magnitude
increse for the 5-point case, causing a large cost overhead when compared with 1-point RANSAC (Figures
9(a), 9(b) and 9(c) detail the computational cost for the three cases respectively).

5-point RANSAC than the proposed 1-point. The detail of the computational cost of both algorithms can be
seen in Figures 9(a) and 9(b). The cost of RANSAC is low compared with the rest of the EKF computations
for the 1-point case, but it is several orders of magnitude higher and is the main cost in the 5-point case.
The large cost increase is caused by the increase in the number of random hypotheses in frames with a
large number of spurious matches. Figures 6(a) and 6(b) show the number of hypotheses in both cases,
revealing that in 5-point RANSAC this is two orders of magnitude. The five higher green pikes appearing
in all the figures are caused by dropped frames in the sequence where there is a jump in camera location.
The correspondence search cost is increased at these frames, but notice that the cost of RANSAC is not
increased at all.

Hypothesis generation from a single point opens the possibility of exhaustive rather than random hypotheses
generation: while an exhaustive generation of all the possible combinations of 5 points in the measurement
subset would be impractical, an exhaustive generation of 1-point hypotheses implies only as many hypotheses
as measurements. Figure 5(c) details the errors for the 1-point exhaustive hypotheses generation case.
Compared with 1-point random hypotheses generation in Figure 6(b), we observe similar accuracy and
consistency. Figure 6(c) shows the number of iterations needed for comparison with the random adaptive
case (Figure 6(b)). The computational cost is increased but, as shown in Figure 9(c), it is still dominated
by the EKF update cost. Both options are then suitable for real-time implementation, with the cheaper
adaptive random 1-point RANSAC algorithm being preferable as performance is not degraded significantly.

From analyzing the computational cost in Figure 9(b) it can be concluded that the cost for 1-point RANSAC
is always low compared with EKF computation even when the spurious match rate is high (the spurious
match rate is shown in Figure 8(b)). As will be shown later, the latter becomes an important advantage over
JCBB whose cost grows exponentially with the rate of spurious matches. This efficiency opens the possibility
of making the RANSAC algorithm stricter by reducing the measurement noise standard deviation and hence
discarding high noise points in the EKF. Such analysis can be done by reducing the standard deviation from
0.5 to 0.2 pixels: high noise points were discarded as outliers, as can be seen in Figures 8(b) and 8(d). The
computational cost increases, as shown in Figure 9(e), but still remains small enough to reach real-time
performance at 22 Hz. The benefit of discarding high noise points can be observed in Figure 5(d): errors
and their uncertainty were reduced (but still kept highly consistent) as a result of measuring more accurate
points.



5.3 JCBB

RANSAC and JCBB tuning is a thorny issue when benchmarking both algorithms. As both cases assume
Gaussian distributions for the measurement and decide based on probability, we considered it fairest to choose
equal significance levels for the probabilistic tests of both algorithms. The significance level was chosen to
be 0.05 in the χ2 test that JCBB performs to ensure joint compatibility for the matches. Consistently, the
probabilistic threshold for RANSAC was set to 95% for voting (line 15 in the algorithm in Section 3) and
for the rescue of high-innovation matches (line 29 in the algorithm in Section 3).

The results of benchmarking JCBB are shown in the following figures. First, Figure 7(a) details the errors
and uncertainty regions for the EKF using JCBB. It can be observed that the estimation in Figure 7(a) show
larger errors and inconsistency than the 1-point RANSAC one in Figure 7(b), repeated here for visualization
purposes. The reason can be observed in Figure 8, where the outlier rates for 1-point RANSAC and JCBB
are shown: the number of matches considered outliers by 1-point RANSAC is greater than by JCBB. The
points accepted as inliers by JCBB are the ones that spoil the estimation.

A stricter version of JCBB has been benchmarked by reducing the standard deviation of uncorrelated mea-
surement noise to 0.2 pixels, as was done with 1-point RANSAC. The spurious match rate for both algorithms,
shown in Figure 8(c) and 8(d), shows that 1-point RANSAC remains more discriminative and hence pro-
duces more accurate estimation than JCBB (Figure 7(c)). 1-point RANSAC errors for the same tuning are
repeated in 7(d) for comparison purposes. Also, as previously noted, the computational cost of JCBB grows
exponentially when made stricter: Figure 9(f) shows peaks over a second in the worst cases.

JCBB can also be made stricter by increasing the significance level α of the χ2 test it performs to check the
joint compatibility of the data. Several experiments were run varying this parameter. The lowest estimation
errors, shown in Figure 7(e), were reached for α = 0.5 instead of the usual α = 0.05. Estimation errors for
this best JCBB tuning are still larger than in any of the 1-point RANSAC experiments.

5.4 Trajectory Benchmarking against GPS.

The following sections benchmark the presented filtering scheme for the estimation of long camera trajecto-
ries. The benchmarking method of the previous section becomes difficult to apply here, so camera translation
only is benchmarked against GPS data. This section describes the benchmarking procedure.

Similarly to the previous section, our EKF estimation takes the first camera frame C1 as the frame of
reference. A similarity transformation (rotation RW

C1
, translation tWC1

and scale s) has to be applied which

aligns every point of the trajectory rC1
Ck

=
[
xC1
Ck

yC1
Ck

zC1
Ck

]>
with the GPS data rWGPSk

, whose frame of
reference we will denote by W :

[
rWCk

1

]
=


xWCk

yWCk

zWCk

1

 =
[
sRW

C1
tWC1

0 1

]
xC1
Ck

yC1
Ck

zC1
Ck

1

 . (27)

The value of tWC1
is taken from the GPS data in the first camera frame. Trajectory estimation from pure

monocular vision will not be able to recover the scale s, which will remain unknown. For the combination of
a monocular camera and wheel odometry input, the overall scale of the estimation is observed by odometry
readings and then s = 1 in Equation 27. The rotation between GPS and the first camera position RW

C1
will

be unknown in every case, as it is non-observable from GPS readings.

The unknown parameters of the alignment (s and RW
C1

for pure monocular, and only RW
C1

for monocular plus
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(a) JCBB, σz = 0.5 pixels
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(b) 1-point RANSAC, σz = 0.5 pixels
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(c) JCBB, σz = 0.2 pixels
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(d) 1-point RANSAC, σz = 0.2 pixels
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(e) JCBB, σz = 0.2 pixels, α = 0.5

Figure 7: Camera location errors when using JCBB is shown in Figures 7(a) and 7(c), for standard deviations
of 0.5 and 0.2 pixels respectively. Figures 7(b) and 7(d) showing 1-point RANSAC results for the same filter
tuning are repeated here for comparison. It can be seen that 1-point RANSAC outperforms JCBB in both
cases. Figure 7(e) shows the best JCBB tuning found by the authors, which still gives worse results than
1-point RANSAC.
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(a) JCBB, σz = 0.5 pixels.
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(b) 1-point RANSAC, σz = 0.5 pixels
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(c) JCBB, σz = 0.2 pixels
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(d) 1-point RANSAC, σz = 0.2 pixels.

Figure 8: Spurious match rate for JCBB and RANSAC when measurement noise standard deviation σz
is reduced to 0.2 pixels. It can be observed that reducing the measurement noise makes both techniques
stricter, but 1-point RANSAC remains more discriminative.
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(a) 5-point RANSAC, σz = 0.5 pixels
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(b) 1-point RANSAC, σz = 0.5 pixels
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(c) 1-point exhaustive hypothesis, σz = 0.5 pixels
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(d) JCBB, σz = 0.5 pixels
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(e) 1-point RANSAC, σz = 0.2 pixels
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(f) JCBB, σz = 0.2 pixels

Figure 9: Detail of times and map sizes for different RANSAC and JCBB configurations in double y-axis
figures: times are shown as areas and measured in seconds on the left y-axis; the map size is displayed as a a
red line and is measured on the right y-axis. 1-point RANSAC exhibits much lower computational cost than
5-point RANSAC and JCBB. 1-point RANSAC also shows only a small increase when made exhaustive or
stricter, making it suitable for real-time implementation at 22 Hz for the map size detailed in the figures.



wheel odometry) are obtained via a non-linear optimization that minimizes the error between the aligned
trajectory rWCk

and the GPS trajectory rWGPSk
.

For the sake of simplicity, the assumption that the position of the camera sensor and the GPS antenna
coincide on the robot has been made in the above reasoning, which is reasonable as the position of the
sensors differ by only a few centimetres and robot paths cover hundreds of metres.

Finally, the error of each camera position in the reconstructed path is computed as the Euclidean distance
between each point of the estimated camera path and GPS path, both in the W reference:

ek =
√(

rWCk
− rWGPSk

)> (
rWCk
− rWGPSk

)
. (28)

5.5 Pure Monocular EKF-Based Estimation for Long Sequences

Three different sequences from the RAWSEEDS dataset have been used to test the validity of the 1-point
RANSAC EKF for long-term camera motion estimation. All sequences were recorded by a 320×240 Unibrain
camera with a wide-angle lens capturing at 30 fps.

In the first sequence, consisting of 6000 images, the robot translates for about 146 metres. The second
sequence has 5400 images and the robot describes a similar trajectory length, about 153 metres. Finally,
a very long and challenging sequence is evaluated that consists of 24180 frames (13.5 minutes of video) in
which the robot describes a trajectory of 650 metres. In this latter sequence, although the accumulated
drift makes the error noticeable when plotted with the GPS trajectory, the relative error with respect to the
trajectory keeps the same low value as the other two shorter sequences (1% of the trajectory length).

Figure 10 shows an image from the 650 metres experiment, along with the tracked features. It can be
observed that around a hundred features per frame had to be measured in order to reduce scale drift error.
This high number will increase the computational cost of the EKF beyond real-time bounds for the pure
monocular case. In the particular experiments presented, the algorithm runs at about 1 Hz. Nevertheless, it
will be shown in next subsection how introducing extra information about the scale will reduce the number of
measurements, enabling real-time performance for the combination of visual tracking plus wheel odometry.

Figure 11 shows the estimated (in black) and the GPS (in red) trajectories over a top view extracted from
Google Maps for each one of the sequences. The accuracy of the estimated trajectories is clear from visual
inspection. Table 1 details the maximum and mean errors obtained in these experiments and also for the
experiment in the next section combining monocular vision and wheel odometry inputs. Figure 12 shows
histograms of the errors for the three sequences.

Subfigures 12(c) and 12(d) in this latter figure show histograms of the errors for the 650 metres experiment in
two different versions of the 1-point RANSAC algorithm: the first one of them using the algorithm 1 and the
second one replacing the random hypotheses generation with exhaustive hypotheses generation as evaluated
in Figure 5(c). The conclusion from section 5.2 is confirmed here: exhaustive hypothesis generation only
very slightly improves the estimation errors; so adaptive random 1-point RANSAC should be preferred.

5.6 Visual Odometry from a Monocular Sequence plus Wheel Odometry

Figure 13 shows the trajectory obtained by the visual odometry algorithm over a GoogleMaps plot and
compared against GPS data. The length of the estimated trajectory is about 1310 metres and was covered
by the RAWSEEDS mobile robot in 30 minutes, capturing 54000 frames. The maximum and mean error
were 23.6 and 9.8 metres respectively. Adding wheel odometry information allowed us to reduce the number
of tracked features to 25, enabling real-time operation at 30 frames per second.



Figure 10: Image from the 650 metres sequence, showing the high number of tracked features.

(a) 146 metres trajectory (b) 156 metres trajectory (c) 650 metres trajectory

Figure 11: Estimated trajectories from pure monocular data and GPS data

Table 1: EKF-based visual estimation error for long camera trajectories.

Trajectory
length [m]

Sensor
used

Mean
error [m]

Maximum
error [m]

% mean error over
the trajectory

146 monocular 1.3 4.2 0.9%
153 monocular 1.9 3.3 1.1%
650 monocular 6.4 11.1 1.0%
1310 monocular and

wheel odometry
9.8 23.6 0.7%
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Figure 12: Histograms of the errors for the three experiments using only monocular information



Figure 13: Visual odometry results compared against RTK GPS over a Google Maps plot.

The processing time per frame for this sequence using 1-point RANSAC can be observed in Figure 14 in the
form of a histogram. It can be noticed that the total computational cost per step is under 33 milliseconds
in 98% of the frames, suggesting that the algorithm is suitable for real-time implementation. It can be
observed in the right-hand figure that for the same number of image measurements JCBB’s computational
cost far exceeds real-time constraints in a large number of frames. JCBB’s exponential complexity arises in
this experiment in frames where a significant proportion of outliers are present, expanding the tail of the
histograms of the figure. For this particular experiment, JCBB’s histogram expands to 2.4 seconds while
1-Point RANSAC’s maximum time only reaches 0.44 seconds.

Figure 14 also shows two histograms representing the computational cost of both algorithms when the number
of features in the image is increased to 50. It can be observed that the cost of 1-Point RANSAC grows, but
still the processing cost is always on the order of tenths of a second. JCBB’s cost reaches maximum values
of several hours, and processing times of several seconds per frame are not unusual

Figure 15(b) shows raw odometry as a red thin line and GPS with a blue thick line for comparison. It can
be observed that early drift appears and the plotted trajectory is rather far from the GPS locations. Figure
15(a) shows pure monocular estimation in thin red and GPS measurements in thick green. Observing this
plot carefully, it can be observed that a monocular camera is able to very accurately estimate orientation,
but the unobservability of the scale produces drift in this parameter for the number of tracked features (25)
considered in this experiment.

Finally, Figure 15(c) details the estimated trajectory that can be achieved from the combination of the two
sensors. Accurate estimation is achieved for a trajectory of 1.3 kilometres, which can be compared with state
of the art in monocular visual odometry, e. g. (Scaramuzza et al., 2009).
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Figure 14: Histograms showing the computational cost for RANSAC and JCBB for the cases of 25 and 50
image points per frame. Experiment 14(d) had to be early terminated at frame 1533, as JCBB computational
cost rises in some frames up to 1544 seconds
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Figure 15: Pure monocular estimation showing scale drift in Figure 15(a), raw odometry input showing drift
in Figure 15(b) and visual odometry results combining the two in Figure 15(c); all are compared against
GPS trajectory (thick blue line).



6 Discussion

While the relevance of algorithms like JCBB or the recent Active Matching (AM) reside on their generality,
the main advantage in the presented approach is its efficiency. 1-point RANSAC is directed to the particular
case of a rigid scene. The rich variety of correlation patterns that a covariance matrix can encode is man-
ageable by general methods like JCBB or AM. Our 1-point RANSAC exploits the very simple pattern where
all the correlations are mainly explained by sensor motion, and hence small size data subsets are enough
to constraint the rest of the measurements. For more complex models, like non-rigid scenes or multi-object
tracking, 1-point RANSAC may not offer such a satisfactory result.

Nevertheless, it is also true that estimation from a moving sensor’s data stream in an almost rigid scene covers
a great percentage of SLAM problems; and a specific method more efficient than general methods can be of
importance. In this sense, 1-point RANSAC outperforms existing approaches by presenting lower cost and
scaling well with the state vector and measurement size, and also with the outlier rate. The computational
overhead it introduces is always smaller than 10% of standard EKF’s computational cost, such that it can be
readily used in any existing algorithm. Visual EKF SfM, already proven to run in real-time, still keep real-
time performance and provides the benefit in accuracy of spurious match rejection when 1-point RANSAC
is used.

Besides its efficiency, 1-point RANSAC also has some advantages in dealing with non-linearities as a result
of checking rigidity after data fusion where some of the inaccuracies introduced by non-linearities have been
compensated. This advantage is shared with Active Matching. On the contrary JCBB checks rigidity before
data fusion, which is a serious drawback of the algorithm.

Since 1-point RANSAC is able to deal with large outlier rates at low computational overhead, we find it
interesting to force the EKF into a low measurement error operation mode. For a small cost increase, the
EKF is fed only very accurate measurements (selected by “a survival of the fittest” process, where the fittest
features are those producing the lowest error measurements) and hence the accuracy of the estimation is
improved as seen in Figure 5(d). This particular operation mode can only be achieved due to the efficiency
of the presented algorithm, being impractical if spurious match rejection is expensive.

It is also worth remarking that although this paper is focused on the particular case of EKF visual estimation,
the new 1-point RANSAC method presented here is independent of the type of sensor used. The only
requirement is the availability of highly correlated prior information, which is typical of EKF SLAM for any
kind of sensor used — and also in the multisensor case. Also, as highly correlated priors are not exclusive
to EKF SLAM, the applicability of 1-point RANSAC could be even broader. As an example, we think that
camera pose tracking in keyframe schemes (Klein and Murray, 2008; Mouragnon et al., 2009) would benefit
from our 1-point RANSAC cost reduction if a dynamic model were added to predict camera motion between
frames.

7 Conclusions

A novel RANSAC algorithm is presented in this paper which, for the first time and differently from standard
purely data-driven RANSAC, incorporates a priori probabilistic information into the hypothesis generation
stage. As a consequence of using this prior information, the sample size for the hypothesis generation loop can
be reduced to the minimum size of 1 point data. 1-point RANSAC has two main strengths worth summing
up here. First, as in standard RANSAC, model constraints are checked after hypothesis data has been fused
with the a priori model, an advantage over JCBB. Second, using 1-point plus prior knowledge hypotheses
greatly reduces the number of hypotheses to construct and hence the computational cost compared with
usual RANSAC based solely on data. Its linear cost in the state size also outperforms JCBB’s exponential
complexity in the number of outliers. In a practical sense, its linear complexity means an overhead of less
than 10% of the standard EKF cost, making it suitable for real-time implementation in local visual SLAM



or SfM.

The paper presents a method for benchmarking six degrees of freedom camera motion estimation results.
The method presents three clear advantages: First, it is intended for real image sequences and includes
effects difficult to reproduce by simulation (like non-Gaussian image noise, shaking handy motion, image
blur or complex scenes). Second, it is easily reproducible as the only hardware required is a high resolution
camera. And third, the effort required by the user is low. The uncertainty of the estimated solution also
comes as an output of the method and the appropriateness of Bundle Adjustment estimation as reference can
be validated. The method has been used to prove the claimed superiority of the 1-point RANSAC method
described in the paper.

The general EKF plus 1-point RANSAC algorithm has been also experimentally tested for the case of large
camera trajectories in outdoor scenarios. Sensor-centered filtering instead of the traditional world-centered
method has been used in order to reduce the uncertainty in the area local to the current camera and reduce
linearization errors. For the pure monocular case, errors around 1% of the trajectory have been obtained for
trajectories up to 650 metres from a publicly available dataset. The number of tracked features in the image
has to be increased to 100−−200 in order to avoid scale drift. This high number makes this case currently
moves us away from real-time performance, and the method runs at 1 frame per second.

The combination of monocular vision and wheel odometry has also been benchmarked for the visual odometry
application. The extra odometric information makes scale observable; the number of tracked features can
be reduced and real-time performance can be achieved for this case. A 1300 metre long trajectory has been
estimated in the paper, with the mean error against GPS coming out at 0.7% of the trajectory.

8 Future Work

Having already evaluated 1-Point RANSAC’s performance against the gold-standard JCBB, it would be
very interesting to compare it against the most recent algorithms for spurious rejection when using Extended
Kalman Filter. Particularly, Active Matching (Chli and Davison, 2008) and Randomized Joint Compatibility
(RJC) (Paz et al., 2008), described with detail in the related work section, are seen by the authors as the
most relevant works on the topic. It is the authorss opinion that randomized versions of both algorithms
could come close to 1-point RANSAC at the cost of losing their generality.

The basic idea of using 1-point hypotheses has been presented in this paper in its most basic form. But it
does not have any incompatibility with the recent techniques described in the related work section that aim
to rapidly discern good and bad hypotheses and lower the computational cost. Integrating 1-Point RANSAC
with one or several of these ideas could lead to an even faster algorithm.

A very interesting thought for future work is to reduce even more the sample size; going from the presented
1-Point RANSAC to Half-A-Point RANSAC. Following the argument of this paper, the integration of a
probabilistic prior and only one dimension of a 2D-measurement (in the visual estimation case) could be
enough to provide a valid hypothesis for the model. This further sample size reduction would produce even
higher computational savings.
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