
Real-Time Camera Tracking: When is High
Frame-Rate Best?

Ankur Handa, Richard A. Newcombe, Adrien Angeli, and Andrew J. Davison

Department of Computing, Imperial College London, UK
{ahanda,rnewcomb,aangeli,ajd}@doc.ic.ac.uk

Abstract. Higher frame-rates promise better tracking of rapid motion,
but advanced real-time vision systems rarely exceed the standard 10–
60Hz range, arguing that the computation required would be too great.
Actually, increasing frame-rate is mitigated by reduced computational
cost per frame in trackers which take advantage of prediction. Addition-
ally, when we consider the physics of image formation, high frame-rate
implies that the upper bound on shutter time is reduced, leading to less
motion blur but more noise. So, putting these factors together, how are
application-dependent performance requirements of accuracy, robustness
and computational cost optimised as frame-rate varies? Using 3D camera
tracking as our test problem, and analysing a fundamental dense whole
image alignment approach, we open up a route to a systematic investiga-
tion via the careful synthesis of photorealistic video using ray-tracing of
a detailed 3D scene, experimentally obtained photometric response and
noise models, and rapid camera motions. Our multi-frame-rate, multi-
resolution, multi-light-level dataset is based on tens of thousands of hours
of CPU rendering time. Our experiments lead to quantitative conclusions
about frame-rate selection and highlight the crucial role of full consider-
ation of physical image formation in pushing tracking performance.

1 Introduction

High frame-rate footage of bursting balloons or similar phenomena cannot fail
to impress in the potential it offers to observe very fast motion. The potential
for real-time tracking at extreme frame-rates was demonstrated by remarkable
early work by researchers at the University of Tokyo (e.g. [1]) who developed
custom vision chips operating at 1000Hz. Using essentially trivial algorithms
(related to those used in an optical mouse), they tracked balls which were thrown,
bounced and shaken, and coupled to slaved control of robotic camera platforms
and manipulators. But while there are now commercial cameras available or
even installed in commodity mobile devices which can provide video at 100Hz+,
advanced real-time visual tracking algorithms rarely exceed 60Hz.

In this paper we take steps towards rigorous procedures for determining when
and by how much it is advantageous to increase tracking frame-rate, by exper-
imentally analysing the trade-offs to which this leads. Our first contribution is
a precise framework for rendering photorealistic video of agile motion in real-
istically lit 3D scenes, with multiple, fully controllable settings and full ground

2 Real-Time Camera Tracking: When is High Frame-Rate Best?

Tr
a
ck

in
g

 A
p

p
lic

a
ti

o
n

s Vacuum
Cleaner
Robot

Convincing AR/MR

Car Robot

Ping Pong
Playing Robot

Applications
requiring higher
speed velocity

UAV Robot

5Hz 60Hz 100Hz 300Hz 1kHz

Home
Robot

Telepresence
Robot

(a) (b)

Fig. 1. a) Real-time visual tracking applications, and the frequency of the con-
trol signals needed. b) Tracking experiment configuration and evaluation. At
each frame of our synthesized sequence, after tracking we record the transla-
tional distance between pose estimate T̂t,w and ground truth Tt,w; an average
of these distances over the sequence forms our accuracy measure. We then use
the ground truth pose as the starting point for the next frame’s tracking step.

truth, which enables systematic investigation of tracking performance. Carefully
modelling physical image formation and using parameters from a real camera
and usage setting, we have generated a substantial photorealistic video dataset
by combining over 20000 ray-traced images. Our second contribution is a set of
experiments using this data to investigate the limits of camera tracking and how
they depend on frame-rate by analysing the performance of a fundamental dense
alignment approach, leading to quantitative results on frame-rate optimisation.

1.1 Models, Prediction and Active Processing

Our scope is real-time model-based tracking, the problem of obtaining sequential
estimates of parameters describing motion in the special case where these are
needed ‘in the loop’ to drive applications in areas such as robotics or HCI (see
Figure 1(a)). In particular, our main interest is camera ego-motion tracking
through a known, mainly rigid scene. The 3D model of a scene such tracking
requires, could come either from prior modelling or an interleaved reconstruction
process (e.g. PTAM [2] or DTAM [3]) in a full SLAM system. The fact that in
these and other state of the art SLAM systems, reconstruction (often called
mapping) runs in a separable, much lower frequency process convinces us that
even in SLAM it is sensible to analyse the properties of frame-rate tracking in
isolation from the reconstruction process generating the tracked model.

A model consists of geometry, from abstract point and line features to non-
parametric depth maps, meshes or implicit surfaces; and a photometric descrip-
tion to enable image correspondence, either local descriptors or a full RGB tex-
ture. For some types of model, a ‘tracking as detection’ approach of blanket
recognition-style processing has been shown to be possible in real-time using
very efficient keypoint matching methods such as [4]. However, while such meth-
ods have an important role in vision applications for relocalisation after tracking

Real-Time Camera Tracking: When is High Frame-Rate Best? 3

loss, they are not poised to benefit from the main advantage of increasing frame-
rate in a system’s main tracking loop — that increasingly good predictions can
be made from one frame to the next, enabling guided, ‘active’ processing.

Many trackers based on keypoint or edge feature matching have implemented
explicit prediction and to achieve real-time efficiency, normally by exhaustive
search over probablistically-bounded small windows (e.g. [5]). Dense alignment
methods, which do not use features but aim to find correspondence between
a textured 3D model and every pixel of an input video frame, benefit from
prediction in an automatic manner by requiring fewer iterations to optimise
their cost functions when initialised from a better starting point. In camera
tracking, modern parallel processing resources are now allowing the accuracy
and robustness of dense alignment against whole scene models to surpass that
possible with feature-based methods (e.g. [6],[3]); and the performance of multi-
view stereo techniques now is so good that we strongly believe that it will soon be
standard to assume that dense surface scene models are available as a matter of
course in vision problems involving moving cameras (especially with the option
of augmenting monocular video with commodity depth camera sensing, e.g. [7]).

1.2 Tracking via Dense Image to Model Alignment

Whole image alignment tracking against a dense model [6] [8] [3] operates by
evaluating gradients of a similarity function and descending iteratively towards
a minimum as in the original Lucas-Kanade algorithm [9]. In 3D camera track-
ing, for each live video frame optimal alignment is sought against a textured 3D
surface model by minimising a cost function with respect to ψ, the 6DOF pa-
rameters of general rigid body camera-scene motion Tlr(ψ). This cost comprises
the sum of squares of the following image brightness difference at pixel u over all
pixels in the live frame for which a valid view of the textured model is available:

fu(ψ) = Il
(
π
(
KTlr(ψ)π−1 (u, ξr (u))

))
− Ir (u) . (1)

As in [3], here Il denotes the current live video frame, and Ir the reference image
obtained from the model (a projection from the last tracked pose of the textured
scene model), with ξr the corresponding depth map; perspective projection is
denoted by π and the fixed camera instrinsics matrix is K. This cost function is
non-convex, but is linearised on the assumption of small inter-frame motion and
optimised iteratively by gradient descent. The size of its basin of convergence
depends on the scale of the main structures in the image and textured model.

Dense gradient-descent based tracking algorithms implement active process-
ing implicitly, since if run from the starting point of a good prediction they will
require fewer iterations to converge to a minimum. Given an increase in fram-
erate, we would expect that from one frame to the next the optimisation will
converge faster and with less likelihood of gross failure as inter-frame motion
decreases and the linearisation at the heart of Lucas-Kanade tracking becomes
increasingly valid. Specifically then, besides the point that we are now seeing
increasing practical use of dense tracking methods, we have chosen such a frame-
work within which to perform our experimental study on tracking performance

4 Real-Time Camera Tracking: When is High Frame-Rate Best?

because iterative gradient-based image alignment aims in a direct, pure way at
the best possible tracking performance (since it aims to align all of the data
in an image against the scene model), and makes automatic the alterations in
per-frame performance (computation, accuracy and robustness) we expect to
see with changing frame-rate. Any feature-based method we might have instead
chosen places an abstraction (feature selection and description) between image
data and tracking performance which is different for every feature type and
would lead us to question whether we were discovering fundamental properties
of tracking performance or those of the features used. Feature algorithms have
discrete, tuned parameters and thresholds. For example, above some level of
motion blur most detectors will find no features at all as strong gradients have
been wiped out; but dense tracking will still perform in some quantifiable way
(as shown in DTAM’s tracking through camera defocus). Further, as we will see
in our experiments, there is a complicated interaction between physical image
formation blur and noise effects and frame-rate. A dense tracking framework al-
lows an analysis to be made on such degraded images without altering algorithm
parameters that might be necessary for feature-based methods.

2 An Experimental Evaluation of Dense 3D Tracking

The kind of question we would like to answer via the analysis in this paper is
as follows. In a given tuned tracking system, one day a new processor becomes
available with twice the computation rate of the previous model, but at the
same cost and power usage. We can surely drop in this new processor to increase
tracking performance; but how should the algorithm best be altered? Some pos-
sibilities are: I) increase resolution; II) increase frame-rate and algorithm update
rate; III) increase another parameter, such as number of optimisation iterations.

Clearly, the first question is to define tracking performance (also see Sturm
et al.[10]). If we consider the distribution over a trajectory of the distance in
model parameter space between estimated and ground truth pose, most trackers’
performance can be expressed in terms of their average accuracy on frames when
they essentially operate correctly, and a ‘robustness’ measure of how frequently
this operation is achieved as opposed to gross failure. When computational cost
is also considered, tracking performance is therefore characterised by at least
three objectives, the importance of each of which will vary depending on the
application. The theoretical best performance of a tracker is not a single point
in objective space, but a Pareto Front [11] of possible operating points. With
this understanding, the question at the top of this section could be answered
by sliding up this front on the computational cost axis, and then trading off
between the possible accuracy and robustness improvements this would permit.

In our experiments, we have analysed data where the motions are such that
gross tracking failure is rare. Further, a full investigation of the robustness of
tracking requires orders of magnitude more data such that meaningful statistics
on tracking failure can be obtained. We hope to revisit this issue in the future,
because one would guess that one of the main advantages of high frame-rate

Real-Time Camera Tracking: When is High Frame-Rate Best? 5

is improved per second robustness. We therefore focus on two measures in our
results: accuracy during normal tracking, and computational cost. Our main
results are in the form of two-objective plots, with Pareto Fronts suggesting
application-dependent operating points a user might choose.

We have used custom photo-realistic video generation as the basis for our
experiments, and there are several reasons for this compared to the options for
setting up the equivalent real camera experiments. First, the full control we have
over parameters (for example continuously variable frame-rate, resolution and
shutter control with precisely repeatable motion) would be very challenging to
match in a real experimental setting, since real cameras have a discrete range
of settings. We have perfect ground truth on both camera motion and scene
geometry, factors again subject to experimental error in real conditions. Perhaps
most significantly, our experiments have highlighted the extreme importance of
proper consideration of scene lighting conditions in evaluating tracking; even
in a sophisticated and expensive experimental set-up with motion capture or a
robot to track camera motion, and laser scanning to capture scene geometry,
controlled lighting and light measurement apparatus would also be needed to
ensure repeatability across different camera settings. As the next section details,
we have gone to extreme lengths in endeavouring to produce experimental video
which is not just as photorealistic as possible, but is based on parameters of a
real camera and motion and realistic typical 3D scene. This is highlighted in the
samples from our dataset shown in our submitted video. That is of course not
to say that we are not interested in pursuing real experiments in future work.

Known scene geometry enables the dense tracking component of the DTAM [3]
system for dense monocular SLAM to used as as the tracker within our ex-
periments, a pyramidal, GPGPU implementation of the whole image alignment
method explained in Section 1.2. DTAM uses a coarse to fine optimisation which
operates on a traditional image pyramid, from low resolution 80 × 60 to full
resolution 640 × 480. In our experiments, we use a fixed strategy during opti-
misation to determine when to make a transition from one pyramid level to the
next, switching when the reduction in pose error from one iteration to the next
is less than 0.0001cm. Note that this does imply some knowledge of ground truth
during tracking which we consider reasonable in our experimental evaluation but
a different measure of convergence would be needed in real tracking.

At given camera settings, we multiply the average execution time taken per
frame for the tracker to converge to an error minimum by the frame-rate being
used. This gives a value for the burden the tracker would place on the processor
in dimension-free units of computational load — a value of one indicating full
occupancy in real-time operation, and greater values indicating the need for
multiple processing cards (highly feasible given the massively parallel nature of
DTAM’s tracking implementation) to be slotted in to achieve that performance.

To quantify accuracy we have used an error measure which is based only on
the Euclidean translation distance between the estimated test and ground truth
tgt camera poses averaged over the whole trajectory; see Figure 1(b).

e = ||test − tgt||2 . (2)

6 Real-Time Camera Tracking: When is High Frame-Rate Best?

Fig. 2. A ‘pure’ ray-traced image with no blur or noise effects. Each such image
takes 30–60mins to render in two passes on an 8 core Intel i7 3.20GHz machine.
The associated planar depth map also generated is shown alongside.

3 Generating Synthetic Experimental Video

We have used the open-source ray tracer POV-Ray1 as our main tool for video
synthesis. We augment pure ray-traced images with effects simulating the mo-
tion blur and noise induced in physical image formation and combine them to
form photorealistic video. POV-Ray has been used previously for ground truth
generation [12] with regard to performance evaluation of a feature-based SLAM
system, but with very simple non-realistic scenes. We have instead used a pub-
licly available synthetic office scene model 2 (800 × 500 × 250cm3) which we
render with a simulated camera with standard perspective projection, image size
640×480 pixels and focal length 480 pixels — see Figure 2.

3.1 Experimental Modelling of a Real Camera

In order to set realistic rendering parameters for our synthetic sequences, we
have performed experiments with a real high frame-rate camera to determine
its camera response function (CRF) and noise characteristics. When a pixel on
a camera’s sensor chip is illuminated with light of irradiance E, during shutter
time ∆t it captures energy per unit area E∆t. This is then turned into a pixel
brightness value B. We model this process as in [13]:

B = f(E∆t+ ns(∆t) + nc) + nq . (3)

Here, the CRF f is the essential mapping between irradiance and brightness,
monotonic and invertible. ns is a shot noise random variable with zero mean
and variance Var(ns(∆t))= E∆tσ2

s ; and nc is camera noise with zero mean and
variance Var(nc)=σ

2
c . We assume that quantisation noise nq is negligible.

1 The Persistence of Vision Raytracer, http://www.povray.org.
2 http://www.ignorancia.org

http://www.povray.org
http://www.ignorancia.org

Real-Time Camera Tracking: When is High Frame-Rate Best? 7

3000µs 7000µs

16000µs 80000µs

Fig. 3. Left: A selection of images obtained from a real camera with varying shutter
time in microseconds. Red rectangles mark pixels manually selected to evenly sam-
ple scene irradiance whose brightness values are captured and used as input to CRF
estimation. All images taken with zero gain and gamma off. Right: experimentally
determined Camera Reponse Function (CRF) of our Basler piA640-210gc camera for
each of the R, G and B colour channels with zero gain and gamma switched off using
the method of [14]. This camera has a remarkably linear CRF up until saturation; over
most of the range image brightness can be taken as proportional to irradiance. Note
that the irradiance values determined by this method are up to scale and not absolute.

Determining the Camera Response Function We obtained f−1 up to scale
for our camera using the chartless calibration method presented in [14], which
requires multiple images of a static scene with a range of known shutter times
(see the left side of Figure 3), recording the changing brightness values at a
number of pixel locations chosen to span the irradiance variation in the scene.
Since f is monotonic and invertible we can map from a given brightness value
and shutter time via the inverse CRF f−1 back into irradiance. For each pixel i
at shutter time ∆tj , we take the logarithm of the noise-free version of Equation 7:

log f−1(Bij) = logEi + log∆tj . (4)

Using measurements of 35 image pixels at 15 different shutter times, we solve
for a parameterised form of f−1 under an L2 error norm using a second order
smoothness prior. Figure 3 (right) shows the remarkably linear resulting CRF
(gamma disabled) for the Basler piA640-210gc camera tested.

Noise Level Function Calibration To obtain the noise level function (NLF),
multiple images of same static scene were taken at the same range of shutter
times. For the chosen pixel locations, the mean and standard deviation brightness
were recorded at each shutter setting (see Figure 4), separately for each colour
channel. The lower envelope of this scatter plot is used to obtain the observed
NLF, parameterised by σs and σc. To do this we define a function very similar
to that used in [13] to model the likelihood of obtaining the measured data given

8 Real-Time Camera Tracking: When is High Frame-Rate Best?

Red Green Blue

Fig. 4. Data and results for experimental Noise Level Function (NLF) calibration for
each channel of our real camera shown as scatter plots. Overlaid on each of the plots is
the brightness-dependent NLF computed using the minimisation technique formulated
in section 3.1. Note that the green channel has significantly lower noise than red and
blue due to there being twice as many green pixels in our camera’s Bayer pattern.

the theoretical standard deviation τ(Bn) predicted by Equation 7:

τ(Bn) =

(
∂f(I)

∂I

)√
E∆tσ2

s + σ2
c , (5)

where E is the irradiance which maps to the brightness level Bn. This can be
easily obtained using the inverse CRF obtained previously. We used the Matlab
optimisation toolbox and standard functions fmincon (with constraints σs ≥ 0
and σc ≥ 0) and fminunc to obtain the optimal values. Optimisation results are
overlaid on the observed NLFs from the images for each channel in Figure 4.

3.2 Inserting a Realistic Camera Trajectory

Going from still images to video requires a camera trajectory for the simulated
camera to follow through the scene. After initially experimenting with various
methods for sythesizing trajectories and finding these unsatisfactory, we de-
cided to capture a trajectory from a real camera tracking experiment. Using
DTAM [3] we tracked an extreme hand-held shaky motion which was at the
limits of DTAM’s state of the art tracking capability with a 30Hz camera. These
poses are then transformed using a single similarity transform into the POV-Ray
frame of reference to similarly render the synthetic scene. To obtain images for
any frame-rate, the poses were interpolated, using cubic interpolation for trans-
lation and slerp for rotations. At our lowest experimental frame-rate of 20Hz, we
see a maximum observed horizontal frame-to-frame motion of 260 pixels, nearly
half of the whole 640 pixel wide image, indicating the rapidity of the motion.

3.3 Rendering Photorealistic Synthetic Sequences

We have followed previous research such as [15] in combining the ‘perfect’ ren-
dered images from POV-Ray with our physical camera model to generate photo-
realistic video sequences. Since we do not have absolute scale for the irradiance

Real-Time Camera Tracking: When is High Frame-Rate Best? 9

Fig. 5. Synthetic photorealistic images at shutter timings set to half of the
maximum at a given frame-rate. Left: at 100Hz, images have very little blur but
are dark and noisy. The image shown has brightness values rescaled for viewing
purposes only. Right: at 20Hz, motion blur dominates. The cutout highlights our
correct handling of image saturation by averaging for blur in irradiance space.

values obtained from the CRF, we cannot define scene illumination in absolute
terms and instead define a new constant α representing overall scene brightness:

B = (αE)∆t . (6)

In our experiments we have values α ∈ {1, 10, 40}, with increasing scene illumi-
nation leading to better image SNR. The reference E for each pixel is set to the
base pixel value obtained from POV-Ray.

To account for camera motion we model motion blur. For a given shutter
time ∆t we compute the average of multiple POV-Ray frames i along the camera
trajectory during that period followed by application of the noisy CRF:

Bavg = f

(
α∆t

N

N∑
i=1

Ei + ns + nc

)
. (7)

Finally, we quantise the obtained brightness function into an 8 bit per channel
colour image. Figure 5 gives examples for simlar motion at 20 and 100Hz.

4 Tracking Analysis and Results

4.1 Experiments Assuming Perfect Lighting

We used the above framework to synthesize video at 10 different frame-rates in
the range 20–200Hz using a five second rapid camera motion. To push frame-rate
further we also synthesized 400 and 800Hz sequences. Although we only present
results from this sequence and concentrate on clarity of interpretation, we have

10 Real-Time Camera Tracking: When is High Frame-Rate Best?

Fig. 6. Left: error plots for different frame-rates as a function of available com-
putational budget under perfect lighting conditions. Points of high curvature
denote the switch from one pyramid level to the next. Right: Pareto front for
mininum error/minimum processing load performance, highlighting with num-
bers the frame-rates that are optimal for each available budget.

other sections of data with different scenes and motions where we have found
very similar results in terms of tracking performance as a function of frame-rate.

Our first set of experiments assumes that whatever the frame-rate it is pos-
sible to assume blur- and noise-free images from the camera, and uses ‘pure’
ray-traced images as in Figure 2. This assumption is most closely represented in
reality in an extremely well-lit scene, with shutter time set to a very low constant
value at all frame-rates while still capturing enough light for good SNR.

Figure 6 shows the clean results we obtain in this case. In Figure 6(a) we
plot how for each frame-rate setting, the average tracking error (our measure
of accuracy) is reduced as more computation is thrown at the pyramidal LK
optimisation per frame, permitting more iterations. Remember that the unit of
computation we use is processor occupancy for real-time operation, obtained
by multiplying computation time per frame by frame-rate. The sudden gradient
changes in each curve are when the pyramidal optimisation switches from one
level to the next — from low to high image resolution.

At the bottom of these overlapping curves is the interesting region of possible
operating points where we can obtain the smallest average error as a function
of processing load for our tracker, forming a Pareto Front. We display this more
clearly in Figure 6(b), where we have rescaled the graph to focus on the interest-
ing regions where crossovers occur, and used different lines coloured according
to the maximum pyramid level resolution needed for that result (i.e. when we
talk about resolution, we mean pyramidal optimisation using all resolutions of
that value and below), and frame-rates are indicated as numbers. The behaviour

Real-Time Camera Tracking: When is High Frame-Rate Best? 11

of the Pareto Front is that generally very high frame-rates (200+) are optimal,
with gradual interacting switching of maximum resolution and frame-rate as the
processing budget increases and smaller errors can be obtained.

4.2 Experiments with Realistic Lighting Settings

We now extend our experiments to incorporate the shutter time-dependent noise
and blur artifacts modelled in Section 3.1 that will affect most real world lighting
conditions. We present a set of results for various global lighting levels.

We have used the same main frame-rate range of 20–200Hz and the same five
second motion used with perfect images. We needed to make a choice about shut-
ter time for each frame-rate, and while we have made some initial experiments
(not presented here) on optimisation of shutter time, in these results we choose
always half of the inverse of each frame-rate. To generate each synthesized video
frame, we rendered multiple ray-traces for blur averaging from interpolated cam-
era poses always 1.25ms part over the shutter time chosen; so to generate the
20Hz sequence with 25ms shutter time we needed to render 5× 20× 20 = 2000
ray-traced frames. In fact this number is the same for every frame-rate (higher
frame-rate countered by a reduced number of frames averaged for blurring),
leading the the total of 20000 renders needed (with some duplicates).

An important detail is that dense matching is improved by pre-blurring the
reprojected model template to match the level expected by the shutter time
used so we implemented this; and the depth map is also be blurred by the
same amount. We conducted some initial characterisation experiments to con-
firm aspects of the correct functioning of our photorealistic synthetic framework
including this template blurring (Figure 7).

4.3 High Lighting

Figure 8 (a) shows the Pareto Front for α=40, where the scene light is high but
not perfect. Images have good SNR, but high frame-rate images are darker; the
200Hz image is nearly 5 times darker than the corresponding image for perfect
lighting and as frame-rate is pushed the images get darker and noisier. For
clarity, we have omitted 400Hz and 800Hz in the graph. We observe that 200Hz
at low resolution remains the best choice for low budgets, the image gradient
information still strong enough to guide matching. And again a few iterations at
200Hz are enough because the baseline is short enough to aid accurate matching.

A further increase in budget reveals that 160Hz becomes the best choice for a
higher resolution i.e. 320×240. This is where the error plots for frame-rates cross
and better results are obtained by increasing resolution rather than frame-rate.
As the processing load is further increased higher frame-rates are preferred, and
the pattern repeats at 640×480. The plots however suggest a later transition to
this highest resolution compared to the perfect sequence results in Figure 6 (b).
The highest resolutions clearly have more benefit when SNR is high.

12 Real-Time Camera Tracking: When is High Frame-Rate Best?

Fig. 7. Characterisation experiments to confirm our photorealistic synthetic
video. Left: For a single motion and 200Hz frame-rate, we varied only shutter
time to confirm that reduced light indeed leads to lower SNR and worse track-
ing performance. Here SNR is directly quantified in bits per colour channel.
Right: An experiment explicitly showing that quality of tracking improves if a
deliberately blurred prediction is matched against the blurry live image.

4.4 Moderate Lighting

In Figure 8(b) we reduce α to 10, representative of a typical indoor lighting
setting. 200Hz is still the best choice at very low processing load when predictions
are very strong and only one or two alignment iterations are sufficient. A slight
increase in processing load sees the best choice of frame-rate shifting towards
100Hz even without resolution change, in contrast to both perfect lighting and
high lighting conditions where working with very low processing load demands
a high frame-rate. In moderate lighting, it is better to do more iterations at
a lower frame-rate and take advantage of improved SNR because noise is too
great at very high frame-rates to make multiple iterations worthwhile. When we
do shift to 160×120 resolution, we see that the best frame-rate has shifted to
100–140Hz compared to 200Hz in high lighting conditions. Higher resolutions,
320×240 and 640×480, follow similar trends.

4.5 Low Lighting

Figure 8 (c) shows similar curves for scene illumination α = 1, where images
are now extremely dark. Our main observation here is that even at substantial
processing load the Pareto Front does not feature frame-rates beyond 80Hz.
These images have such low SNR that at high frame-rate essentially all tracking
information has been destroyed. The overall quality of tracking results here is
much lower (the error curve is much higher up the scale) as we would expect.

Real-Time Camera Tracking: When is High Frame-Rate Best? 13

(a) α=40 (b) α=10 (c) α=1

Fig. 8. Pareto Fronts for lighting levels (a) α = 40, (b) α = 10 and (c) α = 1.
Numbers on the curves show the frame-rates that can be used to achieve the
desired error with a given computational budget.

5 Conclusions

Our experiments give an acute insight into the trade-offs involved in high frame-
rate tracking. With perfect lighting and essentially infinite SNR, the highest
accuracy is achieved using a combination of high framerate and high resolution,
with limits only set by the available computational budget. But using a real-
istic camera model, there is an optimal famerate for given lighting levels due
to the tradeoff between SNR and motion blur. Therefore, frame-rate cannot be
arbitrarily pushed up even if the budget allows because of image degradation.
Decreasing lighting in the scene shifts the optimal frame-rates to slightly lower
values that have higher SNR and somewhat more motion blur for all resolutions,
but overall increasing resolution results in quicker improvement in accuracy than
increasing frame-rate. Hasinoff et al.[16] [17] also worked on time-bound analysis
but only for SNR image quality assessment with either static cameras or simple
planar motions.

Our dataset, rendering scripts used to generate it and other materials are
available from http://www.doc.ic.ac.uk/~ahanda/HighFrameRateTracking/.
We hope this will further motivate both applied and theoretical investigations of
high frame-rate tracking relevant to the design of practical vision systems. Our
dataset may also be useful for analysis of many other 3D vision problems.

Acknowledgements

This research was supported by ERC Starting Grant 210346. We thank Steven
Lovegrove, Hauke Strasdat, Margarita Chli and Thomas Pock for discussions.

References

1. Nakabo, Y., Ishikawa, M., Toyoda, H., Mizuno, S.: 1ms column parallel vision
system and its application of high speed target tracking. In: Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA). (2000) 1

http://www.doc.ic.ac.uk/~ahanda/HighFrameRateTracking/

14 Real-Time Camera Tracking: When is High Frame-Rate Best?

2. Klein, G., Murray, D.W.: Parallel tracking and mapping for small AR workspaces.
In: Proceedings of the International Symposium on Mixed and Augmented Reality
(ISMAR). (2007) 2

3. Newcombe, R.A., Lovegrove, S., Davison, A.J.: DTAM: Dense tracking and map-
ping in real-time. In: Proceedings of the International Conference on Computer
Vision (ICCV). (2011) 2, 3, 5, 8

4. Calonder, M., Lepetit, V., Konolige, K., Mihelich, P., Bowman, J., Fua, P.: Com-
pact signatures for high-speed interest point description and matching. In: Pro-
ceedings of the International Conference on Computer Vision (ICCV). (2009) 2

5. Chli, M., Davison, A.J.: Active Matching. In: Proceedings of the European Con-
ference on Computer Vision (ECCV). (2008) 3

6. Comport, A.I., Malis, E., Rives, P.: Accurate quadri-focal tracking for robust 3D
visual odometry. In: Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA). (2007) 3

7. Newcombe, R.A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A.J.,
Kohli, P., Shotton, J., Hodges, S., Fitzgibbon, A.: KinectFusion: Real-time dense
surface mapping and tracking. In: Proceedings of the International Symposium on
Mixed and Augmented Reality (ISMAR). (2011) 3

8. Meilland, M., Comport, A.I., Rives, P.: A spherical robot-centered representation
for urban navigation. In: Proceedings of the IEEE/RSJ Conference on Intelligent
Robots and Systems (IROS). (2010) 3

9. Lucas, B.D., Kanade, T.: An iterative image registration technique with an appli-
cation to stereo vision. In: Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI). (1981) 3

10. Sturm, J., Magnenat, S., Engelhard, N., Pomerleau, F., Colas, F., Burgard, W.,
Cremers, D., Siegwart, R.: Towards a benchmark for RGB-D SLAM evaluation. In:
Proceedings of the RGB-D Workshop on Advanced Reasoning with Depth Cameras
at Robotics: Science and Systems (RSS). (2011) 4

11. Calonder, M., Lepetit, V., Fua, P.: Pareto-optimal dictionaries for signatures. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). (2010) 4

12. Funke, J., Pietzsch, T.: A framework for evaluating visual SLAM. In: Proceedings
of the British Machine Vision Conference (BMVC). (2009) 6

13. Liu, C., Freeman, W.T., Szeliski, R., Kang, S.B.: Noise estimation from a single
image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). (2006) 6, 8

14. Debevec, P., Malik, J.: Recovering high dynamic range radiance maps from pho-
tographs. In: ACM Transactions on Graphics (SIGGRAPH). (1997) 7

15. Klein, G., Murray, D.W.: Simulating low-cost cameras for augmented reality com-
positing. IEEE Transactions on Visualization and Computer Graphics (VGC) 16
(2010) 369–380 8

16. Hasinoff, S.W., Kutulakos, K.N., Durand, F., Freeman, W.T.: Time-constrained
photography. In: Proceedings of the International Conference on Computer Vision
(ICCV). (2009) 13

17. Hasinoff, S.W., Durand, F., Freeman, W.T.: Noise-optimal capture for high dy-
namic range photography. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). (2010) 13

