
c©The copyright of this thesis rests with the author and is made available under a Creative Commons Attribution Non-

Commercial No Derivatives licence. Researchers are free to copy, distribute or transmit the thesis on the condition that they

attribute it, that they do not use it for commercial purposes and that they do not alter, transform or build upon it. For any

reuse or redistribution, researchers must make clear to others the licence terms of this work.

Imperial College London

Department of Computing

Analysing High Frame-Rate Camera Tracking

Ankur Handa

September 2013

Supervised by Prof. Andrew Davison

Submitted in part fulfilment of the requirements for the degree of PhD in Computing and

the Diploma of Imperial College London. This thesis is entirely my own work, and, except

where otherwise indicated, describes my own research.

Abstract

High frame-rate offers benefits of robust and accurate camera tracking for rapid mo-

tion. However, the benefits are generally understated arguing that it is not possible to

operate on high frame-rates due to stringent processing budgets and that even today 10-

60Hz is treated as a standard real-time frame-rate range. How exactly does the choice of

a given frame-rate varies as computational budget is changed? This thesis explores the

possibilities of tracking at frame-rates higher than this range and argues that the com-

putational cost per frame in trackers that use prediction is substantially reduced when

the frame-rate is increased. Additionally, considering the physics of image formation,

high frame-rate implies that the upper bound on the shutter time is reduced leading to

less motion blur but more noise. On the other hand, low frame-rate often leads to mo-

tion blur but reduced noise in the images. Carefully considering the scene lighting that

affects the image noise and the camera motion that affects the motion blur and putting

these factors together, how are application-dependent performance requirements of ac-

curacy, robustness and computational cost optimised as frame-rate varies? We study 3D

camera tracking from a known rigid model as our test problem and analyse the fun-

damental image alignment approach to understand the choice of frame-rate that affects

tracking. We systematically investigate this via a careful synthesis of photorealistic video

using ray-tracing of detailed 3D scene, experimentally obtained photo-realistic reponse

and noise models and rapid camera motions and later validate the conclusions with

a well-controlled real experiment. The thesis provides quantitative conclusions about

frame-rate selection, fundamental connections between frame-rate and image resolution

and highlights the crucial role of full consideration of physical image formation process

in pushing tracking performance.

Dedication

To my parents, sister and brother for their continual love, support and encouragement.

Acknowledgements

I am very fortunate to have Professor Andrew Davison as my supervisor. He spent

a lot of his time in guiding and directing my thesis. His patience, enthusiasm, and

constant encouragement have given me never ending motivation and determination to

overcome all the challenges that I faced on my way. I have had some wonderful and the

most enjoyable interactions with him during the course of my PhD that will be much

cherished. Besides that he has been my great ‘karaoke buddy’ and being avid sports fans

that we both are, we traded fantastic stories and opinions. This all makes me feel the

most pampered student of him.

I am also grateful for the mentoring I received from my colleagues. I would like to

begin with thanking Margarita who was my first colleague I interacted with and whose

work I built upon in my first year. To Adrien, for all the advice, encouragement, his

classic french humour, all the help during my initial years of PhD and for being a fan-

tastic friend. I am also thankful to his girlfriend Lidia for spoiling me with macaroons.

Thanks are due to many other colleagues for the time I shared and the opportunity I

had, to learn from them experience. Steve, for his excellent coding skills, Hauke for his

valuable suggestions and do all possible experiments advice. Gerardo for being a great

friend. Richard with whom I had the opportunity to learn a lot during my last two years

of PhD and the ideas he lent very generously that made my PhD all the more interesting.

I thank him for all the late night discussions and debates. He challenged me a lot and

it was always a very wonderful and rewarding experience talking to him. Renato for

lending his codes very generously and suffering my unexpected evening singing in the

lab. I thank Ravi for all the useful discussions I had with him, his criticism on my work,

occasional weekend food outings and for being a great friend. His invaluable comments

on the work made me rethink of my approach many a times. Thank you to Renzo for

lending his high-speed gyro.

I also had the opportunity to interact with the new students that joined the group.

I thank Jacek, Hanme, Robert and Jan for all the fruitful discussions I had with them

and that improved my grip on various topics. I also thank Ping-Lin who I had the

opportunity to discuss various ideas with and learn from his coding expertise. Various

other colleagues at Imperial that suffered me, I would like to take this opportunity to

thank them for their company that made is possible for me to enjoy my stay. In particular,

I thank Ogi for being a great friend and hosting my trip to Serbia, Robin, Claire, Emma,

Hatice, Brias, Anil, Bihan, Stavros and Sanjay Bilakhia. Klaus for hosting my stay at

Munich. With him and Adrien it was always fun to hang out with. Their humour

was just out of the extraordinary. Pablo for all the spanish lessons and improving my

knowledge about Spain.

I also thank various other members of the department who helped me in many ways.

I begin with Joanne (who was involved in the interview during my hiring) who was kind

enough to prepare all sorts of letters for various embassies that made it possible for me

to travel to different places beginning with Sydney back in 2009 till the end of my PhD,

to present my work. Thank you for your prompt replies and quick responses. Lloyd

and Duncan who manage the ICT services always went out of their way to help me set

up various things, fixing the computers and being very patient with me. They deserve

massive thanks. Deborah too who suffered me a lot with my time-sheets filling but was

always very patient to give her advice on correcting them. Thank you. Teresa and her

for managing the expenses claims. Ann for managing common room on the fourth floor

and for sending my posts.

Outside lab I met some fantastic people Sanjay Bhatt and Sanjay Priyadarshi for

being such wonderful friends. They always listened to me patiently but suffered my

humour in return. Marta and Gosia, my flatmates who I thank them profusely for being

such fantastic friends. Paul Robertson for weekend meet-ups and his advice and banter.

Also, to the people who run Jakobs cafe at Gloucester Road, for all the banter and food

I enjoyed at their cafe regularly. My old childhood friends Udit and Jimmy (Varun) for

always there for me. The friends of my undergraduate hostel, the first floor front wing

and the wing-list they have maintained that is always bubbling with laughter, banter,

new ideas and all sorts of daily chit-chat. Special thanks to Supreeth Achar, Ankit Garg,

Akashdeep and Anand Srinivas with whom I began my learning in robotics and that

sowed the seeds of research path. Thank you to Inder Rishi for the phone calls and

being always there to listen and have a chat. I thank my old supervisors Prof. Jayanthi

and Prof. Madhava Krishna who invested in me and gave me a great platform to begin

my research with.

My last thanks are reserved for my parents who have been with me through my thick

and thin, before and after. I owe them a huge debt of gratitude for almost everything.

They gave me lot more freedom than necessary but always believed in me. All the

qualities I have today, I have inherited from them. I am relieved that my PhD has come

to an end. My younger sister ‘missy’ Kanika will stop harassing me. She never lets such

an opportunity go away like that. Thanks to her and my younger brother Karan for all

the love. My thanks to Paruthi Uncle for his unexpected phone calls to inquire my well

being and coming to meet me leaving his important work many a times. My hope is

that one day they all realise how special they are to me.

Thank you to my examiners Dr. Vincent Lepetit and Dr. Tae-Kyun Kim who exam-

ined my thesis in a very short time period and their valuable corrections. I am also very

fortunate for the ERC funding I received for my PhD.

Contents

Contents

1 Introduction 13

1.1 Representations and Domain Knowledge of the Task 15

1.2 The Challenge of Robust Data Association . 17

1.3 Pure Model-Based Tracking . 19

1.4 Tracking by Frame-to-Frame Alignment . 24

1.5 Joint Tracking and Model Building à la SLAM 31

1.6 Motivation For High Speed Tracking: The Role of High Frame-Rate 38

1.7 Contributions . 43

1.8 Thesis Structure . 43

2 Mathematical Preliminaries 45

2.1 Rigid Transformations . 45

2.2 Lie Group Framework . 47

2.3 Camera Calibration . 54

2.4 POVRay Mathematics . 59

3 Tracking Sparse Features 63

3.1 Introduction . 64

3.2 The Active Matching Paradigm . 67

3.3 Feature Matching Priors . 70

3.4 CLAM: Chow Liu Active Matching . 72

3.5 SubAM: Subset Active Matching . 76

3.6 Assumptions . 76

3.7 Results . 81

3.8 Conclusions . 85

4 Dense Visual Tracking 87

8

Contents

4.1 Introduction . 87

4.2 Background . 91

4.3 Camera Motion Parametrisation . 98

4.4 Direct Parametric Tracking . 99

4.5 Robust Cost Functions: M-Estimators . 102

4.6 Minimisation Schemes . 106

4.7 Coarse to Fine Pyramid Hierarchy . 108

4.8 Instructive Example . 109

5 Evaluation of Tracking and Synthetic Test-Bed 111

5.1 What Questions would we Like to Answer? . 111

5.2 Need for Synthetic Test-Bed . 113

5.3 Choosing a Tracking Algorithm . 113

5.4 How do We Evaluate a Tracker? . 114

5.5 Multi-Objective Cost Functions: Pareto Fronts 118

5.6 Synthetic Image Generation via Ray Tracing 122

5.7 Adding Photo-Realistic Image Effects to Synthetic Images 127

5.8 Gathering Synthetic Data for Different Frame-Rates 135

5.9 Do We Think these Images are Realistic? . 137

5.10 Novelties of Our Dataset . 140

6 Tracking Analysis: Synthetic Experiments 143

6.1 An Experimental Evaluation of Dense 3D Tracking 143

6.2 How do We Interpret the Graphs? . 146

6.3 Assumptions . 146

6.4 Characterisation of Experiments . 147

6.5 Tracking Analysis and Results . 149

6.6 Quantifying Performance Limits of Camera Tracking 163

6.7 Conclusions . 168

7 Tracking Analysis: Real Experiments 171

7.1 Assumptions . 172

7.2 Angular Velocity Computation . 173

7.3 Gyro Characteristics . 174

7.4 Aligning Gyro and Camera Angular Velocity Estimate 175

7.5 Experiments . 177

9

Contents

7.6 Robustness . 184

7.7 Summary . 196

8 Conclusions and Future Directions 199

8.1 What do We Learn from this Thesis? . 199

8.2 Future Directions . 200

Bibliography 203

10

11

Contents

12

Contents

12

Chapter 1

Introduction

Contents

1.1 Representations and Domain Knowledge of the Task 15

1.2 The Challenge of Robust Data Association 17

1.3 Pure Model-Based Tracking . 19

1.4 Tracking by Frame-to-Frame Alignment . 24

1.5 Joint Tracking and Model Building à la SLAM 31

1.6 Motivation For High Speed Tracking: The Role of High Frame-Rate 38

1.7 Contributions . 43

1.8 Thesis Structure . 43

In many real-world tasks, it is extremely important for an intelligent system or an artificial

robotic agent to respond and act quickly, sometimes even faster than an animal. This could

either mean preventing an accident on road, driving an autonomous car, sifting and sorting

things in an industrial application, or interacting with any computing device e.g. typing in

a mobile phone — they all need very quick responsive system. In many other situations,

it has to continually deliver the updates of its location in a real-time loop to keep up with

the demands of the application. Alternatively, it is the limited processing power that the

robotic system is endowed with that compels its decision making to occur within a fixed

time-budget.

Importantly, a real-time system always has some parameters that can be tuned so that it

can perform within the fixed time budget. However, the performance varies as the budget

is made tighter — the accuracy may suffer, the robustness may degrade etc. This thesis

13

1. Introduction

focusses on a systematic understanding of how the performance of robotic system in the

context of camera tracking varies as the computational budget is made tighter as desired by

an application.

1.0.1 Why Real-Time is Important?

Essence of Real-Time

Real-time operation is enforced when a system has a practical application — a robot that

takes days to pick up a cup just few centimeters next to it would clearly be impractical.

In essence, building a real-time system opens new doors for practical applications that can

be employed in real-world scenarios. Any such real-time system employed for a practical

application must then intelligently use the rich temporal coherence of the incoming data it

has access to, to be able to keep on top of the application.

Consequences of Strict Timing Demands

Strict timing demands for any real-time application also require the standards of perfor-

mance to be rather stiffer than for an offline application. An application that could afford

an occasional failure before becomes a virtually certain failure when put in a real-time loop.

For instance, when a real-time camera tracking system gets lost, it becomes nearly useless

any further unless reinstated somehow to initial conditions. Moreover, the real-world envi-

ronments that a robot is operating in, are very dynamic in their nature, so robot must have a

mechanism to adapt itself according to the variations of the input coming from these chang-

ing environments for instance, a camera based surveillance system operating in a train sta-

tion needs to be constantly performing in very dynamic and cluttered environments. Thus,

the robustness demands for such applications become very crucial.

Access to Rich Temporal Coherence

Somewhat paradoxically, as real-time constraints get tighter, robustness standards are ex-

pected to improve naturally as a result of growing coherence between two consecutive in-

coming data (observation) samples. In fact, it is this sort of knowledge that can provide a

strong prior to any real-time system that it must use intelligently to do inference within a

14

1.1. Representations and Domain Knowledge of the Task

strict timing budget. Imagine being told to match images of the same scene but without knowing

anything about their relative displacement and imagine being told that these images are consecutive

frames of a video sequence. Such domain knowledge, even if very weak, can greatly reduce the

search that is carried out to infer the different state parameters it is expected to. We look into

detail the domain knowledge present in the task that can greatly reduce the computational

bottleneck to allow a system to operate in real-time. In the following, we outline general

principles and domain knowledge present in the task and focus more on systems that are

aimed to track the movements of an autonomous system.

1.1 Representations and Domain Knowledge of the Task

How should an intelligent system find its own location in an environment? How should it relate

itself to the world it is operating in? These are very elementary questions that an autonomous

and intelligent system has to answer most of the time when put to use in a real world

application.

Humans, as intelligent machines, are doing this continuously all the time without con-

sciously thinking about it. We actively rely on our senses for perception — our routine day

to day activities involve an integrated sensor fusion to enable us to interact with the envi-

ronment we work in. This could involve picking up a cup, moving a chair or walking in the

street. Perception and inference based on this perception just happen. If such a system is to

mimic or act faster than an animal (as demanded by the application), it must be imparted

with similar or even better attributes to operate in the real world.

Most of the time, we have a priori knowledge of the object to a large degree of certainty

— our life long information gathered over time greatly facilitates the task of understanding

and interaction with the object. Similar to that, it is imperative for any intelligent system to

have the ability to sense the environment or an object it is used to interact with. Ideally, it

would take a sensor measurement and be able to answer instantly where it is relative to the

environment to be able to make further plausible decisions. An a-priori knowledge has to be

injected into the system’s machinery for it to construct any inference on the location based

on measurements.

In small scale and well structured environments, it is possible to provide near-ideal con-

ditions for such a system to operate in. This could be how the environment (or a part of it)

appearance beforehand together with knowledge of its own location or other state parame-

15

1. Introduction

ters that might be required depending on the application, with respect to that environment.

In situations where the lack of the structure of the environment shrouds this, a continuous

feed of sensory measurements have to be collated to bootstrap the system. This knowledge

of environment and other parameters collectively is termed as reference that is crucial for

any future decision the system will make. Therefore, as it operates, it can keep track of its

relative movements by always comparing against this reference. Now what sort of reference

this is is entirely dependent on the application. This reference could be a 3D model, it could

be a reference shape or it could be a reference colour histogram or an entire image. What

becomes more important is how it associates the information coming for a new movement

to the available reference to keep track of its future movements.

The task of relating the measurements with the reference is formally termed as Data

Association — a crucial step in keeping track of the movements or state parameters of

the system. The domain knowledge present in the application allows us to break it down

into different levels of abstraction, depending upon what kind of reference is available, for

instance:

1. Do we already have a model of the entity we wish to track? This model could either

be a geometric model, shape model or colour model. Further this model can either

be parametrised or a non-parametric point cloud or histogram. This model could be

obtained beforehand e.g. using a CAD model, and it remains unchanged throughout

the tracking over different frames of the sequence. This has remained a subject of

interest under the name model-based tracking or tracking via prediction. For instance, a

useful piece of information in the form of an a priori knowledge of environment can

greatly enhance the ability of robot to interact - the task becomes then only controlling

its movements within the environment using the prior information.

2. Can we track without having to build the model online? This could either mean

frame-to-frame tracking. All the necessary information comes from the previous frame

to guide the tracking in the subsequent frame. This strongly hinges on the assumption

that there is large coherence and continuity between the two frames and that the world

or the object in the world has not changed much in the time interval between the

frames. This is quite often termed as visual odometry or tracking via detection in computer

vision community.

3. If no, do we have a mechanism to build the model online in the loop and track using

this model in the new incoming frames? In many cases, objects and things that we wish

16

1.2. The Challenge of Robust Data Association

to track cannot be easily parametrised or defined by a collection of some templates.

Although it is possible to define to a some extent objects in a structured environment

but this is largely not the case and that many real-world objects are defined rather

by their geometric point-cloud model. Moreover, the object or world models are not

available beforehand. This necessitates to build the model on-the-fly and track using

this model. It is important to remember that the model is not perfect and that it is

updated in the loop online to encompass the changes and various deformations it

is undergoing. This is a very popular and well studied problem called Simultaneous

Localisation and Mapping (SLAM) or real-time Structure from Motion (SfM) in computer

vision.

All the new information that arrives in these three cases involves associating it with the

reference data. However, the real-world data is always plagued with ambiguities and that a

democratic mechanism is required for a unique association of data with the reference. This

all depends on how the association is formulated.

1.2 The Challenge of Robust Data Association

Before we take a more “telescopic” view of these three different paradigms of data asso-

ciation, it is worth taking a whirlwind tour of how the criteria of deciding the best data

association given the available data is established. Any technique that we would use, we

would need a criteria to evaluate the quality of data association. A search scheme can be

used to then trace the transformation that yields the best quality fit.

Bayesian reductionists have greatly revelled in formalising the data association as the

problem of locating the optimal point in the distribution — where optimality is informally

defined to be the equilibrium point that represents the best possible result achieved given

the state models of likelihood and prior. It is therefore not surprising when looked in

light of the early onset of data association problem in the context of Bayesian tracking that

probabilistic interpretations gained more popularity. In fact, more from the perspective of

Kalman filtering that has been a standard framework to solve online in-the-loop tracking.

The posterior probability or likelihood used to assess the quality of the data association are

obtained via the standard Bayes Rule.

p(M|O) =
p(O|M)p(M)

p(O)

17

1. Introduction

Symbols O and M denote the observations and model that is to be estimated respectively.

The normalisation constant p(O) can be ignored when we are interested in only inferring

model parameters. This reduces the problem to:

p(M|O) ∝

likelihood︷ ︸︸ ︷
p(O|M) p(M)︸ ︷︷ ︸

prior

Further if it is assumed that all the observations are conditionally independent of each other

(though this may not be true always), the likelihood can be factorised as

p(M|O) ∝
(

∏
i

p(Oi|M)
)

p(M)

Depending on the estimator used maximum aposteriori or maximum likelihood, the best model

can be obtained simply as

M̂MAP = arg max
M

p(M|O)

M̂ML = arg max
M

p(O|M) (1.1)

On the other hand, there are energy based formulations that view the association problem

from the perspective of physics and the mechanics involved. The core idea is again to locate

the transformation parameters that yields a local minima or a point of equilibrium.

T̂ = arg min
T

N

∑
i=1

(Ri − Ci(T))2

However, they can be easily connected back the to pure Bayesian perspective because in

the end they are both trying to obtain the transformation that best fits data observation Ci

against the reference Ri and hence a least squares framework has direct connotation with

the independent Gaussian distribution measurement model.

T̂ML = arg max
T ∏

i
N (Ri ; Ci(T), σ2)

T̂ML = arg min
T

N

∑
i=1
− log(N (Ri ; Ci(T), σ2) (1.2)

T̂ML = arg min
T

N

∑
i=1

(Ri − Ci(T))2 (1.3)

We now expand on the three different aspects below.

18

1.3. Pure Model-Based Tracking

1.3 Pure Model-Based Tracking

A collective understanding of different attributes — physical, textural or a combination of

both — aid in defining the object. The physical attributes include for instance geometric

shape or point cloud and textured attributes for instance, a probabilistic model of the how

the colour is distributed within a given spatial window. More specific attributes of any gen-

eral object are summarised in [Alexe et al., 2010]. Tracking then means finding its relative

location in the continuous stream of incoming data observations provided by a sensor, using

this information.

Model-based tracking begins with the assumption that it already has a knowledge of

how an objects looks like and a projection of its 3D-model can be obtained as a prediction

of where it is in the image for instance. We want to state upfront that in Pure Model-

Based Tracking, the model of the object remains unchanged throughout the tracking. The

prediction then guides the tracker to search for the location of the object that is present in

the image. Another inherent assumption behind this is that the prediction is easily available

and that it is close enough to the real location. This prediction comes continually in the

loop from a Kalman Filter style estimator running in the pipeline. We describe the classical

and popular methods to data association that use a known 3D model. A more up-to-date

summary of pure model based tracking methods is provided by [Lepetit and Fua, 2005].

1.3.1 Textureless 3D-Model

RAPiD: A Least-Squares Approach

RAPiD [Harris and Stennet, 1990], [Harris, 1992] (Real-Time Attitude And Position Deter-

mination) was one of the first of its kind to use a model to register against an incoming

image of the object in real-time. The CAD wire-frame model of an object to be tracked is

projected in the image using previously obtained pose together with motion model as the

prediction. Control points are sampled on the projected model in the image and suitable

correspondences for the control points are sought. The correspondence search that looks for

high intensity gradients in the image (they are most likely to represent the boundaries of the

object being tracked) is performed around the predicted model location along the normals

to the control points. These correspondences are then used to minimise a least square error

function to obtain the transformation that brings the 3D model projection tightly onto the

19

1. Introduction

object. This procedure is repeatedly carried out for a number of iterations until a given

convergence criteria is satisfied.

The prediction required in real-time tracking comes from the Kalman Filtering framework

running in loop that fuses continuous incoming pose estimates given by the tracker. The

reduced search space to look for an object offered by prediction together with clever way to

search for correspondences very suitably allowed RAPiD to run at 50Hz even on moderate

computing resources available that time. This has inspired a great deal of work on real-time

model based tracking that operates by looking for an instance of an object in an image by

searching about the predicted position coming from a state estimator than having to search

the entire image by running some blanket image processing technique like edge detection

as done in [Lowe, 1992] and [Gennery, 1992].

However, a major drawback of RAPiD was its fragility against background clutter since

it did not have any mechanism to preclude a wrong association from contributing towards

pose recovery. [Armstrong and Zisserman, 1995] detail different ambient conditions that de-

grade its performance and propose improvements to increase its robustness. An important

of all is preventing the tracker from associating wrong pixel locations in the image with the

control points on the projected model. This arises quite often when occlusions, shadows

and lighting changes are present in the image. RANSAC based outlier culling together with

a weighted least squares is used to obtain the final pose.

[Drummond and Cipolla, 1999a] and [Drummond et al., 2002] use an M-estimator to re-

move outliers in the framework to improve robustness. Their system also allows to track

more complex structures than RAPiD by making the visibility of the prediction in the image

with an accelerated BSP-tree 1 representation.

Notable extensions have also been proposed by [Shahrokni et al., 2004] that use the

texture based edge detection replacing the 1D intensity gradient search originally

employed by RAPiD and multi-modal extension of [Kemp and Drummond, 2004] and

[Kemp and Drummond, 2005] that prevent the tracker from getting deceived by a local min-

ima as is the case most often with uni-modal estimation. It is therefore worth noting that

the general theory and intuitive appeal that RAPiD offers has seduced many researchers to

approach the problem of textureless real-time 3D-to-2D model-based tracking in the same

principled manner as RAPiD does.

1A binary space partitioning is a technique used in the computer graphics to sort the elements of an object
based on their depth given a current view.

20

1.3. Pure Model-Based Tracking

(a) RAPiD (b) CONDENSATION

Figure 1.1: Left: RAPiD begins the association task by projecting the available 3D model
on to the image using the predicted camera pose coming from Kalman Filtering frame-
work. The predicted image of the object is sampled at the control points and search for
correspondence is performed by looking for strong edge-like gradients along the normals.
These correspondences are then jointly solved for association transformation that snaps the
prediction on the the real object location. All this is carried out via standard iterative least
squares. Right: CONDENSATION follows similar principles with prediction followed by
search for correspondences but is able to perform in the presence of background clutter by
maintaining multi-hypothesis framework. However, unlike RAPiD this does not operate at
video-rate of 30–50Hz.

CONDENSATION: A probabilistic multi-hypothesis framework

Uni-modal distributions that are used quite often to model the measurement likelihoods

lack the ability to deal with false positives (a wrong data association) present in the data.

As a result, a system operating in the real-world that is formalised within a purely uni-

modal distribution framework fails to cope with the ambiguity present in the real data.

How should then a system deal with false positives without knowing beforehand which one of them

is actually false? A multi-hypothesis framework offers a means to cope with this ambiguity

allowing all the associations to be treated in a unified framework under the assumption

that only one of the associations is correct. As new observations arrive, evidences of the

hypotheses changes appropriately, leading to an eventual dominant hypothesis that is most

representative of the real data.

21

1. Introduction

The CONDENSATION algorithm proposed in [Isard and Blake, 1996] is a popular multi-

hypothesis data association framework. It is an Importance Sampling approach à la Particle

Filtering that rigourously treats multiple data associations in a very principled stochastic

manner. Each hypothesis is represented with a weight that reflects how confident is the

algorithm about that hypothesis being true. These weights are propagated over time and

change according to the lack or presence of confirmatory evidence in the data.

Particles are sampled from the prior distribution, that is readily available due to Bayesian

filtering machinery, according to the weights and together with the measurement likelihood

process that is modelled with a mixture of Gaussians, a posterior estimate is sought that

is most likely to have generated the observation. Impressive results were shown tracking

contours of hands, leaves and person dancing in the presence of lot of clutter. As in RAPiD,

the search for correspondences is performed along the normals of the projected contour

to find high intensity pixel gradient locations. In a cluttered background, many putative

pixel locations that arise are wrongly associated with the contour. However, hypothesis

originating from background clutter decay as object moves since they are a function of

background and hypothesis coming from the object being tracked remain dominant.

Although this was demonstrated mostly in the context of tracking 2D contours in the

image, such rigourous treatment of false positives in the data has paved way for many

tasks, specially camera tracking, in computer vision that require a robust mechanism to

deal with false copies of structures/objects that are being looked for in the image.

PWP3D: A level set approach

A recent advance in the textureless 3D model based tracking is due to [Bibby and Reid, 2008]

and [Prisacariu and Reid, 2012] who formulate the problem of registration in a rather fuzzy

way unlike RAPiD and CONDENSATION where data association decisions are discrete. A

probabilistic colour model is used as an additional semantic cue on top of the shape prior

available in the form of contour. This shape prior is embedded in signed distance transform

(the sign normally identifies the inside or outside of the shape, here is used to represent the

foreground or background category) that encapsulates the minimum distance of any point

in the image from the contour along the normal direction. The level set of this transform

gives a slice that represents all the points that are at a given distance from the contour. An

exceptionally large basin of convergence offered by distance transforms allows the model to

lock onto the image of object even from very poor predictions.

22

1.3. Pure Model-Based Tracking

The distance transforms precompute the distance of any point in the domain from the

contour allowing the algorithm to avoid doing an explicit line search along normals as done

in RAPiD and CONDENSATION to find correspondences. However, the dependence of

tracker on colour information means that the performance will degrade when foreground

and background are very similar in appearance. They show the performance of tracker only

when the foreground and background colours are distinct.

1.3.2 Textured 3D model

Textureless 3D model-based tracking only relies on the contour and the associated matched

pixel locations to align the model to its image observation. On the other hand, tracking using

a textured 3D model uses the information of the gradients of the texture in the image. It is

very similar to tracking that uses the contour information as done in textureless 3D tracking

the difference being the change in intensity of the pixel location in the image against the

model intensity is used as an error measure instead of pure pixel location difference as used

in textureless tracking. However, the principles are largely the same — that the information

about alignment is largely encapsulated in the movement of edges present in the image.

[Baker et al., 2004b] describe a classic extension of tracking using a textured 3D model so

called Lucas-Kanade 2 1
2 D tracking. Since this type of tracking uses more data, it is worth

mentioning that it does not necessarily demand any explicit multiple hypothesis framework

because of the data redundancy present in fully dense model alignment. Moreover, the

tracking can run on whole image instead of looking for small object in the image as done in

RAPiD, CONDENSATION and PWP3D.

A textured object in the 3D world would require a way to map the real-world texture

values that are maintained in the SI units of the world into camera bitmap scale to obtain

a prediction of texture in an image. However, unlike the 3D positions that can be simply

projected into image using a perspective transformation, texture values have to be learnt

from camera images because the absolute radiance values required to map to a pixel value

for prediction are difficult to obtain as that would require to have a knowledge of full

environment map of the scene as well as the view point. This brings us to the problem of

recovering texture online and using that texture to align the model with incoming image

observations. We postpone this to Section 1.5 where we detail this in the context of joint

model building and tracking.

23

1. Introduction

1.3.3 Summary

A model-based tracking paradigm needs prediction to constrain the search for the instance

of an object in an image to allow real-time operation. This is made easier by running a

state estimator in the loop that continuously provide estimates of the prediction. Therefore,

real-time operation forces the system to employ prediction guided search in order to be able

to stay on top of the application. However, the ability to search for the object then greatly

depends on how good the prediction is. In cases of poor predictions or fast image motion,

this makes the tracking quite precarious due to distractions that quite often camouflage their

appearance of the true object, leading the tracker to snap onto a false copy of the object. This

wrong data association can then severely affect the overall system and more importantly a

wrong association when fused into the system cannot be revisited. As a result even a single

failure in the tracking can bring the system to a halt as the prediction for the next frame may

well completely be wrong. Multi-hypothesis framework provide the tracker the ability to

deal with ambiguity that arises quite often in real world but the computational complexity

involved in maintaining the hypotheses prevents the tracker from operating in real-time. On

the other hand, 3D model tracking using textures requires the texture be estimated online

leading to joint texture mapping and tracking. It is applicable for more advanced full image

alignment as well as aligning only small 3D structures as in textureless trackers.

An essential message that model-based tracking delivers is the requirement of an a priori

knowledge of model that is crucial for long-term drift-less tracking. In fact, this is also the

major drawback because a-priori model is not always available when the object shape is not

very well defined and when tracking in large scale urban environments. In the next section,

we discuss another form of tracking that does not necessarily rely on the available model

and instead uses the information contained in the consecutive images to track camera pose.

1.4 Tracking by Frame-to-Frame Alignment

Recursive model-based tracking is underpinned by assumption that tracker successfully locked

onto the object in the previous frame. However, due to fast camera motion, occlusions and

changes in ambient conditions model based tracking becomes prone to failures and as a

result the system requires a mechanism to recover or reinstate the tracker. An alternate

approach works by detecting salient features (termed tracking-by-detection) or uses all pixels

in the two consecutive images and matches them across to obtain the relative transformation.

24

1.4. Tracking by Frame-to-Frame Alignment

Such tracking method solves for the transformation from scratch every frame and as a result

not as fragile as recursive model-based tracking. In vision based robotics it is also termed

as pure visual odometry, a term that was first used in [Nistér et al., 2004] 2. Navigation on

surfaces where wheel odometry is not very reliable, for instance, a vehicle moving on uneven

surfaces, visual odometry is an appealing alternative. It has also been used successfully in

Mars rovers exploration project of NASA.

Since camera pose is obtained by detecting features in the previous frame and track-

ing them only till the next, the system is prone to drift in long term. In real-time large

scale explorations maintaining a huge 3D model of a consistent map is computationally

quite expensive therefore, tracking is performed in the style of pure visual odometry to

obtain the camera poses continuously while mapping can run independently using an of-

fline batch optimisation in the background. Local optimisations àla sliding window bundle

adjustment or global bundle adjustment are needed to prevent the estimated trajectory ob-

tained from pure visual odometry from drifting. It is important to remember that the pur-

pose of a tracker is to deliver estimates of camera pose. Whether it uses 3D model avail-

able beforehand or being built online or pure frame-to-frame information, it is a choice

purely driven by application. Following we categorise different sorts of features matching

paradigms available to obtain camera pose in the context of visual odometry, inspired from

[Scaramuzza and Fraundorfer, 2011].

1.4.1 2D-to-2D

In this approach only pixel locations and/or their intensities are matched across two or more

frames to obtain the relative transformation. No explicit 3D structure is involved and the

camera pose parameters are directly obtained using only image data. An outlier rejection

method is employed on top in the form of RANSAC or M-Estimator (we detail more about

RANSAC in Section 1.5), if required, to provide robustness to the pose estimation process.

Feature based

In a standard feature based method, salient pixel locations are detected by running a blanket

detection algorithm that performs intensity tests around a local window of a pixel location

2The first real-time large scale single-camera pose estimation method that demonstrated the use of pure
visual odometry for estimating 6-DoF camera pose unlike the filtering approaches used in small workspaces
that use history of the camera trajectory

25

1. Introduction

to check for the presence of corner or blob like structures. To aid matching across different

frames, these pixels locations are described with a descriptor that encodes the local structure

around it. Given two images detection and augmentation with descriptors is applied and

putative correspondences are obtained that are later solved for relative camera pose estimate.

[Kruppa, 1913] are the first to provide solution to the relative camera pose using minimal

five 2D image correspondences. However, it is [Nistér, 2004] who later gave an efficient

analogue to this for a calibrated camera setting and using the minimal 5-point correspon-

dence solution within RANSAC framework to provide robustness to the estimation from

outliers. The famous direct linear transformation (DLT) based 8-point algorithm proposed

by [Longuet-Higgins, 1981] has primarily been the standard method when using an un-

calibrated camera. The main idea in both cases is that correspondences can be related by

Essential matrix (in the calibrated setting) or Fundamental matrix (general uncalibrated set-

ting) and that the rotation and translation of the camera can be obtained simply by SVD

factorisation of the corresponding matrices.

Dense whole image based

Dense methods use all the pixels in the image contrary to the feature based method that

use only limited pixel locations and as a result dense methods are able to benefit from the

highly redundant set of dense measurements given provided by all pixels. Moreover, the

two step procedure of feature extraction and matching is put together in one loop of global

transformation recovery in an optimisation framework. An explicit outlier rejection step is

handled by using a robust estimator. We mention some of the recent real-time systems that

employ this method.

[Comport et al., 2007] describe a method to obtain 3D visual odometry using stereo cam-

era. Quadrifocal constraints are used to relate the motion of pixels from reference stereo

pair to the current without requiring the need to have a 3D model i.e. the quadri-focal

tensor allows computing the transformation directly from 2D-2D image correspondences

from stereo pairs. The iterative minimisation is carried out using an Efficient Second Order

Minimisation (ESM) [Malis, 2004].

[Lovegrove et al., 2011] showed a system for monocular visual odometry using dense

whole image alignment. This image alignment procedure is performed on the images com-

ing from a downward looking camera mounted at the back of the car. The motion between

26

1.4. Tracking by Frame-to-Frame Alignment

two consecutive frames can be appropriately described by a planar homography for the

road and as a result they are able to use ESM style minimisation scheme to efficiently re-

cover camera pose.

It is worth mentioning that the trajectory estimates obtained from dense visual odometry

are very competitive with the ground truth provided by GPS. These methods are also able

to perform in many degrading environmental conditions where pure feature based meth-

ods would fail or yield only modicum of success. In fact, the promising effects of dense

approaches have led to methods of recovering Fundamental matrix (as done in feature

based methods) within the dense framework [Valgaerts et al., 2012]. Also, the availability

of less computational power before was a primary reason to adopt feature based methods.

However, with recent computationally powerful resources available today in GPUs, dense

methods are an appealing choice.

1.4.2 3D-to-3D

In the previous section we briefly described methods that perform camera pose optimi-

sation using 2D-to-2D correspondences. The correspondence search is made within the

optimisation and largely benefits from the 2D grid structure naturally provided by the im-

age. However, when matching 3D points there is as such no prior grid-like structure given

and therefore either an O(n2) exhaustive search or search using an accelerated scheme (e.g.

kd-trees) needs to be performed first to be able to run any optimisation tool that gives pose

estimates. In which case the problem becomes more of iteratively searching for correspon-

dence and optimising using these correspondences. We describe the camera pose estimation

in a case of known correspondences (assumed to be highly reliable to a large extent) and then

detail the most popular scenario when the correspondences are unknown and are searched

heuristically first before running least-squares optimisation to obtain the transformation.

Known Correspondences

When 3D correspondences are known already and are highly reliable, a non-iterative alge-

braic solution proposed by [Arun et al., 1987] can be used to obtain the relative transforma-

tion. The objective function that measures the quality of the transformation is the standard

27

1. Introduction

squared-L2 distance between the two 3D point sets.

T̂ = arg min
Tk

∑
i
||pi

k − Tk pi
k−1||2 (1.4)

They decouple the translation and rotation where the translation can be directly obtained

from the difference of the centroids of the 3D points. The translation is

t = p̄k − Rk p̄k−1 (1.5)

R = VUT (1.6)

The rotation is obtained by algebraic manipulation of the 3D points and is returned by the

SVD where USVT = svd((pk − p̄k−1)(pk − p̄k−1)T). This is a one shot solution to obtain-

ing the transformation than having to iteratively run least-squares optimisation. A similar

method has also been used by [Maimone et al., 2007] for Visual Odomtery on mars explo-

ration rovers with the correspondences weighted by the uncertainties.

Unknown Correspondences

In many alignment tasks correspondences are not available and have to be searched for to

run a least-squares style of optimisation scheme to obtain the transformation. Therefore,

the task of alignment also involves a subtask of finding appropriate correspondences first

to begin with. The transformation obtained from the correspondences is greatly dependent

on how good the correspondences are and as a result is directly affected by it. Therefore, an

iterative alternation between correspondence search and least-squares transformation fit is

performed to find the best alignment between the point sets.

The well known [Besl and McKay, 1992] proposed ICP (iterative closest point) has been used

successfully in aligning two 3D point clouds and range images. ICP begins with putative

correspondences obtained by simply looking for the closest point in the other set based on

some distance metric (straightforward euclidean distance yields what is known as point-to-

point metric). The alignment transformation is the obtained by minimising the least square

cost function that relates the correspondences via the transformation that is sought. Since a

closed form solution cannot be obtained for a general transformation, this correspondence

search and minimise procedure is iterated until a convergence criteria is satisfied.

It is the simplicity that has made ICP quite a popular algorithm to register point

clouds. [Tykkala et al., 2011] use the ICP for pure visual odometry using point-to-

point metric while [Newcombe et al., 2011a] use point-to-plane metric inspired from

28

1.4. Tracking by Frame-to-Frame Alignment

[Rusinkiewicz and Levoy, 2001] to do the tracking to align two different point clouds ob-

tained from range images.

Figure 1.2: ICP begins with finding valid correspondences based on some appropriate met-
ric. The correspondences are then related via the transformation that is being sought and in
turn embedded in a conventional least squares optimisation that iteratively brings the two
point clouds into alignment. The image shows two distance metrics namely the point-to-
point metric and point-to-plane metric for establishing correspondences.

1.4.3 3D-to-2D

Tracking from a known 3D model can perform without drift over long term as discussed

in pure 3D model tracking (cf. Section 1.3). However, working in large scale urban envi-

ronments in real-time poses a big challenge in maintaining huge maps. As a result, only

environment information within a temporal window is maintained — a subtle difference

between this paradigm with model-based tracking is that the model only reflects the local

structure within a small temporal window. All the past information about the structure is

thrown away unlike standard Bayesian filtering approaches. A local 3D model built from

past few frames is used to align with an incoming image to obtain the transformation. We

again categorise the tracking into feature based and dense methods.

Feature Based

[Nistér et al., 2004] proposed one of the first real-time large scale visual odometry system

that uses 3D-to-2D tracking in the loop. The front end of the system is feature detection and

matching that allows to compute the relative transformation between two camera positions

from where the images were taken. Features tracked over a certain number of frames pro-

vide tracks that are used to obtain the 3D positions via triangulation to get a local 3D map.

These 3D positions are then projected in the new incoming images and detected features

29

1. Introduction

are matched against these projections. The 3D-2D associations are reminiscient of standard

bundle adjustment [Triggs et al., 1999] technique used to minimise reprojection errors.

The manner in which the relative transformation is obtained is a straightforward appli-

cation of Perspective n-point problem (PnP) and RANSAC based outlier culling to obtain

camera transformation. A minimum of three correspondences are needed to lock down the

camera transformation parameters.

Dense methods

Dense methods have recently gained more popularity due to the availability of range sensors

like Microsoft Kinect and Asus Xtion Pro. An integration of range and associated texture

image obtained from the RGB-D camera is jointly solved for the transformation between

two consecutive frames. [Tykkala et al., 2011] show a visual odometry system that uses a

bi-objective function that aims to minimise a weighted sum of the photo-consistency error

of images and depth in 2D image grid. The weight is obtained on the fly from the ratio

of median deviations in both error terms. They show that depth alignment when fused

with photo-consistency term produces less drift compared to photo-consistency alone. In

the same conference, [Steinbrucker et al., 2011] also show visual odometry using image data

where photo-consistency error is related via the depth. Recently [Whelan et al., 2013] also

use an integrated ICP and RGBD photo-consistency term to provide robustness to the pro-

cess. They show how ICP fails when the observations are all obtained from a planar surface

(e.g. floor) and a combined image texture and ICP are able to properly lock down the

degrees of freedom of the transformation being sought.

1.4.4 Summary

The recursive nature and prediction required to perform model-based tracking has a natural

advantage of making tracking easier by reducing the search space of where the observation

can lie. However, it is the recursive nature that greatly makes the system susceptible to

breaking when data association goes wrong due to occlusions or other scene vagaries. Visual

Odometry or general frame-to-frame tracking provides an alternate route to tracking by

detecting salient points of interest in the image using a standard feature detection or using

all pixels and searching for correspondences in the other image. Although the search for

correspondence is facilitated by an a priori knowledge of the temporal coherence between

30

1.5. Joint Tracking and Model Building à la SLAM

frames but this is still very heuristic (as done in [Nistér et al., 2004] where a heuristically

chosen spatial window of 11×11 is used to search for the feature in the next frame) when

compared to the active search space [Davison, 2003] naturally provided by the model-based

prediction. Also, such type of tracking is prone to drift in long term since it performs

matching from scratch at every frame and joint optimisation in the form of sliding window

bundle adjustment or bundle adjustment is required to keep the drift in check. Next, we take

a look at the tracking paradigm that uses a model that is being built online in the loop by

fusing incoming observations. The difference is that this model is not very large scale as in

urban environments while not too small at the time like in pure-model based tracking.

1.5 Joint Tracking and Model Building à la SLAM

In most indoor scenes and small scale unstructured desktop environments, 3D-model is not

available beforehand and needs to be jointly built with camera poses estimation given by

tracking purely from images coming from camera. Data association in this case works very

similar as in model-based tracking however an important difference is that the model is not

as accurate (atleast in the early stages of tracking) as CAD models and needs multiple image

measurements to be integrated to obtain a sensible looking model capable of allowing pure

model-based tracking in future. Therefore, data association becomes even more crucial in

the pipeline. A wrong data association can then severely affect the overall system. Not only

does it lead to wrong camera transformation but also corrupts the whole 3D-model because

of the circular dependency of tracking and mapping on each other. As such, a wrong data

association when fused into the system, cannot be revisited which can make the system very

fragile.

A rich body of research has produced robust and effective methods for data association

to mitigate the effects of false positives that arise in real-world images. These methods have

been successfully used in model consisting of modest number of sparse features or fully

dense 3D-models. In systems where the uncertainty of 3D-model can also be obtained, it can

be used to assess the quality of data association as done in EKF-style systems that maintain a

sparse set of features (or landmarks) to represent the 3D-model. On the other hand, methods

that maintain fully dense models are able to obtain a prediction of full image and align it

against an incoming image to obtain the camera transformation. In the following, we briefly

outline the popular and fashionable data association techniques and discuss limitations and

benefits of each in the context of joint tracking and mapping. Similar to previous tracking

31

1. Introduction

methods, we categorise them into feature based and dense whole image based.

1.5.1 Feature Based

Maximum Likelihood Data Association

The earliest and the most popular approach to data association has been the simple nearest

neighbourhood test for observation and landmark that is sometimes also referred to as Indi-

vidual Compatability (IC) or nearest neighbour (NN) test. In many sparse feature (or landmarks)

based approaches where EKF machinery has greatly facilitated the joint model building and

tracking, the uncertainties present in the feature positions can be used to assess the quality

as well as the proximity of the feature observation pair – given the uncertainties it can be

easily checked whether the observation lies inside the covariance region of the feature. In

the earlier systems that used the LASER based range sensing the process was carried out

directly in 3D while in vision based set-up where the 3D model is projected onto the image,

the feature-observation pair consistency is checked on the 2D grid. The closest feature-

observation pair based on this criteria is deemed as the match. However, this method is

clearly prone to erroneous associations if there is ambiguity in the robot position or features

that arises when the 3D-model of the scene gets bigger. As a result, a wrong data association

greatly hampers the conventional EKF based joint model building and tracking, leading to

diverging estimates of the robot position with time.

Joint Compatibility Branch and Bound

Nearest neighbour data association fails catastrophically when a wrong data association is

assigned – each feature is matched independently without any joint model or batch consis-

tency to enable mutual agreement between different associations. More specifically, NN is

rendered ineffective when the distance between features is smaller than their uncertainties.

In fact, mapping of some of the observations to the same landmark in the scene cannot be

ruled out if each feature is matched independently as done in NN.

[Neira and Tardós, 2001] developed an approach called ‘Joint Compatibility Branch and

Bound’ inspired by the Interpretation Tree [Grimson and Lozano-Perez, 1987] that takes care

of mutual compatibility of observations. The core idea is that matches have to be jointly com-

patible to ensure that they maintain the probabilistic consistency of the distribution. Travers-

32

1.5. Joint Tracking and Model Building à la SLAM

ing along the tree in the depth-first ordering, JCBB, proceeds rejecting further branching of

the tree if the data association hypothesis is unlikely to be correct. There is an obvious

worst case scenario of testing exponential number of hypothesis but they show that many

branches of the tree can easily be rejected for traversing.

Again, depending upon the sensor and the measurement model, the associations happen

either in 3D if range sensor is used or 2D image grid if camera is used.

Combined Constraint Data Association

[Bailey, 2002] present a similar approach to JCBB to obtain consistent joint associations be-

tween features and their observations. All possible associations are represented as the nodes

with edges between two different nodes representing the compatibility of the associations in

a “Correspondence Graph”. The associations are determined by nearest neighbourhood test

while the compatibility is determined by the standard NIS (normalised inverse square) thresh-

old test often termed as Mahalanobis distance. Finally, the maximum clique in the graph

represents the pairings that are compatible with each other. The results of JCBB and CCDA

are very similar but CCDA is also able to operate in the case when the pose of the robot is

completely unknown in the map.

Scan Matching

Scan matching, an ICP-style [Besl and McKay, 1992] approach, was proposed in

[Lu and Milios, 1997a, Lu and Milios, 1997b] and later [Nieto et al., 2006, Nieto et al., 2007]

in the context of EKF-SLAM called Scan-SLAM. Scan-SLAM maintains the pipeline of con-

ventional EKF-SLAM the only difference being the representation of the features. EKF-

SLAM has by and large defined features as geometric identities with a well defined shapes

while Scan-SLAM represents features as raw sensor scan provided by laser/sonar. The cen-

troid of the raw sensor scan is taken to be the estimated position of the landmark. When a

new measurement arrives, scans are aligned à la ICP to recover the association and in turn

the transformation to obtain the robot position estimate.

It is worth stressing that the alignment is very different from a filter operation. The

prediction that is required for alignment is merely a seed for the process and necessary

to prevent the alignment from getting stuck in a local minima. Consistent pose estimation

(CPE) [Gutmann and Konolige, 1999, Konolige, 2004] build their data-association using scan

33

1. Introduction

Figure 1.3: Left: JCBB works by assigning putative associations of landmarks (Li) to obser-
vations (Oi) and collects evidence of a given association by branching further down in the
interpretation tree. To avoid traversing branches that fail to yield confirmatory evidence,
heuristics are employed to prevent the explosion of associations. Right: Combined con-
strained data association proposed by Tim Bailey. The nodes denote the associations while
the edges denote the compatibility. Nodes that do not share an edge do not satisfy the
compatibility constraint. The maximal clique in the graph represents the associations that
are consistent among each other.

matching. Particle filtering approaches [Hahnel et al., 2003] and [Eliazar and Parr, 2004]

also show demonstrations of scan matching in large scale map reconstructions.

Multiple Hypothesis Tracking

Multiple hypothesis tracking is a robust alternative to data association that maintains a uni-

modal hypothesis for data association. The earliest MHT tracking algorithm was proposed

by [Reid, 1979] who maintain multiple hypothesis coming out of different valid data asso-

ciations related to particular landmark/observation. Since then they have been successively

used in many other tracking algorithms too where clutter tends to distract the actual data

associations. To prevent the number of hypothesis from bombarding, suitable heuristics

are employed to prune weaker ones to enable efficient data association. Among others,

[Nebot et al., 2003] successfully used multi-hypothesis tracking to disambiguate data asso-

ciation.

34

1.5. Joint Tracking and Model Building à la SLAM

RANSAC and variants

RANSAC originally proposed in [Fischler and Bolles, 1981] has emerged as one of the very

popular methods to model fitting on data corrupted by noise. Assuming that there is weak

or little prior information about the distribution of inliers and/or noise, RANSAC runs

many trials until the probability of obtaining the correct model hypothesis reaches a given

pre-defined percentage threshold. It is generally assumed that correspondences have al-

ready been established although they may all not be correct. Therefore, RANSAC selects

randomly the minimum number of data points required to hypothesise a model and re-

maining data points vote for the hypothesis being correct. The hypothesis that wins the

most number of democratic votes is finally decided to be the best hypothesis returned by the

algorithm. Many variants have later popped out that aim to add or use more sophisticated

a priori information of the data into the framework to quickly obtain the correct hypothe-

sis. In particular, [Torr and Zisserman, 2000] and [Tordoff and Murray, 2005] use prior infor-

mation to guide RANSAC and propose to use likelihood probability over simple counting

when collecting the votes to assess the quality of hypothesis. Also, [Chum and Matas, 2002],

[Chum and Matas, 2005] and [Chum and Matas, 2008] propose a series of papers highlight-

ing the improvements they make on top of the standard RANSAC method to efficiently

arrive at a correct hypothesis. Notable also is the work of [Nistér, 2003] who proposed a

different way of finding the best hypothesis using a preemptive scheme that weeds out the

hypothesis contaminated by an outlier. A pre-generated set of hypothesis are progressively

tested against observations in a breadth-first manner and a pruning criteria is decided that

selects best hypotheses at any time t and as more observations are tested weak hypotheses

are pruned resulting in the selection of best hypothesis under a given computational budget.

[Botterill et al., 2009] maintain the history of failed hypothesis to assign a probability to data

point reflecting how likely is that being an inlier. These weights are updated as new gener-

ated hypothesis that fail to gather enough votes. More new hypothesis are generated then

by sampling from the data points that are more likely to be inliers. [Scaramuzza et al., 2009]

and later [Civera et al., 2009] show 1-Point RANSAC in the context of monocular visual

odometry.

Active Matching

[Chli and Davison, 2008]’s algorithm Active Matching also takes a democratic approach to

hypothesis selection but the search for correspondences is made with in the loop of match-

35

1. Introduction

ing. Active matching emerges from its precursor Active Search [Davison, 2005] that per-

forms sequential feature matching guided by Information Theory. The major difference be-

tween Active Matching and RANSAC/JCBB type approaches is that (a) it does not match

features independently and then resolve the consensus (b) once a feature is measured to obtain

correspondence that information is used in reducing the search space for matching other features

(unlike in JCBB) and as a result feature correspondences and matching are combined in one step.

In SLAM type systems, where feature correlations are also maintained, a joint probabil-

ity distribution of the features locations in the image is already available. This means

that measuring one feature, one should be able to reduce the uncertainty (covariance) in

the location of rest of the features. This is what [Davison, 2005] showed in their paper

and later [Chli and Davison, 2008] showed the utility of this approach doing real experi-

ments with MonoSLAM [Davison, 2003]. To provide an extra layer of robustness against

false positives the standard multiple hypothesis framework is used as a ready-made engine.

However, the complexity and decision making in choosing the best feature to measure pro-

hibits its usage in matching at each step large number of features. Although, the original

Active Matching showed matching only a dozen of features, further improvements were

made in [Handa et al., 2010] to enable matching 400 features in nearly 170ms. Such decide-

and-measure approach though more probabilistically consistent lags behind RANSAC type

methods that gain grounds on speed by making random decisions and are able to match an

order of magnitude more number of features with their two stage procedure.

Figure 1.4: The joint probability distribution can be factorised according to the Bayes rule.
Active matching begins measuring x1 and later uses that information to reduce the uncer-
tainty of x2. Further, as more features are measured, the uncertainties of remaining features
shrink leading to more certain feature matching. The uncertainty reduction is via the update
rules as mentioned in [Eustice et al., 2005].

1.5.2 Lucas-Kanade

Parametric image alignment using least squares has its roots dating nearly three decades

ago in seminal paper by [Lucas and Kanade, 1981]. Since then the least square minimi-

sations have become a common place in nearly all parametric image alignment methods.

[Baker et al., 2003b], [Baker et al., 2003a], [Baker et al., 2004a] and [Baker et al., 2004b] de-

36

1.5. Joint Tracking and Model Building à la SLAM

scribe all properties related to optimising the least square cost function and the class of

transformations that can be recovered easily with it. In particular, [Baker et al., 2004b] de-

scribe Lucas-Kanade 2 1
2 D approach to recover the 6-DoF camera parameters when aligning

an image anchored to a 3D model against a new observation image coming from camera.

This is excellently demonstrated by the recent real-time dense tracking and mapping system

called DTAM [Newcombe et al., 2011b], [Meilland et al., 2011] and [Comport et al., 2011].

W (x ; p)

iterations

C
os
t
fu
nc
ti
on

iterations

C
os
t
fu
nc
tio
n

Figure 1.5: A toy example of registration of 3D model to a 2D image. Image at the previous
pose (in green) is anchored to the 3D model and the depth-map corresponding to that pose
is used to align a new incoming image to obtain the new pose. The parameters required
to warp the images are expressed by W(x; p). As iterations progress, the value of the cost
function decreases leading to convergence towards a locally optimal estimate. The iterative
process, in fact, is carried out in a standard coarse-to-fine pipeline to provide wider basin of
convergence.

1.5.3 Signed Distance Based Tracking

Signed distance is a boundary-aware representation of curve/surface. The curve/surface

serves as reference against which any other point in the domain is related by its minimum

distance from the curve. The sign of the distance encodes whether the point lies inside or

outside the boundary of the surface. [Danielsson, 1980] introduced distance mapping and

briefly discussed about signed distance. Signed distance have emerged a preeminent frame-

work especially in computer graphics, to represent any curve or 3D surface that cannot be

defined analytically. Among others [Curless, 1997] and [Curless and Levoy, 1996] showed

the remarkable properties of a signed distance transform to reconstruct 3D surfaces from

37

1. Introduction

range images and lately [Newcombe et al., 2011a] demonstrated their impressive real-time

3D reconstruction sytem, KinectFusion, using the Microsoft Kinect depth sensor. However,

they only show the utility of signed distance for merging 3D models. Tracking based on

sign distance transform has been very less visited in comparison to 3D reconstruction. But,

it is not new and has also been used before by [Fitzgibbon, 2001] for aligning two 3D models

and they show how wider the basin of convergence is for such tracking. Recently and in

particular, [Canelhas, 2012] and [Ren and Reid, 2012] also used the signed distance trans-

form to guide the 6-DoF pose estimation by aligning the incoming depth map against the

3D model of the surface viewed from the pose obtained from the previous step.

1.6 Motivation For High Speed Tracking: The Role of High

Frame-Rate

Almost all data-associations techniques that establish correspondences within the loop of

search for transformation, at some stage, employ linearisation to break away from the non-

linearities that prevent a tractable and efficient search for transformation. How good this

linearised approximation is a matter of how coherent and similar the consecutive observations are or

how good the prediction of the model is. A prediction is obtained by rolling forward the time

interval between the previous pose estimate and the current incoming data observation.

That a prediction would naturally improve tracking is at the heart of model-based tracking

paradigm. It is therefore expected that as the time interval between the prediction and

current data observation decreases, the prediction increasingly matches with observation,

leading to better, accurate and robust results. Figure 1.6 shows images taken at high frame-

rates and it is hard to not to impressed by the resolution of motion they can capture that

would aid any prediction based tracking system.

In real-time tracking frame-rate sets an upper bound on the maximum time budget re-

quired to finish per-frame tracking and as a result has a direct effect on tracking performance.

Imagine observing the motion of a ball thrown at 150 Km/h with a 30Hz camera. The ball

moves about 1.4m when sampled at that frame-rate, which is clearly not trackable as a result

of fast motion and blur. Higher sampling rate (generally 1ms is treated as standard time in-

terval when talking of high frame-rates) can definitely ameliorate this problem, for instance

observing the same motion at 1000Hz (1ms) can reduce the motion down to 4.1cm per-frame.

The earliest works by the famous photograher Eardward Muybridge (see Figure 1.7) that

38

1.6. Motivation For High Speed Tracking: The Role of High Frame-Rate

(a) Balloon bursting (b) Boxing punch (c) Bullet through crayons

Figure 1.6: Examples from the internet of slow motion image capture that happens at high
frame-rate.

captured images of a moving horse also demonstrated the temporal coherence associated

with the images. Thus, the high degree of coherence and ease associated with tracking

makes higher frame-rate a very appealing choice. Industrial systems like Hawkeye 3 have

also been employed with a large degree of success in sports like cricket and tennis where

prediction of the trajectory of the ball is made using high speed cameras.

Among others, [Kagami, 2010] pointed out that high frame-rate can make image process-

ing simpler. In some cases, the benefits of high frame-rate can substantially outweigh the

reduction in computational budget. An example they give is that of a 2D tracking of an

object in the image, where the 2D translation parameters are searched for exhaustively in

a given window4. If the frame-rate is increased by a factor of k, the allotted computational

time budget get reduced by this factor. The region in which the search is carried out also

decreases by a factor5 of k. However, extrapolating this to searching in more than two di-

mensions means that benefits of high frame-rate would clearly be more6. Also, in EKF-style

trackers as the search regions shrink with the increase in the frame-rate, the probability of

false-positives that can occur in the search region reduces too, leading the distribution of ob-

servation to be uni-modal and Gaussian. Trackers that work by minimising a least-squares

cost function need a good initialisation to converge to a local optimum. This initialisation

becomes increasingly better if the frame-rate dial of the algorithm is pushed up. This is

substantially beneficial again as it prevents the optimisation from getting stuck into a local

minima. In fact, this is a direct consequence of the distribution turning Gaussian in Bayesian

3http://en.wikipedia.org/wiki/Hawk-Eye. Hawkeye runs at 106Hz as reported in http://www.

espncricinfo.com/ci/content/story/530564.html.
4A notable difference we have is that search area is a linear function of time-interval between the frames

unlike theirs which is quadratic.
5This is assuming that the motion model is random walk, i.e. the uncertainty increases as a function of ∆t,

the time interval between frames.
6For any n-dimensional sphere the volume is a function of (∆t)

n
2 going by the random walk model.

39

http://en.wikipedia.org/wiki/Hawk-Eye
http://www.espncricinfo.com/ci/content/story/530564.html
http://www.espncricinfo.com/ci/content/story/530564.html

1. Introduction

language.

Figure 1.7: Horses running, Phryne L. Plate 40, 1879, from The Attitudes of Animals in Mo-
tion, 1881, by Eadweard Muybridge. Image courtesy of the National Gallery of Art, Wash-
ington. The image has been obtained from http://www.guardian.co.uk/artanddesign/

2010/aug/29/eadweard-muybridge-tate-review

Moreover, the ability to track rapid shaky motion that high frame-rate provides has at-

tracted many hardware enthusiasts. The bounded time interval between two consecutive

frames puts a severe limit on the data transfer that can occur between the camera and the

host machine doing the image processing. The first high-speed vision system introduced

by [Ishikawa et al., 1992] was designed keeping in mind maximum time delay that can oc-

cur between the host and the camera must be less than a millisecond. As a result the data

transfer between the camera and the host machine was replaced altogether by having a ded-

icated vision chip integrated on the camera device for high speed image processing. Such

ideas have brought about a change in the way high-speed vision system building is viewed

— the bottleneck of the data transfer must be minimised first to reduce or diminish the

communication cost between the two devices.

Custom chips have been built that aim to perform the standard image processing tricks

needed for tracking directly in the hardware to reduce the computational bottleneck. Fig-

40

http://www.guardian.co.uk/artanddesign/2010/aug/29/eadweard-muybridge-tate-review
http://www.guardian.co.uk/artanddesign/2010/aug/29/eadweard-muybridge-tate-review

1.6. Motivation For High Speed Tracking: The Role of High Frame-Rate

(a) Different architectures of vision chips. (b) Active vision systems.

Figure 1.8: Different massively parallel SIMD architectures of the vision chips that have
been used to speed up the simple image processing operations to track fast moving objects.
Active vision systems that are designed using these vision chips can track the motion of a
bouncing ball or catch a ball thrown towards a multi-fingered hand.

High-speed
camera head

+ image capturing

Personal
computer
+ data processing
+ visualization

image features

images

FPGA board
FPGA1 FPGA2+serial/parallel conversion

+noise reduction, image revision
+VGA video output

+ image processing
+data output to PCI-X bus

Figure 1.9: New generation H3 vision platform that does majority of image processing on
the FPGA directly linked to the camera.

40cm

37,5cm

4cm

Active Vision

Active Vision

High-speedHand

37,5cm

30cm

Figure 1.10: Multi-fingered Hand system.

ure 1.8 and 1.9 show images of different architectures of chips and systems (also Figure

1.10) that have used these custom made chips. The architecture of these chips is often a

massively parallel SIMD processing array with a 2D grid like structure. The self-window

method [Ishii et al., 1996] is able to perform object tracking in the 1ms tight budget by using

very simple image processing operations. The previously obtained location of the target

41

1. Introduction

Frame-rate Applications
1 frame/hour Extreme time-lapse photography.
1 frame/minute Time-lapse photography and stop-motion animation.
18 frames/second Early motion picture films.
24 frames/second Worldwide standard for movie theater film projectors.
48 frames/second Slow-motion photography.
300+ frames/second High-speed cameras for very slow-motion photography.
2500+ frames/second High-speed cameras for pyrotechnic photography.

Table 1.1: Range of applications for different frame-rates

object is dialated and AND’ed with the new sensory data to obtain the location of the ob-

ject in new frame. [Nakabo et al., 1996] show a 1ms target tracking system that is able to

track a bouncing ball without any internal model or prediction. This has also been used

in visual impedance control system in [Nakabo and Ishikawa, 1998]. A high frame-rate

tracking workshop was also organised at ICCV 1999 7 where researchers have attempted

to draw the attention of the robotics and vision community to high frame-rate camera track-

ers. [Ishii et al., 2009] introduced a high speed vision platform, H3 that implements various

simple image processing algorithms. Also, [Ishii et al., 2010] showed an optical flow estima-

tion system that runs at 1000Hz on a customised FPGA. All the necessary image processing

e.g. computing gradients, and adding them, were directly performed on the hardware.

The Region of Interest (ROI) feature [Monacos et al., 2001] that the new cameras provide

can be used for a very high bandwidth data transfer to the host over a digital data bus

like IEEE 1394, PCI Express, Gigabit Ethernet. However, there is trade off between the data

transfer and the image resolution that can be used [Kagami, 2010].

1.6.1 Applications

A series of high speed vision systems have come out of Masatoshi Ishikawa’s lab.

They range from tracking a bouncing ball [Ishikawa et al., 1992],[Nakabo et al., 1996],

high speed grasping of an object [Namiki et al., 1999], batting [Senoo et al., 2006],

dribbling [Shiokata et al., 2005], throwing [Senoo et al., 2008] and folding a cloth

[Yamakawa et al., 2011]. Table 1.1 also shows different applications a given frame-rate se-

quence can be useful in.

7http://vast.uccs.edu/~tboult/frame/

42

http://vast.uccs.edu/~tboult/frame/

1.7. Contributions

1.6.2 Focus of this Thesis

Keeping in view of the benefits of high frame-rate images for camera tracking, this thesis

focusses on to systematically understand under what conditions and kind of motions would

it make sense to use high frame-rate tracking that uses prediction coming from a model.

1.7 Contributions

This thesis has led to the following publications:

• Ankur Handa, Margarita Chli, Hauke Strasdat, Andrew J. Davison (2010). Scalable

Active Matching. Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR).

• Ankur Handa, Richard A. Newcombe, Adrien Angeli, Andrew J. Davison(2011). Ap-

plications of Lengendre-Fenchel Transformation to Computer Vision Problems. DTR-

2011, Deparmental Technical Report, Imperial College London.

• Ankur Handa, Richard A. Newcombe, Adrien Angeli, Andrew J. Davison (2012). Real-

Time Camera Tracking: When Is High Frame-Rate Best? In Proceedings of the IEEE

European Conference on Computer Vision (ECCV).

1.8 Thesis Structure

The thesis is laid out with the following structure:

Chapter 2 gives a short tour of mathematical theory and provides some derivations and

code snippets that we use in the subsequent parts of the thesis.

Chapter 3 describes the prior driven feature matching approach to image matching and

novel contributions we make to provide scalability to the matching algorithm with an

aim towards doing dense matching.

Chapter 4 debates various contrasting differences between the feature based and dense di-

rect parametric tracking. It argues that for full understanding of frame-rate dense

43

1. Introduction

methods are more suitable and in the subsequent chapters that forms our tracking

method we analyse.

Chapter 5 provides a full description of synthetic framework that renders photo-realistic

images required to systematically alter various different parameters e.g. frame-rate

and image resolution for the analysis.

Chapter 6 throws insights into the conclusions we obtain from synthetic images.

Chapter 7 validates the conclusions with real data coming from a pure 1D rotating servo

with ground truth obtained from an accurate high frequency and high bandwidth

gyro.

Chapter 8 concludes the thesis.

44

Chapter 2

Mathematical Preliminaries

Contents

2.1 Rigid Transformations . 45

2.2 Lie Group Framework . 47

2.3 Camera Calibration . 54

2.4 POVRay Mathematics . 59

2.1 Rigid Transformations

Transformations allow us to define the location and movements of objects, points or refer-

ence frames in a geometric world. Any representation of such transformations then enables

us to write them down in a form that can be easily manipulated mathematically. It is also

of interest to understand the space a transformation belongs to. A natural space for simple

translations that an object undergoes in three dimensional scenes is Euclidean space however,

rotations or a combination of rotations and translations belong to a rather different manifold

which is not Euclidean. Therefore, the general operators that compose vectors for subtrac-

tion and addition in Euclidean space do not hold true in these manifolds as such. It becomes

essential to understand what operators can be used to compose the transformations. We

discuss first the matrix representations for the transformations we have used in the thesis

and then detail the minimal parametrisation and also throw light on how to compose the

transformations later.

45

2. Mathematical Preliminaries

Rigid body transformations in 3D are represented by 3×3 matrices for rotations, R and

4×4 for joint rotations and translations, (R,t).

T =

(
R t

0 1

)
, Tab =

(
Rab tab

0 1

)
. (2.1)

The transformations are often written with subscripts, for instance Tab. It is read as Taxb,

the transformation that transfers points represented in coordinate frame of b to coordinate

frame of a. It is important to remember that whenever the transformations involve both

rotation and translation, the points are expressed in homogeneous coordinates — an extra 1

is appended to the point and therefore, the points are transferred as follows:(
pa

1

)
=

(
Rab tab

0 1

)(
pb

1

)
. (2.2)

While transferring points, it is important to ensure that the subscripts match i.e. Tab must

only go with pb
1.

A minimal vector parametrisation is often sought to express the rotations and translations

instead of using full matrices with 9 and 12 variables respectively. This is essentially useful

when performing optimisations on the transformations where if full matrices are used extra

care has to be taken that the properties and structures of matrices remain preserved during

the optimisation. For instance, if the optimisation is carried out on full rotation matrices, one

must ensure that the updates must yield a rotation matrix with orthonormality constraint,

when consumed. On the other hand the minimal parametrisations allows to smoothly move

on the manifold of transformations without requiring any extra care on preserving the prop-

erties of matrices — the mapping of this parametrisation to the transformation ensures that

automatically.

The parametrisation then provides a principled way to represent a transformation such

that if a particular transformation is inverted, composed, interpolated or differentiated, it

varies smoothly and still remains within that same space of transformations. For instance,

Rotation composed with another Rotation is always Rotation. Such operations form an in-

tegral part of that space and the operations and the operators used in the space collectively

define a Group which preserves the general properties of the transformations e.g. a trans-

formation composed with an operator to another transformation from the same space must

yield a new transformation that is a part of the space. In the following we explain the most

popular parametrisation in Lie Groups to express the transformations.
1The red colour is only to highlight the subscripts that match.

46

2.2. Lie Group Framework

2.2 Lie Group Framework

Formally, G is called Lie Group if G× G → G and the inverse G → G are smooth mani-

folds. It obviously satisfies the general properties of group but at the same time the group

operations are differentiable. The smooth manifold and Group properties are shown in Fig-

ure 2.1 where a comparison of linear interpolation on a transformation is made with the

interpolation using Lie Group 2.

One of the key ideas of Lie Group is to express a global object of the group with a local

version which is “infinitesimal group” and is popularly known as Lie Algebra. This is

something we quite often employ when linearising transformations around a given point

to obtain a first order Taylor series expansion used in non-linear least squares optimisation.

Below we turn our attention to Lie Algebra.

(a) Linear Interpolation:
T(t) = I + t(T̂− I)

(b) Lie Group Interpolation:
T(t) = exp(tT̂)

Figure 2.1: Comparison between the linear interpolation and interpolation using Lie Group. The
transformations interpolated using the Lie Group properties vary smoothly and the new transfor-
mation obtained is rigid and lies within the Lie Group. On the other hand, linear interpolations can
provide transformations that are not rigid.

2.2.1 Lie Algebra

In simple terms, a Lie Algebra provides a minimal parametrisation and that this minimal

parametrisation allows one to move on the smooth manifold of the transformation that
2http://www.robots.ox.ac.uk/~cmei/talks/reading_group_lie.pdf also show how to interpolate trans-

formations in Lie Group.

47

http://www.robots.ox.ac.uk/~cmei/talks/reading_group_lie.pdf

2. Mathematical Preliminaries

belongs to the Lie Group.

A Lie Group G with a element in Rn×n comes associated with a Lie Algebra g of k degrees

of freedom or parameters. The Lie Algebra is associated with the tangent space of the

Lie group around its Identity and as a result helps represent infinitesimal changes around

a given element of the group. The mapping from Lie Algebra to Lie Group is via the

exponential-map, i.e.

exp : g −→ G (2.3)

The exponential-map has some interesting properties that come to use when dealing with

the transformations. They are listed below ∀ x̂ ∈ g

• Inversion i.e. (exp(x̂))−1 = exp(−x̂)

• Exponentiation property i.e. exp(sx̂) exp(tx̂) = exp((s + t)x̂), ∀s, t ∈ R

• Derivative property i.e. ∂ exp(tx̂)
∂t = x̂ exp(tx̂) = exp(tx̂)x̂

• Chaining in Abelian Groups i.e. if x̂ŷ = ŷx̂⇒ exp(x̂) exp(ŷ) = exp(x̂ + ŷ), ∀ŷ ∈ g

• Adjoint property in non-Abelian Groups i.e. exp(Ax̂A−1) = A exp(x̂)A−1, ∀A ∈ Rn×n

Two particular groups that are of special interest to the robotics and camera tracking com-

munity are the group of rotations, SO(3) and the group of rotations and translations, SE(3).

In the following we briefly introduce these groups and also show how the exponential fig-

ures in this mapping.

2.2.2 Group of Rotations: SO(3)

Let us consider a point q on a rigid body undergoing pure rotation. The axis of rotation

is defined by ω = (ωx, ωy, ωz) and we also assume that it is moving with a unit angular

velocity 3. Then the instantaneous velocity at any time t is:

q̇(t) = 1ω× q(t) (∵ v = ω× r for pure rotational motion) . (2.4)

The cross product in the expression can be replaced by an equivalent skew-symmetric matrix

multiplication operation, i.e.

q̇(t) = ω̂q(t) , (2.5)
3The direction of angular velocity is given by the axis of rotation.

48

2.2. Lie Group Framework

Figure 2.2: SO(3) and the associated exponential map. The first order approximation is a tan-
gent plane on the surface of the sphere at a given point. Moving from one point to the other
on the sphere is via the exponential map. This is a higher dimensional equivalent of moving
on a circle which is via exponential-map due to polar-coordinate representation and De Moivre’s
theorem. The image on the right is reproduced from Tom Drummond’s notes on Lie Algebra:
https://dl.dropboxusercontent.com/u/23948930/Papers/3DGeometry.pdf. The approximations
of exponential-map are given by exp(x) = limn→∞(1 + 1

n x)n

where the equivalent skew-symmetric matrix is

ω̂ =

0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 . (2.6)

This leads to a time varying differential equation [Murray et al., 1994, p. 37–62] 4 which can

be integrated to give

q̇(t) =
∂

∂t
q(t) = ω̂q(t) (2.7)

=⇒ q(t) = eω̂tq(0) , (2.8)

where eω̂t is the matrix exponential. It means that if we rotate an object about an axis ω at

unit velocity for θ units of time, then the net rotation is given by

R(ω̂, θ) = eω̂θ = I + ω̂θ +
1
2!

(ω̂θ)2 +∞ = I + ω̂ sin θ + ω̂2(1− cos θ) . (2.9)

The closed form expression allows us to compute the exponential on computer 5. The

SO(3) Lie Group has an associated Lie Algebra so(3) as shown in Figure 2.2 that defines an

infinitesimal rotation around a given point and allows to move smoothly from one rotation

to the other on a sphere via the exponential-map.
4The notations are largely adapted from this book.
5For a more general case when ||ω|| 6= 1, it is:

R(ω̂, θ) = I +
ω̂

||ω|| sin(||ω||θ) +
ω̂2

||ω||2 (1− cos(||ω||θ)) .

49

https://dl.dropboxusercontent.com/u/23948930/Papers/3DGeometry.pdf

2. Mathematical Preliminaries

Each element in this group can be parametrised by three degrees of freedom correspond-

ing to the axis about which the object is undergoing the rotation.

exp : so(3) −→ SO(3) (2.10)

R ∈ SO(3), RTR = I (2.11)

The so(3) space parametrisation ω ∈ R3 defines a corresponding rotation matrix in SO(3)

∈ R3×3. A first order approximation of a rotation matrix can be derived from the first order

approximation of the exponential-map as shown in Figure 2.2. The ω̂ can be described by

the linear combination of three different matrices that define the generators of the rotation

matrix.

ω̂ = ωxG1 + ωyG2 + ωzG3 ∈ so(3) (2.12)

These Generators are the basis rotation matrices that can represent a small rotation about

each of the three axes and are:

G1 =

0 0 0

0 0 −1

0 1 0

 , G2 =

0 0 1

0 0 0

−1 0 0

 , G3 =

0 −1 0

1 0 0

0 0 0

 . (2.13)

It is worthwhile to connect this to the Euler-angle representation matrix Reuler that is de-

scribed by yaw-pitch-roll angles as

Reuler =

cos θ cos ψ − cos φ sin ψ + sin φ sin θ cos ψ sin φ sin ψ + cos φ sin θ cos ψ

cos θ sin ψ cos φ cos ψ + sin φ sin θ sin ψ − sin φ cos ψ + cos φ sin θ sin ψ

− sin θ sin φ cos θ cos φ cos θ

 ,

With a small motion assumption around each of the axes, this can be rewritten as

Reuler =

1 −ψ + φθ φψ + θ

ψ 1 + φθψ −φ + θψ

−θ φ 1

 , (2.14)

Therefore, the first order approximation yields

Reuler =

1 −ψ θ

ψ 1 −φ

−θ φ 1

 = I + φG1 + θG2 + ψG3 . (2.15)

We see a straightforward connection between different representations when a small angle

assumption is made.

50

2.2. Lie Group Framework

2.2.3 Group of Rotations and translations: SE(3)

Let us now consider a point p undergoing a general rigid body motion in three-dimensional

space. The velocity can be then described by the following:

ṗ(t) =

rot. vel︷ ︸︸ ︷
ω× p(t) + v(t)︸︷︷︸

trans. vel

(2.16)

Here p(t) is a vector from the origin of the body frame to point p and v is the translational

velocity. This is standard vector addition of rotational velocity component and translational

velocity component. Replacing the cross product with skew-symmetric matrix multiplica-

tion, the expression becomes

ṗ(t) = ω̂p(t) + v(t) (2.17)

Let us also define

ξ̂ ,

(
ω̂ v

0 0

)
, (2.18)

Equation 2.17 can be further reduced to a first order differential equation of the form

(
ṗ

0

)
=

(
ω̂ v

0 0

)(
p

1

)
, (2.19)

The solution of this ordinary differential equation is of the form

(
ṗ

0

)
=

d
dt

(
p

1

)
=

(
ω̂ v

0 0

)(
p

1

)
; (2.20)

=⇒ p(t) = eξ̂tp(0) (2.21)

The corresponding exponential-map is defined from exp : se(3) −→ SE(3), a mapping from

R6 to an element in R4×4. The closed-form expression for the exponential is

eξ̂θ =

[
eω̂θ (I − eω̂θ)(ω× v) + ωωTvθ

0 1

]
∈ R4×4 (2.22)

51

2. Mathematical Preliminaries

The corresponding set of generators is:

G1 =

0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

 , G2 =

0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

 , G3 =

0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0

 (2.23)

G4 =

0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0

 , G5 =

0 0 1 0

0 0 0 0

−1 0 0 0

0 0 0 0

 , G6 =

0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 (2.24)

2.2.4 Adjoint Representation

It is sometimes required to transform the coordinate frames of a Lie Algebra. The Adjoint

representation allows us to transform the associated Lie Algebra elements from one coordi-

nate frame to the other. In the following we derive a relationship between the Lie Algebras

and show where this could be useful.

Let us assume that a body in an object frame of reference or body frame of reference, b, is

rotating about a spatial frame of reference, a. Therefore, any point represented in the body ref-

erence frame can be mapped to the spatial reference frame via the rigid body transformation

involving rotation, i.e.:

qa(t) = Rab(t)qb . (2.25)

Differentiating with respect to t to get the velocity gives us:

va(t) = Ṙab(t)qb . (2.26)

However, this representation is cumbersome as it requires the velocity to be represented

with the nine variables of Ṙba. Therefore, a compact representation is sought by rewriting

the velocity as

va(t) = Ṙab(t)Rab(t)−1Rab(t)qb . (2.27)

Let us call the instantaneous spatial angular velocity ω̂s
ab = Ṙab(t)Rab(t)−1. This is the angular

velocity of the object as seen from the spatial frame of reference, a. Similarly the body angular

velocity is defined as ω̂b
ab = Rab(t)−1Ṙab(t). A simple mathematical manipulation yields the

52

2.2. Lie Group Framework

following two relations between the velocities

ω̂b
ab = R−1

ab ω̂s
abRab or ωb

ab = R−1
ab ωs

ab . (2.28)

Let us now consider a full rigid body motion in SE(3) where the transformation is defined

by gab as [
Rab tab

0 1

]
. (2.29)

Let us also define the instantaneous spatial velocity V̂ab ∈ SE(3) similar to spatial angular

velocity as

V̂
s
ab = ġabg

−1
ab =

[
Ṙab ṫab

0 0

] [
RT

ab −RT
abtab

0 1

]
=

[
ṘabR

T
ab −ṘabR

T
abtab + ṫab

0 0

]
. (2.30)

Comparing that to the standard form of ξ̂ we get

vs
ab = −ṘabR

T
abtab + ṫab . (2.31)

If the instantaneous velocity is represented in the body frame of reference it is

V̂
b
ab = g−1

ab ġab =

[
RT

abṘab RT
ab ṫab

0 0

]
. (2.32)

This yields the translation velocity as

vb
ab = RT

ab ṫab =⇒ Rabv
b
ab = ṫab . (2.33)

The velocity vs
ab can be further rewritten as

vs
ab = −ωs

ab × tab + ṫab (2.34)

vs
ab = tab × (Rabωb

ab) + ṫab (2.35)

vs
ab = t̂abRabωb

ab + Rabv
b
ab . (2.36)

Therefore we can summarise this by

V̂
s
ab = ġabV̂

b
abġ
−1
ab (2.37)(

vs
ab

ωs
ab

)
=

[
Rab t̂abRab

0 Rab

](
vb

ab

ωb
ab

)
. (2.38)

This is transforming the se(3) representation in the body reference frame into the spatial

reference frame. This transformation matrix is called Adjoint:

Ada =

[
R t̂R

0 R

]
. (2.39)

i.e. Ada : g −→ g (2.40)

53

2. Mathematical Preliminaries

Where do we need it?

As shown before, transforming coordinate frames in Lie Algebra is via the Adjoint repre-

sentation. If this transformation is used within least squares minimisation, it may involve

taking the derivative of the parameters in spatial frame with respect to the body frame while

applying chain rule as done in [Comport et al., 2007], during hand-eye calibration process6

(e.g. gyro camera calibration) and it is

∂

(
vs

ab

ωs
ab

)

∂

(
vb

ab

ωb
ab

) =

[
R t̂R

0 R

]
. (2.41)

2.3 Camera Calibration

Camera calibration is an essential step in (a) understanding the imaging process and (b) if

we wish to use a camera asa a measuring device. This includes mapping of the geometric

structure to obtain the pixel location and scene radiance to the pixel value observed. To

associate the location of a pixel to the 3D point in the scene or the ray, a geometric calibration

procedure is required. On the other hand, the colour value of the pixel is obtained from

the scene radiance and surface properties of the object. Therefore, a similar calibration

procedure, radiometric calibration, is required that allows us to map the scene radiance

to the pixel colour value. We show in a block diagram in Figure 2.3 how a ray from the

scene gets mapped to a pixel location and colour value. We detail both calibrations in the

following, beginning with geometric calibration.

2.3.1 Geometric Calibration

How does a camera project a 3D point to the image plane? Camera geometric calibration aims to

find the parameters that relate the 3D point (x, y, z) to its projection on the image plane. The

camera projection is modelled by the well known pin-hole model that involves the projection

via a linear operator followed by normalisation by the z-coordinate to obtain the 2D image

6http://campar.in.tum.de/Chair/HandEyeCalibration

54

http://campar.in.tum.de/Chair/HandEyeCalibration

2.3. Camera Calibration

Figure 2.3: The camera image acquisition process explained. The incident ray when hits the surface
gets reflected according to the surface normal. It then undergoes lens distortion before hitting the
sensor plane (it is termed as Irradiance when it hits the sensor plane) where it is filtered according
to the colour and generates a corresponding voltage value. The voltage then is digitised to a pixel
value. This voltage also undergoes different distortions before it is digitised. The distortions are
often removed by appropriate calibrations. The distortions produced by a lens require geometric
calibration where the focal length, camera center and the distortion parameters are recovered while
the distortions added to the voltage value require a photometric calibration where an appropriate
Camera Reponse Function is obtained that gives the mapping of irradiance to pixel value.

projection.

πK

x

y

z

 = π

fu 0 u0

0 fv v0

0 0 1

x

y

z

 . (2.42)

Matrix K is standard camera calibration matrix with parameters fu and fv denoting the

focal lengths (in pixels) of the camera along the x and y axis while u0 and v0 denote

the corresponding locations of the camera’s center. π is the standard projection opera-

tor. Moreover, the camera lens introduces various distortions to the projection. Therefore,

the projection is not exactly at the expected location; instead it is at a distorted location.

We model our camera distortion by radial barrel distortion [Devernay and Faugeras, 2001,

Klein and Murray, 2007] and therefore the camera projection step can be rewritten as fol-

lows:

πK

x

y

z

 =
r
′

r
π

fu 0 u0

0 fv v0

0 0 1

x

y

z

 , (2.43)

r =

√
x2 + y2

z2 , (2.44)

r′ =
1
ω

arctan
(

2r tan
ω

2

)
. (2.45)

55

2. Mathematical Preliminaries

Camera geometric calibration then involves estimating these five parameters

(u0, v0, fu, fv, ω) from a set of images. We follow the procedure as shown in

[Klein and Murray, 2007] for the calibration.

2.3.2 Radiometric Calibration

How does the camera obtain the brightness value from the incident scene irradiance? Radiometric

calibration aims to answer exactly this question. The importance of radiometric calibration

has been largely stressed when creating High Dynamic Range (HDR) images from a set of

images taken with different exposure times. However, in camera tracking algorithms, most

often it is ignored and it is implicitly assumed that the camera irradiance and brightness are

linearly related. This is not always true and that a calibration is needed to work in the space

of irradiance where (a) imaging artefact have been removed (b) the dependence of intensity

on exposure time has been eliminated and also when modelling the camera noise that may

affect the tracker when high frame-rate is used.

Camera radiometric calibration involves estimating the response function, fCRF, that maps

the irradiance value, E, incident on the camera’s sensor cavity over a given time period ∆t,

to brightness value, B, observed in the image.

B = fCRF(E∆t) . (2.46)

The standard procedure as detailed in [Debevec and Malik, 1997] is to obtain images of a

static scene under different exposures and fit a second order function to obtain the response

function. Since f is monotonic and invertible we can map from a given brightness value and

shutter time via the inverse CRF f−1 back into irradiance. For each pixel i at shutter time

∆tj, we take the logarithm:

f−1
CRF(Bij) = Ei∆tj ; (2.47)

ln(f−1
CRF(Bij)) = ln(Ei) + ln(∆tj) . (2.48)

Denoting a notational short-hand g = ln(f−1
CRF) and together with the second order smooth-

ness that ensures that the response function is smooth, a cost function can be defined to

assess the quality of fit

ψ =

data term︷ ︸︸ ︷
∑ (g(Bij)− ln(Ei)− ln(∆tj))

2 +λ ∑
(

∂2

∂B2 g(B)
)2

︸ ︷︷ ︸
smoothness term

. (2.49)

56

2.3. Camera Calibration

Since the pixel values observed are discrete, the second order derivative used in the cost

function can be obtained via a standard 3-point stencil 7 as:

λ ∑(g(B− 1)− 2g(B) + g(B + 1))2 . (2.50)

The constant λ is used as a weighing factor to balance the smoothness term against the cost

associated with fitting the response function model on the data, commonly referred to as

data term — a large value of λ would lead to over-smoothed curve while a small value

would result in a curve that is very noisy, so a balance is sought usually by experimental

trails. Unknowns that we wish to find out can be stacked and compactly represented in a

vector x as:

x =

(
g

E

)
. (2.51)

where g and E are both column vectors

g =

g(1)

g(2)
...

g(2b)

 , E =

ln(E1)

ln(E2)
...

ln(Ei)

 , t = −

ln(∆t1)

ln(∆t2)
...

ln(∆tj)

 . (2.52)

yielding the corresponding matrices A described below as

A =

1 if i ≤ 2b and g(Bij) s.t. j ∈ e and i ∈ p

−1 if i > 2b and i ∈ p

0 otherwise

(2.53)

and the second derivative in the smoothness term can be described by the linear operator

∇2 matrix

∇2 =

1 −1 0

1 −2 1 . . . 0

0 1 −2 1 . . 0
...

...
...

...
. . .

...
...

0 0 0 0 . −1 1

. (2.54)

Therefore, the cost function ψ can then be rewritten as follows

ψ = (Ax + t)2 + λ(∇2x)2 . (2.55)
7A detailed explanation can be found here: http://en.wikipedia.org/wiki/Finite_difference_

coefficients

57

http://en.wikipedia.org/wiki/Finite_difference_coefficients
http://en.wikipedia.org/wiki/Finite_difference_coefficients

2. Mathematical Preliminaries

3000µs 7000µs

16000µs 80000µs

Figure 2.4: Left: A selection of images obtained from a real camera with varying shutter time
in microseconds. Red rectangles mark pixels manually selected to evenly sample scene irradiance
whose brightness values are captured and used as input to CRF estimation. All images taken with
zero gain and gamma off. Right: experimentally determined Camera Reponse Function (CRF) of
our Basler piA640-210gc camera for each of the R, G and B colour channels with zero gain and
gamma switched off using the method of [Debevec and Malik, 1997]. This camera has a remarkably
linear CRF up until saturation; over most of the range image brightness can be taken as proportional
to irradiance. Note that the irradiance values determined by this method are up to scale and not
absolute.

Using a notational shorthand C = ∇2 and minimising with respect to x leads to the following

system of linear equations

AT(Ax + t) + λCT(Cx) = 0 =⇒ x = −(ATA + λCTC)−1ATt . (2.56)

To calibrate our camera, we captured multiple images of a static scene with a range of

known shutter times (see the left side of Figure 2.4), recording the changing brightness val-

ues at a number of pixel locations chosen to span the irradiance variation in the scene. Using

measurements of 35 image pixels at 15 different shutter times, we solve for a parameterised

form of f−1 under the L2 error norm with a second order smoothness prior. Figure 2.4

(right) shows the remarkably linear resulting CRF (camera gamma setting disabled) for the

Basler piA640-210gc camera tested.

It is worth stressing that we only obtain f−1 up to scale and not in absolute irradiance

units. However, as [Debevec and Malik, 1997] mention, it is possible to obtain irradiance in

absolute units if we know more physical parameters of the camera. In our experiments, we

normalise the brightness and as a result obtain the normalised irradiance.

58

2.4. POVRay Mathematics

2.4 POVRay Mathematics

We have used synthetic ray-tracing software, POVRay, to obtain ground-truth depth-map

as well as the camera poses, in this thesis. The ray-tracer provides only the euclidean

distance of a point in 3D to the camera as the ground-truth depth information. In our

experiments, we need actual 3D coordinates from this depth information to be able to map

them from one camera reference frame to the other. The next subsection describes the

technical details associated with the conversion of this depth information to the z coordinate

required. The subsequent subsections provide the code snippets for conversion of various

meta-data provided by POVRay to the matrices needed often in computer vision.

2.4.1 Planar Depth from Euclidean Distance

Figure 2.5 illustrates the conversion of euclidean distance to depth (z-coordinate). Using

identities from similar triangles one can relate the euclidean distance of the 3D point to the

euclidean distance from the camera to its corresponding pixel location (xi, yi) 8 on the image

plane, di.

Figure 2.5: The euclidean depth provided by POVRay is converted to planar depth for our exper-
iments. All rays converge to the camera. di denotes the euclidean distance from the camera to the
pixel.

8The subscript i stands for association of a variable with image.

59

2. Mathematical Preliminaries

2.4.2 Getting Camera Parameters

function K = getcamK(cam_file)

f = fopen(cam_file, ’r’) ;

if f ~= -1

script=char(fread(f, inf, ’uchar’)) ;

eval(script) ;

fclose(f) ;

end

focal = norm(cam_dir) ;

aspect = norm(cam_right) / norm(cam_up) ;

angle = 2*atan(norm(cam_right)/2 / norm(cam_dir)) ;

height = 480; %cam_height

width = 640; %cam_width

% pixel size

psx = 2*focal*tan(0.5*angle)/width ;

psy = 2*focal*tan(0.5*angle)/aspect/height ;

psx = psx / focal;

psy = psy / focal ;

Sx = psx;

Sy = psy;

Ox = (width+1)*0.5;

Oy = (height+1)*0.5;

f = focal;

K = [1/psx 0 Ox;

0 1/psy Oy;

0 0 1];

K(2,2) = -K(2,2);

end

60

2.4. POVRay Mathematics

2.4.3 Getting Camera Poses

function [R T] = computeRT(cam_file)

f = fopen(cam_file, ’r’) ;

if f ~= -1

script=char(fread(f, inf, ’uchar’)) ;

eval(script) ;

fclose(f);

end

z = cam_dir / norm(cam_dir);

x = cross(cam_up,z);

x = x / norm(x);

y = cross(z,x);

R = [x y z];

T = cam_pos;

end

2.4.4 Sample Camera File

cam_pos = [149.376, 451.41, -285.9]’;

cam_dir = [0.421738, -0.409407, 0.809026]’;

cam_up = [-0.0482194, 0.880868, 0.470899]’;

cam_lookat = [0, 0, 1]’;

cam_sky = [0, 1, 0]’;

cam_right = [1.20423, 0.316017, -0.467833]’;

cam_fpoint = [0, 0, 10]’;

cam_angle = 90;

61

2. Mathematical Preliminaries

2.4.5 Compute 3D positions

function [x,y,z] = compute3Dpositions(txt_file,depth_file)

K = getcamK(txt_file);

fx = K(1,1);

fy = K(2,2);

u0 = K(1,3);

v0 = K(2,3);

u = repmat([1:640],480,1);

v = repmat([1:480]’,1,640);

u_u0_by_fx = (u - u0)/fx;

v_v0_by_fy = (v - v0)/fy;

z = load(depth_file);

z = reshape(z,640,480)’ ; %z is radial

z = z ./ sqrt(u_u0_by_fx.^2 + v_v0_by_fy.^2 + 1);

x = ((u-u0)/fx).*z;

y = ((v-v0)/fy).*z;

end

62

Chapter 3

Tracking Sparse Features

Contents

3.1 Introduction . 64

3.2 The Active Matching Paradigm . 67

3.3 Feature Matching Priors . 70

3.4 CLAM: Chow Liu Active Matching . 72

3.5 SubAM: Subset Active Matching . 76

3.6 Assumptions . 76

3.7 Results . 81

3.8 Conclusions . 85

This chapter elaborates the joint work with our colleague and mentor Dr. Margarita Chli

which led to a publication in Computer Vision and Pattern Recognition Conference in 2010.

The idea of sparsifying graph into Chow-Liu tree (named CLAM) was developed by them.

Ankur Handa, Margarita Chli, Hauke Strasdat, Andrew J. Davison (2010). Scalable Active

Matching. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR).

In this chapter, we focus on matching sparse point features aided by the correlations

present among them that may come from the 3D structure and the camera motion. The

underlying method that is developed very much stresses on the usage of the prior informa-

tion that when injected reduces the space of possible feature matches (and potential false

positives) and thereby leads to efficient matching.

63

3. Tracking Sparse Features

3.1 Introduction

The task of image to image correspondences or model to image correspondences lies greatly

at the heart of many problems that deal with estimating the transformation between images

or pose of the moving entity. Particularly, in our sparse-SLAM style framework, camera

tracking, which is performed by establishing correspondences between the sparse 3D model

and their corresponding locations in the image forms the front-end of the system. In many

such tasks and particularly in real-time tracking from video which we wish to focus on,

there are generally strong priors available on absolute and relative correspondence locations

largely due to camera motion models and 3D scene models.

3.1.1 Matching Using Priors

In most RANSAC style approaches, the first stage that establishes correspondences treats

each candidate matching location independently and as a result the search of correspon-

dence of these features is also carried out independently. Once putative correspondences

are found for these features, a model of camera motion (or in general parameter model) is

fit in the next stage to sift out the correspondences that agree with the model from this set

— generally termed as inliers. Hence, the priors which we wish to use have been given very

little or no attention in the past in approaches that establish correspondences.

Attempts have also been made to retrofit RANSAC algorithms with probabilistic tests

and updates in the loop, leading to semi-probabilistic variants, for instance, KALMANSAC

[Vedaldi et al., 2005], Guided-MLESAC [Tordoff and Murray, 2005] and 1-point RANSAC

method [Civera et al., 2009]. [Raguram et al., 2009] also recently showed that modelling the

uncertainty in the processes involved can greatly improve the quality of the RANSAC out-

come. However, parts of these algorithms remain ad-hoc and unsatisfactory as they do not

exploit the correlation of feature locations that can greatly aid the matching task. What

we wish to focus on is a prior driven approach that side-steps the two stage procedure of

RANSAC and does a global/joint estimation of correspondences and model parameters in

the same loop. If the data was perfect and that there existed one and only one match per

feature, it can be easily shown that using an Active Search approach [Davison, 2005], with

decisions guided by Information theory, one can efficiently lock down the feature matches

searching parsimoniously than independently searching for each feature in a defined search

region. More sophisticated and improved decisions can be made about matching if we know

64

3.1. Introduction

the joint probability distribution of the features. The fact that in real time matching such

priors can be trivially obtained from motion-models or 3D scenes makes this approach quite

an appealing one. However, the Active Search approach was only a synthetic experiment to

demonstrate the strength of the approach that does not treat each feature independently.

Active Matching [Chli and Davison, 2008] that emerged as the successor of Active Search

dealt with its inability to handle more than one match for a feature by maintaining hy-

pothesis for each feature match found. It is again an Information Theory driven approach

that borrows all the related formal theory from Active Search and decides the best feature

and the best hypothesis to measure based on the expected Information gain in the loca-

tion of the remaining features. This is in contrast to the decisions made in the first stage

of RANSAC style methodologies where a fixed threshold is used to find out only the best

quality match. The hypotheses are maintained in the form of Gaussian distributions repre-

sented by the mean of the feature locations and the covariances denoting the search region

around which we expect the feature to lie in. The cross-covariance elements denote the

degree of dependencies of features among each other. Therefore, each feature measurement

means updating these covariance matrices via standard bayesian update rule to absorb the

information gained. Successive measurements provide evidence to either refute or boost a

given hypothesis leading to finding the best hypothesis within the loop of search for feature

matches instead of a two-step approach taken in RANSAC style methods.

In limit, ultimate performance in matching is represented by the determination of a fully

dense correspondence field between images, or at least between parts of them which observe

common regions of the scene. It is feasible to aim to obtain such dense correspondence

information in cases where it can be assumed that the changes between two images to be

matched are relatively small. This is the subject of the well known field of optical flow

estimation, and there have recently been significant advances in this area. For instance,

highly impressive results have been achieved in fully dense optical flow using variational

optimisation, achieving real-time operation on the latest GPU processors [Zach et al., 2007].

In such methods, the assumption of small motion permits highly effective regularisation

terms to ‘fill in’ the correspondence field, even in areas of low texture.

The regularisation term in optical flow algorithms is one example of a prior used in match-

ing, encoding usually the assumption that the inter-frame displacement of nearby pixels will

tend to vary gradually in regions of gently varying image intensity, since most scenes con-

sist of real continuous objects relative to the size of which any motion (of scene or camera)

is fairly small. Matching over wider baselines, or without such lavish processing resources,

65

3. Tracking Sparse Features

cannot usually aim to be completely dense. Instead, correspondence is generally sought

only between salient ‘features’, parts of the image which can be characterised by descriptors

with some degree of invariance to transformations. In sequential camera tracking, although

frame-to-frame camera motion may be small, it is desirable to track features through as

many frames as possible to best constrain camera motion estimates.

Once the aim of fully dense correspondence is reduced to that of matching a set of distinct

features spread across the image, of course priors are still available on the image locations

of these features. The level of prior information which will be available depends strongly on

the domain knowledge present in the problem. Suppose that it is desired to match features

between two images and all that is known is they are consecutive video frames taken by

a moving camera — then the priors we can assume will be a distributed version of those

used in optical flow estimation. On the other hand, when matching as part of sequential

camera tracking system with rolling 3D camera and position estimates, strong correlated

predictions of the image positions will be available.

This was precisely the situation where Active Matching (AM) algorithm

[Chli and Davison, 2008, Chli and Davison, 2009a] was demonstrated, as the matcher

in a filtering-based monocular Simultaneous Localisation and Mapping (SLAM) sys-

tem [Davison et al., 2007]. Matching priors are built into the heart of this algorithm. The

joint distribution on feature locations they predict is explicitly projected into the image,

used to make decisions guided by information theory about which features to measure

when, and incrementally refined towards a matching posterior as measurement results

come in. Using a mixture of Gaussians representation to represent and refine multiple

hypotheses, and taking into account of per-feature appearance statistics if required, AM

demonstrated similar accuracy but much improved computational performance compared

to the older probabilistic technique for data association Joint Compatibility Branch and

Bound (JCBB) [Neira and Tardós, 2001].

While AM is therefore technically appealing, detailed performance analysis presented in

[Chli and Davison, 2009a] has revealed its poor scalability of the with the number of fea-

tures to be matched per frame. AM or other fully probabilistic matching algorithms have

previously not proven their ability to handle hundreds of matches in real-time due to the

costly overhead of intermediate Bayesian calculations. RANSAC and variants gain ground

in making random decisions simply because there is as such no need to maintain any hy-

pothesis information or big matrices to encode correlations. Therefore, AM’s weakness was

that the overhead induced by intermediate Bayesian updates required meant poor scaling to

66

3.2. The Active Matching Paradigm

cases where many correspondences were sought. We later show that relaxation of the rigid

probabilistic model of AM, the fully dense canonical graph of correlations, where every fea-

ture measurement directly affects the prediction of every other, permits dramatically more

scalable operation without affecting accuracy. We take a general graph-theoretic view of

the structure of prior information in matching to sparsify and approximate the interconnec-

tions. We demonstrate the performance of a new variation, termed as SubAM (subset Active

Matching), in the context of sequential camera tracking. This algorithm is highly competi-

tive with other techniques at matching hundreds of features per frame while retaining great

intuitive appeal and the full probabilistic capability to digest prior information.

In the following we briefly review the mathematical minutiae related to Active Matching,

the computation of Information a feature can provide, and the predict, update rules for the

necessary information gained on measuring a feature.

3.2 The Active Matching Paradigm

A naı̈ve approach to matching features that is most commonly used in wide baseline match-

ing, begins with the assumption that no prior information is available about the relations

among features, treats each feature independently before relegating the burden of sifting

wrong matches out from inliers to a next stage that fits either the parameter model to re-

cover the transformation between two images or 6DoF camera pose motion model.

Not only does this kind of matching rely on very minimal or no prior information, but

also loses the ability to handle mismatches in the first stage. In most cases, particularly

when dealing with image stream coming from a moving camera, it would be incredibly

naı̈ve not to exploit the prior information. Such prior usually is available in the form of

joint probability distribution of the location of 3D features in the image. Active Matching

targets exactly this sort of matching where prior information is readily available and can

be used to constrain the matching task. Particularly, when a feature is matched, the joint

probability distribution allows to constrain the uncertainty of other features that are yet

to be measured. Repeated trails of such matching procedure progressively decrease the

uncertainty of the location of the unmeasured features and very quickly one arrives to a

point where one becomes nearly very certain of the location of the rest of relatively many

unmeasured features.

Given a new image, AM [Chli and Davison, 2008] sets its initial matching search-state to

67

3. Tracking Sparse Features

(a) (b) (c) (d)

Figure 3.1: A mini example of AM [Chli and Davison, 2008]. The initial search-state G1 in
(a) describes the expected configuration of matches. In (b) a search is made for the top-left
of the four predicted features, and the two candidate matches found cause the spawning of
new Gaussian hypotheses G2 and G3, pushing the weight λ1 of G1 down (illustrated in the
histogram). A failed search in G3 in (c) reduces λ3, while the match in (d) spawns G4 which
becomes the dominant hypothesis.

the input probabilistic prior p(z) over the image locations z = (za, zb, . . .)> of the measur-

able features. The evidence gathered by measuring features one-by-one causes progressive

updates in the search-state. A mixture of Gaussians is employed to handle the multiple

matching-hypotheses arising. Each Gaussian Gk has an associated probability λk of repre-

senting the true scenario:

p(z) =
K

∑
k=1

p(zk) =
K

∑
k=1

λkGk, where
K

∑
k=1

λk = 1 (3.1)

where we have now used the further notational shorthand Gi = G(xi
m,Pxi

m
). The algo-

rithm follows a predict-measure-update loop which terminates when all features have been

searched for and the mixture converges to a probabilistically dominant Gaussian. The priors

that arise from representing the joint probabilistic distribution modelled by Gaussians over

the positions of the features and camera pose represented in a state vector shown below:

x̂m =

x̂

z1

z2
...

 =

x̂

h1(x̂)

h2(x̂)
...

 ,Pxm =

Px Px

∂hT
1

∂x Px
∂hT

2
∂x

∂h1
∂x Px

∂h1
∂x Px

∂hT
1

∂x + R1
∂h1
∂x Px

∂hT
2

∂x
∂h2
∂x Px

∂h2
∂x Px

∂hT
1

∂x
∂h2
∂x Px

∂hT
2

∂x + R2
...

...
...

 (3.2)

The lower-right portion of Pxm representing the covariance of is known as the innovation

covariance matrix S in Kalman filter tracking. The correlations between different candidate

measurements mean that generally S will not be block-diagonal and contains off-diagonal

68

3.3. Feature Matching Priors

correlations between the predicted measurements of different features. With this single

Gaussian formulation, the mutual information in bits between any two partitions α and β of

xm can be calculated according to this formula:

I(α; β) =
1
2

log2
|Pαα|

|Pαα − PαβP
−1
ββPβα|

(3.3)

where Pαα, Pαβ, Pβα and Pββ are sub-blocks of Pxm . This representation however can be

computationally expensive as it involves matrix inversion and multiplication so exploiting

the properties of mutual information we can reformulate into:

I(α; β) = H(α)− H(α|β) = H(α) + H(β)− H(α, β) (3.4)

=
1
2

log2
|Pαα||Pββ|
|Pxm |

(3.5)

Below we describe each of these stages briefly which can be visualised in the example of

Figure 3.1:

• Predict: Evaluate the expected utility (in terms of mutual information) of all mea-

surement candidates in terms of how much they should help to resolve the ambiguity and

decrease variance in the mixture.

• Measure: Search for template matches corresponding to the candidate predicted to

provide the most mutual information per pixel needed to search (i.e. its 3σ gated ellipse).

• Update: Redistribute the weights according to the new evidence obtained (e.g. if no match

was found, then λi of the measured Gi should diminish). If the measurement stage yields

M matches, M new Gaussians get spawned each to represent that one of these matches

corresponds to the true feature, while Gi is updated to represent that all M matches are

false-positives. Finally, any Gaussians with very weak weights get pruned off the mixture.

These three steps are performed repeatedly until all the features are measured in the most

dominant Gaussian. While AM exhibits great robustness to mismatches following the prob-

abilistic maintenance of hypotheses, it spends precious processing time into ‘thinking’ of

where to look for matches next. Following this realisation, here study different sparsifica-

tions of the joint input prior to provide more scalability to the matching as illustrated in

Figure 3.2 and 3.3.

69

3. Tracking Sparse Features

(a) Complete Graph (b) Tree of clusters (c) Tree of nodes

Figure 3.2: Representing matching priors, the predicted joint distribution over image fea-
ture locations as a graph, and sparsifying it for efficiency. Considering this distribution as
a graph of measurement predictions and correlation potentials, we aim to sparsify the com-
plete graph as considered in AM with a tree of clusters in SubAM and a tree of nodes in
CLAM.

Figure 3.3: Approximating the joint prior distribution over feature predictions in matching
using graphs. In our algorithms we simplify a fully connected graph to a unit-width tree
(CLAM), or a tree of subsets (SubAM) to achieve real-time matching of many features.

3.3 Feature Matching Priors

Matching priors are expressed as a joint distribution on the predicted positions of features

in an image before any image processing is done. Generally, these priors encode strong cor-

relation information between the predictions which is the key to robust consensus matching.

We describe in the following general connectivity rules and updates in the graph.

70

3.3. Feature Matching Priors

3.3.1 Probabilistic Predictions in a Graph

The effect of correlations can be visualised as a network of springs connecting feature pre-

dictions. Pinning down the exact location of one feature in the image za will result in an

associated shift in the rest of the predictions. Formalising this analogy, we consider the

joint prior p(z) as a general graph structure where nodes correspond to individual feature

predictions za and edges represent the correlation potentials between these nodes.

In order to model p(z) with a Gaussian G = {ẑ, S} we construct the mean ẑ and covariance

matrix S consulting the input graph structure: each partition ẑa holds the predicted image

location of node za, while block Saa
1 describes the uncertainty in ẑa. The potential of the

link shared between za and zb is stored in Sab.

While in principle S is a dense matrix we need not estimate the covariance blocks of any

nodes not sharing direct links as these links will never be used to propagate information (as

shown in Figure 3.2). Note that in the language of Kalman filter tracking, S is the ‘innovation

covariance’ and is explicitly available at every frame.

3.3.2 Mutual Information Between two Candidates Feature Locations

AM looks for matches on demand while searching for consensus in a process driven by

Mutual Information (MI): at every step it chooses to measure the candidate predicted to

provide the highest MI to the current matching state, divided by the number of pixels

needed to search for image processing. As defined in Shannon Information Theory, MI

provides a measure of the expected reduction in uncertainty in the current state upon part

observation of this state.

How much information is a potential measurement for zb predicted to provide to predic-

tion za? The Pairwise MI score quantifies this information as:

I(zb; za) = E
[

log2
p(za|zb)

p(za)

]
=

1
2

log2
|Saa||Sbb|
|Sa,b|

, (3.6)

where Sa,b is the joint covariance of both za, zb. As explained in [Chli and Davison, 2009b]

this score provides an absolute, normalised measure of the correlation between any two

measurement candidates. Transforming all the correlation potentials into Pairwise MI links,

we can form a ‘MI graph’. It is important to note here that the MI score used in AM
1Saa describes an ellipse in image space, often referred to as the ‘active search’ region for feature za

71

3. Tracking Sparse Features

is different as there we consider the information shared between zb and the rest of the

candidates in z (i.e. I(zb; za, zc, . . .)).

3.4 CLAM: Chow Liu Active Matching

As a first attempt to tackle the costly manipulation of large, dense matrices in AM we

considered thinning the complete graph of the joint prediction p(z) into a singly-connected

tree as in Figure 3.2(c). While this can indeed be a big approximation, careful selection of

the edges preserved can be very beneficial to the closeness of approximation.

3.4.1 The Chow-Liu Tree

A joint density over z = (z1, z2, . . . , zn)
> can be approximated with to a tree-shaped model

via factorisation:

p(z) = p(zn)
n−1

∏
i=1

p(zi|zi+1 . . . zn)≈ p(zn)
n−1

∏
i=1

p(zi|zi+1). (3.7)

Out of all such tree factorisations, Chow and Liu [Chow and Liu, 1968] showed that the

optimal approximation can be formed by retaining the links corresponding to the maximum

spanning tree2 of the complete MI graph (as defined in Section 3.3.2).

Inspired by the power of the Chow-Liu (CL) tree to capture the most representative cor-

relation structure in the scene in [Chli and Davison, 2009b], here we propose using it to

represent the distribution of expected feature locations input to AM in our new Chow Liu

Active Matching (CLAM) algorithm. While in AM the update stage involves costly EKF-

updates, the simple tree structure in CLAM allows Belief Propagation (BP) updates of O(n)

in the worst case.

3.4.2 Belief Propagation for CLAM

Given observations for some tree nodes, BP provides exact inference computing marginals

for all other nodes by recursively propagating messages along the tree. Bishop

[Bishop, 2006] discussed how a full update requires two passes of the tree (from the leaves

2The acyclic path connecting all nodes in a weighted graph which yields the maximal sum of weights.

72

3.4. CLAM: Chow Liu Active Matching

to the root and back) so that every node receives updates from all its neighbours. However,

here we only observe one node at a time which permits updates in a single pass by desig-

nating the measured node as the root and propagating messages all the way to the ends of

the tree.

The key idea behind the BP methodology is the exploitation of the properties of d-

separation: there is only one path between any two nodes in the tree, hence an update-

message originating from observed node za is bound to update the probability distributions

of any intermediate nodes in the way until it reaches its final destination, node zc.

Propagating Updates

Let us consider the case that the joint distribution p(z) of this tree is described by a Gaussian

G = {ẑ, S} partitioned as follows:

ẑ =

ẑa

ẑb

ẑc

 , S =

Saa Sab Sac

Sba Sbb Sbc

Sca Scb Scc

 . (3.8)

Given the observation za = a, applying Schur’s complement on the S we can obtain the

conditioned covariance:[
Sbb|a Sbc|a
Scb|a Scc|a

]
=

[
Sbb Sbc

Scb Scc

]
−
[

Sba

Sca

]
S−1

aa

[
Sab Sac

]
, (3.9)

while similar update-rules apply for the means vector:

(
ẑb|a
ẑc|a

)
=

(
ẑb

ẑc

)
−
[

Sba

Sca

]
S−1

aa (ẑa − a) . (3.10)

However, the block Sca
3 is not explicitly known since za does not share a direct link with zc.

Considering the effect of propagating a measurement for zb instead and enforcing Sca|b = 0

(since za|b and zc|b become independent), one can arrive to the expression Sca = ScbS
−1
bb Sba.

Substituting for Sca back to (3.9) and (3.10) it becomes evident that:

3Note that Sca = S>ac since S is symmetric

73

3. Tracking Sparse Features

Scc|a = Scc − ScbS
−1
bb

(
Sbb − Sbb|a

)
S−1

bb Sbc (3.11)

Sbc|a = Scc − ScbS
−1
bb

(
Sbb − Sbb|a

)
(3.12)

ẑc|a = ẑc − ScbS
−1
bb

(
ẑb − ẑb|a

)
. (3.13)

The above expressions demonstrate the recursive nature that the updates can have, since

when evaluating p(zc|za) one can use the moments {ẑb|a, Sbb|a} of p(zb|za). Hence, S needs

to contain explicit entries only for nodes sharing a direct link in the CL-tree. Interestingly,

upon successful measurement of a feature zb, then the Gaussian spawned to represent the

hypothesis that the match obtained is a true-positive will have zero S-blocks for the links

of zb to zero, essentially isolating zb from the rest of the tree. As a result, the problem of

matching is progressively broken down in smaller sub-trees reducing the computation time

greatly.

Evaluating MIs

The flow of information along the branches of tree using BP has even more attractive prop-

erties when evaluating MIs of candidates. Let us consider the MI that za can give to the rest

of the tree nodes in our tree example above:

I(zb; za, zc) =
∫

z
p(za, zb, zc) log2

p(zb, zc|za)
p(zb, zc)

dz . (3.14)

Applying Bayes’ rule on the ratio inside the logarithm:

p(za, zb, zc)
p(za)p(zb, zc)

=
p(za)p(zb|za)p(zc|zb)

p(za)p(zb)p(zc|zb)
=

p(zb|za)
p(zb)

. (3.15)

The general rule that arises from further investigation into more complex tree structures

is that the MI of a given node with the rest of the variables in a tree is equal to the MI it

shares with its immediate neighbours alone. As a result, the evaluation of MIs in CLAM

becomes trivial: the costly manipulation of the full covariance matrix necessary in AM

gets replaced by a few fast message-passing operations within the sub-tree spanning the

candidate node and its immediate neighbours only. Moreover, due to the partitioning of

the tree into smaller sub-trees while matching, the MI scores of any sub-trees not updated

within a particular matching-iteration can be carried forward to the next step.

74

3.4. CLAM: Chow Liu Active Matching

(a) Initial state: the CL tree (b) Propagate 1st measurement (c) Failed search for a match

(d) Measure a hub-like feature (e) Updated state (f) Searched area

Figure 3.4: Matching using CLAM. The prior distribution and the computed CL tree are
illustrated in (a). The arrow points at the feature selected for measurement by MI. Propa-
gating the match found in (a) results in cuts of links in (b) and reduction of variance for the
rest of the features. The match found in (b) yields updates in (c) for that subtree only. The
failed search for matches in (c) preserves the same tree structure in (d). Finally (f) demon-
strates the reduced regions searched in CLAM w.r.t. conventional methods like RANSAC
or JCBB. Note that the CL tree links projected in every image correspond to the most prob-
able Gaussian for the sake of clarity, while more Gaussians emerged in the mixture during
matching.

3.4.3 CLAM: A Step-By-Step Example

Figure 3.4 illustrates a step-by-step example of the way CLAM works within a given frame.

Given the joint prior p(z), we compute all the pairwise MI links and then sparsify the MI

graph to form the CL tree as shown in Figure 3.4(a). Any features tracked consistently and

moving coherently throughout the sequence share strong correlations hence they lie close to

each other in the tree space (e.g. the features on the checker-board). Following the measure-

ment of the hub-like feature selected by MI in 3.4(b), we propagate update-messages causing

reductions in uncertainty of different magnitude to all other nodes depending on their close-

ness in the tree structure. Since no more information can now be passed though the matched

node, any links connecting it to the rest of the tree can be cut. As a result, matching is es-

sentially partitioned into subtrees corresponding to different parts of the image, which are

highly intercorrelated. Subsequent measurements and updates of the distribution result in

successful matching for this frame as shown in (f) where the searched regions of CLAM and

75

3. Tracking Sparse Features

traditional methods like JCBB are superimposed.

3.5 SubAM: Subset Active Matching

The tree approximation of the joint prior in CLAM achieves a dramatic reduction in tim-

ings with respect to AM as demonstrated in Section 3.7 allowing real-time matching for

hundreds of features. However, due to the fact that MI guides the division of the matching

problem into smaller subtrees no particular care is taken to balance the size of the partitions.

As a result, CLAM becomes unsuitable for super-dense online matching. Following this re-

alisation, we developed Subset Active Matching (SubAM) which explicitly aims at balanced

partitions into subsets connected in a tree (e.g. Figure 3.2(b)). All correlation links between

features of the same subset are preserved as well as any links shared by features belonging

to subsets in the order they get measured.

3.6 Assumptions

We have used the following assumption while carrying out our experiments.

1. The correlations can come from a prior information coming from a either a SLAM

system or an algorithm that maintains the history of the pixels or features seen so far.

2. These correlations are generally stronger compared to the standard regularisation pri-

ors generally used in optical flow and stereo matching. Most importantly, they also

capture the long range dependencies among pixels locations, which is generally cap-

tured by series of conditionally dependent short range dependencies in standard opti-

cal flow methods.

3.6.1 The SubAM Algorithm

Our new SubAM algorithm aimed at matching relatively larger set of features works by

matching in clusters of features progressively. To obtain clusters (we used clusters and sub-

sets interchangeably here), we construct Chow-Liu tree from the input prior G1 and then

form groups of features (‘subsets’) by considering their proximity in the tree: given a target

76

3.6. Assumptions

group-cardinality c (represents a trade off between timings and goodness of the approxi-

mation), we place partitions at nodes where the number of their descendants not already

grouped is ≥ c− 1. Note that this strategy can lead to subsets smaller than c, however we

maintain that the minimum size is strictly cmin. This is exposited in Figure 3.5. Although we

believe a more sophisticated algorithm could be designed to obtain clusters, we found that

our heuristic method quite satisfactory in our experiments purely for the sake of efficiency.

Similar ideas to that in SubAM have been used in other recent matching algorithms which

Figure 3.5: The Chow-Liu tree in the first stage is used to cluster the features and a new
cluster tree is built that maintains the similar edge structure as the Chow-Liu tree maintained
at the root nodes of the cluster. The traversal on the tree is depth first order so that clusters
having nodes with high connectivity are visited first. In order to ensure that the algorithm
does not get quickly over-confident we maintain the Gaussian hypotheses for a longer period
by keeping a very small threshold for pruning.

perform matching cluster-by-cluster. The N3M algorithm [Hinterstoisser et al., 2007] de-

fines groups of nearby features which have one more than the minimum number of feature

members needed to offer their own consistent pose estimate, but these definitions are not

77

3. Tracking Sparse Features

as rigorously founded as our information theoretical measures. [Chum and Matas, 2005] in

their PROSAC provide an approach to speed up the standard RANSAC based matching by

randomly sampling from set of features selected based on the quality scores. All features are

ranked based on their quality score. Under the assumption that features with high quality

score are more likely to be correct, PROSAC begins with a smaller set of these features and

progressively adds in more features so that high quality sets are tested earlier to speed up

RANSAC. GroupSAC [Ni et al., 2009], on the other hand, clusters candidate features based

on cues such as similar optical flow vectors. However, such clustering relies on exactly the

kind of blanket image processing which we wish to side-step in our method. Instead, we

show that useful clusters for matching can be determined just from matching priors, before

the image data has even been accessed. Such sort of clustering captures the essence of de-

pendencies of features within and among them. Below we describe our SubAM algorithm

in the form of pseudo code and outline the various different stages it goes through:

SubAM(G1)

1 mixture = [[1, G1]] (each entry is a [λi, Gi] tuple)

2 T = find tree of subsets(G1)

3 V = [] (to hold all subsets visited by SubAM)

4 for ∀ si ∈ T (selecting si in a depth-first manner)

5 mixture = AM(mixture, si)

6 V = append(si, V)

7 Gbest = get most probable G(mixture)

8 while ∃ f ∈ V: is unmeasured(f,Gbest)

9 sj = get subset of f(f)

10 mixture = AM(mixture, sj)

11 Gbest = get most probable G(mixture)

12 end while

13 end for

14 return Gbest

Having formed the tree T of subsets si (preserving the same hierarchy as in the CL tree)

we attempt matching of subsets progressively postponing the propagation of updates until

a given cluster is measured. Starting with the root subset, we traverse T in a depth first

manner and perform full AM but only limited to features in the examined si. This means

that while each Gaussian in the mixture has a representation for every feature in the image,

one AM process is only allowed to operate within the part of each Gaussian corresponding

78

3.6. Assumptions

to the features in si. Following an AM step, the most probable Gaussian of the mixture Gbest

is checked for any unmeasured features belonging to already visited subsets V.If Gbest has

all visited features measured, then we can confidently propagate the probabilistic state to

the next subset, otherwise the algorithm seeks to measure the features until all the features

in all the visited subsets have been measured. Note that in the latter case, the nature of

the matches obtained might reveal a different Gaussian as the most probable one, leading

to a reassignment of Gbest. Figure 3.6 shows the propagation of Gaussians among clusters.

Gaussians G2 and G3 are spawned by Gaussian G1 and as a result inherit all the matches

obtained so far by G1. Gaussian G3 gets propagated to the next cluster and spawns Gaussian

G4 that finds all the matches in the cluster and also inherits the matches of G3 which in turn

inherits the matches of G2 and G1. Figure 3.7 shows another example where a previously

low-weighted hypothesis gains weight and that leads to going back to measuring clusters

using that Gaussian.

1 2 3 4 5 6 7F F F F F F F F8F9F10F11F12F13F14F15F16
G1

G2

G3

G4

G5

G6

Figure 3.6: Gaussians in SubAM get propagated amongst clusters by initialising an Active
Matching instance with those Gaussians as inputs. As matching progresses, weights of these
Gaussians adapt accordingly with new Gaussians spawned when if necessary.

79

3. Tracking Sparse Features

1 2 3 4 5 6 7F F F F F F F F8F9F10F11F12F13F14F15F16
G1

G2

G3

G4

G5

G6

Figure 3.7: An instance when the a weak Gaussian hypothesis gains confidence and leads
to propagating the matches backwards in the visited cluster and completes the matching in
that cluster.

3.6.2 SubAM: A Step-By-Step Example

Figure 3.8 illustrates a step-by-step example of SubAM in action. The CL tree and the subset

structure for this frame is projected in Figure (a). Following the application of AM on

subset s1, the resulting mixture comprises the input to the new AM process to operate on

s2 as demonstrated in (b). By the time s3 is visited, the mixture contains a single Gaussian

projected as small search-regions for the features in s3 in (c). Since subsets are visited

sequentially, their state is updated on demand so any yet-unmeasured subsets retain their

original search-state. Finally, in (f) we superimpose the area searched by SubAM, with

the area that conventional methods would apply look for matches. It is worth noting that

the bigger the subsets, the better the approximation but also the more time AM needs

to complete. Moreover, if subsets are very small then it becomes more likely to generate

erroneous hypotheses, so one has to select a suitable c to compromise the desirable speed

with the quality preserved.

80

3.7. Results

(a) CL tree and subsets (b) Inital AM state in subset s2 (c) Ambiguity resolved

(d) AM in s4 (e) AM in s7 (f) Searched area

Figure 3.8: Matching using SubAM. The prior is projected in (a) together with the CL tree
and the partition into subsets. The mixture resulting from AM in s1 is projected to s2 in (b)
where a new AM process is initialised. In (c) the ambiguity is resolved and AM is attempted
in s3. In (d) and (e) AM is applied to subsequent subsets until all features are matched. In (f)
we superimpose the regions searched by SubAM with the initial regions that conventional
methods like JCBB need to search.

3.7 Results

To test the capabilities of the CLAM and SubAM algorithms, we have generated a test-

bed of matching scenarios spanning different camera dynamics and numbers of features.

Since probabilistic filter-based camera trackers such as [Davison et al., 2007] are unsuitable

for processing the number of correspondences which we aim at here, we have based our

experiments on a new camera tracking system using keyframe optimisation, following very

much the design of PTAM [Klein and Murray, 2007]. In all experiments presented we detect

FAST features [Rosten and Drummond, 2006] as the only blanket pre-processing, and save

the 24× 24 surrounding image patches as descriptors. Following the low-cost detection of

FAST peaks in a given image (around 2ms for a 640 × 480 image) we check for template

matches of features using ZNCC within the search-regions determined by the matching

algorithm. We evaluate the performance of CLAM and SubAM with respect to AM by

feeding exactly the same input predictions to all three algorithms.

81

3. Tracking Sparse Features

3.7.1 Obtaining Matching Priors from Optimisation-based Camera Tracking

While matching priors are straightforwardly obtained from the innovation covari-

ance matrix S calculated at every step in filtering-based camera trackers such as

MonoSLAM [Davison et al., 2007], we need to work a little to obtain them from the alter-

native keyframe optimisation trackers in the style of PTAM [Klein and Murray, 2007] which

we use in our experiments.

Such a camera tracker does not store distributions over feature positions due to prohibitive

computational cost. However, uncertainty in feature positions has a relatively small effect

on matching priors, since it tends to be aligned with the camera’s viewing direction in

monocular SLAM. Instead, the main uncertainty in image space comes from the unknown

motion which is described by a probabilistic motion model with process noise Q. Since

the pose of the previous frame is already optimised with respect to the 3D map, we are

only interested in the relative uncertainty P
(rel)
xv

between the previous and the current frame:

P
(rel)
xv

= Q. Projecting P
(rel)
xv

to the current image, we can compute S:

S =
∂h(y1:n)

∂xv
P

(rel)
xv

∂h(y1:n)
∂xv

T
+ R , (3.16)

where h is the projection function of map features yi, xv is the camera pose and R is a block-

diagonal measurement noise matrix. The resulting S is dense whereas the inter-feature

covariances only come from the motion uncertainty.

3.7.2 Time Requirements

Aiming to move towards matching large number of features, we have tested our scalable

algorithms with variable number of features. Figure 3.9 illustrates the time required to per-

form matching using AM, CLAM and SubAM for frames where the number of features are

predicted to be visible range from 20 up to 420. As suggested in [Chli and Davison, 2009a],

it is evident that AM is not suitable for real-time matching of more than 50 features per

frame. CLAM on the other hand exhibits vast reductions in processing time, however its

scalability is also affected by the number of matched features — although in a far less severe

rate than that of AM (as an indication, AM needs 50 mins for 300 features).

Interestingly, SubAM demonstrates nearly constant runtime across the range of numbers

of features achieving matching of 400 features in a record time of 170ms. Up until matching

82

3.7. Results

0 50 100 150 200 250 300 350 400
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

NUMBER OF FEATURES

M
A

T
C

H
IN

G
 T

IM
E

 (
m

s
)

SubAM

CLAM

AM

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

400

450

500

550

NUMBER OF FEATURES

M
A

T
C

H
IN

G
 T

IM
E

 (
m

s
)

SubAM

(a) CLAM vs SubAM w.r.t. AM (b) SubAM close-up

Figure 3.9: Absolute processing time requirements per frame for CLAM and SubAM as a
function of features matched per frame. The processing time for standard AM is displayed
in (a) for comparison, but its use becomes computationally unfeasible beyond 76 features.
While CLAM demonstrates vast a speed improvement over AM, its use is expensive beyond
around 200 features. SubAM on the other hand, in (a) and the close-up in (b) exhibits much
more scalable performance achieving matching of 420 features in only 170ms.

T
IM

E
 (

M
S

)

NUMBER OF FEATURES

50 100 150 200 250 300 350 400
0

500

1000

1500

2000

2500

3000

Image Proc.

Evaluate MIs

Update

Extras

CL tree

T
IM

E
 (

M
S

)

NUMBER OF FEATURES

50 100 150 200 250 300 350 400
0

20

40

60

80

100

120

140

160

180

Image Proc.

Evaluate MIs

Update

Extras

CL tree

(a) CLAM timings (b) SubAM timings

Figure 3.10: Breakdown of the average processing time for CLAM (a) and SubAM (b)
with respect to the number of features searched in the individual stages of the algorithms
(‘Extras’ includes initialisation of data structures). It is evident that the update of the mixture
of Gaussians takes up most of the processing time in CLAM, while the evaluation of MIs is
the dominant factor in SubAM. Note that the Image Processing, Extras and CL tree building
stages consume comparable time in both methods.

150 features, both AM variants are comparable but as shown in Figure 3.10(a) both the

Update and the Evaluation of MIs stages consume increasing processing time in CLAM. As

explained earlier in Section 3.5 this is due to the maintenance costs of the tree representation,

which on one hand gets partitioned into smaller subtrees we do not explicitly force balanced

partitions — this decision is instead driven by MI. The timings breakdown for SubAM in

Figure 3.10(b) suggests that the most significant factor then is the Evaluation of MIs. This

83

3. Tracking Sparse Features

50 100 150 200 250 300 350 400
0

1000

2000

3000

4000

NUMBER OF FEATURES

A
R

E
A

 S
E

A
R

C
H

E
D

 (
P

IX
E

L
S

)

CLAM

SubAM

Figure 3.11: The number of pixels searched for ZNCC matches with respect to the input
uncertainty regions. While conventional methods like JCBB and RANSAC need to look
for matches within the regions corresponding to the input prior, AM and variants exploit
correlations of features to reduce this as shown in Figures 3.4(f) and 3.8(f).

is expected as SubAM performs full AM on small subsets of features we have already seen

that this is the most expensive step in AM [Chli and Davison, 2009a].

On a small note, the ‘rough’ nature of the time records in both Figures 3.9 and 3.10 is to

be attained to matching scenarios of different levels of difficulty. This is either due to the

encounter of incompatible matches or the absence of enough matches to quickly rule out

any ambiguity. While the input to all matching algorithms is exactly the same, the order of

measurement of features differs which can lead to disparity in timings for the same frame.

3.7.3 Area Searched and Matches Found

Matching a growing number of features per frame with conventional methods, increases

the image processing time since more pixels need to be tested for a template match which

increases the likelihood of false positives. However, AM exploits the priors in such a way

that it reduces the area searched for matches. However, despite CLAM and SubAM being

approximations of AM they still reduce the searched areas significantly as shown in Fig-

ures 3.4(f) and 3.8(f), which is to be accredited to the use of the CL tree to identify highly

correlated links to preserve. Figure 3.11 superimposes the area searched for matches using

CLAM and SubAM.

It is worth noting that the matches accepted using AM and both variants are in agreement

with the reference result provided by an independent matcher. In some cases, AM rejects

some of the matches that CLAM and SubAM seem to accept (comprising no more than

6% of the features matched). This is to be attained to the strict confidence of AM in the

linearisation of the distribution of features by a singe Gaussian in the input prior, whereas

both CLAM and SubAM relax this distribution allowing some extra (conservative) freedom

84

3.8. Conclusions

in the expected configuration of matches.

3.8 Conclusions

We have explored possibilities of conservative approximations to probabilistic priors used

in matching, and proposed two fast matching algorithms: CLAM considers the prior dis-

tribution as a tree of features while SubAM partitions the matching problem into a tree of

subsets of features.

Exploiting the power of probabilistic priors and the insights of Mutual Information to

drive decision making, both algorithms have been demonstrated to achieve dramatically

low processing time. In fact, our SubAM method is able complete matching of 400 features

in 170ms which to our knowledge, is faster than what any other fully probabilistic method

has ever achieved. This was an attempt towards making tracking super-fast. However, the

kind of motion we want to track remains still a futuristic possibility with such approaches

that spend a lot of time on using the prior information. A natural question is that whether

these methods can scale better for super-dense online matching. We expect that there is

a point where the intermediate updates performed in a top-down approach will come at

diminishing returns, which raises the fundamental question of top-down versus bottom-up

methods. In the next chapter, we look at other techniques for tracking that can be scaled well

on a parallel hardware. Our next chapter debates about feature based and direct parametric

based methods and throws insights into why if the aim is to do super-dense matching for

6DoF camera pose estimation, one should move towards dense direct methods.

85

3. Tracking Sparse Features

86

Chapter 4

Dense Visual Tracking

Contents

4.1 Introduction . 87

4.2 Background . 91

4.3 Camera Motion Parametrisation . 98

4.4 Direct Parametric Tracking . 99

4.5 Robust Cost Functions: M-Estimators . 102

4.6 Minimisation Schemes . 106

4.7 Coarse to Fine Pyramid Hierarchy . 108

4.8 Instructive Example . 109

4.1 Introduction

Dense image matching forms another associative family of approaches to image registration

that use all the potential data available in the image. While feature matching approaches

rely on specific image regions based on some saliency measure, dense visual matching on

the other hand gleans the necessary information from all the pixels in the image to find the

transformation that registers two images. However, the main idea remains the same which

is to obtain the transformation by establishing correspondences.

The manner in which this transformation is obtained signifies the major difference be-

tween the two approaches. Feature based methods, in most cases, obtain this transforma-

87

4. Dense Visual Tracking

tion in the style of a ‘match first analyse later’ strategy where feature locations are matched

first using descriptors and then only the locations of those features are used to obtain the

transformation. On the contrary, dense methods either directly obtain the transformation

from image gradients using a parametric model or register images in an optic flow style

technique. In this framework, the transformation parameters relate the two images in a cost

function that encodes the degree of similarity between a pixel and its correspondence in the

other image. The alignment starts with an appropriate initial estimate of the transformation

and an update is obtained using a gradient descent based technique which is employed on

the linearised form of this cost function to trace a point where the gradient no longer changes

i.e. an extrema of the cost function. This update is subsumed into the initial alignment trans-

form and the linearise-register-update rule is applied iteratively until some stopping criteria

is achieved. The final transformation then represents a convergent set of parameters that

best possibly bring the two images in alignment satisfying the constraints set initially in

the cost function. Therefore, the two-stage approach which is generally adopted by feature

based methods, is combined together to put the search for correspondence task within the

loop of finding the global transformation. It is therefore, the paradigm shift in dense match-

ing approaches, ‘use all the available data at once’, that underscores the strong pull over

feature based approaches, and makes these methods quite appealing and attractive.

There have been a multitude of papers that debate these contrasting methods and com-

pare them in an application-specific task to highlight where one betters the other. We appeal

to [Irani and Anandan, 1999] and [Triggs et al., 2000] for excellent discussion and their per-

sonal opinions on these two approaches to image registration. The starting point of all this

debate is that feature based methods depend on some blanket image processing techniques

that tend to use arbitrary thresholds to sift points of interest in an image that are consid-

ered salient based on their gradient information and the local structures around them. The

repeatability of detected features is then affected not just by occlusions and other scene re-

lated vagaries but also by these arbitrary thresholds. Detection is followed by augmentation

of these points of interest with descriptors that encode the local structure around them to

aid matching in the respective images to establish correspondences. The de facto two stage

procedure of finding a registration transformation treats the matches provided by the first

stage as hard constraints and it is the next stage that decides, by using a voting scheme like

RANSAC, the ownership of the match to the transformation.

The approach that dense whole image alignment takes is minimising a continuous cost

function of intensity differences of pixel locations in an image with warped location in the

88

4.1. Introduction

reference image obtained by applying the transformation that is being sought. The formu-

lation also allows a natural way to weigh the contributions of some pixels over the other by

looking at the local gradient information and not ignoring them completely unlike feature

based approaches. These weights act as soft constraints and therefore a weighted combi-

nation of gradients gives an estimate of the transformation. However, arguments against

dense matching greatly profess the inability of the dense approaches to find a global min-

imum since the matching works on a linearised form of the initial non-convex similarity

function. Also, the standard hierarchical coarse to fine framework adopted to further con-

strain the search space of the parameters can sway the optimisation and direct the solution

towards local minima. Moreover, dense approaches, by virtue of the way they work, are

naturally ill-suited for wide baseline image matching.

Even with their accompanying disadvantages, in the context of real-time image matching

task, the small frame-to-frame distance serves as a really good prior that aids the dense

methods. This small frame-to-frame distance naturally supports the linearisation assump-

tions used in the cost functions and as a result, the solutions obtained are very near to the

global minima. In the following, we outline the general benefits that make dense approaches

very attractive choice over feature based approaches again within the context of real-time

image matching in SLAM type systems which is the focus of this thesis.

No Binary Data Association Most feature matching approaches used in SLAM e.g.

[Davison, 2003] and [Klein and Murray, 2007] for data association work in a two-stage

process where putative matches are found first and then used to obtain the global

transformation that relates two images. Relying mostly on the local structure around

a feature, the matching operates by searching for a correspondence of each feature

independently of the others. Matching decisions on the features correspondences then

are only binary: either the match is found or not found. Features for which matches

are not found are not used at all to update camera pose. The feature matching also

suffers at the hands of fixed thresholds that are used to decide the matching. On the

other hand, tracking all-pixel methods are able to weigh contributions of each pixel ac-

cording to the local structure around them without throwing them based on arbitrary

thresholds and hence find out optimal transformation to register the observed image.

Active Search Already Embedded Another difference with dense methods is that feature

based approaches are not endowed already with active search embedded in the frame-

work that greatly reduces the correspondence task as the baseline between images

89

4. Dense Visual Tracking

decreases. Sparse feature based SLAM systems [Davison, 2003] that keep an uncer-

tainty model on the 3D position of the feature project this uncertainty to find the

corresponding search region in the image space where the feature is expected to lie.

It is only due to the model that these methods are able to constrain the search space

as the frame-rate increases. Dense visual matching approaches on the other hand

are very adaptable to changing baselines and naturally support the reduced compu-

tational overhead involved with decreasing baseline without having to maintain an

explicit uncertainty model. This property is especially very desirable in high frame-

rate sequences because there is already a good initial guess available from the previous

frame to start the matching that these approaches benefit greatly from.

Graceful Degradation With Deteriorating Visual Conditions Motion blur is one of the

main artefacts that arise in images when a camera is undergoing rapid mo-

tion. The severity with which the alignment process gets affected is manifested

more in feature matching based approaches. The local gradient information gets

washed out due to motion blur, leading to the detectors not finding any mean-

ingful points of interest. Dense matching approaches are still able to glean in-

formation and show graceful degradation as visual conditions deteriorate. DTAM

[Newcombe et al., 2011b] show how tracking that works by matching sparse features

as done in [Klein and Murray, 2007] is quite brittle while dense tracking still per-

sists when the camera is undergoing very rapid and shaky motion as highlighted

in [Park et al., 2009] and [Park et al., 2012]. This adds a substantial layer of stability

and robustness to the system that uses dense matching.

No Absolute Dependence on Texture and Thresholds Dense approaches do not necessar-

ily demand the scene to be well textured which is a prerequisite for any feature based

approach. This is again partly due to the fixed thresholds that are used in the detector

that fires up the salient feature locations. In fact, when changing frame-rates match-

ing images using sparse features would require feature detection thresholds be altered

due to the change in the image brightness levels, while dense matching as such would

work without any hassles to change thresholds.

Real-time systems for dense tracking Dense matching approaches come already with their

concomitant amenability towards a parallel hardware. Local image gradients directly

relate to the transformation being sought and depend only on the local image struc-

ture. All the image data can be used instead of discarding majority of pixels as

done in sparse methods. Practical systems like [Lovegrove and Davison, 2010] and

90

4.2. Background

[Meilland and Comport, 2012] have shown the parallel implementation of dense track-

ing.

4.2 Background

The genesis of dense methods is credited to the early works of [Lucas and Kanade, 1981]

and [Horn and Schunck, 1981] that stand out for introducing dense matching. Both worked

on similar problems in two parallel but different streams to determine correspondences for

all the pixels in an image. [Lucas and Kanade, 1981] described a way to globally register

two images using a parametric transformation applied to all pixel locations in the image.

On the other hand, [Horn and Schunck, 1981] introduced a method to find the correspon-

dence of each pixel, optical flow, without imposing any parametric model on the motion or

flow of pixels in two images. They both used the concept of sum of squared differences

energy minimisation to guide the matching and assumed the Lambertian surface model to

derive a constraint that relates image brightness of a pixel in two images. This constraint has

been popularly come to be known as brightness constancy [Horn and Schunck, 1981] while

[Lucas and Kanade, 1981] termed their approach as method of differences alluding to the cost

function that was being minimised. The least square based energy formulation with gradient

descent type optimisations that are common to both, have now become a staple of all the im-

age registration algorithms. The diverse array of places where these formulations have been

applied provides for a taxonomy of these image registration algorithms [Bergen et al., 1992]

Fully Parametric where the motion of the pixels can be parametrised using a global motion

model that is applied to all the pixels. They include affine or quadratic flow.

Quasi-Parametric They represent the flow field of pixel as a combination of globally para-

metric component and a local component that varies from pixel to pixel. They include

the rigid body motion model where the extrinsic camera parameters form the global

parametric component while the depth required to register the images varies with

pixel and is the local component.

Non Parametric where the motion cannot be easily parametrised. They include the stan-

dard optical flow where each pixel has its own flow vector.

The optimisations used in fully parametric as well as quasi-parametric models reduce to

solving “ordinary” least square optimisation while the non-parametric image registrations

91

4. Dense Visual Tracking

are as such under-constrained so they require an explicit smoothness term to model the

variations of flow vectors in the neighbourhood and are solved using variational methods.

On the other hand, fully parametric and non-parametric based registrations usually operate

only in image space (e.g. 2D template tracking) while the quasi-parametric registration

involves a three-dimensional model anchored to image against which the alignment operates

à la 2 1
2 D tracking implemented using Lucas-Kanade method of differences.

One of the most interesting properties of fully as well as quasi parametric tracking is that

they add the information of the motion model within the framework. We briefly outline

the popular tracking methods used in the computer vision community and later turn our

attention to 6DoF Rigid body motion model which is the focus of this thesis.

2D Tracking In this type of tracking, the task is to align a template to an image

that is undergoing only 2D transformations. This includes the popular work of

[Hager and Belhumeur, 1998] who used various motion models to track a template

across video frames e.g. popular pure translation model [Lucas and Kanade, 1981],

affine model [Shi and Tomasi, 1994] and scaled 2D rigid motion model i.e. similar-

ity transform. In fact, they also use some standard non-linear models e.g. con-

stant acceleration. Tracking in 2D can also benefit computationally. For instance,

[Jurie and Dhome, 2001] show how compactly representing change in time derivatives

of an image resulting from small changes in the model parameters in a learning stage

can result in quick look-ups for updates while doing online tracking.

3D Tracking This includes tracking using constraints derived from the geometry of the

object or surface in three-dimensional space, that is to be tracked over a sequence

of video frames. Tracking using Active appearance models [Cootes et al., 2001],

3D parametric articulated models with more than six degrees of freedom

[Lowe, 1991] and later [Bregler and Malik, 1998], CAD models based àla ACRONYM

[Brooks, 1981], HYPER [Ayache and Faugeras, 1986], SCERPO [Lowe, 1987] and

RAPiD [Harris and Stennet, 1990], [Harris, 1992], and models using dense point sur-

faces [Newcombe et al., 2011b] in the style of Lucas-Kanade 2 1
2 D [Baker et al., 2004b]

is considered to be 3D tracking as all these methods add the information pertaining to

the 3D existence of the object into the registration.

There has also been work on over-parametrising optical flow, notably the work of

[Nir et al., 2008], where each pixel has more than just two parameters in the conven-

92

4.2. Background

tional form and there is still smoothness that operates on gradients of motion parameters.

Though such kind of over-parametrised registration methods do perform better than the

non-parametric methods but they still solve the problem in image domain and do not im-

pose a global model on all the pixels. In the context of sequential camera tracking where a

three-dimensional surface is registered against an incoming image, registration in the style

of quasi-parametric 3D-2D image association forms the focus of attention in this thesis. The

following section traces the roots of various formulations and approaches to track a moving

camera undergoing a rigid body motion observing a three-dimensional scene that cannot

necessarily be easily parametrised.

4.2.1 Rigid Body Motion

Given a three-dimensional model of the scene, it is possible to obtain the motion field

that relates the motion of a scene point in the image as a function of its position and

the translatory and rotary motion the camera is undergoing. This was first shown in

[Higgins and Prazdny, 1980]. Considerable attention has been devoted to the problem of

recovering camera motion parameters using image data from the point of view of tasks

that involve robot navigation. [Bruss and Horn, 1983] provided a way to recover this by

minimising the difference between the optical flow and the motion field predicted in the

image. However, their method split the task into two steps: computing optic flow first

and using that to obtain the parameters. No experimental results were given and only

theoretical insights were presented. Computing the motion parameters using an opti-

cal flow pre-processing stage has motivated many other researchers too e.g. [Adiv, 1985],

[Heeger and Jepson, 1992] and [Negahdaripour and Lee, 1992].

It is worth mentioning that attempts to use optical flow as a front end to the rigid body

motion estimation process [Bruss and Horn, 1983] have not been greeted well in the commu-

nity. It has been long argued that using optical flow as the first stage for motion estimation

is no different to using another blanket image processing technique similar to using fea-

ture extraction matching. The results are heavily dependent on the first stage and moreover,

computing optical flow is already an ill-posed problem that yields often inaccurate flow vec-

tors at the image boundaries and depth discontinuities. Translation estimates are severely

affected since they rely on the motion parallax at the depth discontinuities more than ro-

tation. In their retrospective view on optical flow [Horn and Schunck, 1993] also point out

how using optical flow makes the problem of obtaining camera parameters even more dif-

93

4. Dense Visual Tracking

ficult. Rigid body constraints the motion field of all the scene points in only six parameters

while optical flow has twice the number of parameters as the size of image. Therefore, they

professed the superiority of using rigid body constraints directly within the image intensity

based error function.

Later [Lucas and Kanade, 1985] used their original method of differences to obtain gen-

eral camera motion assuming the depth was already given (e.g. from stereo). They

showed real experiments on the Stanford cart [Moravec, 1980a, Moravec, 1980b]. Their

method that was not fully dense and that few selected points were used and corre-

spondences were obtained by hand nonetheless the optimisation was still carried out

in an iterative dense matching style in image instead of using pixel locations to ob-

tain the parameters as done in [Moravec, 1980a]. Interestingly, in the same conference

[Negahdaripour and Horn, 1985a, Negahdaripour and Horn, 1985b] also gave a closed form

solution to recovering rigid body motion parameters as well as 3D plane parameters for a

moving camera observing a planar scene, directly from image brightness gradients. In con-

trast to Lucas’s method, they demonstrated the applicability of their method using only a

synthetic experiment. However, they did not require any selected pixels and instead used

the whole image.

[Horn and Weldon, 1988] present a comprehensive analysis of direct approach to re-

covering camera motion parameters when it is undergoing pure rotation, pure trans-

lation or when the rotation is known. [Negahdaripour and Horn, 1989] propose a di-

rect method to recover the focus of expansion (FoE) using a positiveness of depth con-

straint within the formulation. They present insights into the uniqueness of the FoE

and show how stationary points (the points corresponding to zero temporal gradient)

can be used to obtain the translation. [Kumar and Hanson, 1989] show how estimating

the rotation and translation simultaneously performs better than splitting the task of es-

timating each one independently when the data is noisy and corrupted with outliers.

[Taalebinezhaad, 1992b, Taalebinezhaad, 1992a] recover the rotation and fixation velocity in

the image induced by purely rotating camera motion using the standard brightness con-

stancy constraint.

A different approach is also proposed by [Tomasi and Shi, 1993] to recover the translation

of a moving camera that introduces motion parallax. The rate of change of angle sub-

tended by two rays emanating from two image points as the camera moves gives a bilinear

constraint on the translation and depth of the points. All point pairs give such bilinear con-

straints that can be used to solve for translation and depth of these points using a variable

94

4.2. Background

projection method.

[Hanna, 1991] use a multi-resolution framework in a direct estimation of camera motion

parameters with a planar scene assumption by iteratively alternating between ego-motion

and scene structure. A taxonomy of various different motion models used in image registra-

tion is summarised in [Bergen et al., 1992] where they also use the standard coarse-to-fine

strategy to obtain the parameterised motion of pixels. This multi-resolution framework em-

bedded in the direct estimation of motion has become a well known concept from then

onwards. [Irani et al., 1994] provide a solution to the same problem by first registering the

images based on a 2D parametric motion assumption that cancels the rotational component.

The resulting registered images have only 3D translation which is solved by finding the

FoE. They use optical flow to find the FoE and state that the overdetermined solution space

enables robust computation of FoE even when the flow is inaccurate at the motion bound-

aries. The 3D rotation components of the motion can then be obtained once the translation

is known. However, they do not recover the structure information.

Multiview approaches later found a huge surge in applications that also required to re-

construct the scene. In particular, mosaicing and building panoramas from purely rotating

cameras or observing planar scenes were very popular since they did not require a full 3D

reconstruction and registration could be done using a rigid body assumption. Such multi-

view approaches are able to extract information optimally from all the images and give a

high resolution representation of the scene.

The plane + parallax 1 approach [Sawhney, 1994], gained popularity as the registration

of images under a dominant planar motion assumption also offered a means to recover

the 3D structure i.e. the depth of the points with respect to the planar surface. The two

view approach of [Kumar et al., 1994] used to recover heights of objects on ground using

aerial images found extensions later in [Irani et al., 1999] and [Irani et al., 2000] for multiple

views for resolving ambiguities in structure estimation and improved signal-to-noise ratio

performance all using direct methods.

[Kumar et al., 1995] review the mosaic reconstructions that use direct image matching

and later [Irani et al., 1996] provide an excellent taxonomy of different mosaics that can be

created using images obtained from a video sequence. They term static mosaic as the ef-

1A more clear visual exposition of the concept is detailed in [Irani et al., 1998]. Image motion of points
that lie on a planar surface can be trivially explained by plane-induced homography while the motion of any
3D point not on a plane can be decomposed into two components: the homography induced and the residual
motion which is called parallax due to plane and hence the name of the approach.

95

4. Dense Visual Tracking

ficient representation of a scene background without moving objects. The dynamic mosaic

corresponds to the representation of mosaic that is dynamically updated based on the cur-

rent view and only shows the part of mosaic that is within the vicinity of the current view.

The mosaic reconstructions precede with image alignment using a 2D parametric quadratic

flow or 3D plane parallax representation. The plane parallax approach is able to rectify the

mosaic reconstruction of the parts of the scene that do not belong to planar surface. They

also show various applications of mosaics specially in visual enhancement, video compres-

sion and video indexing. [Irani and Anandan, 1998] detect moving objects as a byproduct of

plane parallax alignment based image registration. Moving objects are visibly highlighted

as outliers that do not obey the transformation.

[Sawhney et al., 1995] provided a catalogue of 2D and 3D motion model based registration

techniques in the context of efficient visual representations of the scene via mosaicing. They

showed a robust estimator driven outlier rejection approach to discard regions containing

moving objects that do not obey the dominant motion assumption. [Szeliski and Kang, 1995]

propose a direct method for homography based image registration to create mosaics of

whiteboards, desktops or other planar surfaces and recovering projective depth. Later,

[Shum and Szeliski, 1997, Szeliski and Shum, 1997, Shum and Szeliski, 1998] show building

panoramas from a rotating camera by using patch based alignment as an efficient substitute

to aligning images using only pixels. It works by defining the motion of patch locally and

then using patches instead of pixels in the full registration framework. They also propose

ways to reduce the effects of registration using block adjustment and local refinement for

visually appealing panoramic reconstructions.

Direct estimation process has also been embedded in Kalman Filter based recur-

sive estimation of structure and motion [Matthies et al., 1989] and [Heel, 1990]. Later

[Dellaert et al., 1998] and [Dellaert and Collins, 1999] also show the direct estimation pro-

cess coupled with planar scene reconstruction in Kalman Filter based recursive estimation

framework. [Jin et al., 2003] also register sparse patches in 3D against an incoming image

using a direct approach within Kalman filter recursive structure and motion estimation.

Lately, [Horn et al., 2007] show the benefits of using direct methods to reliably estimate

the time to contact for a vehicle relative to a planar surface. [Dame and Marchand, 2010]

and [Panin and Knoll, 2008] use MI information instead of pixel intensity difference in the

framework to do tracking.

In a concurrent stream, there has been a confluence of methods that use a CAD model

96

4.2. Background

to obtain the rigid body motion of the camera. The landmark paper from [Harris, 1992]

was one of the first marker-less 3D model based real-time rigid body camera tracking sys-

tem called RAPiD. It used the edge information to register CAD model of a 3D object to

an observed image. Searching in one dimension along the normal direction to the control

points sampled on the predicted model edge it finds out the closest edge in the image that

brings the model in alignment to the observed image projection of the object. Though such

methods do not necessarily use the whole image but the idea of obtaining the motion pa-

rameters through a least square optimisation using a small motion assumption are in the

same vein. The simplicity and the efficiency of this method has given birth to many further

extensions. In particular, [Lowe, 1991] propose a least square method of fitting parametrised

three-dimensional models with more than standard six degrees of freedom to images and

use a stabilisation technique (a form of regularisation prior) to obtain the parameters even

when the problem is under-constrained. Also, [Drummond et al., 2002] track a wire-frame

CAD model of the object using a robust least square approach in a RAPID style matching

framework with binary space partitioning (BSP) tree based visibility reasoning. A practical

real-time (25Hz) system is implemented which uses the tracker to servo a robot to a par-

ticular position. They also present an extension to multi-camera and multi-target tracking

scenarios.

4.2.2 Summary

In 1980s the rigid body tracking research revolved around theoretical investigation of the

problem and bringing forward the concept of direct tracking. In early 90s direct tracking us-

ing a multi-resolution approach was a well established concept to do image matching. There

were also investigations of using robust penalty functions to preclude the contributions of

outliers in the framework. Most of the direct approaches began to find their applications

in mosaicing and building panoramas and object segmentation where the structure was ei-

ther not required or planar though it was clear that a 3D model would greatly simplify and

improve tracking. The idea of tracking from a general 3D surface was still in its nascent

stages even though 3D reconstruction from multiple views was beginning to mature. In the

parallel stream, there was a great activity in tracking camera poses using simplified 3D sur-

faces in the form of CAD models. It was a great success and provided a platform to robust

model based tracking. The simplicity, fidelity and robustness of the method was received

with aplomb. Many further extensions led to the application of the idea to different streams

mainly in augmented reality and visual servoing. The parallel track on 3D reconstruction

97

4. Dense Visual Tracking

advanced enormously and boasted big numbers in the scale of reconstruction and lately

with variational methods and GPU on the modern hardware it is possible to have the track-

ing from a general 3D model that is being built online than just using a simplified CAD

model.

4.3 Camera Motion Parametrisation

Much of the previous research has only focussed on estimating the rigid body parameters

with little attention to the actual parametrisation used to represent rotation and translation.

They are either represented independently or instead the rotational and translation velocity

components are estimated which do not suffer from the singularities introduced by nota-

tions. Although [Taylor and Kriegman, 1994] had used SO(3) based minimisation to obtain

iterative rotational updates, [Bregler and Malik, 1998] were the first to introduce twists and

exponential maps for tracking articulated human body pose under orthographic projection.

Later, [Drummond and Cipolla, 1999b] show the use of Lie Algebra for direct visual track-

ing to control the movements of a robotic arm. The nice properties of Lie Algebra make them

an obvious choice of representation in our tracking. We summarise few of them below:

• SE3 provides a compact representation of rotation and translation in only 6 parameters

compared to representing them directly with matrices. There is very simple mapping

from these 6 parameters onto a lie-manifold similar to a general point-curve locus

relationship in euclidean space.

• Rotation and translation can be represented together in one matrix instead of rep-

resenting them independently and this helps when linearsing them around a given

point.

• The Adjoint of the Lie group can be used to represent the inverse of the transformation

very easily.

Such Lie Algebra based parameterisation for motion has become a commonplace in

representing the rigid body rotation and translation. [Klein and Drummond, 2003],

[Bayro-Corrochano and Ortegon-Aguilar, 2004], [Klein and Murray, 2007] and the

recent work of [Lovegrove and Davison, 2010], [Newcombe et al., 2011b] and

[Meilland and Comport, 2012] all choose lie algebra parameterisation.

98

4.4. Direct Parametric Tracking

4.4 Direct Parametric Tracking

An image coordinate is represented by a homogenised vector x, the location of the ho-

mogenised scene point, ẋ, pierced at the image plane by the ray joining camera optic center

and the point. This scene point is represented in camera coordinate system and its depth

from the image plane is abbreviated by d. The camera internal parameters are described by

the K matrix where as π is the projection operator to de-homogenise a vector.

x =

x

y

1

 , ẋ =

(
dK−1x

1

)
, (4.1)

K =

fx 0 u0

0 fy v0

0 0 1

 , π

u

v

w

 =

(
u
w
v
w

)
. (4.2)

The matrix Tlr represents the transformation between the camera reference frame and the

live frame, where the subscript “lr” is read as reference to live. Under the assumption that

the three-dimensional surface being viewed in the image has Lambertian properties, the

standard brightness constancy constraint then relates the image intensities of the same scene

point when observed from two different views. The photometric cost function is defined as

the sum of the intensity differences between reference image and live image aligned to the

reference image coordinate system.

4.4.1 Pure Rotation Tracking: SO(3) Tracker

ψ = ∑
x∈I

(
Ir(x)− Il(π(KRlrẋ))

)2

. (4.3)

A general SE(3) tracker optimises jointly over translation and rotation. The mathematical

optimisation framework is explained below for SE(3) tracker however, similar optimisation

scheme can be derived for pure rotation tracker with transformation replaced by rotation.

4.4.2 Translation and Rotation Tracking: SE(3) Tracker

ψ = ∑
x∈I

(
Ir(x)− Il(π(KTlrẋ))

)2

. (4.4)

99

4. Dense Visual Tracking

Tlr is the transformation that is being sought via minimisation of this cost function. Given

the high non-linearity associated with the cost function, it is linearised around an already

available estimate T̂lr. Using the lie algebra properties the transformation can be rewritten

as

Tlr = T̂lr exp(δu) . (4.5)

As a result, the cost function becomes parametrised by this small update δu

ψ(δu) = ∑
x∈I

(
Ir(x)− Il(π(KT̂lr exp(δu)ẋ))

)2

, (4.6)

Using the Taylor Series, the live image is linearised around the current estimate

ψ = ∑
x∈I

(
Ir(x)− (Il(π(KT̂lr exp(0)ẋ)) +

∂Il(π(KT̂lr exp(δu)ẋ))
∂(δu)

|δu=0δu)
)2

. (4.7)

Denoting ex as the residual obtained from the previous estimate and Jx as the Jacobian

resulting from the Taylor series expansion, the above expression can be simplified as

ex = Ir(x)− Il(π(KT̂lr exp(0)ẋ) (4.8)

Jx =
∂Il(π(KT̂lr exp(δu)ẋ))

∂(δu)
|δu=0 (4.9)

=⇒ ψ = ∑
x∈I

(ex − Jxδu)2 . (4.10)

The Jx is a 1 × 3 vector in case of pure rotation and 1 × 6 for full 6DoF parameterisation.

The δu is 3 × 1 and 6 × 1 vector respectively. The Jacobian is computed as

Jx =
∂Il(π(KT̂lr exp(δu)ẋ))

∂(δu)
|δu=0 (4.11)

Jx =
∂Il(π(KT̂lr exp(δu)ẋ))
∂(π(KT̂lr exp(δu)ẋ))

|δu=0 ×
∂π(KT̂lr exp(δu)ẋ)

∂(δu)
|δu=0 . (4.12)

Using the chain-rule, this is further expanded to

Jx =
(

∂Il(π(KT̂lr exp(δu)ẋ))
∂π(KT̂lr exp(δu)ẋ)

× ∂π(KT̂lr exp(δu)ẋ)
∂KT̂lr exp(δu)ẋ

× ∂KT̂lr exp(δu)ẋ
∂(δu)

)
|δu=0 . (4.13)

The first derivative in the chain is the partial derivative of the warped image with respect

to warped locations and is a 1 × 2 matrix. Elements of this matrix are obtained via a finite

difference stencil (preferably a higher order than the standard 2-point stencil). The next

100

4.4. Direct Parametric Tracking

term is the derivative of projection operator with respect to its parameters and in general

form is a 2 × 3 matrix written as:

∂π

u

v

w

∂

u

v

w

=

∂

(
u
w
v
w

)

∂

u

v

w

=

(
1
w 0 − u

w2

0 1
w − v

w2

)
. (4.14)

The last derivative in the chain can be obtained as

∂KT̂lr exp(δu)ẋ
∂(δu)

|δu=0 = KT̂lr

(
∂ exp(δu)

∂(δu)
|δu=0

)
ẋ . (4.15)

The expression ∂ exp(δu)
∂(δu) |δu=0 yields a generator of the Lie algebra corresponding to the pa-

rameter. As a result the expression expands to a 3 × 6 matrix, i.e.

KT̂lr
∂ exp(δu)

∂(δu)
|δu=0ẋ = KT̂lr

(
Gtx Gty Gtz Gθx Gθy Gθz

)
ẋ . (4.16)

The Generators when multiplied with ẋ produce the following 4 × 6 matrix:
1 0 0 0 z −y

0 1 0 −z 0 x

0 0 1 y −x 0

0 0 0 0 0 0

 . (4.17)

If δu = (tx, ty, tz, ωx, ωy, ωz)T represents the 6 parameters over which the optimisations runs,

then Jx yields a element-wise derivative with respect these 6 parameters,

Jx =
(

Jtx Jty Jtz Jωx Jωy Jωz

)
. The cost function is then minimised with respect to δu leading to solutions to the “ordi-

nary” least squares problem, called the normal equations:

∂ψ

∂(δu)
= ∑

x∈I
−2Jx

T(ex − Jxδu) = 0 (4.18)(
∑
x∈I

Jx
TJx

)
δu = ∑

x∈I
Jx

Tex (4.19)

δu =
(

∑
x∈I

Jx
TJx

)−1

∑
x∈I

Jx
Tex . (4.20)

101

4. Dense Visual Tracking

Figure 4.1: Flow chart of the algorithmic components of direct image alignment tracking.

4.5 Robust Cost Functions: M-Estimators

The cost function employed in the formulation implicitly already carries the notion of inlier-

outlier model present in the data e.g. using a Gaussian model means that data sample lying

outside the 3σ is likely to be an outlier. The impact of an outlier sample in the optimisation

then is greatly determined by how forgiving is the cost function to the outlier; this is termed

as robustness of a cost function. It is measured in terms of breaking point (it is the % of bad

samples that break the model underlying the cost function being used) and by the influence

function [Hampel et al., 1986] (how much weight does the cost function give to the sample)

of a distribution.

The standard quadratic cost function used most often assumes an additive Gaussian noise

distribution. The special properties to do with linearity and the ease in manipulating them

102

4.5. Robust Cost Functions: M-Estimators

in optimisations make Gaussian distributions very much welcomed in optimisation theory.

However, a Gaussian distribution in its pure form rarely fits well with real data and hence it

is not very robust to outliers; the cost function grows without bound as the error increases

and the associated weighting function in the minimisation assigns same weights to all resid-

uals irrespective of whether the sample is an outlier or inlier to the distribution. Therefore,

any inclusions of outliers in the estimation can greatly hamper the minimisation scheme.

This is more evident when occlusions, specular reflections and other distractions (e.g. non-

rigid objects or repetitive scene structures) are present in the scene that tend to misguide the

optimisation. What is needed is an implicit way to discard outliers in a manner similar to

how humans are able to sift the inliers by just looking at data. A cost function that increases

less rapidly compared to the quadratic function and that the associated weighing function

gives less or zero weight to outliers that violate the Gaussian assumption, has the desirable

property of discarding outliers. How exactly then should a cost function that is more im-

mune to the outliers present in the data be chosen? One way would be to plot the statistics

of residuals similar to [Huang and Mumford, 1999], from imagery taken with a real camera.

However, this is only ever possible when we know the alignment transformation and even

then the residual statistics vary a lot with scenes.

Robust statistics and outlier rejection offer a plethora of choices of cost functions

that are resilient to outliers. Among the first to introduce statistical methods in

the least square formulations in computer vision were [Gruen, 1985], [Förstner, 1987],

[Black and Anandan, 1991], and later, [Black, 1992], [Black and Anandan, 1993] and

[Black and Rangarajan, 1996] pioneered the use of robust cost functions to estimate optical

flow at the image boundaries. [Stewart, 1999] provide an excellent compendium of various

cost functions that are used in computer vision for parameter estimation. [Fitzgibbon, 2001]

also use similar cost functions to robustly register point sets in an iterative closest point

(ICP) framework.

Akin to the Gaussian distribution standard deviation that decides the spread of the func-

tion, an equivalent associated scale factor determines the cut-off point beyond which the

contribution of a data sample begins to diminish. By tuning this scale factor, one is able to

control the effect of a data sample into the minimisation. The standard least square optimi-

sation is then turned into a weighted least square optimisation where weights are obtained

from the distribution that is being used to model the data. Denoting rx as the residual at

pixel location x and ρ is any robust cost function being used to model the distribution of the

103

4. Dense Visual Tracking

residuals.

rx = Ir(x)− Il(π(KTlrẋ)) (4.21)

ψ = ∑
x∈I

ρ(rx) (4.22)

∂ψ

∂(δu)
= ∑

x∈I
ρ′(rx)

∂rx

∂(δu)
(4.23)

∂ψ

∂(δu)
= ∑

x∈I

ρ′(rx)
rx

rx
∂rx

∂(δu)
(4.24)

∂ψ

∂(δu)
= ∑

x∈I
w(rx)rx

∂rx

∂(δu)
(4.25)

=⇒ ψ = ∑
x∈I

w(rx)r2
x . (4.26)

Therefore the update is obtained from this weighted least square function as

∂ψ

∂(δu)
= ∑

x∈I

∂

∂(δu)
w(rx)(ex − Jxδu)2 = 0 (4.27)

=⇒ δu =
(

∑
x∈I

w(rx)Jx
TJx

)−1

∑
x∈I

(
w(rx)Jx

Tex

)
. (4.28)

Below we catalogue some of the robust cost functions that have been used primarily in

computer vision:

Quadratic Function

ρ(x) = x2 (4.29)

Truncated Quadratic

ρ(x, σ) =

{
x2 |x| ≤ σ

σ2 otherwise
(4.30)

Huber

ρ(x, σ) =

{
x2

2 |x| ≤ σ
1
2 σ(2|x| − σ) otherwise

(4.31)

Geman and McClure

ρ(x, σ) =
x2

σ2 + x2 (4.32)

104

4.5. Robust Cost Functions: M-Estimators

−8 −6 −4 −2 0 2 4 6 8
0

2

4

6

8

10

12

14

16

18

Parameter x

Fu
nc

tio
n

va
lu

e

Quadratic

Huber
Tukey

Cauchy

−8 −6 −4 −2 0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Parameter x

Fu
nc
tio
n
va
lu
e

Quadratic

Huber
Tukey

Cauchy

Figure 4.2: Different Robust M-Estimators and their corresponding influence functions
shown side by side. All the functions are plotted with their scale parameters tuned to 95%
statistical efficiency of standard normal Gaussian distribution [Zhang, 1997]. It is worth
noting that Tukey function gives zero weight to any data sample that lies outside the range
set by the scale-parameter and is able to reject completely the contribution of that sample in
comparison to other robust cost functions that assign low weight.

Lorentzian/Cauchy

ρ(x, σ) =
σ2

2
log
(

1 +
x2

σ2

)
(4.33)

Tukey Biweight Function

ρ(x, σ) =

σ2

6

(
1−

(
1−

(x
σ

)2
)3
)

|x| ≤ σ

σ2

6 otherwise
(4.34)

Each of these distributions has a scalar parameter that is tunable to change the spread of

the distribution. An estimate of this value obtained from data is more desirable than setting

an absolute value. Therefore, a lot of attention has been devoted to finding the optimal

scale parameter. [Sawhney et al., 1995] model the residuals using a contaminated Gaussian

distribution and obtain a robust estimate of the standard deviation, σ of the distribution

using the residual data as:

σ = 1.4286mediani|ri| .

They discard the residuals from the optimisation that exceed the threshold which is empiri-

cally set to be 2.5σ. Later, [Black et al., 1998] discuss various robust cost functions and draw

connections of these robust functions with anisotropic diffusion. They use a similar robust

105

4. Dense Visual Tracking

σ estimation but from median of absolute deviations (MAD) [Rousseeuw and Leroy, 1987]

(note that there is no |.| in the inner median) as:

σe = 1.4286mediani|ri −medianiri| .

They obtain the appropriate scale parameter for any distribution by finding a point at which

the derivative of the function vanishes and setting that to σe to obtain the respective value

of the scale parameter. This is a point beyond which the influence of the outliers begins to

decrease. For instance, the Lorentzian function yields x =
√

2σ as the point at which the

derivative of the function becomes zero and as result the σ for a Lorentzian function can be

obtained as σ = σe√
2
. In particular, they talk about the “edge-stopping” ability of a Tukey

function that leads to preventing the spillage of the estimates of a denoised image across

image boundaries. As a result, a relatively sharper denoised image can be obtained and

this also provides a way to detect edges that are outliers to the robust cost function being

used. Similar estimate of scale parameter has also been used by [Tommasini et al., 1998],

[Fusiello et al., 1999], [Toldo and Fusiello, 2009] and [Moschini and Fusiello, 2009] who em-

ploy the X84 rejection rule described in [Hampel et al., 1986] that discards residuals with

|ri −medianiri| > 3.5σe. [Comport et al., 2006] use LSMed to obtain the estimate of the scale

parameter and use the Tukey function with scale factor σ = 4.6851σe and Huber function

σ = 1.345σe.

This scale parameter is then obtained afresh every iteration of the optimisation and there-

fore determines the weights for each pixel. The optimisation begins with an initial estimate

of the parameters obtained using a standard un-weighted least-square approach with all

weights set to unity. This provides a way to obtain the residuals and thereby the scale pa-

rameter. A robust cost function can be used then for later iterations [Huber, 1981] and the

whole process is repeated until convergence.

[Hager and Belhumeur, 1998] use a somewhat different form of IRLS originally proposed

by Dutter and Huber [Dutter and Huber, 1981]. They run few more inner iterations obtain-

ing updates where weights are computed afresh every inner iteration keeping the Jacobians,

residuals and the scale factor constant but for outer iterations.

4.6 Minimisation Schemes

The normal equation 4.20 has a nice structure of the matrix A that it is symmetric positive

definite. Therefore, the solution can be obtained without explicitly computing the inverse

106

4.6. Minimisation Schemes

of the A matrix. There are many different matrix factorisations tools that can used to solve

the system of linear equations, e.g. LU decomposition, SVD, QR factorisation and Cholesky.

However, only Cholesky decomposition [Press et al., 1992, Shum and Szeliski, 1997] exploits

the positive definite property of matrix A and is nearly twice as efficient as LU decomposi-

tion.

It is important to note that the underlying optimisation method that solves the normal

equations is approximating the Hessian of the function that is being minimised with the

square of Jacobians of the function and is called the Gauss-Newton method. Gauss-Newton

can perform poorly if the approximated-Hessian matrix is ill-conditioned or the residuals

are not “small”. This is a clear indicator that the approximation of the Hessian matrix

is ill-suited for the system of linear equations. This can lead to either convergence to a

unexpectedly wrong estimate or leading the solution to bounce up and down around an

estimate.

While Gauss-Newton style optimisations are well-suited when initialised close to a local

minimum where quadratic approximations are good, there are many other different varia-

tions to the Gauss-Newton approximation that work better if the solution is far away from

the minimum e.g. steepest descent actually computes the full Hessian rather than just an

approximation it. However, a major concern with all these optimisations is that there is no

feedback associated with the process that is driving the optimisation to a minima. Theo-

retically speaking, the error must decrease as the optimisation is iterating. As a result the

iterative procedure involved is blindly optimistic that the solution will get to the minimum.

Therefore, there is no guarantee that energy will decrease due to numerical inaccuracies,

interpolations and other discrete approximations to the continuous domain being used in

the optimisation.

An optimisation scheme that monitors the change in the error as the iterations progress

is Levenberg-Marquardt. It allows to combine the best of both worlds, the Gauss-Newton

and Line-Search. The normal equations are then modified:

Ax = b (GN) (4.35)

(A + λI)x = b (LO) (4.36)

(A + λdiag(A))x = b (LM) (4.37)

Levenberg (LO) and Levengberg-Marquardt (LM) optimisations add a stabilising or

damping factor, λ, to ensure convergence [Eade, 2009]. To control the parameter

λ, a schedule to change its values is recommended in [Press et al., 1992, p. 684],

107

4. Dense Visual Tracking

[Szeliski and Coughlan, 1997] and [Baker and Matthews, 2004]. It is initialised with a value

of 0.01 and if the residual error has decreased after the iteration then λ is decreased as λ/10

([Eade, 2009] recommend halving it) and the new update is performed while an increase in

error means that update obtained is erroneous and must not be used as a result, the param-

eters are restored to their values before the iteration and λ is increased as λ× 10 and a new

iterative update is sought.

It is also worth mentioning that the inverse compositional approaches

[Baker and Matthews, 2004] that benefit from the computational savings that can be

made by reversing the role of 2D template and the observed current image, and their fur-

ther even more efficient second order extensions like Efficient Second Order Minimisation

(ESM) [Benhimane and Malis, 2004] do not find equivalent analogue inverse compositional

2 1
2 D tracking or 3D-ESM when tracking from a 2 1

2 D surface [Baker et al., 2004b]. The

template image is anchored to the structure of the surface and that switching roles of

template and observed image would mean we know the depth in the observed frame which

is not true because this is what we want to know by optimising over the transformation

parameters.

4.7 Coarse to Fine Pyramid Hierarchy

Most all-pixel dense approaches that work by linearising the cost function are not suitable

for recovering large motion estimates at a standard resolution of 640 × 480 due to the fact

that linearisations hold true only within a narrow range of motion and as a result their

radius of convergence is small. In order to track bigger motion, the standard technique is

to work on a coarser resolution where observed motion in the image would be considerably

smaller than the higher resolution. Such coarser resolution would support the linearisation

assumptions made in the trackers and the resulting solution obtained at this level provides

a very good initial guess to instantiate the tracking at the higher resolution. Paradoxically,

the number of coarser resolutions vary with the extent of the motion present in the image.

In many standard vision applications, a hierarchy of pyramid levels is used where each

pyramid level corresponds to a progressive scale by half resolution image. The coarsest

pyramid level then initiates the matching and provides a good initial guess to the next level

in the hierarchy that keeps the immediate higher resolution. The solution constrains the

search space for motion parameters and the whole process is repeated until the pyramid

108

4.8. Instructive Example

level containing the highest resolution. [Quam, 1984] proposed a hierarchical coarse-to-fine

stereo matching algorithm. [Anandan, 1987, Anandan, 1989] and later [Bergen et al., 1992],

introduced a framework to measure large displacement motion using the standard coarse-

to-fine strategy. Today this strategic hierarchical framework has become a vital ingredient

to large displacement motion estimation processes.

It should be noted that care must be taken to ensure that the images are filtered using

low-pass filters to wipe out the high frequencies that may introduce aliasing while down-

sampling to obtain a coarser resolution.

4.8 Instructive Example

An example of SE(3) tracker is shown in Figure 4.3 where different iterations of the tracker

running at 320×240 are tiled. As iterations progress, reference image is aligned onto the live

image. Different Jacobian images are also shown where a small movement on each of the 6

dimensions leads to changes in the gradients in the image intensities.

109

4. Dense Visual Tracking

(a) Iteration: 1 (b) Iteration: 5 (c) Iteration: 10 (d) Iteration: 15

(e) Reference Image (f) Live Image (g) Jtx (h) Jty

(i) Jtz (j) Jωx (k) Jωy (l) Jωz

Figure 4.3: Top row shows reference image warped onto live image at various different
iterations. Jacobian images for all different parameters that are optimised over are show
in the next rows. The colour coding has green for negative gradient, black for zero while
red means a positive valued gradient. Only as an instructive example, we have shown the
results at resolution 320×240 otherwise a standard coarse to fine pyramid scheme is used.

110

Chapter 5

Evaluation of Tracking and Synthetic

Test-Bed

Contents

5.1 What Questions would we Like to Answer? 111

5.2 Need for Synthetic Test-Bed . 113

5.3 Choosing a Tracking Algorithm . 113

5.4 How do We Evaluate a Tracker? . 114

5.5 Multi-Objective Cost Functions: Pareto Fronts 118

5.6 Synthetic Image Generation via Ray Tracing 122

5.7 Adding Photo-Realistic Image Effects to Synthetic Images 127

5.8 Gathering Synthetic Data for Different Frame-Rates 135

5.9 Do We Think these Images are Realistic? . 137

5.10 Novelties of Our Dataset . 140

5.1 What Questions would we Like to Answer?

Our key goal in this work is to analyse the performance of 6DoF camera tracking in a known

3D rigid scene under varying camera frame-rate (or strictly exposure time in computational

photography parlance). This is mostly driven by our intuition that high frame-rate should

be better because image motion between consecutive frames reduces considerably when the

frame-rate setting of the camera is turned up. Any tracking algorithm that is aimed towards

111

5. Evaluation of Tracking and Synthetic Test-Bed

real-time is more likely to maintain the performance if the computations performed per unit

of time decrease — this is most likely to happen at high frame-rates where motion between

two consecutive images is relatively small. Many direct tracking algorithms that work on

linearising the cost function to obtain a convex approximation, the linearisations become

increasingly more valid because of small motion assumption at high frame-rates and in

feature based systems we get a similar benefit from smaller prediction regions. Therefore,

we would like to examine the effects of high frame-rates on the tracking performance and

answer the following very simple questions:

• If we have a limited computational budget available on our processor, what is the

optimal frame-rate for tracking?

• If we want to work on a given frame-rate, what kind of processor should we use?

However, when doing so, we quickly realise that there are few more parameters that we

can change that can affect the performance of a tracker. These parameters are intertwined

with frame-rate when it comes to performance evaluation. An immediate extra parameter

that can be used in the analysis could be image resolution. Therefore given additional

parameters, being more specific we would like to find out answers to the following altered

questions

• If we have a limited computational budget available on our processor, what is the

optimal frame-rate and image resolution for tracking?

• If we want to work at a given frame-rate and image resolution, what kind of processor

should we use?

• If processing budget allows, we can run more iterations of any tracking algorithm X

we are using to obtain more accurate results. So how many more iterations can we

run?

This is all aimed towards answering questions as a tracking expert/consultant: a user can

fix any subset of parameters and we will give range of optimal settings of the output they

have.

112

5.2. Need for Synthetic Test-Bed

5.2 Need for Synthetic Test-Bed

In order to be able to vary all the parameters continuously and compare the performance

against a perfect ground-truth, we would need a framework that allows us to do this to

judge which frame-rate is optimal? We believe, for this analysis there are strong arguments

against doing it accurately with a real camera system. Therefore, we appeal to a synthetic

framework for the following reasons:

• We cannot obtain perfect ground truth depth-map as well ground truth camera poses

even with using an expensive equipment for our analysis.

• We would like to vary frame-rate and image resolution continuously and most cameras

offer standard image resolutions. Also, since we would like to also obtain images at

frame-rates as high as 200–400Hz, we then need a sensor that can sample as high as

400Hz to give us ground truth.

• We also realise that in real world scenes, lighting cannot remain the same all the time

and therefore we need a way to control scene lighting.

• We also need a repeatable motion of the camera so that all frame-rates can be ob-

tained with the same camera trajectory. This demands a mechanism that can give us

repeatable motion which we can mount our camera on.

However, all these concentric views on using a synthetic framework do not mean that the

real experiments are not possible. We do verify the conclusions from our synthetic test-bed

against a well controlled real experiment.

5.3 Choosing a Tracking Algorithm

We choose to focus our analysis on dense tracking algorithms that use all the pixels in the

image. The task of image alignment in tracking is posed as locating the lowest point on

a surface covered in hills and valleys by doing an explicit ”gradient-descent”; one starts

from a predicted location and looks around to find a lower spot and keeps on iterating this

procedure until one reaches a point where one cannot go downhill any more.

Dense gradient-descent based tracking algorithms implement active processing implicitly,

since if run from the starting point of a good prediction they will require fewer iterations

113

5. Evaluation of Tracking and Synthetic Test-Bed

to converge to a minimum. Given an increase in frame-rate, we would expect that from

one frame to the next the optimisation will converge faster and with less likelihood of gross

failure as inter-frame motion decreases and the linearisation at the heart of Lucas-Kanade

tracking becomes increasingly valid. Specifically then, besides the point that we are now see-

ing increasing practical use of dense tracking methods, we have chosen such a framework

within which to perform our experimental study on tracking performance because iterative

gradient-based image alignment aims in a direct, pure way at the best possible tracking

performance (since it aims to align all of the data in an image against the scene model), and

makes automatic the alterations in per-frame performance (computation, accuracy and ro-

bustness) we expect to see with changing frame-rate. Any feature-based method we might

have instead chosen places an abstraction (feature selection and description) between image

data and tracking performance which is different for every feature type and would lead us to

question whether we were discovering fundamental properties of tracking performance or

those of the features used. Feature algorithms have discrete, tuned parameters and thresh-

olds. Further, as we will see in our experiments, there is a complicated interaction between

physical image formation blur and noise effects and frame-rate. A dense tracking frame-

work allows an analysis to be made on such degraded images without altering algorithm

parameters that might be necessary for feature-based methods.

5.4 How do We Evaluate a Tracker?

When we talk about assessing the performance of a tracker, there are several measures that

can be used — a single measure is not always very informative. We define the performance

in terms of three different metrics namely accuracy, robustness and computational cost.

However, it is important to remember that all three metrics have different dimensions and

units and as such cannot be combined like

Performance 6= Accuracy
Computational Cost

+ Robustness (5.1)

An appropriate weighted combination could be a way to combine these metrics. However,

these weights are not very trivial to obtain and only serve for somewhat ad-hoc way to

combine them which is again not very adequate. Therefore, we consider instead a multi-

objective criteria, Pareto Front 1, a multi-dimensional axes vector to judge the performance.

1Pareto Front is a popular technique used in economics and described in detail here: http://en.wikipedia.
org/wiki/Pareto_efficiency

114

http://en.wikipedia.org/wiki/Pareto_efficiency
http://en.wikipedia.org/wiki/Pareto_efficiency

5.4. How do We Evaluate a Tracker?

Figure 5.1: Tracking experiment configuration and evaluation. At each frame of our syn-
thesized sequence, after tracking we record the translational distance between pose estimate
T̂t,w and ground truth Tt,w; an average of these distances over the sequence forms our accu-
racy measure. We then use the ground truth pose as the starting point for the next frame’s
tracking step.

We detail our performance metrics below and later we show how to use them in a multi-

objective performance evaluation.

5.4.1 Accuracy

Accuracy captures the degree of proximity of the obtained result to a known ground truth

value. Most trackers operating in the regime where they can perform without failures

provide estimates that can be used to judge the accuracy of a tracker. Thus, it is this measure

that separates an accurate tracker from an inaccurate one.

We define the accuracy of tracker as the euclidean distance between the estimated trans-

lation and the ground truth translation. Figure 5.1 shows in how the accuracy measure is

calculated. Such measure captures the straightforward deviation from the true value per

frame.

Another accuracy measure could be to find the deviation at the last frame by letting the

tracker run on its own for a given number of frames, without re-intialising at every frame

in between.

115

5. Evaluation of Tracking and Synthetic Test-Bed

Figure 5.2: Input-Output parameter space for our tracker. We rate the performance of a
tracker based on three paramters namely Accuracy, Computational Cost and Robustness. Accu-
racy captures the degree of correctness of a tracker, Robustness is defined as the number of
times tracker works without gross failures while Computational Cost denotes the underlying
processing demands per second.

Figure 5.3: Accuracy and Robustness are somewhat tied together but the subtle difference
is shown in the figure where we describe four different kind of trackers, (a) Accurate and
Robust (b) Accurate but not Robust (c) Robust but not Accurate (d) Neither Robust nor
Accurate. The trackers are expected to return a value very close to the origin and the data
points represent the samples over which the performance of a tracker is evaluated.

5.4.2 Robustness

The ability of a tracker to remain immune to varying degrees of degradation applied to

input data and still give consistently good estimates (in a statistical sense) determines the

robustness of a tracker. The degradations may include changing illumination in the scene,

noise in the image and/or occlusions and rapid and abrupt camera motion producing blurry

images. Working in real world conditions means that such degradations are expectedly

common and greatly thwart the performance of a tracker, making it brittle. A tracker that

116

5.4. How do We Evaluate a Tracker?

works accurately in normal controlled and tuned conditions is hardly of any use in scenarios

where long term performance is crucial, if it cannot withstand these challenges and fails

catastrophically. For instance, a tracker when given perfect input gives the best possible

results but breaks irresistibly against even a small degradation introduced in the images

cannot be put to use in real world applications.

Accuracy alone then is an impoverished measure to judge the performance of a tracker

because there is an inherent assumption underpinning it that the tracker is working and

that accuracy can be computed. What it does not tell us if the tracker fails or if the tracker works

only in a limited scope or it fails more often than it works. A robustness metric is therefore

necessary then to quantify the long term performance of a tracker and compare different

trackers under a standard performance metric. If accuracy reports the statistical measure of

the degree of correctness of a tracker, robustness is the statistical consistency of the tracker

to give correct estimates. Figure 5.6 shows the subtle difference between Accuracy and

Robustness.

Robustness, unlike accuracy, requires a large amount of data that captures all the de-

grees of degradations observed in the image to obtain a statistically meaningful number

that reflects the success-failure ratio. Most tracking algorithms used in SLAM only define

robustness qualitatively showing either the success or failure of the used tracker against the

degradations; the enormity of data required prohibits quantitatively evaluation of robust-

ness. So far, only [Coffin et al., 2010b] and [Coffin et al., 2010a] analyse the performance of

3DoF camera orientation tracking system and propose a robustness metric to quantify the

performance. They organise the tracking into three different categories: acceptable, recover-

able and irrecoverable tracking region based on fixed thresholds (that are domain specific)

they determine. Robustness is then expressed as a linear combination of the frequency of

the time the tracker spends in each of these regions. Expert users are asked to rate the

tracking subjectively and based on the obtained statistics they minimise the sum of square

differences of quantified robustness and the statistics of robustness obtained from expert

users to determine the weights. They obtain the weights from the results of three of the four

methods they use to perform tracking and verify the accuracy of the metric by being able to

correctly predict the robustness of the fourth.

We obtain similar robustness statistics by quantifying the success/failure and calculating

the frequency of success of the tracker. This is also illustrated in Figure 5.6 where any data

point inside the green circle means that the tracker is successful. The success/failure is

determined by a threshold.

117

5. Evaluation of Tracking and Synthetic Test-Bed

5.4.3 Computational cost

Our computational cost model evaluates the total occupancy ratio: the ratio of the amount

of time a tracker keeps the processor busy to strict timing demands i.e. 1
f ps , expected for the

tracker to finish. This is formally defined as

Computational Cost =
time taken per frame

1
fps

(5.2)

= time taken per frame× fps (5.3)

Since the computational cost is a dimensionless quantity, in other words it can also be

interpreted as the total computational power spent in running the tracker on the number

of frames provided by operating at a given frame-rate. For instance, if we are using 200Hz

camera, it means the computational power spent in processing 200 frames in total.

Figure 5.2 summarises the input-output parameter space for our tracking evaluation. Hav-

ing identified various performance metrics which seem important in evaluation of tracking,

we detail on how do we put them together in the next section.

5.5 Multi-Objective Cost Functions: Pareto Fronts

Performance evaluation and assessment demand a criteria or metric to judge the perfor-

mance of a system when subjected to different input functions it depends on. Not only does

it highlight a set of various operating points where the system performs without failures,

but also provides a standardised scale on which the performance of two different operat-

ing points can be compared objectively. This metric could be accuracy or a combination of

metrics that returns a scalar quantity to merit the performance of the system. Although a

single metric, e.g. accuracy could be appealingly useful, most assessment and evaluation

methodologies require more than just one metric. For instance, one may also be interested

in weighing the computational cost (a penalty) associated with attaining a given accuracy

figure. Therefore, the performance should be collectively assessed based on multi-objective

criteria.

118

5.5. Multi-Objective Cost Functions: Pareto Fronts

5.5.1 Formal Definition

Our assessment function here has three different criteria over we wish to assess the perfor-

mance of a tracker. Formally, the assessment function for tracker can be written in terms of

these criteria as follows:

f (x) =

min E (x) (Error / Accuracy)

min C(x) (Computational cost)

maxR(x) (Robustness)

(5.4)

E (x) is the measure of error described as the deviation from its true value, C(x) denotes

the cost associated with running a tracker measured by the amount of time it takes until

convergence and R(x) is the third assessment of the quality of a tracker judged in terms of

the frequency of failures of a tracker over a given period of time.

Since all the three performance measures are dimensionally different to each other, it is

not straightforward to combine (e.g. weighted combination) them to obtain a single scalar

quantity that sums up the final assessment. Therefore, a single global optimal solution

does not exist. Rather there is multiple choice solution that is considered dominant. The

dominant solution is termed as Pareto optimal solution while the envelope of all dominant

solutions over a given set of possible ranges forms the Pareto Front as shown in Figure

5.4. The user desirable output parameters allow to slide over the Pareto Front to obtain

the corresponding input parameters that yield Pareto Optimal solutions — an envelope of

operating points from which a user might sensibly choose.

Pareto Fronts are an old idea from economics. In computer vision, evaluation of al-

gorithms and systems using multi-objective Pareto Fronts has been previously visited by

[Everingham et al., 2006] in the context of image segmentation, [Calonder et al., 2010] for

interest point, [Mayol et al., 2002] for wearable camera placement, [Dunn et al., 2004] for

sensor planning in active vision system.

5.5.2 Pareto Optimality

An illustration of Pareto Optimality is given in Figure 5.4. A Pareto Front forms the lower

envelope of evaluation parameters plotted one against the other. The Figure shows the

Pareto analysis of the following evaluation{
min f1(x)

min f2(x)
(5.5)

119

5. Evaluation of Tracking and Synthetic Test-Bed

Figure 5.4: Pareto Front of the feasible operating points. The assessment criteria seeks
the minimum of two both objective functions f1(x) and f2(x). Solution x1 dominates x2
i.e. x1 � x2 because for both objective functions x1 yields the optimal results. The dashed
blue line forms the lower envelope of the scattered operating points dotting the plot of the
objective functions.

Similarly for our analysis, if for some x1 and x2, there exists the following

E (x1) ≤ E (x2) and C(x1) < C(x2) and R(x1) > R(x2) or

E (x1) < E (x2) and C(x1) ≤ C(x2) and R(x1) > R(x2) or

E (x1) < E (x2) and C(x1) < C(x2) and R(x1) ≥ R(x2)

then the solution x1 is said to dominate x2 i.e. x1 � x2. It shows that an improvement can be

made without making the other objective functions worse. An optimal solution then is the

one that is not dominated by any other solution. This permits us to answer questions of the

form: What is the best choice of input parameters for a tracker that gives an accuracy of A% but

120

5.5. Multi-Objective Cost Functions: Pareto Fronts

Elegant Practical Fancy Cheap

Figure 5.5: Eating out in a restaurant can be considered as an engineering prob-
lem. The choice of a restraurant greatly depends on multiple criteria e.g. good am-
bience, low price, high quality etc. One restaurant may not fit all the criteria, in-
stead it may reflect a fair balance of them and it is upon the person to choose sensi-
bly. The images are obtained from http://www.die.unipd.it/~alotto/didattica/corsi/

Elettrotecnica%20computazionale/pareto.pdf

runs at a speed of Tms and works R% of the time without failures.

5.5.3 Toy Example: Eating Out in a Restaurant

Eating out in a restaurant can be considered as multi-objective optimisation where the de-

cision to go to a restaurant is governed by many objectives, e.g. the ambience, the price

and the quality rating of the restaurant as shown in Figure 5.5. However, the objectives

can be conflicting that results in multiple choices offered to the person instead of a single

choice. Table 5.1 summarises the multiple objectives with the choices of restaurants. It is

clear that although a weighted combination of these objectives will provide us with a single

scalar number which we can use to judge the best choice however, it is biased towards the

combination of weights used.

Restaurant f1: Price f2: Quality
[1=max,5=min]

f = af1 + bf2
a= 1

60 , b= 1
5

f = af1 + bf2
a=120, b= 1

5
Joe’s Juicy Stake 30 2 0.9(2) 0.65(1)
Pizza Pazza 15 4 1.05(3) 0.93(4)
Mc Duck’s chicken 10 3 0.77(1) 0.68(2)
The Golden Shrimp 60 1 1.2(5) 0.7(3)
The Cold Soup 5 5 1.08(4) 1.04(5)

Table 5.1: The choice of a restaurant is governed by somewhat conflicting objectives, price
and the quality. The cons of weighted combination are evident that it although yields a
single scalar value but the choice of best restaurant depends on the weighting used.

121

http://www.die.unipd.it/~alotto/didattica/corsi/Elettrotecnica%20computazionale/pareto.pdf
http://www.die.unipd.it/~alotto/didattica/corsi/Elettrotecnica%20computazionale/pareto.pdf

5. Evaluation of Tracking and Synthetic Test-Bed

Figure 5.6: A Pareto Front on the other hand does not make any strict decision based on
a scalar number instead it provides a set of optimal choices which are considered to be
dominant.

5.6 Synthetic Image Generation via Ray Tracing

Motivated by the need for a synthetic framework to allow full control of the necessary pa-

rameters, we have followed the recent advancements in the computer graphics community.

There has been a huge proliferation of 3D modellers and software during the past decades

that allow one to create a synthetic scene with very realistic elements. Ray tracing lies at the

heart of many of these projects e.g. POVRay 2, Blender 3, OptiX 4, Radiance 5 and Sunflow 6

to name a few, and allows to define the scene geometry and model all the real world effects

and lighting interactions. A typical ray tracer has the type of camera and a 3D scene defined

usually in either a software-specific language or some intermediary tools. Scene used in a

ray tracer is composed of objects of various different shapes and sizes. Rendering then, is

a procedural way of projecting the complex 3D world defined in terms of simple primitive

shapes e.g. cube, sphere etc. in an image by tracing path of rays that hit every pixel in it in

the same style as a real camera would do. Figure 5.7 shows a glimpse of the advancements

made in ray tracing and that it is not difficult anymore to create realistic scenes. If we look

at the latest sci-fi and action movies, new video games and architectural and engineering

2www.poray.org
3www.blender.org
4http://www.nvidia.com/object/optix.html
5http://radsite.lbl.gov/radiance/
6http://sunflow.sourceforge.net/

122

www.poray.org
www.blender.org
http://www.nvidia.com/object/optix.html
http://radsite.lbl.gov/radiance/
http://sunflow.sourceforge.net/

5.6. Synthetic Image Generation via Ray Tracing

designs such as airplanes, cars, and houses etc., we can easily pin point the degree of realism

in them. This is largely again due to the advancements made in the ray-tracing community.

1996 2000 2006

Figure 5.7: Images selected for first prize in the IRTC (Internet RayTracing Competition) in
the years marked below each image.

Ray Tracing models the complex light interactions with the objects in the scene to create

an image. A ray tracer, in principle, works as a real camera but however, the difference is

that the it works in reverse to a real camera i.e. rays are projected back from their point of

reception (pixels) to their point of origin (light source). When light rays travel in real world,

many complex interactions take place e.g. diffusion, reflection, refraction etc. before they

hit the pixel location on a camera. In this process, some rays never reach the camera and it

is for this reason that a ray tracer works only on the rays that hit the camera by tracing them

backwards and saves the unprecedented amount of calculations involving infinite number

of rays it would have to make otherwise. Figure 5.8 and 5.9 highlight various complex

real-world effects that can be modelled with a ray-tracer.

A primary ray emerging from the camera center of projection through pixel is traced to

the scene. The ray is tested for intersection with each object and the nearest intersection is

identified. A shadow ray is then traced backwards towards the light source. If the ray hits

another object on the way, the ray bounces to a different direction and therefore depending

on the fixed number of bounces, it either reaches the light source or not. If the ray reaches

the light source, the contribution of the colour at that pixel then is obtained by applying

the standard optics laws of reflection (and refraction if there is any) on all the intermediate

paths the ray takes before reaching the light source. Therefore, ray tracing is a view-dependent

rendering technique.

123

5. Evaluation of Tracking and Synthetic Test-Bed

(a) Only default ambient (b) Point light & ambient on (c) Spotlight

(d) Area light (e) Fading light (f) Lightbulbs

Figure 5.8: A simple scene comprising primitive shapes (cylinder, cuboid, sphere etc.).
The same scene is rendered under varying lighting conditions. Figure (a) is rendered
with no light sources and default ambient lighting while (b) shows default lighting with
a point source that has infinite power and shines in all directions casting hard shad-
ows, (c) shows rendering under a spotlight; (d) is rendered using a 2 × 2 area ma-
trix of light bulbs lying on the vertical plane (e) shows a render with fading light prop-
erty and (f) is rendered with three different lightbulbs (red, green and blue show in the
image). The images are reproduced from the POVRay scripts available at the website
http://xahlee.info/3d/povray-lighting.html

But this cannot undermine the time a ray tracer still spends in rendering an image. For

instance, to obtain a 640 × 480 image, it sends out (one or more) rays for every pixel step

by step and renders it. Increasing image size, adding more realistic effects e.g. shadows,

reflections etc. and sending more rays in the scene only encumbers the ray tracer and makes

it spend more effort and time.

5.6.1 Radiosity

A standard ray-tracing simulator only performs reflections of lights coming from direct

illumination. If an object or a part of the scene is being blocked by another object then there

is no direct light transport. However, in real world light transport, there are inter-reflections

of light among different surfaces and this is exactly what radiosity aims to simulate. This

124

http://xahlee.info/3d/povray-lighting.html

5.6. Synthetic Image Generation via Ray Tracing

(a) Reflections (b) Roughness (c) Bumpiness

(d) Texturing (e) Transparency (f) Refraction

Figure 5.9: These images are again reproduced from the POVRay scripts available at the
website http://xahlee.info/3d/povray-lighting.html

gives rise to important realistic visual features in the image e.g. soft shadows and colour

bleeding.

Radiosity information is computed between all the diffuse surfaces in the scene based

on the visibility form factors i.e. the area of a surface that can be viewed from a different

surface which is what contributes to the radiance transfer. Radiosity is view-independent and

therefore all the computations can be done for the whole scene at once. After computing the

radiosity of the whole scene, novel view renderings can be done interactively. Figure 5.10

shows the remarkable difference radiosity brings to the synthetic scene. The front box shows

areas that are completely dark due to the lack of direct light transport but with radiosity it is

able to obtain a greenish tinge from the green wall to the right. Similar effects are observed

at the side of the box, at the wall at the back and the ceiling.

The cost incurred in achieving the realism is huge both in terms of time and memory

requirements. The algorithms require the scene to be decomposed into small patches so

that radiance transfer can be easily calculated from the form-factors. This is quadratic in the

number of patches and hence a massive increase in complexity.

125

http://xahlee.info/3d/povray-lighting.html

5. Evaluation of Tracking and Synthetic Test-Bed

(a) (b)

Figure 5.10: The classic Cornell Box, Figure (a) is rendered with radiosity setting on while
Figure (b) is using only direct illumination and no global illumination. How much differ-
ence diffuse inter-reflections can make to the scene is clearly evident in the images. Note
the colour bleeding at the back wall. A standard ray tracer cannot simulate the light
inter-reflections between diffuse surfaces. Therefore radiosity is a technique that is often
used to recover the diffuse inter-reflections. The images are downloaded from the website
http://www.cs.technion.ac.il/~cs234326/projects/ray/ray.htm

For our experiments, we have used the open-source ray tracer POV-Ray as our main

tool for video synthesis. POV-Ray has been used previously for ground truth generation

[Funke and Pietzsch, 2009] with regard to performance evaluation of a feature-based SLAM

system, but with very simple non-realistic scenes. We have instead used a publicly available

indoor office scene model 7 (800 × 500 × 250cm3). The scene is appealingly similar to a

normal office scene with deskstops, keyboards, tables, chairs and paintings. It is rendered

in two passes; the first pass saves all the radiosity settings and the second pass uses the

computations saved in the first pass and injects specular reflections and other real scene

features to give a realistic appearance. Figure 5.11 shows an image from the scene with the

recovered depth-map. We generate videos for different frame-rates by inserting trajectories

in the scene and then add real-camera artefacts e.g. noise, to the image. The following

subsequent sections look at the trajectory generation and adding calibrated image noise

processes.

7http://www.ignorancia.org/en/index.php?page=The_office

126

http://www.cs.technion.ac.il/~cs234326/projects/ray/ray.htm
http://www.ignorancia.org/en/index.php?page=The_office

5.7. Adding Photo-Realistic Image Effects to Synthetic Images

Figure 5.11: A ‘pure’ ray-traced image with no blur or noise effects. Each such image takes
30–60mins to render in two passes on an 8 core Intel i7 3.20GHz machine. The associated
planar depth map also generated is shown alongside.

5.7 Adding Photo-Realistic Image Effects to Synthetic Images

Pure ray-tracing allows one to add realistic effects that are observed as light transports in the

real-world. Camera noise that arises due in low exposure images taken at high frame-rates

and image blur that is observed at low frame-rates are not easily modelled in this ray-tracing

— a ray-tracer would have to send more rays and average the results which is again quite

time consuming.

These artefacts are quite an essential part of our experiments where we would like to

show the degradation in a tracker’s performance with noisy and blurry images. We obtain

the camera noise parameters from a real camera and use those parameters to post-process

the ray-traced images and add noise to them. On the other hand, we average the irradiance

values to obtain the motion blurred image. Below we detail the various noise sources that

arise in the camera image capture and show how to model them and later we describe the

procedure to add blur to images.

5.7.1 Adding Image Noise

The number of photons collected by a CCD element per unit time is called Irradiance and is

defined as:

E =
(πd2) cos4 βL

c2 , (5.6)

127

5. Evaluation of Tracking and Synthetic Test-Bed

where d the radius of aperture, β is the angle subtended by the principal ray from the optic

axis, L is the radiance of the scene and c is the focal length of the camera. Figure 5.12

(a) Image acquisition process explained.

(b) The Camera Response Functions maps the Irradiance to Brightness.

(c) The incoming photons are also accompanied with noise.

Figure 5.12: The image acquisition process for a global shutter CCD camera. Each CCD cavity collects the
photons very analogous to a bucket collecting falling rain drops. The number of photons collected by each
bucket gives the pixel its colour value. The process of photon collection to its conversion to a standard 8-bit
value is modelled by the camera response function, CRF. The modelling process involves various non-linear
transformations e.g. white balance, tone mapping, gamma correction which the value undergoes before being
quantised to a computer readable 8-bit number. The photon collection process also comes with accompanying
extra photons which is termed as noise. The noise follows a Poisson distribution but can be approximated by a
Gaussian distribution model if the number of expected photons exceed 10.

shows how and where noise gets added during the imaging process. There are mainly four

different types of noise in CCD cameras that corrupt the signal before it is digitised to a

128

5.7. Adding Photo-Realistic Image Effects to Synthetic Images

value observed on a computer. They are photon noise, dark current noise, read out noise,

and quantisation noise. We expand on each of the noise in the following.

Photon noise

A typical CCD site on the sensor array acts as a bucket that collects photons from the photon

rain falling from a light source. The more the photons collected, the brighter the pixel value

is at that location. However these photons are emitted at random times meaning that at

every time the bucket collects photons, it is not guaranteed to collect the same number. In

physics of photon counting this is termed photon noise or shot noise.

The rate at which photons arrive at the CCD site follows a Poisson distribution. Photon

noise depends on the square root of the number of photons collected [Hasinoff, 2012]. The

number of photons N measured by a given sensor cavity over a time of t seconds can be

described by the following distribution

Pr(N = p) =
e−λ(λ)p

p!
, (5.7)

where λ = λtt and λt is the expected number of photons per unit time and is proportional

to the incident scene irradiance. Both the mean and the variance of the distribution are

λtt, i.e. the standard deviation of the noise grows with the square root of the signal. For

small shutter speed, photon noise is swamped by the signal while for large shutter speeds

the effect of photon noise begins to corrupt the signal profusely. However, it is important

to remember that this noise has nothing to do with the camera and that it is an inherent

property of light source.

In most practical systems, the Poisson noise can conveniently be approximated by Gaus-

sian noise. Figure 5.13 shows how a Poisson distribution turns Gaussian as λ increases

beyond 10. This makes it easy to use the appealing properties of a Gaussian distribution

while modelling and measuring the amount of noise in images. Understanding the process

of photon noise enables us to model the effects of noise that are related to the variations of

light entering the sensor, e.g. changing exposure time and camera gain.

Dark current noise

The collected photons in the CCD are then converted into electrons via the photoelectric

effect. The excited electrons leave the molecules of the material and transfer the charge

129

5. Evaluation of Tracking and Synthetic Test-Bed

when external voltage is applied. This charge is collected by the capacitors which then

convert it back to a voltage for the Analog-to-Digital converter. However, these electrons

can also get excited by heat in the sensor which leads to what is known as dark current

noise. It is essential to remember that this type of noise emanates due to the property of the

material of the sensor used in the CCD and it has nothing to do with the light. Even if the

sensor does not receive any light, it is still possible to have this noise in the image because

it depends on the temperature of the sensor.

Read out noise

On converting the charge to voltage by capacitor, this voltage is amplified and the noise

resulting from the amplification is termed read out noise.

Quantisation noise

The noise resulting from the conversion of voltage to a digital value by the Analog-to-

Digital converter is termed quantisation noise. A given n-bit ADC has a limit to which it

can measure the voltage accurately and convert into a digital value.

The digital pixel value often in most cameras also goes through various non-linear trans-

formations before it gets converted to a value a human visual photometer can contrast easily.

These transformations may include gamma correction, white balance and tone mapping etc.

A camera response function (CRF) then allows us to model these variations to provide an

abstract relationship between input Irradiance and output Brightness. This response function

is usually monotonic and invertible and reflects the modelling variations typical of the cam-

era used. [Grossberg and Nayar, 2003] provide a database of camera response functions for

different consumer cameras.

In order to set realistic rendering parameters for our synthetic sequences, we have per-

formed experiments with a real high frame-rate camera to determine its camera response

function (CRF) and noise characteristics. When a pixel on a camera’s sensor chip is illu-

minated with light of irradiance E, during shutter time ∆t it captures energy per unit area

E∆t. This is then turned into a pixel brightness value B. We model this process as in

[Liu et al., 2006]:

B = f (E∆t + ns(∆t) + nc) + nq . (5.8)

130

5.7. Adding Photo-Realistic Image Effects to Synthetic Images

Here, the CRF f is the essential mapping between irradiance and brightness, monotonic

and invertible. ns is a shot noise random variable with zero mean and variance Var(ns(∆t))=

E∆tσ2
s ; and nc is camera noise with zero mean and variance Var(nc)=σ2

c . We assume that

quantisation noise nq is negligible. Our choice of modelling the shot noise with Gaussian

distribution is more driven by fact that the number of photons captured by the CCD cavity

for even very low lighting conditions are more than 10. Table 5.2 summarises the number

of photons obtained for different light sources. We observe that even in the low lighting

conditions of a living room, the number of photons received exceed the minimum number of

photons required to model the shot noise with Gaussian noise. Given the formal relationship

between Brightness and Irradiance this also allows us to obtain the variation of the brightness

value observed as a function of various noise. Using first order Taylor series expansion of

the function we can easily obtain the standard deviation of the brightness:

B = f (I0) +
∂ f (I)

∂I

∣∣∣∣
I=I0

(I− I0) . (5.9)

Representing I as the input Irradiance, variance in Irradiance can be obtained as:

I = E∆t + ns + nc =⇒ σ2
I = E∆tσ2

s + σ2
c . (5.10)

The variance of image brightness can be obtained by covariance propagation:

σ2
B =

(
∂ f (I)

∂I

∣∣∣∣
I=I0

)2

σ2
I , (5.11)

Therefore, the standard deviation in the observed brightness can be explained as

σB =
(

∂ f (I)
∂I

∣∣∣∣
I=I0

)√
E∆tσ2

s + σ2
c . (5.12)

We obtain the variance of noise using the method of [Liu et al., 2006] plotting mean bright-

ness against the standard deviation by taking snaphots of a static scene with a still camera.

Pixel value at each location in the image stack is averaged to obtain the mean and the stan-

dard deviation. Parameters that fit well, as defined by the sum of squares cost function, to

the lower envelope of the plot are finally used to add synthetic image noise.

We used the Matlab optimisation toolbox and standard functions fmincon (with con-

straints σs ≥ 0 and σc ≥ 0) and fminunc to obtain the optimal values of the parameters σs

and σc. Optimisation results are overlaid on the observed NLFs from the images for each

channel in Figure 5.15.

131

5. Evaluation of Tracking and Synthetic Test-Bed

Light Source Lumens/m2 Photons/µm2 /s Photons
Starlight 10−4 5 < 1
Full Moon 1 5 ×104 19
Living Room 50 2.5 ×106 965
Office Lighting 4 ×102 2 ×107 7.7 ×103

Overcast Day 103 5 ×107 1.9 ×104

Daylight 104 5 ×108 1.9 ×105

Direct Sun 105 5 ×109 1.9 ×106

Table 5.2: The numbers and figures are obtained from [Cossairt, 2011, p. 150]. These num-
bers correspond to exposure time of 1

50 ms.

Figure 5.13: (a) Poisson distribution as a function of the parameter λ. The distribution
can be approximated by Gaussian distribution for λ ≥10. (b) Different camera response
functions obtained from the popular Columbia camera response function database http:

//www.cs.columbia.edu/CAVE/software/softlib/dorf.php

5.7.2 Adding Motion Blur

Motion blur is a major artefact observed in images when the camera is undergoing rapid

shaky motion. It occurs due to the way the sensor works by integrating the light intensity

over a period of time. Therefore, when a camera (or object in the scene) moves faster than the

sampling rate of the image capture, images tend to have motion streaks in them. In image

space, this means each pixel value is obtained from the combination of the pixels along the

arc of image motion induced by the camera trajectory. In most applications it is reasonable

to average the image brightness levels to create a blurry looking image. However, a real

camera does not average the Brightness, it in fact averages the Irradiance that is incident on

the sensor since the CCD cavity collects a number of photons. Therefore injecting synthetic

132

http://www.cs.columbia.edu/CAVE/software/softlib/dorf.php
http://www.cs.columbia.edu/CAVE/software/softlib/dorf.php

5.7. Adding Photo-Realistic Image Effects to Synthetic Images

Figure 5.14: An illustration of how the noise level function is plotted. Different channels
have means µ plotted against the standard deviation σ obtained from the temporal stack of
images of a static scene taken with a stationary camera.

Red Green Blue

Figure 5.15: Data and results for experimental Noise Level Function (NLF) calibration for
each channel of our real camera shown as scatter plots. Overlaid on each of the plots is
the brightness-dependent NLF computed using the minimisation technique formulated in
[Liu et al., 2006]. Note that the green channel has significantly lower noise than red and blue
due to there being twice as many green pixels in our camera’s Bayer pattern. The optimal
sigmas obtained for R are (σs = 0.0104, σc = 0.0045), for G are (σs = 0.0066,σc = 0.0038) and
for B are (σs = 0.0107, σc = 0.0053). We also minimised the noise level energy function with
R, G and B together and obtained optimal values being (σs = 0.0103, σc = 0.005).

motion blur in images requires the image acquisition process be modelled carefully.

We have followed the work of [Debevec and Malik, 1997] and recently

[Lin and Chang, 2006] for generating motion blur in synthetic images. Both choose to

average values in the Irradiance space by projecting the Brightness to the Irradiance plane via

the camera response function and then converting the averaged Irradiance back to Brightness

plane for the corresponding blurry value. [Klein and Murray, 2010] also use a similar model

to create realistic motion blur.

133

5. Evaluation of Tracking and Synthetic Test-Bed

Figure 5.16: Synthetic photo-realistic images at shutter timings set to half of the maximum
at a given frame-rate. Left: at 100Hz, images have very little blur but are dark and noisy.
The image shown has brightness values rescaled for viewing purposes only. Right: at 20Hz,
motion blur dominates. The cutout highlights our correct handling of image saturation by
averaging for blur in Irradiance space.

Since we do not have absolute scale for the Irradiance values obtained from the CRF, we

cannot define scene illumination in absolute terms. Therefore, the Irradiance values obtained

from POVRay are normalised to obtain the corresponding brightness values. We render

extra samples at the either side of the trajectory pose over a given interval which give us

Irradiance values that can be averaged. We can also vary scene illumination in the synthetic

Figure 5.17: A sample trajectory displayed with a section of one of the 3D scenes used in
the analysis. Red, Green and Blue denote the X,Y and Z axes respectively.

scene and obtain images for varying degree of lighting conditions. We define a new constant

134

5.8. Gathering Synthetic Data for Different Frame-Rates

α representing overall scene brightness:

B = f (αE∆t) . (5.13)

In our experiments we have values α ∈ {1, 10, 20, 40}, with increasing scene illumination

leading to better image SNR. The reference E for each pixel is set to the base pixel value ob-

tained from POV-Ray. Therefore, the overall process of blur generation for a given trajectory

pose can be summarised by the following equation:

Bavg = f

(
α∆t
N

N

∑
i=1

Ei + ns + nc

)
. (5.14)

We apply the image noise first because noise comes with incoming photons, before averag-

ing the Irradiance. Finally, we quantise the obtained brightness function into an 8-bit/16-bit

per channel colour image. Figure 5.16 gives examples for simlar motion at 20 and 100Hz.

5.7.3 Different Camera Response Functions

Rendering of images using different camera response functions can be obtained similarly.

Figure 5.13 shows different camera response functions that are obtained from popular

Columbia CRF dataset [Grossberg and Nayar, 2003].

5.8 Gathering Synthetic Data for Different Frame-Rates

Obtaining a sequence requires a camera trajectory that has all the characteristic properties of

real hand-held motion; it should vary smoothly between consecutive trajectory points and

should not be different from the motion a user generally creates while moving the camera.

Any system that allows the capture the hand-held motion can provide a trajectory we need

that can be easily ported to POVRay. Given that the trajectory obtained from the system is

in the frame of reference of that system, the following equation must be used to map it to

the reference frame of POVRay:

Tpov cam = Tpov system .Tsystem cam (5.15)

Tsystem cam records the camera poses represented in the world coordinate frame of the sys-

tem. Tpov system is what we seek to transform the system poses to their corresponding poses

that are represented in world coordinate frame of POVRay, Tpov cam.

135

5. Evaluation of Tracking and Synthetic Test-Bed

(a) (b)

(c) (d)

Figure 5.18: Figures (a) and (b) show different views of the office desk while (c) and (d)
view at the back of the scene.

We obtain Tsystem cam by running DTAM [Newcombe et al., 2011b] on the hand-held cam-

era. Dense systems like DTAM directly work on the image pixel values to obtain camera

motion by aligning the incoming image to one obtained from the model. The redundancy

and over-constrainedness of the data for estimation of camera motion makes DTAM rela-

tively immune to shaky and rapid motion. Hence, it is possible to obtain camera poses for

the type of motions that we would like to analyse.

The poses obtained from the system are in the world coordinate frame of the system. In

order to be able to relate them to the poses that the raytracer can use, we need to transform

these poses in the world coordinate frame of POVRay as described in Equation 5.15. Given

the intial pose where we want the trajectory in POVRay to start from, we can map the

136

5.9. Do We Think these Images are Realistic?

initial pose given by DTAM and obtain the transformation Tpov system via standard inverse

transformation i.e.

Tstart
pov cam .

(
Tstart

system cam

)−1

= Tpov system . (5.16)

The obtained transformation is kept fixed and other poses, Tsystem cam , of the trajectory can

be trivially mapped to their corresponding poses in the POVRay system using Equation

5.15.

Going from still images to video requires a camera trajectory for the simulated camera

to follow through the scene. After initially experimenting with various methods for sythe-

sizing trajectories and finding these unsatisfactory, we decided to capture a trajectory from

a real camera tracking experiment. Using DTAM [Newcombe et al., 2011b] we tracked an

extreme hand-held shaky motion which was at the limits of DTAM’s state of the art tracking

capability with a 30Hz camera. These poses are then transformed using a single similarity

transform into the POV-Ray frame of reference to similarly render the synthetic scene. To

obtain images for any frame-rate, the poses were interpolated, using cubic interpolation for

translation and slerp for rotations. At our lowest experimental frame-rate of 20Hz, we see a

maximum observed horizontal frame-to-frame motion of 260 pixels, nearly half of the whole

640 pixel wide image, indicating the rapidity of the motion. Figure 5.18 and 5.19 show some

of the sample images we obtain in the sequence.

5.9 Do We Think these Images are Realistic?

Figure 5.20 shows how far computer graphics has matured today that it is impossibly to

distinguish between a synthetically generated photo-realistic image and a photograph. To

begin with, assessing the realism of a synthetically generated image requires understand-

ing the response of the spectrum of the scene to the human visual system, psychophysics

investigation, because it is human in the end who is going to decide whether the image is

realistic or not, not a machine. Perceiving realism of synthetic images has been visited

far back by [Meyer et al., 1986] when ray-tracing was an emerging concept and later by

[Rushmeier et al., 1995] who present three different metrics inspired from disciplines of

image compression to quantify the realism. They both carefully replicate the scene char-

acteristics of a well controlled real scene in a synthetic ray-tracer. Thus, they are able to

compare the images from both settings under the defined metrics and report the accuracy

and realism. However, the scenes they use are quite simple with not very complex texture

137

5. Evaluation of Tracking and Synthetic Test-Bed

(a) (b)

(c) (d)

(e) (f)

Figure 5.19: Figures (a) and (b) focus on the desk showing various objects that are on the
table. Reflections and shadows are clearly visible, while (c) and (d) show the front view
of the desk and the view of the whole scene and (e) and (f) show images taken at various
different camera poses.

138

5.9. Do We Think these Images are Realistic?

Figure 5.20: By just pure visual inspection at the image can we tell whether the image is real
or not?

and very small number of objects and light sources. The kind of scene we want to target

in our analysis is a complex and cluttered scene with varying surface properties, textures

and lighting and illuminations and to be able to replicate all that in a controlled real scene

is well-nigh impossible. Inverse Global Illumination [Yu et al., 1999] is another technique

Figure 5.21: Statistics of the derivatives of the image intensities (a) and depth (b). The
derivative statistics of depth are sharply peaked than the corresponding image derivatives.

that given scene geometry, the radiance information, position of light sources and known

illumination recovers the diffuse and low dimensional parametrised surface reflectance of

the objects in the scene. The surfaces are assumed to be have isotropic and time invariant

reflectance properties. The obtained data is used in a standard ray tracer that harnesses the

information of the real scene to obtain its synthetic near-replica. This also allows to insert

new synthetic objects to the scene that can camouflage the light transport and appear to be

a part of the scene.

139

5. Evaluation of Tracking and Synthetic Test-Bed

Training and classification based approaches have also found their place in this analy-

sis. [Ng and Chang, 2004] and [Lyu and Farid, 2005] present a machine learning based ap-

proach to train a classifier to later distinguish between the photographic and photo-realistic

image. However, such an approach is quite labourious and therefore not always possible.

[Reinhard et al., 2001] show an interesting fact about the second order statistics of the

synthetic scenes. They observe that like natural images the spectrum of the scenes also

follows the power law (with the exponent near to 2) and these statistics remain invariant to

various rendering transformations e.g. reflections, anti-aliasing etc. applied to the scene. It

shows that geometric and modelling properties of the scene can be separately studied from

rendering properties by looking at second-order statistics.

An interesting aspect of the dense alignment algorithm is that the transformations that

are applied by a rendering system e.g. reflections and shadows to a large extent break

the standard Lambertian surface assumption anyway and may not be going to be used

in the estimation of camera pose. A natural question then is Is it worthwhile spending the

effort on quantifying realism? As long as we know the images we are going to use have a

tinge of realism in them, it is sufficient to treat them as photo-realistic images. Therefore,

while rendering the images, we also conducted a regular passive experiment asking users

to qualify the image as real or unreal. The experiment is passive because users were not

told beforehand that the images were synthetic. We found in most of the cases the photo-

realistic effects in the scene elicited similar response to the human visual system as a regular

photograph duping the users to believe that the image was real. Similar passive experiment

has also been done by [Rademacher et al., 2001] in their study of measuring the perception

of visual realism in images. We found that to be a satisfactory criteria to assess the realism

in images.

5.10 Novelties of Our Dataset

Our multi frame-rate dataset significantly differs from many existing datasets that aim to

provide ground truth for evaluation of various standard algorithms in computer vision. We

outline the differences below:

Longer sequences Many existing datasets e.g. Middlebury dataset for evaluation of optical

flow [Baker et al., 2011] and stereo [Scharstein and Szeliski, 2001] contain only a hand-

140

5.10. Novelties of Our Dataset

ful of image pairs. However, as [Geiger et al., 2012] and [Butler et al., 2012] also point

out, this often leads to biased evaluation and overfitting to a small set of images. A

longer sequence is required then to properly evaluate an algorithm for different mea-

surements of the same scene. We render 5 second videos for different frame-rates.

This means 1000 images captured at 200Hz and 100 for 20Hz.

Similar opinions have also come from TUM-RGBD8 dataset [Sturm et al., 2012], KITTI9

dataset [Geiger et al., 2012] and SINTEL10 dataset [Butler et al., 2012] who collect in-

door and outdoor sequences respectively with an aim towards evaluation of an algo-

rithm over a trajectory. However, both these datasets contain real-imagery and their

ground truth is obtained from a better quality sensor and as a result it is not exactly

100% ground truth. On the other hand, our dataset has exact ground truth obtained

from synthetic framework but special care is taken to ensure that the images are as

photo-realistic as possible. The closest dataset to ours is the dataset of TSUKUBA

[Peris et al., 2012] and [Martull et al., 2012] where they create a synthetic scene11 built

on real-world scene features and materials to enable its photo-realistic version on a

computer using CG rendering.

Careful replication of real-world camera settings Although datasets [Peris et al., 2012]

and [Martull et al., 2012] have replicated material properties from the real world

scenes, they do not replicate the camera settings e.g. motion blur and camera noise

that greatly affect the camera image capture. Our dataset has modelled it carefully by

calibrating the camera response function of the camera. Moreover, our dataset also

provides images for different lighting conditions like [Martull et al., 2012].

Data collection for different frame-rates Given our focus on camera tracking at high

frame-rates, our dataset is the first of its kind that has images obtained on the same

trajectory for different frame-rates.

The availability of datasets with accurate ground truth greatly assists in evaluation of al-

gorithms as has popularly been done by Middlebury datasets for optical flow and stereo

estimation. However, the overall goal of the datasets is to enable fair judgement and compar-

ison of an algorithm and not lead to over-fitting. Therefore, it is necessary that the datasets

8http://vision.in.tum.de/data/datasets/rgbd-dataset
9www.cvlibs.net/datasets/kitti

10http://sintel.is.tue.mpg.de/
11A webpage for this dataset is set up here at http://cvlab-home.blogspot.jp/2012/05/

h2fecha-2581457116665894170-displaynone.html

141

http://vision.in.tum.de/data/datasets/rgbd-dataset
www.cvlibs.net/datasets/kitti
http://sintel.is.tue.mpg.de/
http://cvlab-home.blogspot.jp/2012/05/h2fecha-2581457116665894170-displaynone.html
http://cvlab-home.blogspot.jp/2012/05/h2fecha-2581457116665894170-displaynone.html

5. Evaluation of Tracking and Synthetic Test-Bed

contain a variety of difficult cases that appear in real world scenes. Our dataset focusses on

these issues and we add lot of real world artefacts that break the general assumptions used

by algorithms.

142

Chapter 6

Tracking Analysis: Synthetic

Experiments

Contents

6.1 An Experimental Evaluation of Dense 3D Tracking 143

6.2 How do We Interpret the Graphs? . 146

6.3 Assumptions . 146

6.4 Characterisation of Experiments . 147

6.5 Tracking Analysis and Results . 149

6.6 Quantifying Performance Limits of Camera Tracking 163

6.7 Conclusions . 168

A part of the work described in this chapter led to the following publication:

Ankur Handa, Richard A. Newcombe, Adrien Angeli, Andrew J. Davison (2012). Real-

Time Camera Tracking: When Is High Frame-Rate Best? In Proceedings of the IEEE European

Conference on Computer Vision (ECCV).

6.1 An Experimental Evaluation of Dense 3D Tracking

Our primary interest in this analysis is to understand the implications of using high frame-

rate images on the performance of 6DoF camera tracking from a known 3D model. Although

143

6. Tracking Analysis: Synthetic Experiments

there are natural and obvious benefits of increasing frame-rate — the reduction in baseline

means that tracking should be much easier and robust but is it affordable to work on high frame-

rates that put an increasingly stringent demands on the processing available? This is something

we would like to know.

Moreover, the camera tracking we are interested in, is a function of the dense 3D structure,

the scene texture and the scene lighting. Putting all these things together and varying

them independently on each axis provides for another route to test the suitability of given

frame-rate under user provided computational demands. However, we have only considered

varying frame-rate and computational budget and therefore via this analysis we would like

to be able to say that a frame-rate operation is only possible when a given processor is

available. Alternatively, a given processor can only afford to allow tracking to run at a given

frame-rate.

Our understanding of the standard pipeline of the camera tracking algorithm reveals

another parameter, image resolution, that also contributes to our final conclusions. This is

obviously an independent parameter of the analysis that does not depend on the frame-rate

but given the typical coarse-to-fine pyramid strategy used in the tracking, different image

resolutions offer a different level of accuracy. Bringing image resolution in the analysis

provides even more insights and that we can have different cross overs e.g. a combination

of low frame-rate but higher resolution can provide more accuracy than working on a combination

of low resolution and high frame-rate at a given computational budget. In the standard coarse-to-

fine pyramid structure a divide-by-2 reduction ratio is used and that increasing the image

resolution to the next level quadruples the number of pixels. This increase in the number of

pixels is likely to provide more robustness to the tracker as well as offer more information

about the camera pose till a certain point. It is important to remember that there are other

possible choices of subsampling instead of divide-by-2 reduction ratio. One may want to

increase the reduction-ratio to preserve more information content in the image at a given

pyramid level. However, this comes at an expense of increased number of pyramid levels

which greatly affects the real-time operatability of the tracker. Therefore, divide-by-2 is a fair

balance of preserving image information at lower pyramid as well as allowing a real-time

tracking operation.

In our experiments, we have analysed data where the motions are such that gross tracking

failure is rare. Further, we also consider a full investigation of the robustness of tracking

which requires orders of magnitude more data so that meaningful statistics on tracking

failures can be obtained. We have revisited this issue in our real experiments, because one

144

6.1. An Experimental Evaluation of Dense 3D Tracking

would guess that one of the main advantages of high frame-rate is improved per second

robustness. We therefore focus here on two measures in our synthetic results: accuracy

during normal tracking, and computational cost. Our main results are in the form of bi-

objective plots, with Pareto Fronts suggesting application-dependent operating points a user

might choose.

Taking into account the full image formation process, there are many other parameters

that can be varied – camera aperture controls the light entering in the sensor, camera focus

controls the depth-of-field of image, the point spread function of the camera controls the

sharpness of the pixel, the pixel size of the sensor controls again the light as well as the

camera noise, the quantum efficiency of the sensor controls the SNR of the image, other

camera artefacts like vignetting, blooming and dithering also play a significant role in the

real image formation. However, we want to clarify that we have not analysed the effect of

these parameters in our experiments since they do not arise from the change of frame-rate

or shutter time of the camera. They remain virtually constant for all settings of frame-rate

as they relate to either the manufacturing of camera or lens. Given that we analyse the

effect of frame-rate with respect to the changing computational cost, these parameters are

insignificant.

6.1.1 Highlights of the Results

Most significantly, our experiments have highlighted the extreme importance of proper con-

sideration of scene lighting conditions in evaluating tracking; even in a sophisticated and

expensive experimental set-up with motion capture or a robot to track camera motion, and

laser scanning to capture scene geometry, controlled lighting and light measurement ap-

paratus would also be needed to ensure repeatability across different camera settings. As

described in the previous chapter, we have gone to extreme lengths in endeavouring to

produce experimental video which is not just as photo-realistic as possible, but is based on

parameters of a real camera and motion and realistic typical 3D scene. This is highlighted in

the samples from our dataset showing the effect of changing frame-rate leading to varying

brightness levels and noise in the images. The effects of scene lighting are largely neglected

in most tracking algorithms which perhaps is of significant importance in this analysis be-

cause it is something that directly affects the images obtained at different frame-rates. Also,

we study the effects of lighting, baseline and motion blur independently where these three

are tightly entangled in the real world scenarios and perhaps inseparable.

145

6. Tracking Analysis: Synthetic Experiments

6.2 How do We Interpret the Graphs?

Given the current parameters of our tracker (the frame-rate, the resolution and cost), we

would locate the corresponding operating points on the Pareto Front (provided scene light-

ing conditions we choose the relevant Pareto Front), and then given the increased computa-

tional budget, we would slide along the Front in the style of looking up values in a look-up

table or chart of operating points, to find out our next best possible choice of frame-rate and

resolution for a given camera motion and camera response function model. We would like

to mention that we have only provided details of the results pertaining to a linear camera re-

sponse function. However, the results will generalise for different camera response function

models.

6.3 Assumptions

We would like to review the assumptions that we are using in our experiments to clarify the

settings under which our analysis would hold sensible.

1. We are tracking from a known rigid 3D surface model with texture. This is assumed to

have been obtained by running a depth-estimation multi-view stereo based approach

that provides the geometry and the texture. However, we have assumed that geome-

try remains unchanged while texture that is obtained from the images changes as the

frame-rate changes — different frame-rates provide different contrasts of textures ob-

tained. Important thing to remember is that when we increase the frame-rate, match-

ing operates on an observed image obtained from the camera which is noisy while

the prediction comes from the 3D model which provides a texture that has the noise

averaged out. For low frame-rates we pre-blur the prediction with a priori knowledge

of the camera motion from the previous frame to obtain a texture which reflects the

amount of blur observed in that frame and match against current observation that has

blur depending on the how rapid the current motion is. Consequently, we blur the

depth-map too.

2. Although the resolution and frame-rate are limited by the bandwidth of the bus that

is being used to transfer the data from camera to the desktop (or other) hardware, we

assume in our analysis that the bandwidth of bus is unlimited and that it allows the

camera to give the highest resolution at the highest allowable frame-rate we experi-

146

6.4. Characterisation of Experiments

ment with. However, in real-world conditions we would have limited bandwidth and

this would mean if the Pareto Front shows a list of choices that can not be afforded

due to limited bandwidth, we can still find out the optimal choice of parameters by

precluding the Fronts beyond the limits of the camera being used.

3. The highest resolution used in our tracking is the standard 640×480. Although we

have used this as the highest resolution, we believe our results generalise well with

increasing resolutions provided the camera motion is such that working on higher

resolutions still furnishes considerable gains in accuracy. One would guess that at

some stage increasing resolution beyond a limit will only provide diminishing returns.

4. We have also assumed that the time-lag between current frame and the next frame is

of no importance to our analysis and that the images are ready available on the hard

disk of the computer.

6.4 Characterisation of Experiments

We characterise our experiments into different motions and the scene lighting. The image

motion obtained is a direct function of the sampling rate at which images are captured and

as a result affects the performance of tracker — faster motion would need higher frame-rate

to allow more robust tracking while it would be easy to track even at low frame-rates for

slow motion. Scene lighting on the other hand, affects the contrast and signal-to-noise (SNR)

of the image. Tracking suffers when images are relatively darker and noisier which is quite

often the case when working in low-lighting conditions.

6.4.1 Camera Motion

Our motion characterisation allows to examine the performance of a tracker at different

motions. It is obvious that for faster motion, we need higher frame-rate to be able to track

robustly. However, whether it is possible to work at higher frame-rates under the desired

computational budget, this is what we examine. Our experiments are divided into fast and

slow motions to study the effects independently. Moreover, the kind of motion the camera

is undergoing also affects the choices. For instance, rotation tends to induce fast and rapid

motion in the image and is independent of the scene depth. Therefore, we would like to

know how pure-rotation affects the optimal choices. On the other hand the motion induced

147

6. Tracking Analysis: Synthetic Experiments

by forward and backward translation again is very much dependent on the scene depth

when compared to sideways and lateral translation. The effect of different motions is what

we study.

Computational Cost

E
rr

o
r

Computational Cost

E
rr

o
r

Computational Cost

E
rr

o
r

(a) Slow motion (b) Moderately-faster motion (c) Fast motion

Figure 6.1: We expect that for different dynamics optimal frame-rates should be high for
very low computational power, making a transition towards somewhat lower values with a
further increase in the budget and start increasing as more computation power is thrown at
the algorithm. This is shown in the colour-coded curves where magenta colour denotes a
hypothetical lower frame-rate that is expected to appear very early when the dynamics is
slow and later when the dynamics is moderately faster and disappear in the curve when the
motion dynamics is fast.

What results do we expect? Our intuition tells us that for slow motions even low frame-

rates would provide very similar accuracy figures as we would get using high frame-rates.

Therefore, it would make more sense to work on low frame-rate images for small com-

putational budgets and switch to higher frame-rates to optimally use the budget to polish

accuracy figures. As motion becomes faster, we would expect that low frame-rates would

require more iterations to converge compared to high frame-rates. Therefore, low frame-

rates would slide down where it is possible to operate only when computational budget is

slightly increased. However, a further increase would again lead to high frame-rates as the

natural choice for optimal budget usage. Lastly, tracking fast motion is possibly only for

very high frame-rates and that low frame-rates disappear from the graph completely. This

is due to the fact that tracking breaks the linearsation assumptions at low frame-rates.

This is very much explained graphically in Figure 6.1 where a hypothetical low frame-rate

appears in the graph very early for slow motion and slides down as the motion becomes

faster and disappears completely from the graph as motion becomes really fast.

148

6.5. Tracking Analysis and Results

6.4.2 Scene Lighting

The scene lighting directly affects the pixel intensities observed in the image. Our scene

lighting characterisation clarifies the settings in which the tracking is operating. We denote

a scalar variable α that quantifies the light in the scene.

Scene Lighting Characterisation

α = 1 Low Lighting.

α = 10− 20 Moderate Lighting.

α = 40 High Lighting.

α = ∞ Perfect Lighting.

What results do we expect? It is important to remember that scene lighting affects the

SNR of the image which in turn affects the performance of the tracking algorithm. Partic-

ularly, at high frame-rates where exposure time is already very small, low scene lighting

conditions mean that images obtained are darker and noisier. We, therefore, expect the

tracking performance to suffer at high frame-rates more due to scene lighting conditions.

On the other hand, low frame-rates due to longer shutter times manage to collect enough

photons for good SNR image. For high lighting conditions, we expect high frame-rates to

allow tracking to resume as normal while low frame-rates to suffer from saturation (if using

very low frame-rates).

6.5 Tracking Analysis and Results

We used our framework to synthesize video at 10 different frame-rates in the range 20–

200Hz using a five second rapid camera motion. To push frame-rate further we also synthe-

sized 400Hz and 800Hz sequences. We present results from these sequences and concentrate

on clarity of interpretation.

149

6. Tracking Analysis: Synthetic Experiments

Figure 6.2: Left: error plots for different frame-rates as a function of available computa-
tional budget under perfect lighting conditions. Points of high curvature denote the switch
from one pyramid level to the next. Right: Pareto front for minimum error/minimum pro-
cessing load performance, highlighting with numbers the frame-rates that are optimal for
each available budget.

6.5.1 Fast Handheld Motion

Experiments Assuming Perfect Lighting

Our first set of experiments assumes that whatever the frame-rate it is possible to assume

blur- and noise-free images from the camera, and uses ‘pure’ ray-traced images. This as-

sumption is most closely represented in reality in an extremely well-lit scene, with shutter

time set to a very low constant value at all frame-rates while still capturing enough light

for good SNR. Importantly, it lets us decouple the effects of scene lighting from baseline

which are somewhat entangled given the choice of frame-rate we are using in the real world

scenes.

Figure 6.2 shows the clean results we obtain in this case. In Figure 6.2(a) we plot how for

each frame-rate setting, the average tracking error (our measure of accuracy) is reduced as

more computation is thrown at the pyramidal LK optimisation per frame, permitting more

iterations. Remember that the unit of computation we use is processor occupancy for real-

time operation, obtained by multiplying computation time per frame by frame-rate. The

sudden gradient changes in each curve are when the pyramidal optimisation switches from

150

6.5. Tracking Analysis and Results

one level to the next — from low to high image resolution.

At the bottom of these overlapping curves is the interesting region of possible operating

points where we can obtain the smallest average error as a function of processing load for

our tracker, forming a Pareto Front. We display this more clearly in Figure 6.2(b), where

we have rescaled the graph to focus on the interesting regions where crossovers occur, and

used different lines coloured according to the maximum pyramid level resolution needed

for that result (i.e. when we talk about resolution, we mean pyramidal optimisation using

all resolutions of that value and below), and frame-rates are indicated as numbers. The

behaviour of the Pareto Front is that generally very high frame-rates (200+) are optimal

for very low computational budget. As the computational budget is increased, a switch

to a higher resolution but a lower frame-rate is the optimal choice. This occurs at the

crossovers and similar trend continues as computational budget is further increased i.e. a

switch towards a lower frame-rate but higher resolution is the optimal choice. However, best

accuracy is achieved under a very high computational budget working at high frame-rates

of the order of 800Hz.

Experiments with Realistic Lighting Settings

We now extend our experiments to incorporate the shutter time-dependent noise and blur

artifacts modelled in previous chapter that will affect most real world lighting conditions.

We present a set of results for various global lighting levels.

We have used the same main frame-rate range of 20–200Hz and the same five second

motion used with perfect images. We needed to make a choice about shutter time for

each frame-rate, and while we have made some initial experiments (not presented here) on

optimisation of shutter time, in these results we choose always half of the inverse of each

frame-rate. To generate each synthesized video frame, we rendered multiple ray-traces for

blur averaging from interpolated camera poses always 1.25ms part over the shutter time

chosen; so to generate the 20Hz sequence with 25ms shutter time we needed to render

5× 20× 20 = 2000 ray-traced frames. In fact this number is the same for every frame-rate

(higher frame-rate countered by a reduced number of frames averaged for blurring), leading

the the total of 20000 renders needed (with some duplicates).

An important detail is that dense matching is improved by pre-blurring the re-projected

model template to match the level expected by the shutter time used so we implemented

151

6. Tracking Analysis: Synthetic Experiments

this; and the depth map is also pre-blurred by the same amount. We conducted some initial

characterisation experiments to confirm aspects of the correct functioning of our photo-

realistic synthetic framework including this template blurring (Figure 6.3).

Figure 6.3: Characterisation experiments to confirm our photorealistic synthetic video. Left:
For a single motion and 200Hz frame-rate, we varied only shutter time to confirm that
reduced light indeed leads to lower SNR and worse tracking performance. Here SNR is
directly quantified in bits per colour channel. Right: An experiment explicitly showing
that quality of tracking improves if a deliberately blurred prediction is matched against the
blurry live image.

High Lighting Figure 6.4 (a) shows the Pareto Front for α=40, where the scene light is high

but not perfect. Images have good SNR, but high frame-rate images are darker; the 200Hz

image is nearly 5 times darker than the corresponding image for perfect lighting and as

frame-rate is pushed the images get darker and noisier. For clarity, we have omitted 400Hz

and 800Hz in the graph. We observe that 200Hz at low resolution remains the best choice

for low budgets, the image gradient information still strong enough to guide matching.

And again a few iterations at 200Hz are enough because the baseline is short enough to aid

accurate matching.

A further increase in budget reveals that 160Hz becomes the best choice for a higher

resolution i.e. 320×240. This is where the error plots for frame-rates cross and better results

are obtained by increasing resolution rather than frame-rate. As the processing load is

further increased higher frame-rates are preferred, and the pattern repeats at 640×480. The

plots however suggest a later transition to this highest resolution compared to the perfect

152

6.5. Tracking Analysis and Results

(a) α=40 (b) α=10 (c) α=1

Figure 6.4: Pareto Fronts for lighting levels (a) α = 40, (b) α = 10 and (c) α = 1. Numbers
on the curves show the frame-rates that can be used to achieve the desired error with a
given computational budget. The graph at α = 40 shows if the current processing card
allows for 160Hz at 320×240, doubling the processing budget leads to suggesting the use
of 160Hz but at 640×480 instead of increasing the frame-rate. We have observed that from
α = 40 down to just α > 10, there is no change in the optimal frame-rates and as a result
the Pareto Front remains the same suggesting that there is a range of lighting under which
the choice of optimal frame-rates remains unchanged. As the scene lighting is decreased to
α = 10, we observe that the optimal frame-rates are slightly lower than when α = 40. Further
decrease in the lighting to α = 1 leads to even lower optimal frame-rates. The increase
in the error at 160Hz for α = 1 with increasing budget is due to the distraction of tracker
towards a different minima. Interesting observation that we make here is that an increase
in resolution for any scene lighting conditions shows that the lowest optimal frame-rate for
that resolution is lower than the highest optimal frame-rate at the resolution immediately
lower than that before the cross-overs occur. For instance, α = 40 shows that 200Hz is the
highest optimal frame-rate at 160×120 and the immediate next resolution shows that 140Hz
is the lowest optimal frame-rate at 320×240 while α = 10 shows the highest optimal frame-
rate at 320×240 is 160Hz while the lowest optimal frame-rate for 640×480 is 140Hz. This
tells us that similar levels of accuracy can be attained by working on a lower frame-rate but at higher
resolution.

sequence results in Figure 6.2 (b). The highest resolutions clearly have more benefit when

SNR is high.

Moderate Lighting In Figure 6.4(b) we reduce α to 10, representative of a typical indoor

lighting setting. 200Hz is still the best choice at very low processing load when predictions

are very strong and only one or two alignment iterations are sufficient. A slight increase

in processing load sees the best choice of frame-rate shifting towards 100Hz even without

resolution change, in contrast to both perfect lighting and high lighting conditions where

working with very low processing load demands a high frame-rate. In moderate lighting,

153

6. Tracking Analysis: Synthetic Experiments

it is better to do more iterations at a lower frame-rate and take advantage of improved

SNR because increased noise at high frame-rate means that more iterations are required

to converge. When we do shift to 160×120 resolution, we see that the best frame-rate has

shifted to 100–140Hz compared to 200Hz in high lighting conditions. Higher resolutions,

320×240 and 640×480, follow similar trends.

Low Lighting Figure 6.4 (c) shows similar curves for scene illumination α = 1, where

images are now extremely dark. Our main observation here is that even at substantial

processing load the Pareto Front does not feature frame-rates beyond 80Hz. These images

have such low SNR that at high frame-rate essentially all tracking information has been

destroyed. The overall quality of tracking results here is much lower (the error curve is

much higher up the scale) as we would expect.

Conclusions obtained from tracking fast motion

• The error obtained at zero computational burden is the average inter-frame distance

between two successive frames. This is obtained at the highest possible frame-rate

used and is the error when no tracking is performed. This is therefore, the maximum

error from where the tracking begins and it reduces as iterations progress.

• There are no early cross overs for high lighting conditions at lowest pyramid and that

highest frame-rate has a natural advantage of tracking, both in terms of accuracy and

computational cost because of short baseline. We start observing early cross-overs as

scene lighting degrades, however, the optimal frame-rates are still in the range above

the standard 30Hz that is most commonly used in real-time tracking. Therefore, under

stringent budgeting conditions, a combination of low resolution and high frame-rate

is the optimal choice.

• As the computational budget is increased, an emerging pattern is that, a switch to a

higher resolution and lower frame-rate if possible is observed more often than just in-

creasing frame-rate alone suggesting that increasing spatial resolution provides more

gains than temporal resolution. However, for infinite processing budget, the best

choice is a combination of the highest frame-rate and the highest resolution, a camera

can afford.

154

6.5. Tracking Analysis and Results

• As scene lighting conditions degrade, the Pareto Fronts show similar trends but the

optimal frame-rates move to lower values to compensate for the high contrast required

to achieve accurate results.

• The results highlight quick transitions towards higher resolutions for more accuracy,

so a natural question would be: should we keep on increasing the resolution? The short

answer is no, because after a certain resolution, we would see the gains in accuracy

only saturating something we observe in our pure rotation case, suggesting that there

is a limit to optimal resolution for a given camera motion.

6.5.2 Slow Handheld Motion

Slow motion tends to induce relatively less blur in the images provided the scene being

imaged is relatively distant from the camera. Our second sequence involves a handheld

motion of camera moving away and into a distant scene. Images pertaining to low frame-

rates e.g. 20Hz are therefore free from image blur. This makes our analysis depend only on

the image baseline and scene lighting.

Perfect lighting conditions The results obtained with perfect lighting assumptions reveal

a similar trend (Figure 6.5) i.e. use high frame-rates (140–200Hz) under a very stringent com-

putational budget. They correspond to using first few iterations on the lowest resolution.

The small baseline of the high frame-rates gives a natural advantage over low frame-rates

that using first few iterations provides the best error reduction — even if the cost per second

is smaller for low frame-rates, the error is still relatively larger. As the computational bud-

get is increased, we see a progression towards switching to a higher resolution and lower

frame-rate. The slow motion in the trajectory immediately brings the lowest operatable

frame-rate down to 20Hz. The computational demands to work on a combination of high

frame-rate and higher resolution swamp the achievable reduction in error, thereby bringing

a lower frame-rate range in the operatable regime. As more computational power is thrown,

it is no surprise to see a higher frame-rate and higher resolution together providing the best

error reduction. Noteworthy is that there are early cross overs e.g. 140Hz at the lowest

pyramid level. This is in contrast to conclusions obtained in the fast motion, where the level

of accuracy at high frame-rate always leads the accuracy that can be obtained from lower

frame-rates.

155

6. Tracking Analysis: Synthetic Experiments

Pure Ray-traced

Figure 6.5: Pareto fronts for Pure Ray-traced images. The range of operating frame-rates
increases to 140–200Hz when compared with α = 20 and α = 10 for resolutions of 80 × 60
when the computational budget is very low. However, the subsequent image resolutions see
a similar operating range of 20–40Hz nearly to processind budget less than 2 processors.
Importantly, frame-rates from 100–200Hz find their operatability at the highest resolution
which could not be achieved under low lighting conditions for α = 10, 20 due to the fact
that highest resolutions were the noisiest among all resolutions. Something more that this
graphs tells us is that the Pareto Front for resolution 160 × 120 is lies inside the Pareto
envelope of other resolutions – this may be attributed to the slow motion the trajectory has
that leads to very small gains on switching the resolution from 80 × 60 to 160 × 120 while
further increase in the resolutions lead to 16 and 64 times increase in the number of pixels
that are very informative of the camera motion.

High lighting conditions Our high lighting conditions here correspond to α = 40. We see

a change in the operatable frame-rates at lowest resolution, 140–200Hz range observed in

perfect lighting conditions has moved down to 100–160Hz range suggesting the importance

of high SNR image in camera tracking. Further resolution switches follow similar trend

towards using a lower frame-rate but we also observe that frame-rates 100–200Hz do not

appear in the Pareto Fronts and that 80Hz is the best operatable frame-rate for this scene

156

6.5. Tracking Analysis and Results

(a) α = 10 (b) α = 40

Figure 6.6: Parto Fronts for (a) α = 10, and (b) α = 40. Optimal frame-rates for different
computational budgets are shown with image resolution. For extremely low computational
demands, it is natural to see high frame-rates 100–160Hz appearing as optimal as they cor-
respond to using single iteration of the optimisation outlining that lower frame-rates take
more iterations to achieve similar or more error reduction. However, increasing the reso-
lution even by a factor of four shows a remarkable change in the optimal frame-rate range
– 20Hz immediaely becames optimal and this is again due to many factors, the brightness
levels, reduction in image noise and slow trajectory motion. Interesting also to note is that
60Hz at 640 × 480 needs a processing budget of nearly 4 processors when α = 10 to achieve
similar error that can be achieved by working on the same frame-rate but requiring less
processing budget when α = 40. A higher frame-rate of 80Hz (and offering more robust
tracking) can achieve smaller error for the same processing budget when lighting is high.
Our current processor allows to work on highest resolution and therefore, a combination
of 20Hz and 640×480 is possible. Again, we notice that the gains obtained by switching to
a higher resolution are more than switching to a higher frame-rate clearly highlighting the
importance of number of pixels.

and camera motion. This is explained by the Figure 6.7 (a) where we see the error after

convergence at the highest resolution for frame-rates 100–200Hz progressively increases due

to image noise and bit quantisation present in the images.

Moderate lighting conditions Moderate lighting conditions refer to α = 10 here in Figure

6.6(a). The Pareto Fronts show very similar conclusions as high lighting conditions. The

frame-rate range for lowest resolution is further moved to 60–100Hz. While the higher

resolutions still maintain the 20Hz as the optimal operatable frame-rate we see that 80Hz

which is still in shown in the Pareto Front corresponding to 320× 240 resolution, disappears

157

6. Tracking Analysis: Synthetic Experiments

(a) α=40 (b) α=10

Figure 6.7: Error curves for (a) α = 40, and (b) α = 10. Plots show significant increase in the
error as frame-rate is increased. This is largely due to the decrease in the brightness levels
as well as the SNR of image. The slow motion in the trajectory also enables low frame-
rates to obtain similar levels of accuracy as high frame-rates. Increase in brightness levels
and noise reduction at low frame-rates therefore offer a natural advangate over working
at high frame-rates. A closer look at the plots also reveals that decreasing scene lighting
leads to increase in the error leading to similar conclusions that a brighter image gives more
error reduction. It is also interesting to note that the frame-rate that gives the most error
reduction, irrespective of computational budget is 80Hz when α = 40, and reduces to 60Hz
when α = 10.

in the 640×480 resolution. This is because the noise present in the highest resolution is

averaged out due to subsampling and that tracking can run without failures at a lower

resolution. On the other hand, tracking at highest resolution suffers due to relatively more

noise present in the image. Importantly, 80Hz, which corresponding to the Pareto Front of

the highest resolution in high lighting conditions 6.6(b), for a computational budget of 4

is moved down to 60Hz for moderate lighting conditions. This also means that for lower

lighting conditions tracker spends more number of iterations to converge to a similar error

scale.

Low lighting conditions Low lighting conditions decimate the colour values so much that

frame-rates 120–200Hz are just pitch-black images corrupted badly with noise. As a result

these frame-rates do not appear in the error curves and consequently the Pareto Fronts. Due

to noise and low SNR in the high frame-rate images, 20Hz appears to be the optimal frame-

rate regardless of the computational budget as shown in the Figure 6.8(a). The peculiarity

158

6.5. Tracking Analysis and Results

(a) α = 1 (b) Pure Ray-traced

Figure 6.8: Error curves for (a) α = 1, and (b) Pure ray-traced images. Reducing the light
further down (α = 1) leads to increasingly pitch-black images at frame-rates from 120–200Hz.
Tracking completely breaks at these frame-rates and therefore, this range of frame-rates do
not appear in the graph. Lower frame-rates range, 20–100Hz, see an increase in the error
achieved mainly again due to the darkening of images and addition of camera noise with
increase in frame-rate. It is also interesting to note that the error increases with increase
in the iterations working at lowest pyramids for frame-rates ranging from 60–100Hz. This
can be explained by the fact that images at these frame-rates are still very dark and when
sub-sampled to a resolution of 80 × 60 lead to many brightness levels mapped to a very
small range of grey colour levels in between 0–5 pixel values. However, as the frame-rate
is decreased further, the number of brightness levels in the high resolution image increase
and as a result the lowest resolutions show significant difference in the colour levels when
compared to high frame-rates and therefore appear brighter. Pure ray-traced images on the
other hand maintain similar brightness levels across all frame-rates and due to the slow
motion in the trajectory, there is as such no opposing factors like motion blur present in
the image that hamper the tracking performance for lower-frame rates – only baseline is
increasing. Consequently, high frame-rate images show best performance in reducing the
error but, the computational requirements to meet the real-time constraints swamp the error
reduction – similar error reduction can be achieved by working on lower frame-rates while
still being in real-time regime. When new processors, offering a luxury of computational
power, are slotted in, frame-rates as high as 200Hz find their operatability.

of increasing error with increasing budget at lowest resolution can be explained by the fact

that unavailability of enough contrast and low SNR present in the image for high frame-rate

images leads to diverging results.

159

6. Tracking Analysis: Synthetic Experiments

Conclusions obtained from tracking slow motion

• There are early cross overs at lowest pyramid for all scene lighting settings for slow

motion. This is not surprising because for slow motions slightly lower frame-rates are

expected to achieve similar levels of accuracy as higher frame-rates. Therefore, when

computational cost is also taken into account, one observes cross overs suggesting the

early use of lower frame-rates for such motions. Nonetheless, these frame-rates are

much higher than the standard real-time processing rate of 30Hz.

• As the computational budget is increased, again, a switch to a higher resolution and

lower frame-rate if possible is a preferred choice than just increasing frame-rate alone.

• Importantly, slow motion allows for the operatability of low frame-rates and that they

figure in the Pareto Fronts of the accuracy/computational cost curves.

• When lighting conditions degrade, as expected, the Pareto Fronts show similar trends

but the optimal frame-rates move to lower values specially at lowest pyramid levels.

The results quite well chime with the results obtained for faster motions.

6.5.3 Pure Rotation

We have experimented with pure one-dimensional rotations to understand how different

this camera motion is from the translation motion or motion involving both rotation and

translation. The depth independence property of pure rotation makes it a special case to

study in our analysis as this can be verified against a real experiment of camera mounted on

a rotating platform. Again, the analysis is further broken into fast and slow movements of

camera undergoing pure rotation. We expand the conclusions and results for them below.

Fast Motion

Our fast motion trajectory is collected from a servo motor rotating about its axis. We used

this motion in our synthetic rendering frame-work to obtain images for different frame rates

that are interpolated on this trajectory. Figure 6.9(a) shows the trajectory at 200Hz while (b)

shows the trajectory in the form of acceleration vs velocity locus plot. The angular velocity

curve is a near sine wave with the maximum velocity reaching 11.2 rad/sec and the minimum,

-11.2 rad/sec.

160

6.5. Tracking Analysis and Results

Choice of sine wave Although any other motion could have been chosen, the reason for

preferring a sine wave is purely driven by the symmetry observed in the motion and the

circular/elliptic locus of data points in the trajectory. Ideally one would like to observe

the performance of tracker at points where the acceleration is large and velocity near zero

and acceleration is near zero while velocity is large. Such points are informative of the

performance at different frame-rates and tell us the maximum/minimum velocity and ac-

celeration at which the tracker breaks at a given frame-rate. Preferring smooth transitions

between these two extreme points, i.e. a circular plot, leads us to think of sine wave as a

choice of motion.

0 50 100 150 200 250 300 350 400
−15

−10

−5

0

5

10

15

Frame number

ω
in

(r
ad

/s
ec

)

−10 −5 0 5 10 15 20
−800

−600

−400

−200

0

200

400

600

800

ω in (rad/sec)

α
in

(r
ad

/s
ec

2)

fps = 200

fps = 180
fps = 160

fps = 140
fps = 120

fps = 100

fps = 080
fps = 060

fps = 040

(a) Velocity at 200Hz (b) Acceleration vs. Velocity

Figure 6.9: (a) The angular velocity at 200Hz used in the experiment for interpolation and
Figure (b) the acceleration α, is plotted against angular velocity, ω for the trajectory.

Such fast motions induce typically a large amount of blur in the images at low frame-rates

of 20Hz. Sample blurry images obtained at 20Hz are shown in Figure 6.10. An important

thing to remember is that trajectory has varying degrees of acceleration and velocity which

as a consequence brings varying degrees of blur typically in the low frame-rate images.

There are more chances of tracker failing at these frame-rates not because of large motion

blur between two consecutive images but mainly due to the uneven blur. For instance, when

the trajectory begins, the camera is at rest and in the other instant the camera moves with

a velocity but also has acceleration. This means the first image does not have blur due to

stationarity of the camera while the other image has motion blur. Matching become signifi-

cantly hard because as such there is no unique transformation that registers two images.

161

6. Tracking Analysis: Synthetic Experiments

Figure 6.10: Synthetic photo-realistic images obtained for pure rotation around Y-axis. The
images shown correspond to 20Hz frame-rate and show a significant amount of motion blur.

High Lighting Conditions Our high lighting results show (Figure 6.11(a)) that with in-

crease in computational budget, the optimal frame-rate increases i.e. given more processing

power, it is sensible to increase the frame-rate. It is also observed that for very low computa-

tional budget we still get frame-rates of the order of 80Hz which is higher than the standard

30Hz frame-rate range used in most tracking experiments.

0 0.5 1 1.5 2 2.5 3 3.5
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

200

80

100

120 140160 180 200

Processing Budget

E
rr

or
in

ra
d

0 0.5 1 1.5 2 2.5 3 3.5
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

200

80

100

120
140160 160 160

Processing Budget

E
rr

or
in

ra
d

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

200

40

60

120

Processing Budget

E
rr

or
in

ra
d

(a) α = 40 (b) α = 10 (c) α = 1

Figure 6.11: The Pareto Fronts obtained assuming strong (α = 40) and moderate (α = 10) lighting
conditions. We have shown only the results obtained at the lowest pyramid since the rotation based
tracker already provides a very good estimate of rotation at lowest pyramid. Therefore, the higher
resolutions only provide very small gains. (c) The Pareto Fronts obtained for very low lighting
conditions.

However, it is observed that there is as such no clear advantage of switching resolutions

in pure-rotation case because the gains obtained are minuscule. This is expected, because

the rotation is purely in one-dimension and the alignment obtained at the lowest resolution

is already a very good estimate of the angle that the two frames are separated by — further

increase in number of pixels, though for polishing the estimate, hardly gives any information

in this case. Therefore, what this result says is that it is just sufficient to work at the lowest

resolution but high frame-rate to obtain quite accurate estimates of 1-D rotation because lighting

conditions permit to work on these high frame-rates.

162

6.6. Quantifying Performance Limits of Camera Tracking

Moderate Lighting Conditions We have observed (Figure 6.11(b))in this experiment that

our results remain mostly the same except the preclusion of 200Hz frame-rate from the

Pareto Front when compared against the corresponding results obtained assuming strong

lighting conditions. The resolution does not help much here either. Overall, we see the

degradation of image quality leads to omission of high frame-rates from the Pareto Front.

Low Lighting conditions The low lighting conditions see a similar trend — the optimal

frame-rates are lower than the corresponding optimal frame-rates we obtain when the light-

ing conditions are better as shown in Figure 6.11(c). Moreover, as observed in moderate

lighting conditions higher frame-rates tend to suffer as a result of low lighting conditions

and we see that frame-rates above 120Hz completely disappear from the graph.

Slow Motion

We have obtained similar results for slow motion except that the optimal frame-rates shift

to lower values as one would expect for slow motion.

6.6 Quantifying Performance Limits of Camera Tracking

In this section, we perform additional experiments to understand the limits of camera track-

ing by degrading the set of parameters the tracker depends on. This includes degrading

depth-map, degrading and decimating grey values and spatial blurring of image pixels. We

have performed all these experiments on joint translation and rotation motion.

6.6.1 How Quickly does the Tracking Get Affected When Images Start to Get

Blurry?

In this experiment, we study the limits of camera tracking as images are progressively

blurred using a Gaussian kernel. Gaussian blurring an image here could be thought of

as a case of camera defocus. The blur sigma and kernel size are chosen to be

σ = 0.3
(

ksize
2
− 1
)

+ 0.8 (6.1)

163

6. Tracking Analysis: Synthetic Experiments

6.6.2 Slow Motion

Figure 6.13 shows images obtained by progressively blurring the original image with differ-

ent kernel sizes.

(a) Increasing kernel size

Figure 6.12: Tracking performance as the kernel size for image and depth blurring is in-
creased. Tracking still runs at very low resolution images with kernel size set as high as 65.
The standard deviation of Gaussian distribution is set as 0.3

(
ksize

2 − 1
)

+ 0.8.

We have observed in our experiments that as the size of the blur kernel, ksize, used to

smooth the images is increased, the tracking gets better till a certain point because of the ease

in localising the minima when the images are smooth but the accuracy begins to degrade

once the kernel size becomes very large. In our experiments on slow motion trajectory we

have observed that tracking performs better still at lowest resolution when the kernel size

is 65 × 65 but further increase in kernel size leads to only degradation of results. On the

other hand, high resolutions begin to show remarkable degree of degradation in results

relatively quite early. Figure 6.12 shows the tracking performance at different resolutions

for increasing kernel size.

164

6.6. Quantifying Performance Limits of Camera Tracking

6.6.3 Fast Motion

We used the same slow motion trajectory but skipped frames to create a lower frame-rate

equivalent and ran the same set of experiments progressively blurring the images. We have

observed similar results where tracking performs better at the lowest resolution when the

kernel size is 65× 65 (and σ = 10.25) and further increase in the kernel size (and consequently

the Gaussian standard deviation) sees the accuracy tailing off while the highest resolution

performs poorly with the increase in the blur kernel.

6.6.4 How is Tracking Affected by Quantisation of Pixel Values?

In this experiment, we progressively darken the images by various decimating factors. We

use 16-bit images obtained from POVRay and divide the intensity values by the factors

and convert them to 8-bit images. Performing a comprehensive analysis of the image pixel

values and hence the image gradients lets us understand when and under what lighting

conditions, the tracker breaks. In fact, if the camera was a perfect analog sensor and reported

the pixel values in floats, the tracking would have remained perfectly immune to the lighting

conditions. Recall that the update in the SE3 is obtained by

δu =
(

∑
x∈I

Jx
TJx

)−1

∑
x∈I

(
Jx

Tex

)
(6.2)

If the image intensities are floats and they all change by the same amount, the expression

is invariant to the scale by which they change. In other words, the content of the image is

not destroyed. However, it is due to the discretisations in the digital camera that similar

pixel values get packed in the same bin leading to same grey colour. This destroys and

changes the original image gradient, the effects of which are clearly seen in the tracking

performance. Lowest resolutions are affected the most as the decimation of the pixel values

is increased. Due to fewer pixels available at the lowest resolution and the loss of gradient

information, the ability of the tracker to obtain a meaningful update is greatly challenged.

Figures 6.14–6.17 show how histograms of the images change as images are decimated

by different factors ranging from 40 to 1. Figure 6.18 shows images obtained at different

decimating factors for two different resolutions.

The results of image decimation are shown in Figure 6.19(a) where we see that tracking

performance gets severely affected at the lowest resolution where downsampling and bit

165

6. Tracking Analysis: Synthetic Experiments

9

33

65

257

513

1 2 4 8

Figure 6.13: Sample image shown with progressive increase in the amount of blur with their
pyramidal levels. The vertical axis reads the kernel size and horizontal axis, the subsampling
factor of image. Such blurring could appear in the case of camera defocus. In all the
experiments the depth-map was blurred by the same amount. Tracking performs without
breaking even at 257 × 257 kernel size.

quantisation leads to a huge loss in the information contained in the image. On the other

hand, at the highest image resolution we still see that error curves are tightly clustered.

166

6.6. Quantifying Performance Limits of Camera Tracking

Figure 6.14: Left: Histogram of highest image resolution with intensities decimated by 40
and Right: Histogram of the same image but at the lowest resolution 80×60.

Figure 6.15: Left: Histogram of highest image resolution with intensities decimated by 20
and Right: Histogram of the same image but at the lowest resolution 80×60.

6.6.5 How does the Tracking Degrade as We Add Noise to the Depth-Map?

In this experiment, we analyse how the tracking accuracy changes as the depth-map is

made noisier understanding the importance of accurate depth-map in the optimisation. We

add Gaussian noise in the depth map with increasing standard deviations — the units of

standard deviations are same as the depth. Figure 6.19(b) shows our results for adding noise

to the depth-map. We understand that at lowest resolutions, the accuracy of a depth-map

is hardly essential leading to the error curves tightly clustered. This is explained by the fact

that lowest resolution motion tends to be either planar or rotational both of which do not rely

on depth-map. Also remember that the depth-map at lowest resolution is obtained by coarse

167

6. Tracking Analysis: Synthetic Experiments

Figure 6.16: Left: Histogram of highest image resolution with intensities decimated by 10
and Right: Histogram of the same image but at the lowest resolution 80×60.

Figure 6.17: Left: Histogram of highest image resolution with intensities decimated by 1
and Right: Histogram of the same image but at the lowest resolution 80×60.

subsampling which results in also averaging out the noise. Increasing the resolution shows

a gradual increase in the error with increase in Gaussian noise while the highest resolutions

show an aggressive degradation even for relatively smaller noise standard deviation.

6.7 Conclusions

Our experiments give an acute insight into the trade-offs involved in high frame-rate track-

ing. With perfect lighting and essentially infinite SNR, the highest accuracy is achieved

using a combination of high framerate and high resolution, with limits only set by the

168

6.7. Conclusions

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.18: Sample image in one of the sequences. First row: Images (640×480) corre-
sponding to different decimation factors in decreasing order. Second row: Similar image
decimation but with resolution decreased by a factor of 8 (i.e. 80×60) at the same time. The
actual images for high decimation factors are enhanced using gthumb enhancement function
while the upsampling (80 × 60) for display is done using nearest neighbour interpolation.

available computational budget. But using a realistic camera model, there is an optimal

famerate for given lighting levels due to the tradeoff between SNR and motion blur. There-

fore, frame-rate cannot be arbitrarily pushed up even if the budget allows because of image

degradation. Decreasing lighting in the scene shifts the optimal frame-rates to slightly lower

values that have higher SNR and somewhat more motion blur for all resolutions, but overall

increasing resolution results in quicker improvement in accuracy than increasing frame-rate.

Hasinoff etal [Hasinoff et al., 2009] [Hasinoff et al., 2010] also worked on time-bound anal-

ysis but only for SNR image quality assessment with either static cameras or simple planar

motions.

Our dataset, rendering scripts used to generate it and other materials are available from

http://www.doc.ic.ac.uk/~ahanda/HighFrameRateTracking/. We hope this will further

motivate both applied and theoretical investigations of high frame-rate tracking relevant to

the design of practical vision systems. Our dataset may also be useful for analysis of many

other 3D vision problems.

169

http://www.doc.ic.ac.uk/~ahanda/HighFrameRateTracking/

6. Tracking Analysis: Synthetic Experiments

(a) Colour Decimation (b) Depth Noise

Figure 6.19: Left: Tracking performance as a function of progressive decimation of pixel
values by different factors. The general trend is that as pixel values are subsampled, the
tracking gets affected the most at the lowest resolution but the error graphs begin to cluster
closely as image resolution is increased. Right: The performance of tracking on the same
sequence but with increasing Gaussian noise added to the depth values while still maintain-
ing original image intensity values. The graph shows that noise in the depth values does not
significantly affect the results at the lowest pyramid; this is in contrast to decimating image
intensities, while the higher resolutions show a remarkable performance degradation even
for very low noise in the depth values.

170

Chapter 7

Tracking Analysis: Real Experiments

Contents

7.1 Assumptions . 172

7.2 Angular Velocity Computation . 173

7.3 Gyro Characteristics . 174

7.4 Aligning Gyro and Camera Angular Velocity Estimate 175

7.5 Experiments . 177

7.6 Robustness . 184

7.7 Summary . 196

In this chapter, we focus on new experiments performed in a real world setting to vali-

date the experiments carried out with synthetic framework. Our experiments are only for

the pure rotation case. A validation of any general 6DoF camera motion is still difficult

due to the complexities involved in obtaining ground-truth at the extreme dynamics where

investigation of high frame-rate is interesting. On the other hand, pure rotation motion can

be easily controlled in a real-environment and the rotations can be measured with ground

truth precision. Therefore, this seems the relevant motion we can try in our experiments.

Our pure rotation set-up is constructed with a dynamixel servo motor for generating pure

rotation motion clasped by a wooden platform from either side of it. The camera sits on the

servo and a high bandwidth gyro is strapped on the camera for obtaining ground truth.

Figure 7.1 shows the wooden platform we constructed and various different components

that we use in our set-up. Next, we state the assumptions used in the experiments and

discuss the results in detail later.

171

7. Tracking Analysis: Real Experiments

Figure 7.1: The wooden platform we constructed and the set-up we use to enable pure-
rotation about the vertical axis. A high bandwidth gyro mounted on the camera is able to
sample as fast as 4kHz to obtain the ground truth angular velocity. The digital dynamixel
servo rotates the camera at different dynamics with magnitude of accelerations touching as
high as 600 rad/sec2 and velocities 15 rad/sec.

7.1 Assumptions

1. Our primary assumption in carrying out real experiments is that our real scene may

not have to look similar at all when compared to the scene we used in our synthetic

experiments. A natural question then is why are we doing real experiments? We have

argued in Chapter 3 about replicating a real scene is quite a labourious task and out

of the scope of this thesis. Therefore, the short answer is that we do not aim to show

that we get exactly similar optimal frame-rates as our synthetic experiments show but

we would like to show that the pattern of optimal frame-rates remains more or less

the same. For instance, with a decrease in scene lighting we should see the optimal

frame-rates shifting towards lower values.

2. We are only verifying results for pure 1-D rotation motion of a camera which we

have already experimented with in our synthetic framework. The choice of pure 1-D

rotation motion is also driven by the complexities involved in recovering a near perfect

ground-truth and camera poses for any other sort of motion that involves translation.

3. We would also like to experiment with various dynamics of the motion to study robust-

ness of tracker. For instance, we would like to know the dynamics of the motion that

becomes untrackable for a given frame-rate. This is something we have not studied

in our synthetic experiments — the enormity and the huge rendering time associated

with collecting synthetic data needed for obtaining meaningful statistics for robust-

172

7.2. Angular Velocity Computation

ness largely prohibits our understanding of this parameter in synthetic experiments.

However, real data collection makes the whole task much easier.

The robustness is defined as the frequency of success/failure of a tracker over a given

sequence. The success/failure mode is determined by a user defined fixed threshold.

We later show how robustness increases both as a function of error threshold and

camera frame-rate. Further, we show how the optimal frame-rate changes with the

dynamics of the motion.

4. The variety and the magnitude of dynamics of the motion in which we are interested

in the experiments requires us to choose a sensor that is able to provide estimates at a

rate faster than the fastest sampling rate of image capture. Therefore, we have used a

very high bandwidth and high frequency gyro to capture ground truth data.

5. Most of our other assumptions are the same as in synthetic experiments. e.g. the data

is already collected and stored in the hard disk.

7.2 Angular Velocity Computation

It is important to remember that the dense tracker we use returns the positional estimates of

the motion i.e., it returns the rotation matrix instead of angular velocity. On the other hand, a

gyro provides estimates of angular velocity. Therefore, appropriate conversion of rotation to

angular velocity or vice-versa is required. We choose to obtain the angular velocity from the

rotation matrix. This is because (a) the rotations we obtain from the algorithm are relative

only between two frames (b) integrating the gyro for rotation often leads to drift due to the

noise present in the readings. Given the alignment of two frames, the angular velocity can

be computed as follows

log(Rrl)× fps . (7.1)

7.2.1 Derivation

If the pose of the reference frame is taken to be Identity, I, the dense alignment algorithm

then returns a relative pose between the reference frame and the live frame1 i.e. Rlr. The

standard way of computing 3×3 skew-symmetric angular velocity matrix of camera given a

1The matrix returned by the algorithm is Rlr but we compute the velocity from the inverse of this matrix.

173

7. Tracking Analysis: Real Experiments

rotation matrix follows a simple manipulation2:

ω̂(t) =
dRrl

dt
RT

rl(t) . (7.2)

This can be easily derived from simple principles of first order derivative 3

ω̂(t) =
Rlr(t + dt)− Rlr(t)

dt
(7.3)

Rlr(t + dt)− Rlr(t) = Rrl(dt)Rlr(t)− Rlr(t) (7.4)

⇒ ω̂(t) =
(
Rrl(dt)− I

dt

)
Rlr(t) (7.5)

∴ ω̂(t) =
dRrl

dt
RT

rl(t) . (7.6)

Using the orthonormality constraint of rotation matrices and rewriting the expression for

angular velocity matrix, we get

ω̂(t)Rrl(t) =
dRrl

dt
∵ RT

rlRrl = I (7.7)

⇒ Rrl(t) = exp
∫

ω̂(t)dt Rrl(0) (7.8)

Rrl(t) = exp
∫

ω̂(t)dt ∵ Rrl(0) = I . (7.9)

Taking the matrix logarithm of both sides and assuming that the angular velocity remains

constant within the small time change dt = 1
fps , one arrives at an expression of angular

velocity, ω(t) as log(Rrl)× fps.

7.3 Gyro Characteristics

We use a 3-axis MEMS4 ITG-3200 gyro5 that has enhanced biased and sensitivity tempera-

ture stability that reduces the need for user calibration. The bandwidth of the gyro can be

tuned using a selectable user specified low-pass filter. The output is obtained from 16-bit

ADCs via I2C bus. The gyro characteristics are summarised in Table 7.1. The gyro band-

width is kept to be 256Hz that is high enough to pick up high frequencies in the input but

at the same time not high enough to allow picking up noise in the input.
2The expression is obtained from the urls: http://en.wikipedia.org/wiki/Rotation_formalisms_

in_three_dimensions#Rotation_matrix_.E2.86.94_angular_velocities and http://www.physics.sc.edu/

~yar/phys701_2011/lectures/notes_rotations_ver2011.pdf. ω̂(t) is a 3×3 matrix while ω(t) is a 3×1 vector.
3A beautiful short mathematical tour of various properties of rotation matrices is given in http://www.

scribd.com/doc/69129232/5/Vector-Cross-Products-and-Skew-Symmetric-Matrix-Algebra
4Micro Electrical Mechanical Systems
5http://www.invensense.com/mems/gyro/documents/PS-ITG-3200A.pdf and http://www.invensense.

com/mems/gyro/documents/RM-ITG-3200A.pdf

174

http://en.wikipedia.org/wiki/Rotation_formalisms_in_three_dimensions#Rotation_matrix_.E2.86.94_angular_velocities
http://en.wikipedia.org/wiki/Rotation_formalisms_in_three_dimensions#Rotation_matrix_.E2.86.94_angular_velocities
http://www.physics.sc.edu/~yar/phys701_2011/lectures/notes_rotations_ver2011.pdf
http://www.physics.sc.edu/~yar/phys701_2011/lectures/notes_rotations_ver2011.pdf
http://www.scribd.com/doc/69129232/5/Vector-Cross-Products-and-Skew-Symmetric-Matrix-Algebra
http://www.scribd.com/doc/69129232/5/Vector-Cross-Products-and-Skew-Symmetric-Matrix-Algebra
http://www.invensense.com/mems/gyro/documents/PS-ITG-3200A.pdf
http://www.invensense.com/mems/gyro/documents/RM-ITG-3200A.pdf
http://www.invensense.com/mems/gyro/documents/RM-ITG-3200A.pdf

7.4. Aligning Gyro and Camera Angular Velocity Estimate

Rate Gyro Characteristics
Rate Noise Spectral Density 5.2e-4 rad/sec/

√
Hz.

Nonlinearity 0.2 %.
Cross axis sensitivity 2 %
Full scale range ± 34.90 rad/sec
Sensitivity scale factor 823.62 LSB/(rad/sec)

Table 7.1: Different characterisitics of the ITG-3200 gyro we used in our experiments.
The numbers are obtained from the datasheet. http://www.invensense.com/mems/gyro/

documents/RM-ITG-3200A.pdf

7.4 Aligning Gyro and Camera Angular Velocity Estimate

Our experimental set-up allows for a camera mounted on a servo to capture images at

varying frame-rates while a gyro strapped on to the camera measures the angular velocity

of the motion. The gyro is clocked at 4kHz with a bandwidth of 256Hz and thereby provides

highly upsampled velocity estimates. This is quite essential for our analysis where we want

to measure extreme fast dynamics of motion. A high band-width gyro therefore captures

easily the high frequency content present in the velocity which a low-bandwidth gyro filters

out.

Before comparing the velocity estimates given by the tracker with the gyro readings, there

are some key observations we would like to state:

1. The gyro velocity capture and camera image capture run on two different buses —

USB and Gigabit Ethernet respectively — and are not synchronised. They must either

be synchronised via a hardware trigger or via an optimisation to obtain the offset in

time.

2. We also noticed that there is an extra scale factor associated with estimates of velocity

obtained via pure vision and raw gyro estimates; this is a calibration parameter. This

factor stems from the inaccuracies in the camera calibration, camera velocity estimation

process and noise in the gyro readings. However, in our experiments we have observed

that most of the time this calibration parameter is near to unity.

3. The gyro bias, the offset in the gyro values, needs to be cancelled before the gyro

readings can be used. When the gyro is at rest, it is not always reporting zero angular

velocity. This leads to a biased reading: an extra non-zero value is added on top of the

real gyro readings. However, the bias is constant and can be obtained by a long term

175

http://www.invensense.com/mems/gyro/documents/RM-ITG-3200A.pdf
http://www.invensense.com/mems/gyro/documents/RM-ITG-3200A.pdf

7. Tracking Analysis: Real Experiments

average of gyro readings when it is at rest. It can be subtracted from the obtained gyro

readings to get a bias free estimate of angular motion.

4. The camera optic center does not sit exactly on the axis of rotation of the servo and

therefore it may not be undergoing pure rotation. To counter the effects of this, we

image a far away scene so that the parallax that may arise in the image due to the

camera not undergoing pure rotation is negligible.

5. The orthogonal axes of the gyro may not be aligned properly with the orthogonal axes

of the camera. Therefore, we need an extrinsic calibration of gyro and camera angular

velocity estimates to obtain the misalignment in their orthogonal axes. Although we

have found the alignment to be very close to Identity and have instead only focussed

on aligning angular velocities around the y-axis.

6. Lastly, the image timestamps reported by the camera are not exactly integer multiples

of the set shutter time. This could be due to lags in camera triggering and inaccuracies

of the clock inside the camera that measures timestamps.

We have used a non-linear optimisation to align the gyro readings with the camera read-

ings and then obtain the error in rotation. This is because even if the gyro and camera

velocities were synchronised, we would still need a calibration to obtain the scale factor, the

bias in the gyro readings 6 and the misalignment in the axes. The optimisation parameters, s,

the scale factor and b, the gyro bias; x, time shift in the two signals and α, the misalignment

in the timestamps, are embedded in a least squares optimisation that is formally written as:

[x∗, α∗, s∗, b∗] = arg min
x,α,s,b

tend

∑
t=tstart

(ωy
cam(t)− s(ωy

gyro(αt + x) + b))2 (7.10)

The gyro bias and noise model is inspired by [Kapaldo, 2005, p. 7] and [Hwangbo et al., ,

p. 5].

We use the MATLAB function fminsearch to solve this non-linear least squares optimisa-

tion. fminsearch does not compute the gradients of the signal and instead uses a simplex

algorithm to align the two signals. The optimisation is initialised with [0 fps 1 0]. The

convergence is obtained when the error in the alignment reaches a fixed threshold.

6This bias varies with every new experiment and moreover, the gyro has another start-up bias that is differ-
ent every time a gyro is initialised.

176

7.5. Experiments

7.5 Experiments

We classify our real-experiments similarly based on the dynamics of motion with which the

camera is moving and lighting in the scene. To generate different dynamics of motion, the

servo is commanded to oscillate back and forth between two angular positions, θmin and

θmax, within a given time period. The servo compliance margin7, that creates torque profile

which servo motor follows as it is nearing the goal position, is adjusted so that near sine

waves are observed in the velocity profile. To vary the scene lighting, we simply turn on

and off different buttons that control the lighting in the room.

We run our dense pure SO(3) rotation tracker on consecutive images of the camera. Each

such image pair provides an estimate of the relative orientation between them. The esti-

mated orientation is then compared against the corresponding interpolated ground truth

values as described in Section 7.4 to obtain the error.

It is important to remember that the ground truth values obtained are susceptible to

vagaries of the interpolation technique used. Therefore, the actual ground truth may be

different to the interpolated ground truth but within a given region of uncertainty. We

therefore, decided to compare only the results until where the camera estimation is definitely

inferior to the interpolated ground truth e.g. this could be comparing the results at the lowest

resolution.

We register camera and gyro velocity independently for every frame-rate for a given ex-

periment. The scale factors obtained from different frame-rates are further averaged. Scale

factors with differences less than 1% of the maximum scale factor are considered to obtain

the corresponding averaged scale factor and bias. We are motivated by the fact that in our

experiments we observed decreasing scale factor values on decreasing the frame-rates which

is an indication that lower frame-rates tend to underestimate the camera motion owing to

increasing baseline and motion blur. Therefore, only those scale factors are averaged that

are close to the maximum scale factor. These averaged values are then fixed and the optimi-

sations for all frame-rates for that given experiment are re-run to obtain final interpolated

ground truth values. This ensures that all registrations are performed with constant scale

factors and biases. The averaging is done independently for each different experiment car-

ried out at any different time due to the fact that biases are time dependent and vary with

time.

7The dyamixel servo provides various control parameters that can be adjusted to obtain a particular kind of
motion, http://robosavvy.com/store/product_info.php/products_id/638.

177

http://robosavvy.com/store/product_info.php/products_id/638

7. Tracking Analysis: Real Experiments

7.5.1 Experiments With Scene Lighting

Our real experiment with scene lighting demonstrates how it affects the optimal frame-rate.

We collect image data at different frame-rates of office room first with light settings set to

the highest level and later turning off the lights.

Figure 7.2: Images obtained at 200Hz for two different lighting conditions. Top row shows
images obtained when lights switched off while bottom rows shows the images captured
with light on. The difference due to light settings is clear.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

Processing Budget

E
rr

or
in

ra
d

200

120 140 180 180
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

0

1

2

3

4

5

6

7

8

x 10−3

Processing Budget

E
rr

or
in

ra
d

200

120

140 140 140 140

(a) High Lighting (b) Low Lighting

Figure 7.3: The results of the camera tracking with varying lighting settings.

We observe that as scene lighting decreases, the optimal frame-rates tend to shift towards

a lower value confirming our conclusions we obtain in our synthetic experiments. We feel

only a single experiment is sufficient to validate our conclusions.

178

7.5. Experiments

7.5.2 Experiments With Camera Motion

We obtain sequences for varying degrees of camera motion to analyse how the camera

motion affects the optimal frame-rate. Table 7.2 summarises the dynamics we analyse in our

experiments. We also show various parameters for the servo motion. The variables θmin and

θmax denote the minimum and maximum angle the servo is commanded to move within

the time shown in milliseconds though it may not necessarily sweep this angle sector fully

within the time limit.

Time (in ms) θmin θmax ω (rad/sec) (min/max) α (rad/sec2) (min/max) Freq
58 62 217 -11.1/11.2 -667.2/983.2 8.62Hz

108 62 217 -11.7/11.8 -606.9/658.2 4.62Hz
201 86 208 -11.3/11.3 -736.3/386.7 2.48Hz

Table 7.2: Different range of dynamics analysed in our experiments.

Importantly, we also display acceleration vs velocity profile in Figure 7.4 plotting various

data points as the camera moves through various different parts of the trajectory. This type

of plot is more informative when quantifying the limits of camera tracking. For instance,

tracking may break beyond a certain limit of acceleration and velocity or a combination of

both and we would like to know the limits for different frame-rates. We begin our results

section with the fastest motion.

(a) 8.62Hz (b) 4.62Hz (c) 2.48Hz

Figure 7.4: Acceleration vs velocity profiles observed in the servo motion for variety of fast
dynamics used in the experiment as described in Table 7.2

179

7. Tracking Analysis: Real Experiments

(a) Zoom-in (b) Zoom-out

Figure 7.5: Raw angular velocity reported by gyro for frequency of motion set to 8.6Hz.
The curve is not exactly sine wave but a near sine wave with high frequencies squiggles
observed when it is near to achieving its maximum or minimum velocity. The curve also
shows that it has some low frequency carrier wave modulated on top of it.

Camera Motion Frequency 8.6Hz

This is the fastest motion we analyse in this experiment. The servo makes 40 sweeps back

and forth at a frequency of 8.6Hz with the aim that the velocity profile of the motion re-

sembles a sine wave. The choice of sine wave motion is driven by the fact that (a) it is easy

to generate compared to a rectangular wave which is ideal for the experiments but nearly

impossible to generate (b) it leads to a circular/elliptical locus of the smooth motion that

allows us to split it up into regions of constant acceleration and velocity which we later

analyse for better understanding of the tracking (specially failures) in real experiments. It

is easy to see that for pure sine wave the locus of points lying on the acceleration-velocity

curve is expected to be standard ellipse of the form

ω(t) = a sin(f1t) (7.11)

α(t) = aω1 cos(f1t) (7.12)
(α(t))2

ω2
1

+ (ω(t))2 = a2 . (7.13)

a stands for the amplitude of the motion, f1 stands for the frequency of motion which in this

case is 8.6Hz. Variables α and ω denote the angular acceleration and velocity respectively.

A sample raw gyro velocity for this motion is shown in Figure 7.5 obtained when col-

180

7.5. Experiments

(a) Gyro ground truth (b) Zoom-in version

Figure 7.6: Raw gyro plots shown for different frame-rates. The servo makes 40 sweeps
back and forth in total. Right plot also highlights the high frequencies captured by this high
bandwidth gyro.

lecting data at 200Hz with shutter time set to half the maximum allowed. Ground truth

velocities for all frame-rates are plotted in Figure 7.6 together with the zoomed-in versions

to also show the high frequencies captured by the gyro. The corresponding acceleration and

velocity plots are shown in Figure 7.9(a). The servo oscillation generates a near sine wave

motion. However, the locus we obtain as shown in Figure 7.9(a) is a rather titled ellipse.

The tilt can be explained by the fact that the sine wave is not a perfect sine wave and that it

is modulated by a very low frequency carrier wave which can also be represented by a sine

wave i.e.

v(t) = a cos(k f2t) sin(f1t) . (7.14)

The estimates of angular velocity from images are shown in Figure 7.7 for different frame-

rates. In particular, Figure 7.7(b) shows how tracking degrades as frame-rate is decreased.

The performance suffers the most for low frame-rates where fast motion means motion blur

and less image overlap.

Finally, we plot the Pareto Front of the optimal frame-rates for this motion and observe

that it is only high frame-rates 180–200Hz that figure in the plot and therefore suitable

for such fast motion tracking. This is not very surprising as one would expect only high

frame-rates to appear in the graph for fast motion.

181

7. Tracking Analysis: Real Experiments

(a) Angular velocity from images. (b) Velocity at low frame-rates.

Figure 7.7: Velocity estimates returned by pure vision system plotted for different frame-
rates. Left plot shows all the different frame-rates used while the Right plot highlights the
tracking results for low frame-rates. Subsequent lower frame-rates tend to underestimate
the camera velocity due to large baseline and motion blur observed in images and at even
lower frame-rates e.g. 20Hz, tracking completely fails.

(a) Gyro (b) Camera (c) Pareto Front

Figure 7.8: Acceleration vs Velocity graph for camera oscillating back and forth on a servo
motor with a frequency of 8.6Hz. Gyro velocity (a) put side by side against the dynamics
returned by algorithm (b). The corresponding Pareto Fronts are shown in (c)

Camera Moving Frequency 4.62Hz

Our next set of experiments focus on nearly half the frequency of fastest motion. Like

previous experiments, we again collect data by repeated trails of the same motion profile

and running optimisations to align the camera and gyro velocities. The acceleration and

velocity profiles of gyro and camera are put side by side in Figure 7.10. Again, we observe

that tracking suffers more for low frame-rates. However, we do see a minor improvement in

the robustness of slightly higher frame-rates when compared to fastest motion. For instance,

182

7.5. Experiments

Figure 7.9: Consecutive images obtained at 200Hz (top row) and 20Hz (bottom row) for
this motion. Such fast motion introduces motion blur even at 200Hz which is more evident
on the monitor screen. Far more importantly, low frame-rates e.g. 20Hz not only have
significant motion blur but also large displacement which makes it hard to register images
and often leads to tracking failures at these frame-rates.

40Hz in this motion seems to perform better simply because of the rapidity of the motion

that is reduced when the frequency is halved.

(a) Gyro (b) Camera (c) Pareto Front

Figure 7.10: Acceleration vs velocity graph for gyro and camera plotted next to each other.
The Pareto Front on the other hand shows a slightly reduced optimal frame-rates show-
ing how working on extreme high frame-rates does not necessarily lead to optimal use of
computational budget.

The Pareto Fronts for this motion show a predictable pattern that with slow motion the

optimal frame-rates should switch to slightly lower values. Therefore, these results chime

well with the results from synthetic framework. Interestingly, the optimal frame-rates are

again higher than the range of standard frame-rates used most often in tracking.

183

7. Tracking Analysis: Real Experiments

Camera Motion Frequency 2.48Hz

The last set of experiments halved the frequency even further leading to a even slower

motion of frequency 2.48Hz. The consequence of working at such motions is that the optimal

frame-rates tend to fall down to even lower values. For instance, Figure 7.12 shows how the

optimal frame-rates transition from 200Hz down to 140Hz.

(a) Gyro (b) Camera

Figure 7.11: Acceleration vs velocity graph for gyro and camera plotted next to each other
for shutter time set to maximum.

It is also interesting to observe in Figure 7.11 how robustness increases even at lower

frame-rates as the motion becomes slower.

7.6 Robustness

We turn our attention to the third metric, robustness, which the synthetic framework does

not allow immediately to evaluate due to the huge timing demands involved in rendering

the images. A real data collection on the other hand greatly facilities the task. For our

real-experiments we collect data for more than one minute and this means that for high

frame-rates the number of images obtained become very large. This would have taken huge

rendering effort to generate this in synthetic framework which is why real data collection

simplifies the evaluation of robustness . We characterise the motion below and give insights

into the results next.

184

7.6. Robustness

0 0.2 0.4 0.6 0.8 1

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
200 Hz

200 Hz

120 Hz 120 Hz 140 Hz

Computational Cost: time in seconds × fps in Hz

E
rr

o
r

in
 r

a
d

ia
n

s

0.5 1 1.5 2 2.5 3 3.5

0

1

2

3

4

5

6

7

8

x 10
−4

120 Hz

140 Hz

200 Hz

120 Hz

140 Hz
180 Hz 200 Hz

100 Hz

120 Hz
140 Hz

200 Hz

Computational Cost: time in seconds × fps in Hz

E
rr

o
r

in
 r

a
d

ia
n

s

120 Hz

120 Hz

160 Hz

100 Hz

(a) Lowest Resolution (b) All Resolutions

Figure 7.12: Pareto Front of the error and computational cost for (a) Lowest resolution and
(b) All resolutions. Although we have mentioned previously that we have only compared
the results at the lowest resolution, a plot for all resolutions in only to ascertain the fact that
increasing image resolution for pure rotation cases only leads to diminishing returns.

7.6.1 Characterisation of Motion

To fully understand the limits of tracking and dynamics of motion where a tracker can easily

perform without failures, it is imperative that dynamics contains a variety of motions. The

operating region of a tracker can be then found where it is always expected to work.

We collect data for the trajectory that has enough variations in the motion. The servo is

commanded to oscillate back and forth with varying frequency and velocities and the same

motion profile is repeated for collecting data at frame-rates. Again, we split the experiments

to understand the effects of slow as well as fast motion. Our fast motion has the velocities

reaching 11 rad/sec and accelerations, 600 rad/sec2. On the other hand, our slow motion

contains a momentary shake in between the otherwise low accelerations of 200 rad/sec2 and

similar velocities as in fast motion, in the trajectory.

The camera velocity profile obtained by running the tracking on the corresponding images

is registered with the gyro velocity (ref. Section 7.4) via non-linear least squares optimisa-

tion. Registered velocity profiles are compared against the corresponding ground truth

velocity obtained from the gyro to obtain error. We use a threshold to decide whether the

tracking between the frames was successful or not. Robustness is then simply the frequency

of successful tracking instances that occurred in the sequence. The acceleration vs velocity

graphs are overlayed with the colour-coded value denoting the error against the correspond-

185

7. Tracking Analysis: Real Experiments

ing ground truth. It is worth mentioning that we have run the tracker with bright lighting

conditions. The results for varying lighting conditions follow the trends we observe in other

experiments i.e. with a decrease in scene lighting the performance of high frame-rates tends

to degrade.

7.6.2 What do We Interpret from the Graphs?

We throw insights into the robustness experiments and examine how high frame-rates often

lead to more robust tracking due to the small motion assumption and linearisations that

hold more valid as frame-rate is pushed higher. Before expanding on the results, we would

like to state that the robustness is evaluated only at the highest resolution used. We begin

with results from slow motion first.

Slow motion

Our slow motion trajectory has camera moving back and forth for pure rotation with consid-

erably small velocities. The trajectory begins with small velocity sine wave of low frequency.

Gradually this frequency of the oscillation is increased and a momentary jerky motion is

thrown in to understand how tracking behaves in this part of otherwise slowly varying

trajectory. The motion then resumes to the low frequency sine wave again to end a nearly

one minute long trajectory. This motion profile is repeated for all different frame-rates we

have previously experimented with, to collect data. Figure 7.13 show the acceleration and

velocity plots for the motion and Figure 7.15 show sample images taken at 200Hz and 20Hz.

This results in total of 14,531 images for 200Hz and 1,354 for 20Hz. Looking at the number

of images, it is clear that this data collection would not have been possible with synthetic

framework.

Figure 7.17—7.21 show robustness plots with colour coded error values. The jerky motion

in the trajectory shows as arcs away from the densely clustered acceleration and velocity

data points. Increased robustness at high frame-rates 100–200Hz is evident from the graphs

where the tracker works without any signs of failures. Tracking starts to suffer as frame-rate

is decreased further down but it still seems to perform without any gross failures. It is from

40–20Hz we see that the tracking tends to get affected more due to fast motion and motion

blur that arise in low frame-rate sequences.

It is interesting to observe that the parts of the trajectory where the motion is accelerating,

186

7.6. Robustness

(a) ∼ 4KHz (b) 200Hz

Figure 7.13: Slow Motion: Acceleration vs Velocity profile of the motion. The highly sampled
motion at a frequency of nearly 4KHz put aside with the motion resampled at 200Hz. The high
frequency signal is first filtered using a low pass filter and then downsampled to avoid any aliasing
effects.

0 10 20 30 40 50 60 70

−10

−8

−6

−4

−2

0

2

4

6

8

10

Time (in seconds)

ω
gy

ro
in

(r
ad

/s
ec

)

Figure 7.14: The trajectory of the slow motion which we have used in our experiments.

the tracking tends to suffers more. It is due to the fact that acceleration brings inconsistent

blur between two consecutive frames and therefore there is no unique transformation that

187

7. Tracking Analysis: Real Experiments

Figure 7.15: Sequence of images taken at 200Hz (top two rows) and 20Hz (bottom two
rows) for slow motion robustness experiment. All images are captured with shutter time set
to half the maximum allowed. If 200Hz images are dark, motion blur affects tracking if run
at 20Hz.

registers two frames. We expand more on this in subsection 7.6.3.

Fast motion

As mentioned earlier, the accelerations in this motion reach as high as 600 rad/sec2 compared

to small motion. The notable difference is the way tracker behaves when the motion becomes

too fast. The servo is commanded to again move back and forth however with a faster

angular velocity and frequency than before. We collect data again performing repeated

trails of the same motion profile for different frame-rates. To highlight the main bits of

the results, we have only experimented with frame rates, fps ∈ {20,40,80,160,200} for fast

188

7.6. Robustness

0.000 0.002 0.004 0.006 0.008 0.010
Error

0.0

0.2

0.4

0.6

0.8

1.0

Ro
bu

st
ne

ss

200Hz
160Hz
080Hz
040Hz
020Hz

20 40 60 80 100 120 140 160 180 200
Frame-rate

0.0

0.2

0.4

0.6

0.8

1.0

Ro
bu

st
ne

ss Err: 1e-2
Err: 5e-3
Err: 1e-3
Err: 5e-4

(a) Robustness vs Error (b) Robustness vs Frame-rate

Figure 7.16: Robustness vs Error and Robustness vs Frame-rate graphs. As error threshold
is increased, the tolerence in accepting the tracker to give more erroneous results is also
increased leading to increase in the accepted robustness. However, tight thresholds see
a decrease in robustness making tracker classified to be failing more often. (b) shows a
different way of representing the same information, this time with frame-rate as the slider
on x-axis.

motion.

We observe that at low frame-rates, it is only possible to run the tracker successfully for

when the camera is moving with a relatively small velocity. Tracking tends to increasingly

suffer as visual conditions deteriorate with increasing camera velocity that induces motion

blur and occlusions in the images at these frame-rates. In our experiments, tracking, as

shown in Figure 7.24, at 20Hz works only in a very narrow operating region near to zero

velocity and very small acceleration. It breaks more often in regions of high velocity and

small acceleration (mostly the ends of the longitude in the graph) as well as in regions of

high acceleration and low velocity (ends of the latitude). Increasing the frame-rate to 40Hz

shows an improvement in the robustness in the regions of high velocity and very small

acceleration while regions corresponding to high acceleration and low velocity still remain

the failure modes of the tracker. Further increasing the frame-rate to 80Hz (Figure 7.25

(c)) shows a remarkable improvement in the tracker performance where operating region

expands to an relatively larger area. Lastly, frame-rates 160Hz (Figure 7.25(d)) and 200Hz

(Figure 7.26(b)) clearly show that such high frame-rates bring the tracker to a regime where

the operating region covers the whole area of the curve and that the robustness is nearly

100 percent. Pushing the frame-rate to even higher values (until a certain point) will only

affirm the fact that tracker works all the time, provided lighting conditions allow the tracker

189

7. Tracking Analysis: Real Experiments

−600

−400

−200

0

200

400

600
−15 −10 −5 0 5 10 15

α gy
ro

in
(r

ad
/s

ec
2)

ωgyro in (rad/sec)

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01 −600

−400

−200

0

200

400

600
−15 −10 −5 0 5 10 15

α gy
ro

in
(r

ad
/s

ec
2)

ωgyro in (rad/sec)

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

(a) 200Hz (b) 180Hz

Figure 7.17: Robustness graphs for higher frame-rates 180–200Hz. Tracking seems to pretty
much work all the time as the graphs suggest.

−500

−400

−300

−200

−100

0

100

200

300

400

500
−15 −10 −5 0 5 10 15

α gy
ro

in
(r

ad
/s

ec
2)

ωgyro in (rad/sec)

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01 −500

−400

−300

−200

−100

0

100

200

300

400

500
−15 −10 −5 0 5 10 15

α gy
ro

in
(r

ad
/s

ec
2)

ωgyro in (rad/sec)

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

(c) 160Hz (d) 140Hz

Figure 7.18: Robustness graphs for frame-rates from 140–160Hz. Tracking still works without any
signs of failures.

−600

−400

−200

0

200

400

600
−15 −10 −5 0 5 10 15

α gy
ro

in
(r

ad
/s

ec
2)

ωgyro in (rad/sec)

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01 −500

−400

−300

−200

−100

0

100

200

300

400

500
−15 −10 −5 0 5 10 15

α gy
ro

in
(r

ad
/s

ec
2)

ωgyro in (rad/sec)

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

(e) 120Hz (f) 100Hz

Figure 7.19: Robustness graphs show similar trends appear for frame-rates from 100–120Hz for
slow motion and that tracking still seems robust enough even at these frame-rates.

190

7.6. Robustness

−500

−400

−300

−200

−100

0

100

200

300

400

500
−15 −10 −5 0 5 10 15

α gy
ro

in
(r

ad
/s

ec
2)

ωgyro in (rad/sec)

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01 −400

−300

−200

−100

0

100

200

300

400

500
−15 −10 −5 0 5 10 15

α gy
ro

in
(r

ad
/s

ec
2)

ωgyro in (rad/sec)

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

(g) 80Hz (h) 60Hz

Figure 7.20: Tracking at frame-rates 80–60Hz now tends to suffer at the jerky motion profile that is
purposely added to the otherwise slowly varying small motion.

−400

−300

−200

−100

0

100

200

300
−15 −10 −5 0 5 10 15

α gy
ro

in
(r

ad
/s

ec
2)

ωgyro in (rad/sec)

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01 −200

−150

−100

−50

0

50

100

150

200
−10 −5 0 5 10

α gy
ro

in
(r

ad
/s

ec
2)

ωgyro in (rad/sec)

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

(i) 40Hz (j) 20Hz

Figure 7.21: The slow motion allows for the camera tracker to work most of the time for all
the high frame-rates. It is only at 40Hz and 20Hz we observe tracker beginning to break.

to work without failures.

We also show plots in Figure 7.27 on how robustness varies with the error threshold

applied to decide the success or failure of tracking. Remarkable is the improvement in the

robustness both as a function of frame-rate and increase in the error threshold. The increased

threshold allows for more room for deviation of estimated velocity from the ground truth.

Particularly, Figure 7.27 (a) summarises how robustness rapidly improves as the frame-rate

is increased from 20Hz to 40Hz. A further increase in the frame-rate to 80Hz, shows even

191

7. Tracking Analysis: Real Experiments

Gyro angular velocity profile for fast motion.

Figure 7.22: Angular velocity profile of gyro as it moves back and forth with varying degrees
and frequencies of motion. The gyro starts from rest and oscillates with a peak velocity of
nearly 10 rad/sec. It is then brought back to rest slowly and then made to move in varying
oscillatory motion profiles with varying peak velocities ranging from 11 rad/sec down to
nearly rest. The whole process is repeated for roughly a minute. The velocity profile shown
above is for when camera was capturing images at 200Hz.

more improvement and high frame-rates of the order of 160Hz and 200Hz bring the tracker

in a regime where it works all the time for the given dynamics we experimented. It is

important to mention here that the underlying assumption in this experiment is that light

settings still allow the tracker to work at as high frame-rates as 200Hz.

7.6.3 Why does the Tracker Fail?

A tracker is more susceptible to failures if the camera is moving with velocity higher than

the sampling rate of the camera image acquisition. This happens more often at low frame-

rates. Such fast motion introduces motion blur which is detrimental to the direct tracking

algorithm that relies on per-pixel image gradients to align the images. In our experiments,

192

7.6. Robustness

(a) ∼ 4KHz (b) 200Hz

Figure 7.23: Acceleration vs Velocity profile of the motion. The highly sampled motion at a
frequency of nearly 4KHz put aside with the motion resampled at 200Hz.

(a) 20Hz (b) 40Hz

Figure 7.24: Low frame-rates show how robustness tends to suffer when the motion is
fast. At 20Hz, the tracker fails nearly all the time except a small operating region very close
to zero velocity and zero acceleration. On the other hand, 40Hz show a improvement in
robustness however, has the tracker breaking when the acceleration as well as velocity is
high are very high.

(c) 80Hz (d) 160Hz
Figure 7.25: Frame-rates 80Hz and 160Hz large improvement in tracking that 160Hz it can
be assumed that the tracker works without any signs of failures at all.

193

7. Tracking Analysis: Real Experiments

(a) 20Hz (b) 200Hz

Figure 7.26: Direct comparison of tracking performance at 20Hz against 200Hz. It is re-
markable how tracking robustness improves as frame-rate is increased to as high as 200Hz.

0 0.002 0.004 0.006 0.008 0.01
0

0.2

0.4

0.6

0.8

1

Error

R
ob

us
tn

es
s 200 Hz

160 Hz
080 Hz

040 Hz

020 Hz

20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

Frame−rate

R
ob

us
tn

es
s

Err: 1e−2

Err: 5e−3
Err: 1e−3

Err: 5e−4

(a) Robustness vs Error (b) Robustness vs Frame-rate

Figure 7.27: Robustness vs Error and Robustness vs Frame-rate graphs. As error threshold
is increased, the tolerence in accepting the tracker to give more erroneous results is also
increased leading to increase in the accepted robustness. However, tight thresholds see
a decrease in robustness making tracker classified to be failing more often. (b) shows a
different way of representing the same information, this time with frame-rate as the slider
on x-axis.

194

7.6. Robustness

Figure 7.28: Velocity profile broken into four different regions. As the camera goes through
different sections of the trajectory it passes regions of zero acceleration and zero velocity.
These regions are particularly interesting. The region of zero acceleration is when the cam-
era achieves the highest angular velocity. This is where two consecutive frames have similar
motion blur while regions of zero angular velocity means that acceletaion is highest. This is
where the consecutive images have different motion blur.

the oscillatory motion of the camera means that it travels through various different regions

of varying acceleration and velocity. Figure 7.28 shows the velocity profile broken into four

different regions. As a result, we observe that consecutive frames have two different kinds

of blur, namely:

1. Consistent Motion Blur: This is when the camera is moving with high velocity and

there is very little or zero acceleration/decelaration.

2. Varying Motion Blur: This arises when the camera is accelerating/decelerating.

Further, each experiment is sub-divided into regions of contant velocity (where servo

achieves it’s maximum velocity and acceleration is zero) and constant acceleration/decel-

eration (where servo begins to move or comes to rest). In regions of constant velocity we

observe similar blur between consecutive pair of images while in regions of constant ac-

celeration there is uneven blur between two consecutive images. Images obtained at high

sampling (high frame-rate) remarkably improve the tracking robustness in regions of con-

stant acceleration. While low sampling leads to matching an unblurry image with a blurry

image which does not give a unique registration between two images and hence leads to

tracking failures at those points.

Figure 7.30 shows a part of the trajectory with the pyramid number that yields the smallest

warped error overlaid. An interesting pattern that emerges out from this is that at points of

high acceleration and low velocity, the algorithm provides best results at smaller resolutions.

195

7. Tracking Analysis: Real Experiments

(a) 3500–3501 (b) 9170–9171 (c) 4498–4499

Figure 7.29: We show three samples of consecutive frames from the trajectory that achieve
best alignment only at 160×120 resolution due to inconsistent image blur. The top row
shows different reference images that are aligned against the live images shown in the
bottom row. The numbers at the bottom are the frame numbers of the images that are
aligned.

Remember that this leads to different motion blur in two consecutive images. This difference

in the image blur reduces as images are downsampled which is why we see tracking often

produces smaller errors at lower resolutions for such images. On the other hand points of

high velocity and small acceleration yield images that have very similar motion blur which

is why the algorithm gives smaller warped errors at higher resolutions. Figure 7.29 shows

three samples of images where the resolution 160×120 gives the lowest warped error.

7.7 Summary

In this chapter, we validated our conclusions from synthetic experiments with carefully con-

trolled real world experiment involving pure rotation. The results very well chime with

the synthetic experiments. Additionally, we provide quantitative results for robustness of a

tracker with two experiments with contrasting motion profiles aimed to study how robust-

ness varies with the degree of motion. A tracker is more prone to failures if consecutive

images have inconsistent motion blur which happens quite often when the camera is ac-

196

7.7. Summary

8000 8200 8400 8600 8800 9000 9200
−10

−8

−6

−4

−2

0

2

4

6

8

10

Frame Number

ω
gy

ro
in

(r
ad

/s
ec

)

Figure 7.30: Angular velocity overlaid with different pyramid levels the algorithm returns
the least warped error. Red colour is the lowest resolution in the pyramid (80×60), blue is
160×120 and green is 320×240. An interesting pattern emerges out from ths plot. That the
lowest possible error is achieved at the peaks of the graph working at higher resolutions
(remember that this is when the acceleration is near to zero) while red and blue denote the
choice of lower resolution when the camera is accelerating. Particularly, when the camera
is passing through region of zero angular velocity, it has the highest acceleration and and
therefore, the motion blur in one of the images is more than the other at the highest reso-
lution. As a result, these images cannot be registered uniquely at this resolution and that
a lower resolution where the difference in the motion blur as well as the image overlap
decreases, lowest error can be obtained. The angular velocity is obtained at 200Hz for slow
motion experiment.

celerating in contrast to the constant velocity motion which induces same amount of blur.

This forms the basis of our explanation for how the robustness decreases as the frame-rate

is lowered down.

197

7. Tracking Analysis: Real Experiments

198

Chapter 8

Conclusions and Future Directions

Contents

8.1 What do We Learn from this Thesis? . 199

8.2 Future Directions . 200

8.1 What do We Learn from this Thesis?

This thesis has explored the possibilities of camera tracking at frame-rates higher than the

range usually assumed to be standard for any real-time operation. Three different metrics

namely accuracy, robustness and computational budget are evaluated to rate the perfor-

mance of different frame-rates. An interesting revelation that has also come out is the

fundamental connections between frame-rate and image resolution.

A thorough evaluation was performed with datasets generated with our synthetic frame-

work which replicates carefully the real camera image acquisition process as well as validat-

ing these with a pure one dimensional rotation motion in real world. Our synthetic dataset

achieves a level of photorealism beyond that in most well-known datasets for image motion

analysis [Baker et al., 2011], [Geiger et al., 2012], [Butler et al., 2012] and [Peris et al., 2012]

where no special care was taken to model the real camera acquisition process that adds

many real-world artefacts in the images e.g. image noise depending upon scene lighting.

The main conclusions of our evaluation advocate the use of a combination of high frame-

rate and low image resolution for pure camera tracking operating under low computational

199

8. Conclusions and Future Directions

budgets and normal office lighting conditions. A few iterations at high frame-rate and low

resolution seems the optimal choice that yields the most accurate results under stringent

computational budgets. An increase in the computational budget leads to a transition to-

wards a combination of lower frame-rate but higher resolution as the optimal choice i.e.

better accuracy can be achieved with a rather lower frame-rate but higher resolution under

that computational budget. A similar pattern follows for increasing resolutions. A further

increase in the budget for a given resolution only advocates the use of high frame-rate to

optimally use that budget and yield more accurate results.

Another interesting insight our evaluation provides is the effect of scene lighting on the

performance of camera tracking. We find that degradation of scene lighting conditions

leads to a transition towards lower optimal frame-rates when compared to normal lighting

conditions where a combination of frame-rate and resolution is unchanged.

We also see via a series of real experiments with gyro mounted on a camera, how high

frame-rate leads to more robust tracking. The evaluation of this metric in synthetic exper-

iments was not feasible due to the cumbersome renderings of the order of thousands of

images that we needed to obtain meaningful statistics.

As the motion of the camera slows down, we see that choices of low frame-rate emerge as

optimal at all resolutions. This is expected, as one would guess that there is no need to go

to higher frame-rates when similar levels of accuracy can be achieved with low frame-rates.

The dependence of our results on varying camera motion is also manifested in our ex-

periments on camera tracking on pure rotation and joint translation and rotation motion i.e.

for pure 1D rotation resolution does not necessarily help while joint translation and rotation

motion higher level of accuracy is achieved only when the resolution is increased.

8.2 Future Directions

8.2.1 A Full Theoretical Understanding

The conclusions obtained from this work have largely been through an empirical and ex-

perimental evaluation. In the future, we aim to understand this work from a theoretical

perspective to provide analytically the best combination of frame-rate and image resolution

given the camera image acquisition model, scene lighting and statistics of depth and texture

200

8.2. Future Directions

of the scene. For instance, using a simple planar surface model together with a point light

source and lambertian properties of the texture on the scene, we write the intensity at given

pixel location as:

Ip = fCRF

(∫ tc

to

(
∑

m∈L
kd(P(t)) cos θm

P(t)im,d) + ns

)
dt

)
(8.1)

P(t) = t(t) + uv(t) (8.2)

v = (K[R(t)|t(t)])−1p, [R(t)|t(t)] v T(t) (8.3)

u =
−t(t) · n + d

v · n (8.4)

T(t) = exp
∫ t

to
ξ(t)dt T(to) . (8.5)

Here variable kd
1 denotes the diffusion constant which varies with the location on the surface

and θm(P(t)) represents the incident angle a ray coming from the light source makes with

the normal at point P(t). The point P(t) can be obtained as the intersection of the ray from

camera at a pixel location p with the normal n of the surface. As the camera moves on a

trajectory, the continuous pose at any time instant t, T(t), after the shutter is opened at time

to is via the exponential map given the instantaneous rotational and translation velocities

encoded in ξ(t). fCRF denotes the camera response function and d is the parameter related

to the plane. This analytical image model governs how a pixel intensity is observed as a

function of motion of the camera as well as the surface properties of the scene.

An abstract model for the computational cost of the gradient descent scheme used in im-

age alignment can also be designed. The maximum pixel displacement between the images

for the gradient descent to converge in one step can be empirically found for both translation

and rotation. A displacement more than this maximum displacement then requires coarse-

to-fine pyramidal hierarchy that progressively aligns the images but at the expense of more

iterations. Therefore, given the knowledge of camera motion and hence the displacement

between the images, it is possible to then calculate the number of iterations it would take to

align images.

After the matching between the images has been performed, we can describe the reduction

1http://users.eecs.northwestern.edu/~yingwu/teaching/EECS432/Notes/lighting.pdf

201

http://users.eecs.northwestern.edu/~yingwu/teaching/EECS432/Notes/lighting.pdf

8. Conclusions and Future Directions

in the uncertainty on the camera pose via standard Bayes rule:

1
σ2

X|Z
=

ne f f

σ2
Z|X(r)

+
1

σ2
X0

∆t
(8.6)

1
σ2

X|Z
=

ne f f

σ2
Z|X(r)

+
f

σ2
X0

(8.7)

σ2
Z|X(r) = 2rσ2

Z|X(0) . (8.8)

σ2
X|Z is the posterior uncertainty, σ2

Z|X is the measurement uncertainty and σ2
X0

∆t is the pre-

dicted uncertainty that grows with time as modelled by random walk distribution. The

inverse of ∆t is the frame-rate f . If the alignment is performed at a smaller resolution, the

measurement uncertainty grows accordingly as 2rσ2
Z|X(0) where σ2

Z|X(0) is the uncertainty at

the highest resolution and r is the resolution level. ne f f is the number of pixels that have the

residual with the 3σ threshold of the M-estimator used for alignment.

The future directions for this work would be take a deeper look at the 6DoF camera pose

using a similar mathematical approach breaking free from these simple assumptions and

thinking more about any general surface with not necessarily simple BRDF properties.

8.2.2 Using Sparse Measurements for High Frame-Rate Tracking

Remember that most of the information for image alignment comes from the high intensity

gradients present in the image. Therefore, it is worth asking if a camera that provided only

changes in the image gradients instead of pixel colour values as done in most of the cameras

today, whether we would be able to significantly improve the efficiency of matching? Indeed,

ATIS cameras [Posch et al., 2011] and [Posch, 2011] are the next generation cameras that are

available today that report the changes in the images as events that arrive asynchronously,

are a potential route towards ultra high frame-rate matching.

8.2.3 Joint Analysis of Tracking and Mapping

Another potential future direction would be to couple the tracking with the 3D mapping

in a full SLAM framework. Accuracy of tracking and mapping can be jointly analysed as a

function of frame-rate and image resolution. Multi-frame stereo analysis has already been

done before in [Rumpler et al., 2011] and [Gallup et al., 2008] for baseline (frame-rate) and

resolution. This is very desirable in quantifying the accuracy of any SLAM system.

202

Bibliography

Bibliography

[Adiv, 1985] Adiv, G. (1985). Determining Three-Dimensional Motion and Structure from

Optical Flow Generated by Several Moving Objects. IEEE Transactions on Pattern Analysis

and Machine Intelligence (PAMI), 4:348–401. 93

[Alexe et al., 2010] Alexe, B., Deselaers, T., and Ferrari, V. (2010). What is an object? In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages

73–80. IEEE. 19

[Anandan, 1987] Anandan, P. (1987). A Computational Framework and an Algorithm for

the Measurement of Visual. Technical report, University of Massachusetts, Amherst, MA,

USA. 109

[Anandan, 1989] Anandan, P. (1989). A computational framework and an algorithm for the

measurement of visual motion. International Journal of Computer Vision (IJCV), 2:283–310.

109

[Armstrong and Zisserman, 1995] Armstrong, M. and Zisserman, A. (1995). Robust Object

Tracking. In Proceedings of the Asian Conference on Computer Vision (ACCV). 20

[Arun et al., 1987] Arun, K. S., Huang, T. S., and Blostein, S. D. (1987). Least-squares fitting

of two 3-d point sets. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI),

(5):698–700. 27

[Ayache and Faugeras, 1986] Ayache, N. and Faugeras, O. (1986). Hyper: A new approach

for the recognition and positioning of two-dimensional objects. Pattern Analysis and Ma-

chine Intelligence, IEEE Transactions on, (1):44–54. 92

[Bailey, 2002] Bailey, T. (2002). Mobile robot localisation and mapping in extensive outdoor envi-

ronments. PhD thesis. 33

[Baker et al., 2003a] Baker, S., Gross, R., and Matthews, I. (2003a). Lucas-Kanade 20 Years

On: A Unifying Framework: Part 3. Technical report, Carnegie Mellon University. 36

[Baker et al., 2004a] Baker, S., Gross, R., and Matthews, I. (2004a). Lucas-Kanade 20 Years

On: A Unifying Framework: Part 4. Technical report, Carnegie Mellon University. 36

[Baker et al., 2003b] Baker, S., Gross, R., Matthews, I., and Ishikawa, T. (2003b). Lucas-

Kanade 20 Years On: A Unifying Framework: Part 2. Technical report, Carnegie Mellon

University. 36

203

Bibliography

[Baker and Matthews, 2004] Baker, S. and Matthews, I. (2004). Lucas-Kanade 20 years on: A

unifying framework: Part 1. International Journal of Computer Vision (IJCV), 56(3):221–255.

108

[Baker et al., 2004b] Baker, S., Patel, R., Cheung, G., and Matthews, I. (2004b). Lucas-Kanade

20 Years On: A Unifying Framework: Part 5. Technical report, Carnegie Mellon Univer-

sity. 23, 36, 37, 92, 108

[Baker et al., 2011] Baker, S., Scharstein, D., Lewis, J. P., Roth, S., Black, M. J., and Szeliski,

R. (2011). A Database and Evaluation Methodology for Optical Flow. International Journal

of Computer Vision (IJCV). 140, 199

[Bayro-Corrochano and Ortegon-Aguilar, 2004] Bayro-Corrochano, E. and Ortegon-Aguilar,

J. (2004). Template tracking with lie algebras. In Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA), pages 5183–5188. IEEE. 98

[Benhimane and Malis, 2004] Benhimane, S. and Malis, E. (2004). Real-Time Image-Based

Tracking of planes using Efficient Second-order Minimization. In Proceedings of the

IEEE/RSJ Conference on Intelligent Robots and Systems (IROS). 108

[Bergen et al., 1992] Bergen, J. R., Anandan, P., Hanna, K. J., and Hingorani, R. (1992). Hi-

erarchical model-based motion estimation. In Proceedings of the European Conference on

Computer Vision (ECCV). 91, 95, 109

[Besl and McKay, 1992] Besl, P. and McKay, N. (1992). A method for Registration of 3D

Shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 14(2):239–

256. 28, 33

[Bibby and Reid, 2008] Bibby, C. and Reid, I. (2008). Robust Real-Time Visual Tracking using

Pixel-Wise Posteriors. In Proceedings of the European Conference on Computer Vision (ECCV).

22

[Bishop, 2006] Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer-

Verlag New York, Inc. 72

[Black, 1992] Black, M. (1992). Robust incremental optical flow. PhD thesis, PhD thesis, Yale

university. 103

[Black and Anandan, 1991] Black, M. and Anandan, P. (1991). Robust dynamic motion esti-

mation over time. In Computer Vision and Pattern Recognition, 1991. Proceedings CVPR’91.,

IEEE Computer Society Conference on, pages 296–302. IEEE. 103

204

Bibliography

[Black and Rangarajan, 1996] Black, M. and Rangarajan, A. (1996). On the unification of

line processes, outlier rejection, and robust statistics with applications in early vision.

International Journal of Computer Vision, 19(1):57–91. 103

[Black and Anandan, 1993] Black, M. J. and Anandan, P. (1993). A framework for the robust

estimation of optical flow. In Proceedings of the International Conference on Computer Vision

(ICCV). 103

[Black et al., 1998] Black, M. J., Sapiro, G., Marimont, D. H., and Heeger, D. (1998). Robust

anisotropic diffusion. IEEE Trans. Image Processing, 7:421–432. 105

[Botterill et al., 2009] Botterill, T., Mills, S., and Green, R. (2009). New conditional sampling

strategies for speeded-up ransac. In Proceedings of the British Machine Vision Conference

(BMVC). 35

[Bregler and Malik, 1998] Bregler, C. and Malik, J. (1998). Tracking people with twists and

exponential maps. In Proceedings of the IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 8–15, Washington, DC, USA. IEEE Computer

Society. 92, 98

[Brooks, 1981] Brooks, R. (1981). Symbolic reasoning among 3-d models and 2-d images.

Artificial intelligence, 17(1):285–348. 92

[Bruss and Horn, 1983] Bruss, A. R. and Horn, B. K. P. (1983). Passive navigation. Computer

Vision and Image Understanding (CVIU), 21(1):3–20. 93

[Butler et al., 2012] Butler, D. J., Wulff, J., Stanley, G. B., and Black, M. J. (2012). A naturalistic

open source movie for optical flow evaluation. In Proceedings of the European Conference on

Computer Vision (ECCV), pages 611–625. 141, 199

[Calonder et al., 2010] Calonder, M., Lepetit, V., and Fua, P. (2010). Pareto-optimal Dictio-

naries for Signatures. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). 119

[Canelhas, 2012] Canelhas, D. (2012). Scene representation, registration and objectdetection

in a truncated signed distance functionrepresentation of 3d space. Master’s thesis, Örebro

University. 38

[Chli and Davison, 2008] Chli, M. and Davison, A. J. (2008). Active Matching. In Proceedings

of the European Conference on Computer Vision (ECCV). 35, 36, 65, 66, 67, 68

205

Bibliography

[Chli and Davison, 2009a] Chli, M. and Davison, A. J. (2009a). Active Matching for visual

tracking. Robotics and Autonomous Systems, 57(12):1173 – 1187. Special Issue ‘Inside Data

Association’. 66, 82, 84

[Chli and Davison, 2009b] Chli, M. and Davison, A. J. (2009b). Automatically and Efficiently

Inferring the Hierarchical Structure of Visual Maps. In Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA). 71, 72

[Chow and Liu, 1968] Chow, C. K. and Liu, C. N. (1968). Approximating discrete probabil-

ity distributions with dependence trees. IEEE Transactions on Information Theory, 14(3):462–

467. 72

[Chum and Matas, 2002] Chum, O. and Matas, J. (2002). Randomized ransac with td, d test.

In Proceedings of the British Machine Vision Conference (BMVC), volume 2, pages 448–457.

35

[Chum and Matas, 2005] Chum, O. and Matas, J. (2005). Matching with prosac-progressive

sample consensus. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 220–226. 35, 78

[Chum and Matas, 2008] Chum, O. and Matas, J. (2008). Optimal randomized ransac. IEEE

Transactions on Pattern Analysis and Machine Intelligence (PAMI), 30(8):1472–1482. 35

[Civera et al., 2009] Civera, J., Grasa, O. G., Davison, A. J., and Montiel, J. M. M. (2009).

1-Point RANSAC for EKF-Based Structure from Motion. In Proceedings of the IEEE/RSJ

Conference on Intelligent Robots and Systems (IROS). 35, 64

[Coffin et al., 2010a] Coffin, C., Kim, S., and Hollerer, T. (2010a). Evaluation of tracking

robustness in real time panorama acquisition. In Virtual Reality Conference (VR), 2010

IEEE, pages 259–260. IEEE. 117

[Coffin et al., 2010b] Coffin, C., Kim, S., and Hollerer, T. (2010b). A metric for tracking

robustness in real-time panorama acquisition. In International Conference on Artifical Reality

and Teleexistence, ICAT, pages 96–103. IEEE. 117

[Comport et al., 2006] Comport, A., Marchand, E., and Chaumette, F. (2006). Statistically

robust 2D visual servoing. IEEE Transactions on Robotics, 22(2):415–421. 106

[Comport et al., 2007] Comport, A. I., Malis, E., and Rives, P. (2007). Accurate Quadri-focal

Tracking for Robust 3D Visual Odometry. In Proceedings of the IEEE International Conference

on Robotics and Automation (ICRA). 26, 54

206

Bibliography

[Comport et al., 2011] Comport, A. I., Meilland, M., and Rives, P. (2011). An asymmetric

real-time dense visual localisation and mapping system. In Workshop on Live Dense Recon-

struction from Moving Cameras at ICCV. 37

[Cootes et al., 2001] Cootes, T. F., Edwards, G. J., and Taylor, C. J. (2001). Active appearance

models. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 23(6):681–

685. 92

[Cossairt, 2011] Cossairt, O. (2011). Tradeoffs and limits in computational imaging. PhD thesis,

COLUMBIA UNIVERSITY. 132

[Curless and Levoy, 1996] Curless, B. and Levoy, M. (1996). A volumetric method for build-

ing complex models from range images. In Proceedings of SIGGRAPH. 37

[Curless, 1997] Curless, B. L. (1997). New Methods for Surface Reconstruction from Range Im-

ages. PhD thesis, Stanford University. 37

[Dame and Marchand, 2010] Dame, A. and Marchand, E. (2010). Accurate real-time track-

ing using mutual information. In Mixed and Augmented Reality (ISMAR), 2010 9th IEEE

International Symposium on, pages 47–56. IEEE. 96

[Danielsson, 1980] Danielsson, P.-E. (1980). Euclidean distance mapping. Computer Graphics

and image processing, 14(3):227–248. 37

[Davison, 2003] Davison, A. J. (2003). Real-Time Simultaneous Localisation and Mapping

with a Single Camera. In Proceedings of the International Conference on Computer Vision

(ICCV). 31, 36, 89, 90

[Davison, 2005] Davison, A. J. (2005). Active Search for Real-Time Vision. In Proceedings of

the International Conference on Computer Vision (ICCV). 36, 64

[Davison et al., 2007] Davison, A. J., Molton, N. D., Reid, I., and Stasse, O. (2007).

MonoSLAM: Real-Time Single Camera SLAM. IEEE Transactions on Pattern Analysis and

Machine Intelligence (PAMI), 29(6):1052–1067. 66, 81, 82

[Debevec and Malik, 1997] Debevec, P. and Malik, J. (1997). Recovering high dynamic range

radiance maps from photographs. In Proceedings of SIGGRAPH. 56, 58, 133

[Dellaert and Collins, 1999] Dellaert, F. and Collins, R. (1999). Fast image-based tracking by

selective pixel integration. In Proceedings of the ICCV Workshop on Frame-Rate Vision. 96

207

Bibliography

[Dellaert et al., 1998] Dellaert, F., Thorpe, C., and Thrun, S. (1998). Super-resolved texture

tracking of planar surface patches. In Proceedings of the IEEE/RSJ Conference on Intelligent

Robots and Systems (IROS), volume 1, pages 197–203. IEEE. 96

[Devernay and Faugeras, 2001] Devernay, F. and Faugeras, O. (2001). Straight lines have to

be straight. Machine Vision and Applications, 13:14–24. 55

[Drummond and Cipolla, 1999a] Drummond, T. and Cipolla, R. (1999a). Real-time tracking

of complex structures with on-line camera calibration. In Proceedings of the British Machine

Vision Conference (BMVC), volume 2, pages 574–583. Citeseer. 20

[Drummond and Cipolla, 1999b] Drummond, T. and Cipolla, R. (1999b). Visual tracking

and control using Lie algebras. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR). 98

[Drummond et al., 2002] Drummond, T., Society, I. C., and Cipolla, R. (2002). Real-time

visual tracking of complex structures. IEEE Transactions on Pattern Analysis and Machine

Intelligence (PAMI), 24:932–946. 20, 97

[Dunn et al., 2004] Dunn, E., Olague, G., Lutton, E., and Schoenauer, M. (2004). Pareto

optimal sensing strategies for an active vision system. In Evolutionary Computation, 2004.

CEC2004. Congress on, volume 1, pages 457–463. IEEE. 119

[Dutter and Huber, 1981] Dutter, R. and Huber, P. (1981). Numerical methods for the non-

linear robust regression problem. Journal of Statistical Computation and Simulation, 13(2):79–

113. 106

[Eade, 2009] Eade, E. (2009). Gauss-Newton / Levenberg-Marquardt Optimization. Techni-

cal report. 107, 108

[Eliazar and Parr, 2004] Eliazar, A. I. and Parr, R. (2004). Dp-slam 2.0. In Proceedings of the

IEEE International Conference on Robotics and Automation (ICRA), volume 2, pages 1314–

1320. IEEE. 34

[Eustice et al., 2005] Eustice, R. M., Singh, H., and Leonard, J. J. (2005). Exactly Sparse

Delayed State Filters. In Proceedings of the IEEE International Conference on Robotics and

Automation (ICRA). 36

[Everingham et al., 2006] Everingham, M., Muller, H., and Thomas, B. (2006). Evaluating

image segmentation algorithms using the pareto front. Computer Vision—ECCV 2002,

pages 255–259. 119

208

Bibliography

[Fischler and Bolles, 1981] Fischler, M. A. and Bolles, R. C. (1981). Random sample con-

sensus: a paradigm for model fitting with applications to image analysis and automated

cartography. Communications of the ACM, 24(6):381–395. 35

[Fitzgibbon, 2001] Fitzgibbon, A. W. (2001). Robust Registration of 2D and 3D Point Sets.

In Proceedings of the British Machine Vision Conference (BMVC). 38, 103

[Förstner, 1987] Förstner, W. (1987). Reliability analysis of parameter estimation in linear

models with applications to mensuration problems in computer vision. Computer Vision,

Graphics, and Image Processing, 40(3):273–310. 103

[Funke and Pietzsch, 2009] Funke, J. and Pietzsch, T. (2009). A Framework for Evaluating

Visual SLAM. In Proceedings of the British Machine Vision Conference (BMVC). 126

[Fusiello et al., 1999] Fusiello, A., Trucco, E., Tommasini, T., and Roberto, V. (1999). Improv-

ing feature tracking with robust statistics. Pattern Analysis and Applications, 2(4):312–320.

106

[Gallup et al., 2008] Gallup, D., Frahm, J.-M., Mordohai, P., and Pollefeys, M. (2008). Vari-

able baseline/resolution stereo. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR). 202

[Geiger et al., 2012] Geiger, A., Lenz, P., and Urtasun, R. (2012). Are we ready for au-

tonomous driving? the KITTI vision benchmark suite. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages 3354–3361. IEEE. 141, 199

[Gennery, 1992] Gennery, D. B. (1992). Visual tracking of known three-dimensional objects.

International Journal of Computer Vision (IJCV), 7(3):243–270. 20

[Grimson and Lozano-Perez, 1987] Grimson, W. E. L. and Lozano-Perez, T. (1987). Local-

izing overlapping parts by searching the interpretation tree. IEEE Transactions on Pattern

Analysis and Machine Intelligence (PAMI), (4):469–482. 32

[Grossberg and Nayar, 2003] Grossberg, M. D. and Nayar, S. K. (2003). What is the Space of

Camera Response Functions? In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR). 130, 135

[Gruen, 1985] Gruen, A. W. (1985). Adaptive Least Squares Correlation: A Powerful Image

Matching Technique. South African Journal of Photogrammetry, Remote Sensing, and Cartog-

raphy, 14. 103

209

Bibliography

[Gutmann and Konolige, 1999] Gutmann, J.-S. and Konolige, K. (1999). Incremental Map-

ping of Large Cyclic Environments. In International Symposium on Computational Intelli-

gence in Robotics and Automation (CIRA). 33

[Hager and Belhumeur, 1998] Hager, G. D. and Belhumeur, P. N. (1998). Efficient region

tracking with parametric models of geometry and illumination. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 20:1025–1039. 92, 106

[Hahnel et al., 2003] Hahnel, D., Burgard, W., Fox, D., and Thrun, S. (2003). An efficient

fastslam algorithm for generating maps of large-scale cyclic environments from raw laser

range measurements. In Proceedings of the IEEE/RSJ Conference on Intelligent Robots and

Systems (IROS), volume 1, pages 206–211. IEEE. 34

[Hampel et al., 1986] Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., and Stahel, W. A.

(1986). Robust Statistics: The Approach Based on Influence Functions (Wiley Series in Probability

and Statistics). Wiley-Interscience, New York, first edition. 102, 106

[Handa et al., 2010] Handa, A., Chli, M., Strasdat, H., and Davison, A. J. (2010). Scalable

Active Matching. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). 36

[Hanna, 1991] Hanna, K. (1991). Direct multi-resolution estimation of ego-motion and struc-

ture from motion. In Visual Motion, 1991., Proceedings of the IEEE Workshop on, pages

156–162. IEEE. 95

[Harris and Stennet, 1990] Harris, C. and Stennet, C. (1990). RAPiD – A video-rate object

tracker. In British Machine Vision Conference, pages 73–77. 19, 92

[Harris, 1992] Harris, C. G. (1992). Tracking with Rigid Models. In Blake, A. and Yuille, A.,

editors, Active Vision. MIT Press, Cambridge, MA. 19, 92, 97

[Hasinoff, 2012] Hasinoff, S. (2012). Photon, poisson noise. http://people.csail.mit.

edu/hasinoff/pubs/hasinoff-photon-2012-preprint.pdf. 129

[Hasinoff et al., 2010] Hasinoff, S. W., Durand, F., and Freeman, W. T. (2010). Noise-Optimal

Capture for High Dynamic Range Photography. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR). 169

[Hasinoff et al., 2009] Hasinoff, S. W., Kutulakos, K. N., Durand, F., and Freeman, W. T.

(2009). Time-Constrained Photography. In Proceedings of the International Conference on

Computer Vision (ICCV). 169

210

http://people.csail.mit.edu/hasinoff/pubs/hasinoff-photon-2012-preprint.pdf
http://people.csail.mit.edu/hasinoff/pubs/hasinoff-photon-2012-preprint.pdf

Bibliography

[Heeger and Jepson, 1992] Heeger, D. and Jepson, A. (1992). Subspace methods for recover-

ing rigid motion i: Algorithm and implementation. International Journal of Computer Vision

(IJCV), 7(2):95–117. 93

[Heel, 1990] Heel, J. (1990). Direct estimation of structure and motion from multiple frames.

Technical report, DTIC Document. 96

[Higgins and Prazdny, 1980] Higgins, L. H. C. and Prazdny, K. (1980). The interpretation

of a moving retinal image. Proceedings of the Royal Society of London. Series B, Biological

Sciences (1934-1990), 208(1173):385–397. 93

[Hinterstoisser et al., 2007] Hinterstoisser, S., Benhimane, S., and Navab, N. (2007). N3M:

Natural 3D Markers for Real-Time Object Detection and Pose Estimation. In Proceedings

of the International Conference on Computer Vision (ICCV). 77

[Horn et al., 2007] Horn, B., Fang, Y., and Masaki, I. (2007). Time to contact relative to a

planar surface. In Proceedings of the IEEE Intelligent Vehicles Symposium (IV), pages 68–74.

96

[Horn and Schunck, 1981] Horn, B. and Schunck, B. (1981). Determining optical flow. Arti-

ficial Intelligence, 17:185–203. 91

[Horn and Schunck, 1993] Horn, B. K. P. and Schunck, B. G. (1993). Determining optical

flow: A retrospective. Artificial Intelligence, 59:81–87. 93

[Horn and Weldon, 1988] Horn, B. K. P. and Weldon, E. J. (1988). Direct methods for recov-

ering motion. International Journal of Computer Vision, 2(1):51–76. 94

[Huang and Mumford, 1999] Huang, J. and Mumford, D. (1999). Statistics of natural im-

ages and models. In Computer Vision and Pattern Recognition, 1999. IEEE Computer Society

Conference on., volume 1. IEEE. 103

[Huber, 1981] Huber, P. J. (1981). Robust Statistics. Wiley Series in Probability and Statistics.

Wiley-Interscience. 106

[Hwangbo et al.,] Hwangbo, M., Kim, J.-S., and Kanade, T. Gyro-aided feature tracking for

a moving camera: fusion, auto-calibration and gpu implementation. 176

[Irani and Anandan, 1998] Irani, M. and Anandan, P. (1998). A unified approach to mov-

ing object detection in 2d and 3d scenes. Pattern Analysis and Machine Intelligence, IEEE

Transactions on, 20(6):577–589. 96

211

Bibliography

[Irani and Anandan, 1999] Irani, M. and Anandan, P. (1999). All About Direct Methods. In

Proceedings of the International Workshop on Vision Algorithms, in association with ICCV. 88

[Irani et al., 1996] Irani, M., Anandan, P., Bergen, J., Kumar, R., and Hsu, S. (1996). Effi-

cient Representations of Video Sequences and Their Applications. In Proceedings of Signal

Processing: Image Communication (SPIC), pages 327–351. 95

[Irani et al., 1999] Irani, M., Anandan, P., and Cohen, M. (1999). Direct recovery of planar-

parallax from multiple frames. In Proceedings of the International Workshop on Vision Algo-

rithms, in association with ICCV, pages 1528–1534. 95

[Irani et al., 2000] Irani, M., Anandan, P., and Cohen, M. (2000). Direct recovery of planar-

parallax from multiple frames. Vision Algorithms: Theory and Practice, pages 9–75. 95

[Irani et al., 1998] Irani, M., Anandan, P., and Weinshall, D. (1998). From reference frames

to reference planes: Multi-view parallax geometry and applications. Proceedings of the

European Conference on Computer Vision (ECCV), pages 829–845. 95

[Irani et al., 1994] Irani, M., Rousso, B., and Peleg, S. (1994). Recovery of ego-motion using

image stabilization. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 454–460. IEEE. 95

[Isard and Blake, 1996] Isard, M. and Blake, A. (1996). Contour Tracking by Stochastic Prop-

agation of Conditional Density. In Proceedings of the European Conference on Computer Vision

(ECCV). 22

[Ishii et al., 1996] Ishii, I., Nakabo, Y., and Ishikawa, M. (1996). Target tracking algorithm

for 1 ms visual feedback system using massively parallel processing. In Proceedings of

the IEEE International Conference on Robotics and Automation (ICRA), volume 3, pages 2309–

2314. IEEE. 41

[Ishii et al., 2009] Ishii, I., Taniguchi, T., Sukenobe, R., and Yamamoto, K. (2009). Develop-

ment of high-speed and real-time vision platform, h¡ sup¿ 3¡/sup¿ vision. In Intelligent

Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, pages 3671–3678.

IEEE. 42

[Ishii et al., 2010] Ishii, I., Taniguchi, T., Yamamoto, K., and Takaki, T. (2010). 1000-fps real-

time optical flow detection system. In IS&T/SPIE Electronic Imaging. International Society

for Optics and Photonics. 42

212

Bibliography

[Ishikawa et al., 1992] Ishikawa, M., Morita, A., and Takayanagi, N. (1992). High speed

vision system using massively parallel processing. In Proceedings of the IEEE/RSJ Conference

on Intelligent Robots and Systems (IROS), volume 1, pages 373–377. 40, 42

[Jin et al., 2003] Jin, H., Favaro, P., and Soatto, S. (2003). A semi-direct approach to structure

from motion. The Visual Computer, 19(6):377–394. 96

[Jurie and Dhome, 2001] Jurie, F. and Dhome, M. (2001). A simple and efficient template

matching algorithm. In Proceedings of the International Conference on Computer Vision

(ICCV), pages 200–1. 92

[Kagami, 2010] Kagami, S. (2010). High-speed vision systems and projectors for real-time

perception of the world. In Computer Vision and Pattern Recognition Workshops (CVPRW),

2010 IEEE Computer Society Conference on, pages 100–107. IEEE. 39, 42

[Kapaldo, 2005] Kapaldo, A. J. (2005). Gyroscope Calibration and Dead Reckoning for an Au-

tonomous Underwater Vehicle. PhD thesis, Virginia Polytechnic Institute and State Univer-

sity. 176

[Kemp and Drummond, 2004] Kemp, C. and Drummond, T. (2004). Multi-modal tracking

using texture changes. In Proceedings of the British Machine Vision Conference (BMVC).

Citeseer. 20

[Kemp and Drummond, 2005] Kemp, C. and Drummond, T. (2005). Dynamic measurement

clustering to aid real time tracking. In Proceedings of the International Conference on Com-

puter Vision (ICCV), volume 2, pages 1500–1507. IEEE. 20

[Klein and Drummond, 2003] Klein, G. and Drummond, T. (2003). Robust visual tracking

for non-instrumental augmented reality. In Mixed and Augmented Reality, 2003. Proceedings.

The Second IEEE and ACM International Symposium on, pages 113–122. IEEE. 98

[Klein and Murray, 2007] Klein, G. and Murray, D. W. (2007). Parallel Tracking and Map-

ping for Small AR Workspaces. In Proceedings of the International Symposium on Mixed and

Augmented Reality (ISMAR). 55, 56, 81, 82, 89, 90, 98

[Klein and Murray, 2010] Klein, G. and Murray, D. W. (2010). Simulating Low-Cost Cam-

eras for Augmented Reality Compositing. IEEE Transactions on Visualization and Computer

Graphics (VGC), 16(3):369–380. 133

213

Bibliography

[Konolige, 2004] Konolige, K. (2004). Large-scale map-making. In PROCEEDINGS OF THE

NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, pages 457–463. Menlo Park,

CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999. 33

[Kruppa, 1913] Kruppa, E. (1913). Zur Ermittlung eines Objektes aus zwei Perspektiven mit

innerer Orientierung. Hölder. 26

[Kumar et al., 1994] Kumar, R., Anandan, P., and Hanna, K. (1994). Direct recovery of shape

from multiple views: A parallax based approach. In Pattern Recognition, 1994. Vol. 1-

Conference A: Computer Vision & Image Processing., Proceedings of the 12th IAPR International

Conference on, volume 1, pages 685–688. IEEE. 95

[Kumar et al., 1995] Kumar, R., Anandan, P., Irani, M., Bergen, J., and Hanna, K. (1995).

Representation of scenes from collections of images. In Representation of Visual Scenes,

1995.(In Conjuction with ICCV’95), Proceedings IEEE Workshop on, pages 10–17. 95

[Kumar and Hanson, 1989] Kumar, R. and Hanson, A. (1989). Robust estimation of camera

location and orientation from noisy data. Technical report, Amherst, MA, USA. 94

[Lepetit and Fua, 2005] Lepetit, V. and Fua, P. (2005). Monocular-Based 3D Tracking of Rigid

Objects. Now Pub. 19

[Lin and Chang, 2006] Lin, H. and Chang, C. (2006). Photo-consistent motion blur modeling

for realistic image synthesis. Advances in Image and Video Technology, pages 1273–1282. 133

[Liu et al., 2006] Liu, C., Freeman, W. T., Szeliski, R., and Kang, S. B. (2006). Noise Esti-

mation from a Single Image. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR). 130, 131, 133

[Longuet-Higgins, 1981] Longuet-Higgins, H. (1981). A Computer Algorithm for Recon-

structing a Scene from Two Projections. Nature, 293:133–135. 26

[Lovegrove and Davison, 2010] Lovegrove, S. J. and Davison, A. J. (2010). Real-Time Spher-

ical Mosaicing using Whole Image Alignment. In Proceedings of the European Conference on

Computer Vision (ECCV). 90, 98

[Lovegrove et al., 2011] Lovegrove, S. J., Davison, A. J., and Ibanez-Guzmán, J. (2011). Ac-

curate Visual Odometry from a Rear Parking Camera. In Proceedings of the IEEE Intelligent

Vehicles Symposium (IV). 26

214

Bibliography

[Lowe, 1987] Lowe, D. (1987). Three-dimensional object recognition from single two-

dimensional images. Artificial intelligence, 31(3):355–395. 92

[Lowe, 1992] Lowe, D. (1992). Robust model-based motion tracking through the integration

of search and estimation. International Journal of Computer Vision (IJCV), 8(2):113–122. 20

[Lowe, 1991] Lowe, D. G. (1991). Fitting parameterized three-dimensional models to images.

IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 13:441–450. 92, 97

[Lu and Milios, 1997a] Lu, F. and Milios, E. (1997a). Globally Consistent Range Scan Align-

ment for Environment Mapping. Autonomous Robots, 4(4):333–349. 33

[Lu and Milios, 1997b] Lu, F. and Milios, E. (1997b). Robot pose estimation in unknown

environments by matching 2d range scans. Journal of Intelligent and Robotic Systems,

18(32):249–275. 33

[Lucas and Kanade, 1981] Lucas, B. D. and Kanade, T. (1981). An Iterative Image Registra-

tion Technique with an Application to Stereo Vision. In Proceedings of the International Joint

Conference on Artificial Intelligence (IJCAI). 36, 91, 92

[Lucas and Kanade, 1985] Lucas, B. D. and Kanade, T. (1985). Optical Navigation by the

Method of Differences. In Proceedings of the International Joint Conference on Artificial Intel-

ligence (IJCAI), pages 981–984. 94

[Lyu and Farid, 2005] Lyu, S. and Farid, H. (2005). How realistic is photorealistic? Signal

Processing, IEEE Transactions on, 53(2):845–850. 140

[Maimone et al., 2007] Maimone, M., Cheng, Y., and Matthies, L. (2007). Two years of visual

odometry on the mars exploration rovers. Journal of Field Robotics, 24(3):169–186. 28

[Malis, 2004] Malis, E. (2004). Improving vision-based control using efficient second-order

minimization techniques. In Proceedings of the IEEE International Conference on Robotics and

Automation (ICRA). 26

[Martull et al., 2012] Martull, S., Peris, M., and Fukui, K. (2012). Realistic cg stereo image

dataset with ground truth disparity maps. ICPR2012 workshop TrakMark2012. 141

[Matthies et al., 1989] Matthies, L., Kanade, T., and Szeliski, R. (1989). Kalman filter-based

algorithms for estimating depth from image sequences. International Journal of Computer

Vision (IJCV), 3(3):209–238. 96

215

Bibliography

[Mayol et al., 2002] Mayol, W., Tordoff, B., and Murray, D. (2002). Designing a miniature

wearable visual robot. In Proceedings of the IEEE International Conference on Robotics and

Automation (ICRA). 119

[Meilland and Comport, 2012] Meilland, M. and Comport, A. I. (2012). Simultaneous super-

resolution, tracking and mapping. Research Report RR-2012-05, CNRS-I3S/UNS, Sophia-

Antipolis, France. 91, 98

[Meilland et al., 2011] Meilland, M., Comport, A. I., and Rives, P. (2011). Dense visual map-

ping of large scale environments for real-time localisation. In Proceedings of the IEEE/RSJ

Conference on Intelligent Robots and Systems (IROS). 37

[Meyer et al., 1986] Meyer, G., Rushmeier, H., Cohen, M., Greenberg, D., and Torrance, K.

(1986). An experimental evaluation of computer graphics imagery. ACM Transactions on

Graphics (TOG), 5(1):30–50. 137

[Monacos et al., 2001] Monacos, S. P., Portillo, A. A., Liu, W., Alexander, J. W., and Ortiz,

G. G. (2001). A high frame rate ccd camera with region-of-interest capability. In Aerospace

Conference, 2001, IEEE Proceedings., volume 3, pages 3–1513. IEEE. 42

[Moravec, 1980a] Moravec, H. P. (1980a). Obstacle Avoidance and Navigation in the Real

World by a Seeing Robot Rover. Technical Report CMU-RI-TR-3, Carnegie Mellon Uni-

versity, Robotics Institute. 94

[Moravec, 1980b] Moravec, H. P. (1980b). Obstacle Avoidance and Navigation in the Real World

by a Seeing Robot Rover. PhD thesis, Stanford University. 94

[Moschini and Fusiello, 2009] Moschini, D. and Fusiello, A. (2009). Tracking human motion

with multiple cameras using an articulated model. In Proceedings of the 4th International

Conference on Computer Vision/Computer Graphics Collaboration Techniques and Applications

(MIRAGE), volume 5496 of Lecture Notes in Computer Science, pages 1–12, Rocquencourt.

106

[Murray et al., 1994] Murray, R., Li, Z., and Sastry, S. (1994). A mathematical introduction to

robotic manipulation. CRC. 49

[Nakabo et al., 1996] Nakabo, Y., Ishii, I., and Ishikawa, M. (1996). High speed target track-

ing for 1 ms visual feedback system. In Video Proceedings of the IEEE International Conference

on Robotics and Automation (ICRA). IEEE. 42

216

Bibliography

[Nakabo and Ishikawa, 1998] Nakabo, Y. and Ishikawa, M. (1998). Visual impedance using

1 ms visual feedback system. In Proceedings of the IEEE International Conference on Robotics

and Automation (ICRA), volume 3, pages 2333–2338 vol.3. 42

[Namiki et al., 1999] Namiki, A., Nakabo, Y., Ishii, I., and Ishikawa, M. (1999). High speed

grasping using visual and force feedback. In Proceedings of the IEEE International Conference

on Robotics and Automation (ICRA), volume 4, pages 3195–3200. IEEE. 42

[Nebot et al., 2003] Nebot, E., Masson, F., Guivant, J., and Durrant-Whyte, H. (2003). Ro-

bust simultaneous localization and mapping for very large outdoor environments. In

Experimental Robotics VIII, pages 200–209. Springer. 34

[Negahdaripour and Horn, 1985a] Negahdaripour, S. and Horn, B. (1985a). Direct passive

navigation: Analytical solution for planes. In In Proceedings of IEEE Conference on Robotics

and Automation, pages 1157–1163. IEEE Computer Society Press. 94

[Negahdaripour and Horn, 1985b] Negahdaripour, S. and Horn, B. K. P. (1985b). Determin-

ing 3-d motion of planar objects from image brightness patterns. In Proceedings of the 9th

international joint conference on Artificial intelligence - Volume 2, IJCAI’85, pages 898–901,

San Francisco, CA, USA. Morgan Kaufmann Publishers Inc. 94

[Negahdaripour and Horn, 1989] Negahdaripour, S. and Horn, B. K. P. (1989). A direct

method for locating the focus of expansion. Computer Vision, Graphics, and Image Process-

ing, 46(3):303–326. 94

[Negahdaripour and Lee, 1992] Negahdaripour, S. and Lee, S. (1992). Motion recovery from

image sequences using only first order optical flow information. International Journal of

Computer Vision, 9(3):163–184. 93

[Neira and Tardós, 2001] Neira, J. and Tardós, J. D. (2001). Data Association in Stochastic

Mapping using the Joint Compatibility Test. IEEE Transactions on Robotics and Automation,

17(6):890–897. 32, 66

[Newcombe et al., 2011a] Newcombe, R. A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D.,

Davison, A. J., Kohli, P., Shotton, J., Hodges, S., and Fitzgibbon, A. (2011a). KinectFu-

sion: Real-Time Dense Surface Mapping and Tracking. In Proceedings of the International

Symposium on Mixed and Augmented Reality (ISMAR). 28, 38

[Newcombe et al., 2011b] Newcombe, R. A., Lovegrove, S., and Davison, A. J. (2011b).

DTAM: Dense Tracking and Mapping in Real-Time. In Proceedings of the International

Conference on Computer Vision (ICCV). 37, 90, 92, 98, 136, 137

217

Bibliography

[Ng and Chang, 2004] Ng, T. and Chang, S. (2004). Classifying photographic and photore-

alistic computer graphic images using natural image statistics. Technical report, Technical

report, Columbia University (October 2004). 140

[Ni et al., 2009] Ni, K., Jin, H., and Dellaert, F. (2009). GroupSAC: Efficient Consensus in

the Presence of Groupings. In Proceedings of the International Conference on Computer Vision

(ICCV). 78

[Nieto et al., 2006] Nieto, J., Bailey, T., and Nebot, E. (2006). Scan-slam: Combining ekf-slam

and scan correlation. In Field and service robotics, pages 167–178. Springer. 33

[Nieto et al., 2007] Nieto, J., Bailey, T., and Nebot, E. (2007). Recursive scan-matching slam.

Robotics and Autonomous Systems, 55(1):39–49. 33

[Nir et al., 2008] Nir, T., Bruckstein, A. M., and Kimmel, R. (2008). Over-parameterized

variational optical flow. International Journal of Computer Vision (IJCV), 76(2):205–216. 92

[Nistér, 2003] Nistér, D. (2003). Preemptive RANSAC for Live Structure and Motion Esti-

mation. In Proceedings of the International Conference on Computer Vision (ICCV). 35

[Nistér, 2004] Nistér, D. (2004). An Efficient Solution to the Five-Point Relative Pose Prob-

lem. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 26(6):756–777.

26

[Nistér et al., 2004] Nistér, D., Naroditsky, O., and Bergen, J. (2004). Visual Odometry. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 25,

29, 31

[Panin and Knoll, 2008] Panin, G. and Knoll, A. (2008). Mutual information-based 3d object

tracking. International Journal of Computer Vision (IJCV), 78(1):107–118. 96

[Park et al., 2009] Park, Y., Lepetit, V., and Woo, W. (2009). ESM-Blur: Handling & rendering

blur in 3D tracking and augmentation. In Proceedings of the International Symposium on

Mixed and Augmented Reality (ISMAR). 90

[Park et al., 2012] Park, Y., Lepetit, V., and Woo, W. (2012). Handling motion-blur in 3d

tracking and rendering for augmented reality. Visualization and Computer Graphics, IEEE

Transactions on, 18(9):1449–1459. 90

[Peris et al., 2012] Peris, M., Martull, S., Maki, A., Ohkawa, Y., and Fukui, K. (2012). To-

wards a simulation driven stereo vision system. In Pattern Recognition (ICPR), 2012 21st

International Conference on, pages 1038–1042. IEEE. 141, 199

218

Bibliography

[Posch, 2011] Posch, C. (2011). Next generation bio-inspired vision. ERCIM News, pages

24–24. 202

[Posch et al., 2011] Posch, C., Matolin, D., and Wohlgenannt, R. (2011). A qvga 143 db

dynamic range frame-free pwm image sensor with lossless pixel-level video compression

and time-domain cds. Solid-State Circuits, IEEE Journal of. 202

[Press et al., 1992] Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T. (1992).

Numerical Recipes in C: The Art of Scientific Computing, Second Edition. Cambridge Univer-

sity Press, 2 edition. 107

[Prisacariu and Reid, 2012] Prisacariu, V. A. and Reid, I. D. (2012). PWP3D: Real-time seg-

mentation and tracking of 3d objects. International Journal of Computer Vision (IJCV),

98(3):335–354. 22

[Quam, 1984] Quam, L. (1984). Hierarchical warp stereo. In Image Understanding Workshop,

pages 149–155. 109

[Rademacher et al., 2001] Rademacher, P., Lengyel, J., Cutrell, E., and Whitted, T. (2001).

Measuring the perception of visual realism in images. In In Rendering Techniques 2001,

pages 235–248. 140

[Raguram et al., 2009] Raguram, R., Frahm, J.-M., and Pollefeys, M. (2009). Exploiting Un-

certainty in Random Sample Consensus. In Proceedings of the International Conference on

Computer Vision (ICCV). 64

[Reid, 1979] Reid, D. (1979). An algorithm for tracking multiple targets. Automatic Control,

IEEE Transactions on, 24(6):843–854. 34

[Reinhard et al., 2001] Reinhard, E., Shirley, P., and Troscianko, T. (2001). Natural image

statistics for computer graphics. Univ. Utah Tech Report UUCS-01-002 (Mar. 2001). 140

[Ren and Reid, 2012] Ren, C. Y. and Reid, I. (2012). A unified energy minimization frame-

work for model fitting in depth. In ECCV Workshops (2), pages 72–82. 38

[Rosten and Drummond, 2006] Rosten, E. and Drummond, T. (2006). Machine learning for

high-speed corner detection. In Proceedings of the European Conference on Computer Vision

(ECCV). 81

[Rousseeuw and Leroy, 1987] Rousseeuw, P. J. and Leroy, A. M. (1987). Robust regression and

outlier detection. John Wiley & Sons, Inc., New York, NY, USA. 106

219

Bibliography

[Rumpler et al., 2011] Rumpler, M., Irschara, A., and Bischof, H. (2011). Multi-view stereo:

Redundancy benefits for 3d reconstruction. In Proceedings of the 35th Workshop of the Aus-

trian Association for Pattern Recognition, AAPR/OAGM. 202

[Rushmeier et al., 1995] Rushmeier, H., Ward, G., Piatko, C., Sanders, P., and Rust, B. (1995).

Comparing real and synthetic images: Some ideas about metrics. In Sixth Eurographics

Workshop on Rendering, pages 82–91. Citeseer. 137

[Rusinkiewicz and Levoy, 2001] Rusinkiewicz, S. and Levoy, M. (2001). Efficient Variants of

the ICP Algorithm. In Proceedings of the IEEE International Workshop on 3D Digital Imaging

and Modeling (3DIM). 29

[Sawhney, 1994] Sawhney, H. (1994). 3d geometry from planar parallax. In Computer Vision

and Pattern Recognition, 1994. Proceedings CVPR’94., 1994 IEEE Computer Society Conference

on, pages 929–934. IEEE. 95

[Sawhney et al., 1995] Sawhney, H., Ayer, S., and Gorkani, M. (1995). Model-based 2d&3d

dominant motion estimation for mosaicing and video representation. In Proceedings of the

International Conference on Computer Vision (ICCV), pages 583–590. 96, 105

[Scaramuzza and Fraundorfer, 2011] Scaramuzza, D. and Fraundorfer, F. (2011). Visual

odometry [tutorial]. Robotics & Automation Magazine, IEEE, 18(4):80–92. 25

[Scaramuzza et al., 2009] Scaramuzza, D., Fraundorfer, F., and Siegwart, R. (2009). Real-

time monocular visual odometry for on-road vehicles with 1-point ransac. In Proceedings

of the IEEE International Conference on Robotics and Automation (ICRA), pages 4293–4299.

IEEE. 35

[Scharstein and Szeliski, 2001] Scharstein, D. and Szeliski, R. (2001). A Taxonomy and Eval-

uation of Dense Two-Frame Stereo Correspondence Algorithms. International Journal of

Computer Vision (IJCV), 47:7–42. 140

[Senoo et al., 2006] Senoo, T., Namiki, A., and Ishikawa, M. (2006). Ball control in high-

speed batting motion using hybrid trajectory generator. In Proceedings of the IEEE Interna-

tional Conference on Robotics and Automation (ICRA), pages 1762–1767. IEEE. 42

[Senoo et al., 2008] Senoo, T., Namiki, A., and Ishikawa, M. (2008). High-speed throwing

motion based on kinetic chain approach. In Proceedings of the IEEE/RSJ Conference on

Intelligent Robots and Systems (IROS), pages 3206–3211. IEEE. 42

220

Bibliography

[Shahrokni et al., 2004] Shahrokni, A., Drummond, T., and Fua, P. (2004). Texture boundary

detection for real-time tracking. In Proceedings of the European Conference on Computer

Vision (ECCV), pages 566–577. Springer. 20

[Shi and Tomasi, 1994] Shi, J. and Tomasi, C. (1994). Good Features to Track. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 92

[Shiokata et al., 2005] Shiokata, D., Namiki, A., and Ishikawa, M. (2005). Robot dribbling

using a high-speed multifingered hand and a high-speed vision system. In Proceedings of

the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS), pages 2097–2102. IEEE. 42

[Shum and Szeliski, 1997] Shum, H. and Szeliski, R. (1997). Panoramic image mosaics. Mi-

crosoft Research, MSR-TR-97, 23. 96, 107

[Shum and Szeliski, 1998] Shum, H.-Y. and Szeliski, R. (1998). Construction and Refinement

of Panoramic Mosaics with Global and Local Alignment. In Proceedings of the International

Conference on Computer Vision (ICCV). 96

[Steinbrucker et al., 2011] Steinbrucker, F., Sturm, J., and Cremers, D. (2011). Real-Time

Visual Odometry from Dense RGB-D Images. In Workshop on Live Dense Reconstruction

from Moving Cameras at ICCV. 30

[Stewart, 1999] Stewart, C. V. (1999). Robust Parameter Estimation in Computer Vision.

SIAM Reviews, 41:513–537. 103

[Sturm et al., 2012] Sturm, J., Engelhard, N., Endres, F., Burgard, W., and Cremers, D. (2012).

A benchmark for RGB-D SLAM evaluation. In Proceedings of the IEEE/RSJ Conference on

Intelligent Robots and Systems (IROS). 141

[Szeliski and Coughlan, 1997] Szeliski, R. and Coughlan, J. (1997). Spline-based image reg-

istration. International Journal of Computer Vision (IJCV), 22(3):199–218. 108

[Szeliski and Kang, 1995] Szeliski, R. and Kang, S. (1995). Direct methods for visual scene

reconstruction. In Representation of Visual Scenes, 1995.(In Conjuction with ICCV’95), Pro-

ceedings IEEE Workshop on, pages 26–33. IEEE. 96

[Szeliski and Shum, 1997] Szeliski, R. and Shum, H. Y. (1997). Creating full view panoramic

image mosaics and environment maps. In Proceedings of SIGGRAPH. 96

[Taalebinezhaad, 1992a] Taalebinezhaad, M. A. (1992a). Direct recovery of motion and

shape in the general case by fixation. IEEE Trans. Pattern Anal. Mach. Intell, 14:847–853. 94

221

Bibliography

[Taalebinezhaad, 1992b] Taalebinezhaad, M. A. (1992b). Towards autonomous motion vi-

sion. Laboratory, Massachusetts Institute of Technology. 94

[Taylor and Kriegman, 1994] Taylor, C. and Kriegman, D. (1994). Minimization on the lie

group so(3) and related manifolds. Yale University. 98

[Toldo and Fusiello, 2009] Toldo, R. and Fusiello, A. (2009). Automatic estimation of the

inlier threshold in robust multiple structures fitting. In Proceedings of the 15th Interna-

tional Conference on Image Analysis and Processing (ICIAP), volume 5716 of Lecture Notes in

Computer Science, pages 123–131, Vietri sul Mare, Italy. Springer. 106

[Tomasi and Shi, 1993] Tomasi, C. and Shi, J. (1993). Direction of heading from image de-

formations. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pages 422–427. IEEE. 94

[Tommasini et al., 1998] Tommasini, T., Fusiello, A., Trucco, E., and Roberto, V. (1998). Mak-

ing good features track better. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 178–183, Santa Barbara, CA. IEEE Computer Society

Press. 106

[Tordoff and Murray, 2005] Tordoff, B. J. and Murray, D. W. (2005). Guided-MLESAC: Faster

image transform estimation by using matching priors. IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence (PAMI), 27(10):1523–1535. 35, 64

[Torr and Zisserman, 2000] Torr, P. H. S. and Zisserman, A. (2000). MLESAC: a new ro-

bust estimator with application to estimating image geometry. Computer Vision and Image

Understanding (CVIU), 78(1):138–156. 35

[Triggs et al., 1999] Triggs, B., McLauchlan, P., Hartley, R., and Fitzgibbon, A. (1999). Bundle

Adjustment — A Modern Synthesis. In Proceedings of the International Workshop on Vision

Algorithms, in association with ICCV. 30

[Triggs et al., 2000] Triggs, B., Zisserman, A., Szeliski, R., Sawhney, H. S., Peleg, S., Irani,

M., Torr, P., Knight, J., Anandan, P., and Malik, J. (2000). Discussion for Direct versus

Features Session. In Vision Algorithms: Theory and Practice. 88

[Tykkala et al., 2011] Tykkala, T., Audras, C., and Comport, A. I. (2011). Direct Iterative

Closest Point for real-time visual odometry. In ICCV Workshops. 28, 30

222

Bibliography

[Valgaerts et al., 2012] Valgaerts, L., Bruhn, A., Mainberger, M., and Weickert, J. (2012).

Dense versus sparse approaches for estimating the fundamental matrix. International

Journal of Computer Vision (IJCV), 96(2):212–234. 27

[Vedaldi et al., 2005] Vedaldi, A., Jin, H., Favaro, P., and Soatto, S. (2005). KALMANSAC:

Robust filtering by consensus. In Proceedings of the International Conference on Computer

Vision (ICCV). 64

[Whelan et al., 2013] Whelan, T., Johannsson, H., Kaess, M., Leonard, J. J., and McDonald,

J. (2013). Robust real-time visual odometry for dense rgb-d mapping. 30

[Yamakawa et al., 2011] Yamakawa, Y., Namiki, A., and Ishikawa, M. (2011). Motion plan-

ning for dynamic folding of a cloth with two high-speed robot hands and two high-speed

sliders. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA),

pages 5486–5491. IEEE. 42

[Yu et al., 1999] Yu, Y., Debevec, P., Malik, J., and Hawkins, T. (1999). Inverse global illumi-

nation: Recovering reflectance models of real scenes from photographs. In International

Conference on Computer Graphics and Interactive Techniques: Proceedings of the 26th annual

conference on Computer graphics and interactive techniques, volume 1999, pages 215–224. 139

[Zach et al., 2007] Zach, C., Pock, T., and Bischof, H. (2007). A duality based approach for

realtime TV-L1 optical flow. In Proceedings of the DAGM Symposium on Pattern Recognition.

65

[Zhang, 1997] Zhang, Z. (1997). Parameter Estimation Techniques: A Tutorial with Appli-

cation to Conic Fitting. Image and Vision Computing (IVC), 15:59–76. 105

223

Bibliography

224

	Introduction
	Representations and Domain Knowledge of the Task
	The Challenge of Robust Data Association
	Pure Model-Based Tracking
	Tracking by Frame-to-Frame Alignment
	Joint Tracking and Model Building à la SLAM
	Motivation For High Speed Tracking: The Role of High Frame-Rate
	Contributions
	Thesis Structure

	Mathematical Preliminaries
	Rigid Transformations
	Lie Group Framework
	Camera Calibration
	POVRay Mathematics

	Tracking Sparse Features
	Introduction
	The Active Matching Paradigm
	Feature Matching Priors
	CLAM: Chow Liu Active Matching
	SubAM: Subset Active Matching
	Assumptions
	Results
	Conclusions

	Dense Visual Tracking
	Introduction
	Background
	Camera Motion Parametrisation
	Direct Parametric Tracking
	Robust Cost Functions: M-Estimators
	Minimisation Schemes
	Coarse to Fine Pyramid Hierarchy
	Instructive Example

	Evaluation of Tracking and Synthetic Test-Bed
	What Questions would we Like to Answer?
	Need for Synthetic Test-Bed
	Choosing a Tracking Algorithm
	How do We Evaluate a Tracker?
	Multi-Objective Cost Functions: Pareto Fronts
	Synthetic Image Generation via Ray Tracing
	Adding Photo-Realistic Image Effects to Synthetic Images
	Gathering Synthetic Data for Different Frame-Rates
	Do We Think these Images are Realistic?
	Novelties of Our Dataset

	Tracking Analysis: Synthetic Experiments
	An Experimental Evaluation of Dense 3D Tracking
	How do We Interpret the Graphs?
	Assumptions
	Characterisation of Experiments
	Tracking Analysis and Results
	Quantifying Performance Limits of Camera Tracking
	Conclusions

	Tracking Analysis: Real Experiments
	Assumptions
	Angular Velocity Computation
	Gyro Characteristics
	Aligning Gyro and Camera Angular Velocity Estimate
	Experiments
	Robustness
	Summary

	Conclusions and Future Directions
	What do We Learn from this Thesis?
	Future Directions

	Bibliography

