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Abstract. Minimally Invasive Surgery (MIS) has recognized benefits of 

reduced patient trauma and recovery time. In practice, MIS procedures present 

a number of challenges due to the loss of 3D vision and the narrow field-of-

view provided by the camera. The restricted vision can make navigation and 

localization within the human body a challenging task. This paper presents a 

robust technique for building a repeatable long term 3D map of the scene whilst 

recovering the camera movement based on Simultaneous Localization and 

Mapping (SLAM). A sequential vision only approach is adopted which 

provides 6 DOF camera movement that exploits the available textured surfaces 

and reduces reliance on strong planar structures required for range finders. The 

method has been validated with a simulated data set using real MIS textures, as 

well as in vivo MIS video sequences. The results indicate the strength of the 

proposed algorithm under the complex reflectance properties of the scene, and 

the potential for real-time application for integrating with the existing MIS 

hardware.  

1   Introduction 

In surgery, the increasing use of MIS is motivated by the benefit of improved 

therapeutic outcome combined with reduced patient trauma and hospitalization. The 

technique is increasingly being used to perform procedures that are otherwise 

prohibited by the confines of the operating environment. MIS also offers a unique 

opportunity for deploying sophisticated surgical tools that can greatly enhance the 

manual dexterities of the operating surgeon. Despite the benefit of MIS in terms of 

patient recovery and surgical outcome, the practical deployment of the technique is 

complicated by the complexity of instrument control and difficult hand-eye 

coordination. Due to the large magnification factors required for performing MIS 

tasks, the field-of-view of the laparoscope cameras is usually very limited. This 

results in restricted vision which can affect the visual-spatial orientation of the 

surgeon and the awareness of the peripheral sites. 



In order to facilitate the global orientation of the target site, a number of spatial 

localization techniques have been developed. These include the use of pre-operative 

imaging combined with 2D/3D registration such that the underlying structure and 

morphology of the soft-tissue can be provided. To cater for tissue deformation, 

structure from light [1] or motion sensors such as mechanically or optically based 

accelerometers [2, 3] are used. With the increasing availabilities of stereo-laparoscope 

cameras, detailed 3D motion and structure recovery techniques based on stereo vision 

have also be proposed recently [4, 5].  The major advantage of the optical methods is 

that they do not require additional modifications to the existing MIS hardware, and 

thus are easily generalizable to different clinical settings.  One of the limitations of the 

above techniques is that they only consider information captured in the current field-

of-view. Global information that is implicitly captured by the moving laparoscope 

camera is typically discarded.  An exception to this is [6], where a map is built 

containing global information.  The camera estimation is based on structure from 

motion, which is susceptible to drift. 

The purpose of this study is to investigate the use of SLAM for simultaneous 

stereoscope localization and soft tissue mapping. In essence, the SLAM problem is 

concerned with the estimation of moving sensor while building a reconstruction of 

what it observes. The advantage of the method is that it builds a long-term map of the 

features with minimal drift, allowing localization of the sensor after long periods of 

feature neglect [7, 8].  This is particularly useful for laparoscope with restricted vision 

in that a global map of the operating field-of-view can be integrated with moving 

stereo vision. In this study, a sequential vision only approach is adopted which 

provides 6 DOF camera movement that exploits the available textured surfaces and 

reduced reliance on strong planar structures required for range finders. More 

importantly, it provides the potential for real-time application for integrating with the 

existing MIS hardware. 

2   Methods 

2.1   Building a statistical map 

For stereoscope localization and soft tissue mapping, our aim is to recover the 
trajectory of the stereoscope and build a map of the environment.  In a Kalman filter 
framework, the overall state of the system x  is represented as a vector.  This vector is 
partitioned into the state 

v̂x  of the camera and the states 
îy of the features which 

make up the map. Crucially, the state vector is accompanied by a single covariance 
matrix which can also be partitioned as follows:  
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The role of the covariance matrix is to represent the uncertainty to first order in all the 

quantities in the state vector. Feature estimates îy  can be freely added to or deleted 

from the map as required  causing x  and P  to grow or shrink dynamically. In this 

framework, x  andP are updated in two steps: 1) the prediction step uses a motion 

model to calculate how the camera moves during surgery and how its position 

uncertainty increases; 2) the measurement step describes how the map and camera 

position uncertainties can be reduced when new input from the stereoscope is 

processed.  Maintaining a full feature covariance matrixP allows the camera to re-

visit and recognize known areas after periods of neglect (this has been irrefutably 

proven in SLAM research).  
With the proposed approach, camera calibration is required to estimate 3D positions 

from stereo images and feature locations in the image plane from 3D positions.  

Calibration is done assuming a pinhole camera model and using a closed form 

solution [9]. The centre of the camera rig is taken to be the left camera and the 

extrinsic parameters describe the translation and rotation of the right camera relative 

to the left camera. In MIS, the stereoscopic laparoscope is pre-calibrated before the 

surgical procedure and remains unchanged.   

 

 

Fig. 1. Stereo-laparoscope camera geometry and an example image from a MIS scene. The 

figure illustrates the geometry between a global coordinate system, the local camera 

coordinates and a selected point from the map. 

 

For the stereo-laparoscope camera, three coordinate frames illustrated in Fig. 1 are 

defined; W , fixed in the world, L , fixed with respect to the left camera and R , fixed 

with respect to the right camera.  
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We refer to vx as the state of the camera rig.  The state is made up of four parts; Wr a 
the position of the camera in the world coordinate system, WL

q  the rotation of the 
camera in the world coordinate system,  wv  is the linear velocity and w

ω the angular 
velocity. 

iy  refers to a feature consisting a 3D vector in XYZ Euclidean space. 

2.2 Motion Model 

In the case of a stereoscope moving during a MIS procedure, the motion model must 
take into account the unknown intentions of the operator.  This unknown element can 
be modeled statistically by using a two part motion model. The first part is a 
deterministic element known as a “constant velocity, constant angular velocity 
model”. This, however, does not mean that we assume that the camera moves at a 
constant velocity over all time. It only imposes that on average we expect its velocity 
and angular velocity to remain the same. The second part is stochastic and models the 
uncertainty in the surgeon's movement of the stereoscope. The uncertainty in the 
system is the acceleration modeled with a Gaussian profile. The implication of this 
model is that smoothness is implicitly imposed on the camera motion, very large 
accelerations are therefore relatively unlikely.  

The rate of growth of uncertainty in this motion model is determined by the size of 
parameter

nP , and setting this to small or large values defines the smoothness of the 
motion we expect. With small

nP , we expect a very smooth motion with small 
accelerations, and would be well placed to track motions of this type but unable to 
cope with sudden rapid movements or changes in direction. High 

nP   means that the 
uncertainty in the system increases significantly at each time step, and while this 
gives the ability to cope with rapid accelerations the very large uncertainty means that 
a lot of good measurements must be made at each time step to constrain the estimates. 

 

 

 
Fig. 2. (a) Visualization of the model for ‘smooth’ motion: at each camera position a most 

likely path is predicted together with alternatives with small deviations. (b) A MIS scene where 

25×25 pixel box represent feature patches detected using the Shi and Thomasi operator [10] 

and ellipses represent the estimated search regions for the landmarks. 

(a) (b) 



2.3 Visual Feature 

The in vivo anatomical structure is generally curved, thus making feature extraction 
more challenging than in man made environments.  In [5], MSER features and weak 
gradient features were combined to create a dense 3D map of the heart.  Features are 
tracked from frame to frame using a Lucas-Kanade tracker to recover the motion of 
the heart.  These transient features work well for frame to frame tracking. However, in 
order to build a sustainable map, we require long term landmarks which are 
repeatable. A long term repeatable feature is one that is strongly salient and uniquely 
identifiable. Previous work by Davison [6] has demonstrated long term features 
within a structured environment with a good degree of view point independence. This 
approach is used in this study to detect features using the saliency operator of Shi and 
Tomasi [9]. The feature is represented by a 25×25 pixel patch, and a normalized sum-
of-squared difference correlation is used to match the feature in subsequent images.  
Specularities are removed through thresholding. 

In the proposed framework, we aim to keep the number of visible features at a 
predetermined threshold to reduce reliance on weak features.  A feature is “visible” if 
it is predicted to be in the current image. Features are added to the map if the number 
visible is less than this threshold.  New features are detected in the left image and 
matched using normalized sum-of-squared difference in the right stereo image.  
Initialization is managed to prevent the same feature being tracked twice. Epipolar 
geometry is used to estimate the 3D position of the feature and all features are 
initialized with uniform uncertainty represented as a 3D Gaussian. 

2.5 Measurement Model 

Another important element of the proposed localization model is the measurement. 
The measurement model is the process for comparing the predicted SLAM map with 
the input from the stereoscope.  The estimates 

px  of camera position and iy  of 
feature position in 3D, allowing the position of the features to be predicted in the 
image plane.  The position of a 3D feature relative to the camera is expected to be: 

( )L LW W W

L i Lh R y r= −  (3) 

where LWR  is the rotation matrix transforming between the left camera frame L and 
world frame W .  This is used to calculate ( , )L Lu v  the predicted positions of the 
features in the left stereo image.  The actual positions of the features in the images are 
obtained by actively searching the area around the predicted position. The search area 
is derived from the uncertainty of the feature’s predicted position which is a 2D 
Gaussian p.d.f. over the image coordinates. Gating at three standard deviations 
provides an elliptic search window around the feature’s predicted position.   

3 Experimental Design 

To validate the proposed method, a simulation with a virtual stereo camera moving 

through a texture mapped 3D world was rendered. The simulator as shown in Fig. 3 

provides the ground truth data of known camera movement within a known 



environment.  This allows the accuracy of the camera localization and mapping to be 

evaluated. 

The camera motion was controlled so that the resultant inter-frame pixel motion did 

not exceed 20 pixels, which was consistent with observations from in vivo data. The 

virtual stereo camera rig was set up to replicate a stereo-laparoscope by taking similar 

camera intrinsic and extrinsic properties, notably the baseline was set to only 5mm.  

The environment contains a plane, which has been textured with an image taken from 

a robotic assisted totally endoscopic coronary artery bypass graft surgery to provide 

realistic image rendition. The use of a single planar model is not restrictive or 

degenerate as the proposed methods can be applied to more complex models.   
 

     
 (a)          (b) 

Fig. 3. An illustration of the simulation environment used to generate a stereo-laparoscopic 

video with known ground truth data for camera motion. A 3D rendition of the virtual world is 

shown in (a) and an example stereo pair taken from the virtual cameras is shown in (b). 

 

In addition to synthetic simulations, the proposed technique has also been applied to 

real MIS videos. Since the ground truth data for the in vivo data is not available, 

qualitative analysis by forward tracking the motion and then reversing the video 

sequence is used to assess the internal consistency of the algorithm.  

4   Results 

In Fig. 4, the results of using the proposed technique to estimate the movement of the 

stereo-laparoscope over 176 frames of simulated video are provided. The stereo-

laparoscope was moved by 1.5cm, 2cm and 0cm along the X, Y and Z axis 

respectively.  Since no prior knowledge of the environment is taken, the initial 

estimations of feature positions have a large uncertainty.  The uncertainty reduces as 

the stereoscope moves but creates a lag in the estimated movement.  This is evident in 

the movement along the X axis.  Small movement of around 1mm in the Z axis is a 

result of the narrow baseline of the stereoscope. 

A potential problem with using a constant velocity motion models is the issue of 

dealing with sudden changes in direction.  However, the results show the algorithm is 

robust to changes in direction.  It can be shown that 87.7% of the recovered 

movement lies within three standard deviations of the ground truth, this represents a 

confidence interval of 99%.   
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              (a)            (b)                                             (c) 
Fig. 4. Simulation based analysis of camera motion estimation. The graphs shown in (a-c) 

illustrate the recovered stereoscope movement in the X, Y and Z axes, respectively against  the 

ground truth. The green line shows the estimated motion with the blue bars indicating the 

uncertainty associated with the estimate. The red line displays the ground truth motion. 

 
For in vivo analysis, Fig. 5 shows example images from the left and right channels of 

the stereoscope, whereas Fig. 6 illustrates the recovered trajectory paths of the camera 

along the X, Y and Z axes in the world coordinate system. The original video footage 

is 79 frames and the reversed video is 79 frames long. It is evident from the graphs 

that the camera tracking closes the loop by returning the device close to its starting 

position.  Finally, the SLAM map acquired from the in vivo sequence is shown in Fig. 

7, along with an example image with selected features with their corresponding 

uncertainties.  The appearance of features alters as the stereoscope and light source 

move.  Feature matching is made more robust by using active search with the use of 

normalized sum-of-squared difference correlation to reduce data association errors. 

  

 

 
 
Fig. 5. Left (top) and right (bottom) stereo images taken from an in vivo stereo-laparoscope 

sequence that involves a change of camera viewing position and orientation.  

 

 
Fig. 6. In vivo analysis of the proposed techniques where the graphs show the recovered 

stereoscope movement along the X, Y and Z axes. Green lines represent the recovered motion in 

the forward sequence whereas the blue lines illustrate the recovered motion in the reverse 

direction.  



5   Discussion and Conclusions 

In this paper, we have developed a technique to estimate the movement of the stereo-

laparoscope during MIS and build a map of the anatomical structure. The method has 

been validated with a simulated data set using real MIS textures, as well as in vivo 

MIS video sequences. The results indicate the strength of the proposed algorithm 

under the complex reflectance properties of the scene. Accuracy can be further 

improved by incorporating information from the remaining stereo image into the 

measurement model, and directly cater for tissue deformation in the SLAM paradigm.  
 

 
 

Fig. 7. Typical features selected in the left stereo image plane and the corresponding landmarks 

projected onto 3D coordinate system by using information built into the SLAM map. 
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