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Abstract— Humanoid robotics and SLAM (Simultaneous Lo-
calisation and Mapping) are certainly two of the most significant
themes of the current worldwide robotics research effort, but the
two fields have up until now largely run independent parallel
paths, despite the obvious benefit to be gained in joining the
two. The next major step forward in humanoid robotics will be
increased autonomy, and the ability of a robot to create its own
world map on the fly will be a significant enabling technology.
Meanwhile, SLAM techniques have found most success with
robot platforms and sensor configurations which are outside of
the humanoid domain. Humanoid robots move with high linear
and angular accelerations in full 3D, and normally only vision
is available as an outward-looking sensor. Building on recently
published work on monocular SLAM using vision, and on pattern
generation, we show that real-time SLAM for a humanoid can
indeed be achieved. Using HRP-2, we present results in which a
sparse 3D map of visual landmarks is acquired on the fly using
a single camera and demonstrated loop closing and drift-free 3D
motion estimation within a typical cluttered indoor environment.
This is achieved by tightly coupling the pattern generator, the
robot odometry and inertial sensing to aid visual mapping within
a standard EKF framework. To our knowledge this is the first
implementation of real-time 3D SLAM for a humanoid robot
able to demonstrate loop closing.

I. INTRODUCTION

The long term target of our humanoid research is to improve
the capabilities of humanoid robot in order to perform a larger
set of tasks in normal environments. To date, this has been
achieved by mixing autonomous behaviors and human tele-
operation, such demonstrated during the EXPO 2005 AICHI
JAPAN universal exposition [1]. In this demonstration, the
robot was able to precisely detect and grasp a can, throw
it in the garbage, take a bag, and put it on a table. The
can, the garbage and the table are detected using a model
based approach and thus the robot knows its own location
only in the object reference frame. In order to increase the
capabilities of the robot, in this paper we describe a SLAM
algorithm for self-localization which has the capability to
permit global motion estimation and environment interaction
autonomously. This is an application of SLAM which differs
somewhat from standard SLAM systems for exploring robots.
For teleoperation, autonomous local reactivity is a crucial

issue, as well as robustness for dealing with changing human
environment. Most importantly in this context, SLAM is a
subcomponent of a whole system, and the self-localization
and map building is not the main target but a necessary
functionality. Therefore a self-localization process for such
kind of task should be 3D, real-time, robust and with low CPU
cost. For those reasons, this work focus on a local environ-
ment. Regarding exploration of large space, and environment
mapping the timing constraints are less severe and we think
that the large body of work already existing would be pertinent
[2].
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Fig. 1. Drift between generated and simulated waist trajectories

Considering real-time SLAM on humanoid robot they are
few other works mainly performed by Thompson and Kagami
[3] and Ozawa [4] on H-7 and HRP-2. Their approach is
mainly based on 3D visual odometry, and uses dense feature
maps to get the position of the camera. A well-known draw-
back of this incremental approach is the drift created by the
accumulation of error. In order to maintain a homogeneous
evaluation of the 3D position of a robot, it is mandatory to
keep up-to-date information of the correlations between the



current state of the camera and the landmarks. Simultaneously
building a dense representation of the world and an accurate
positioning of the camera seems to be quite difficult to achieve
in real-time. Thus in our approach we focus on positioning,
and use a sparse representation of the world to obtain an
accurate real-time result.

It is worth mention the work of Seara et al. [5] who used
the EKF framework beyond self-localization for gaze control
of a walking humanoid. This is one of the few pieces of work
attempted on coupling walking and vision while performing
SLAM. However the main results were done in simulation and
in the 2D case.

In this paper, we make use of the monocular SLAM method
of Davison [6], but take advantage of the fact that much more
is known in advance about the motion of the humanoid than
the free camera considered in that work. Specifically we use
the planning information from the robot’s pattern generator
for walking motions, and channel this into the SLAM EKF
as observations of the robot’s motion. In order to extract as
much information as possible to update the Kalman filter,
we re-implemented the accurate walking pattern generator
described in [7]. We present its implementation, the associated
measurement models and its use both in simulation and into
a real HRP-2 humanoid robot. It is also shown that the
particularity of humanoid pattern-generator creates a parallax
effect useful for SLAM. We do not need to use a set of prior-
known features as in Davison’s approach, because the pattern
generator’s input gives enough information for completely
automatic initialization.

The remainder of this paper is organized as follows. First
we review the pattern generator with preview control principles
used in this paper. The cause of the drift between the pattern
generator and its realization are highlighted. In second we
recall the principles of the monocular SLAM used, and detail
the used initialization procedure and the measurement model.
In third the integration of the information given by the pattern
generator, the vision and other sensors is explained. We finally
present some experiments.

II. PATTERN GENERATOR WITH PREVIEW CONTROL

We briefly recall the result presented by Kajita in [7]. Most
importantly, the equations based on the cart-table model used
to generate the ZMP and waist trajectories according to a set
of relative steps are given. The resulting ZMP is fed to the
stabilizer provided with the robot. Those equations are used
to design a measurement model in the SLAM section. Indeed
we assume here a walking pattern where the camera is not
moving with respect to the waist.

A. The cart-table model

In this approach, the goal is to generate a trajectory of the
robot’s waist based on a given Zero Momentum Point (ZMP)
trajectory. More specially a constraint control is applied to
an inverted pendulum such that the mass should move along
an arbitrary predefined plane. The subsequent model is called

the Three-Dimensional Linear Inverted Pendulum Model (3D-
LIPM). Given the position and the acceleration of the Center of
Mass (CoM) of the inverse pendulum it is possible to compute
its ZMP.

The problem of pattern generation is then for a given set of
ZMP position to find the CoM trajectory. It is then an inverse
problem. From [7], the system can be written in its discretize
form as:

x(k + 1) = Ax(k) + Bu(k),
p(k) = Cx(k),

(1)

where
x(k) ≡ [x(k) ẋ(k) ẍ(kT )]T ,

u(k) ≡ ux(kT ),
p(k) ≡ px(kT ),

A ≡



1 T T 2/2
0 1 T
0 0 1


 ,

B ≡



T 3/6
T 2/2

T


 ,

C ≡ [1 0 − zc/g]

(2)

where x(k) is the CoM position for the x-axis, u(k) is the
command on the acceleration of the CoM along the x-axis, zc

the height of the CoM, p(k) the ZMP position, T the sampling
period, and g is the gravity constant. As the optimal solution
depend upon the future reference, Kajita proposed to apply a
preview control on this dynamical system. Using the following
performance index:

J =
∞∑

i=k

{Qee(i)2 + ∆xT Qx∆x(i) + R∆u2(i)} (3)

where e(i) = p(i) − pref (i), the optimal controller which
minimizes eq.(3) is given by:

u(k) = −G1

k∑
i=0

e(i)−G2x(k)−
NL∑
j=1

Gp(j)pref (k + j) (4)

where G1,G2, and Gp(j) are the gains computed from the
weights Qe,Qx, R and the system parameters of eq.(2), and
NL is the discrete size of the preview control window. Because
they are some discrepancies between the robot’s CoM and the
one provided by the cart-table model, Kajita proposed to use a
second stage of preview control based on the ZMP computed
from the robot’s multi-body model.

The waist attitude from the motion model viewpoint is
moving only for the yaw. The waist orientation start from
the last support foot’s orientation to the next support foot’s
orientation. Its evolution follows a 3-rd order polynomial.

From this brief introduction, it is possible to see that several
information are at hand: position, speed, acceleration of the
waist, waist attitude, and those for the present time and during
the preview control window. From the control viewpoint, the
possible source of errors are two-folds: the quality of the ZMP
preview control, and the quality of the stabilizer in charge of



realizing a desired ZMP. Creating a new motion model from
eq.(2) was considered. However the Jacobian computation
induced by the command given by eq.(4) will induce to take
into account all the preview control window which is made
of 320 parameters. In order to keep the computation low, we
discarded this option.

B. Drift between planned trajectories and real ones

The previously described pattern generator has been imple-
mented and tested on the humanoid robot HRP-2 in simulation
using the OpenHRP simulator [8] and in real experiments.
It was used in conjunction with the commercial stabilizer
shipped with the robot. In simulation the result shown that
the robot walk without perturbation in the forward direction.
However while turning, a momentum effect around the z-
axis creates a perturbation which makes the feet slip in the
external direction of the turn. The result is depicted in Fig
1. To compensate for this effect an arm motion heuristic was
implemented. It creates a momentum along the z-axis which
compensates for the one created by the lower limbs turning
motion. It should be stressed that the hard-coded contact
parameters for the simulation are conservative and insure that
if the algorithm works on simulation it will work in reality.
However they are over-pessimistic regarding the true behavior
of the robot.

From the simulation, it is clear that the robot drift mostly
while turning. In this case, small circles would be the most
likely to trigger discrepancies. Another particular case is the
sideway walking. Because the robot’s feet are rectangular, in
the sideway direction the ZMP has less room to evolve, and
is more likely to reach unstable position. For this reason, two
circular motions were designed as canonically representative
of those problems but also likely to be used for applications. In
the first one the robot walks tangently along a circle, while in
the second the robot walks perpendicularly to the circle. The
first experiment is intended for a searching behavior, whereas
the second is aimed to object reconstruction.

In the first case, we preprogrammed the motion for a 0.75
m radius quadrant. The experiment was run 10 times and the
results are a 4 mm average deviation in X (1.6 for the standard
deviation), and 23 mm average deviation in Y (3.4 for the
standard deviation). There was almost no drift regarding the
orientation. The single support phase was 0.78 s while the
double support phase was 0.02 s. The maximal height for the
foot trajectory was set to 0.07 m. The step length was set to
0.15 m. Those are standard parameter values for the HRP-2
robot’s walking.

In the second case, we also preprogrammed the motion to
perform a 0.75 m radius circle. At first, the same walking
parameters were used, and we experienced strong sliding on
the landing foot. The resulting drift was 240 mm in X and
600 mm in Y with a 20 degrees of drift for the orientation.
In a second time, the single support time was set to 0.75, and
the double support time to 0.05. The maximal height of the
foot trajectory was lowered to 0.04 m. The resulting drift was
therefore 160 mm for X, 40 mm for Y and 15 degrees for

the orientation. The step length was set to 0.1 m in order to
decrease the dynamical effects.

III. SLAM USING VISION

Since the early work of Davison and Murray [9] which
produced the first real-time SLAM system with vision as the
primary sensor, there have recently been a growing number
of successful demonstrations of the use of vision in SLAM
in various very different scenarios — and especially in robot
systems not accessible to other sensing modalities.

Systems of particular note include that of Jung and
Lacroix [10], which applied a stereo vision SLAM approach to
achieve wide range localization and mapping for ground-based
and airship robots. Kim and Sukkarieh [11] used monocular
vision in combination with inertial sensing to map ground-
based targets from a dynamically manoeuvring UAV. Bosse
et al. [12] used omni-directional vision in combination with
other sensors in their ATLAS mapping framework, making
particular use of lines in a man-made environment as consis-
tent bearing references. Most recently Eustice et al. [13] have
used a single downward-looking camera and inertial sensing
to localize an underwater remote vehicle and produce detailed
seabed reconstructions.

Although not a SLAM system capable of long-term map-
ping a loop closure, the real-time visual odometry system of
Nistér et al. [14] deserves mention as it demonstrates the state
of the art in the use of frame-to-frame visual matching for
highly accurate motion estimation.

The second author Davison [6] demonstrated that real-
time 3D SLAM in an indoor environment can be performed
with a single camera and no additional sensing at all if
sensible assumptions are made about motion dynamics and
an active approach to feature measurement is implemented. In
the following section we summarizes the key points of this
approach.

A. Single Camera SLAM

In Davison [6], the second author demonstrated SLAM at
30Hz for a hand-waved camera, building on-line a sparse map
of features to serve as localization landmarks. In this approach,
a full-covariance Extended Kalman Filter (EKF) approach is
used, storing the estimated state and covariance of the system
at any instant as follows:

x̂ =




x̂v

ŷ1

ŷ2

...


 , P =




Pxx Pxy1 Pxy2 . . .
Py1x Py1y1 Py1y2 . . .
Py2x Py2y1 Py2y2 . . .

...
...

...


 . (5)

Explicitly, the camera’s state vector xv comprises a metric
3D position vector rW , orientation quaternion qWR, velocity
vector vW and angular velocity vector ωR (a total of 13
parameters). Feature states yi are 3D position vectors.

For the widest possible range of application, Davison as-
sumes that odometry was not available, and in the EKF pre-
diction step a model for smooth motion anticipates Gaussian-
distributed perturbations VW and ΩR to the camera’s linear



Fig. 2. Visualization of the “constant velocity” model for smooth motion
from [6].

and angular velocity at each time-step — modelling motion
with a generally smooth character. The explicit process model
for motion in a time-step ∆t is:

fv =




rW
new

qWR
new

vW
new

ωR
new


 =




rW + (vW + VW )∆t
qWR × q((ωR + ΩR)∆t)
vW + VW

ωR + ΩR


 (6)

Fig. 2 illustrates how this models potential deviations from a
constant velocity trajectory. Implementation requires calcula-
tion of the Jacobians of this process function with respect to
both xv and the perturbation vector (not presented here).

The features used in the map are natural points of high
image interest detected using the operator of [15] and saved as
square image template patches. Fig. 3 shows the type of image
regions typically detected, corresponding mainly to corners or
well-localized small objects. When a feature is first initialized,
measurement from a single camera position provides good
information on its direction relative to the camera, but its
depth is initially unknown beyond potentially very weak prior
information on the typical depths of objects in the scene. A
semi-infinite 3D line is therefore initialized into the SLAM
map, with end-point at the camera optical centre and direction
derived from the image measurement: the 3D location of
the feature lies somewhere along this line. The parameters
describing the line have Gaussian-distributed uncertainties and
corresponding entries in the SLAM covariance matrix, but to
represent the non-Gaussian uncertainty in depth a discrete par-
ticle probability distribution is initialized along this coordinate
with an initial flat profile representing complete uncertainty.
As the camera moves and subsequent images are acquired,
each particle hypothesis for depth is repeatedly tested and their
probabilities evolve. Fig. 3(b) illustrates image search in a set
of overlapping ellipses corresponding to the particles, and (c)
the progression of the depth PDF from flat to a final peak at
which point it can be replaced with a Gaussian and the feature
fully initialized as a 3D point in the SLAM map. This process
can take from 2–10 frames depending on the camera motion
and uncertainty.

Fig. 3(d) illustrates active search for fully-initialized fea-
tures during normal operation. The uncertainty in the relative
position of the camera and features is projected into the current
image and used to deduce elliptical search regions correspond-
ing to 3 standard deviation confidence intervals within which
the features are known to lie with high probability. Expensive
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Fig. 3. Feature detection, initialization and matching from [6]: (a) 11 × 11
pixel patches detected a features; (b) searching a set of hypotheses for feature
depth which project as image search ellipses; (c) probability distribution over
depth refined to a peak over several time-steps; (d) elliptical search regions
for mapped features during normal operation.

normalized correlation search for matches can be restricted
to these regions and this gives the algorithm the efficiency
necessary for real-time implementation.

The 3D positions and image descriptions of a small number
of features are required to bootstrap the SLAM system,
principally to provide information on the overall metric scale
of the map and camera motion. All other features are detected
automatically and the initialization target can soon move out
of the field of view or even be removed. Heuristic map-
management criteria are used to decide when to initialize new
features: essentially, the requirement is to keep a pre-defined
number of features visible from all camera locations. A typical
number used is 10; whenever fewer than 10 features are visible
new ones are detected and initialized. Importantly, features are
not deleted from the map when they leave the field of view, but
remain in the map and can be re-observed when the camera
moves back and they become visible again. In some cases it
is necessary to delete features which are not being reliably
matched on a regular basis: some features detected will be
frequently occluded or may contain parts of objects at very
different depths. These features will lead to failed correlation
attempts and can be removed from the map automatically.

IV. HRP-2: VISION AND PROPRIOCEPTIVE SENSING

We will now discuss the specific issues in implementing
a single camera SLAM approach on the HRP-2 humanoid
platform to estimate the motion of a head-mounted camera
while mapping scene features.

A. Internal measurements integration

Incorporating a robot’s measurements of itself (whether
from odometry or inertial sensors) into the SLAM EKF is
achieved via a generalized ‘internal measurement’ capability



1. Early exploration and first turn

2. Mapping back wall and greater uncertainty

3. Just before loop close; maximum uncertainty

4. End of circle with closed loop and drift corrected

Fig. 4. Experiment 1: (Vision and gyro) frames from a circular trajectory of
radius around 0.75m. The uncertainty in the map can be seen growing until
the loop is closed and drift corrected. See the text for more explanations.

in our SLAM codebase. An internal measurement is one
which relates only to properties of the camera/robot system
itself, and not external features (as it is the case with a
visual measurement in SLAM). An internal measurement hv

(generally a vector of multiple parameters) is modelled by
defining function hv(xv) of the state vector xv of the camera.
For instance, an odometry measurement of the height of the
camera above the ground would give a function where hv

depends only on the position part rW part of the state vector,
whereas a measurement of velocity is a function of the camera
velocity vW . The Jacobians ∂hv

∂xv
of the internal measurements

Fig. 5. HRP-2 walking in a circle in Experiment 1. The robot is walking
autonomously and the support cradle is only for safety purposes.

must also be calculated, and measurement uncertainty matrices
Rv assigned, then a standard Kalman update can be used to
update the state vector when a measurement is achieved.

During live operation, encoders report the live positions of
these axes at 200Hz along with inertial sensors and their actual
values are integrated on-board to recover the position of any
specific part of the robot’s body through the motion.

The outputs of the robot’s motion controller are position
and velocity sequences integrated over time. Some of these
integrated positions are suitable for use in SLAM as they are
drift-free quantities with a constant level of uncertainty, such
as the height of the head above the ground plane which is
constrained by a complete link through the robot’s body. The
integrated odometry estimate of the robot’s forward position
after several walking steps, however, would not be useful since
this is a quantity in which the uncertainty depends on the
detailed previous motion of the robot. Instead we are able
to use velocity reports from odometry, since these represent
instantaneous estimates.

B. Pattern generator

For those experiments the detailed movements of HRP-2 are
generated by the pattern generator which receives a stack of
foot position. Due to the preview control, here set to 1.6 s, two
foot position must be given in advance. The pattern generator
then compute every 5 ms the instantaneous desired position,
speed and acceleration of the CoM. From this it generates the
angle value for all of its 30 degrees of freedom. Based on eq. 2
we extracted from the pattern generator the information on the
position, orientation, as well as linear and angular velocities.
They are used as a measurement of those all four informations
inside the EKF. The standard deviation of the position was
set to 2 cm, while the standard deviation for the orientation
was set to 0.005 radians. For the same reason than above,
and because the pattern generator is only relative to a current
pattern of steps, the position and velocity are only local to the
motion.

Specifically in the experiments of this paper we chose to use
the height of the camera above the ground (zc in eq. 1, though



with other walking patterns or different movements this will
not be the case), and the speed of the camera. The standard
deviation of the height measurement was assessed to be 3cm,
and that of the velocity to be 5cm/s.
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Fig. 6. Difference of trajectories between the planned trajectory and the one
reconstructed by SLAM, in the case of walking along a circle. Starting from
the origin, the robot first move forward to reach the position (1, 0.5). It then
walks around a circle.

C. Gyro

HRP-2 is equipped with a 3-axis gyro in the chest which
reports measurements of the body’s angular velocity at 200Hz.
As with the body odometry, we sampled this at the 30Hz for
use within the SLAM filter. We assessed the standard deviation
of each element of the angular velocity measurement to be 0.01
rad/s. Since our single camera SLAM state vector contains the
robot’s angular velocity expressed in the frame of reference of
the robot, we can incorporate these measurements in the EKF
directly using our internal measurement capability.

HRP-2 is also fitted with a 3-axis accelerometer in the chest
but we have not yet successfully incorporated this sensor into
the SLAM system because the output is very sensitive to
having an accurate orientation estimate. Note that a different
method from the internal measurement capability must be used
with accelerometer measurements, since acceleration terms do
not appear in our state vector — the method of choice here
is to fold the acceleration readings into the camera motion
model.

D. Vision

As standard, HRP-2 is fitted with a high-performance
forward-looking trinocular camera rig, providing the capability
to make accurate 3D measurements in a focused observation
area close in front of the robot, suitable for grasping or
interaction tasks. In previous work on SLAM using vision,
it has been shown that by contrast a wide field of view is
advantageous for localization and mapping. For this and other
related work, it was therefore decided to equip HRP-2 with an
additional wide-angle camera (field of view around 90◦) and
use output from only this camera for SLAM. The wide angle

camera was calibrated with a one parameter radial distortion
model as in [16].

Also we consider the use of the trinoptic system in our lo-
calization scenario, several disadvantages came against relying
only on it. Because the three cameras have narrow field of view
the effective 3D perception space is also narrow. It involves
a saccade for almost each features, and the result has a quite
strong uncertainty. The interested reader can refer to previous
work of the authors for more detailed explanation on how
uncertainty has been evaluated [17]. In the case of walking,
the advantages of stereo is compensate by the walking motion
which induces a parallax effect. The larger field of view
of our camera makes also the set of measurements more
reliable. Finally as our targeted application is to use our SLAM
technique in conjunction with other behaviors, such as object
modelling, it might not be possible to perform such saccade.
Seara [5] proposed a decision making strategy to choose
between several gaze behaviors. Although it is interesting for
higher autonomous behavior, this is not always pertinent with
the current level of our teleoperation system. The whole vision
rig of the robot is on an IEEE1394 bus connecting digitally
to the vision processor, and image capture is at 30Hz.
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Fig. 7. Difference of trajectories between the planned trajectory and the one
reconstructed by SLAM, in the case of walking orthogonal to a circle.

E. Implementational issues

HRP-2 contains two main internal Pentium M 1.8 GHz
processors running the Linux operating system, one dedicated
to motion control and one available for additional processing
such as vision. Our vision processing was implemented to run
at frame-rate on this second processor, triggered by capture
from the camera in the robot’s head. The two processors were
synchronized via the NTP protocol over the robot’s internal
network so that time-stamped odometry and inertial data could
be passed to the vision processor.

The vision processor communicated via CORBA and a
wireless Ethernet link to a workstation acting as a graphical
display and user interface terminal. Here a human was able
to monitor the vision system’s process in real-time. When



only based on vision the single camera SLAM currently
requires a small set of features with pre-measured positions
to be specified to bootstrap tracking. In our experiments, a set
of well-chosen salient features (a mixture of natural features
and some hand-placed targets) mostly on the wall in front
of the robot’s starting position were chosen by hand. It is
relatively important that these features are well-spread in the
image at the start of motion since they effectively seed the rest
of the map, which will be extrapolated from the initial robot
motion estimates they provide. However it is shown that those
initial features are not used when integrating the information
provided by the pattern generator.

A technical change was to make the image measurement
uncertainty for features scale linearly with distance from the
image centre. This reflects our belief that the one parameter
radial distortion model fits less well in the image periphery.

V. EXPERIMENTS

We performed two types of motion for evaluation of the
SLAM tracking performance. All the loop-closing experiment,
the image processing, pattern generation and sensor processing
are performed entirely on-line and autonomously inside the
robot.

A. Experiment 1: Walking along a circle

1) Vision and gyro only: In order to solve the scale prob-
lem, and only on the case of this specific experiment the
robot is set in a given position facing known landmarks. This
experiment performed was a real SLAM test, in which the
robot was programmed to walk in a circle of radius 0.75m.
For safety and monitoring reasons, the motion was broken into
five parts with short stationary pauses between them: first a
forward diagonal motion to the right without rotation, in which
the robot put itself in position to start the circle, and then four
90◦ arcing turns to the left where the robot followed a circular
path, always walking tangentially. The walking was at HRP-
2’s standard speed, and total walking time was around 20–30
seconds.

Fig. 4 shows the results of this experiment. On the left,
the elected landmarks are depicted, the ones surrounded by
a red square are tracked and selected landmarks for the EKF
update. The yellow landmarks are detected but not selected.
On the right, the trajectory of the camera is depicted together
with the landmarks position. Their uncertainty is represented
by 3D ellipsoid. Classic SLAM behavior is observed, with
a steady growth in the uncertainty of newly-mapped features
until an early feature can be re-observed, the loop closed and
drift corrected. A large number of features are seen to swing
into better estimated positions simultaneously thanks to the
correlations stored in the covariance matrix.

Also the loop-closing is definitely realized, the quality of the
trajectory itself is not sufficient for the targeted application. In
the next section, the same experiment integrating the pattern
generator is described.
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2) Vision, pattern generator and sensors integration: Hav-
ing good odometry and inertial readings means that new
features can be initialized quickly. As the information of the
pattern generator is quite well realized by the robot in the
following set of experiments realized, the initialization phase
usually necessary for the vision-only SLAM has been com-
pletely ignored. The robot chose by itself the initial landmarks
inside the environment. This experiment has been performed
10 times, and in each case loop closure with an average of
10 landmarks have been realized. The reconstructed trajectory
is depicted in Fig. 6. This motion is most difficult for vision
as the system is almost continuously turning and therefore the
views change drastically. Therefore the discrepancy between
the planned trajectory and the reconstructed one is becoming
larger. However, we clearly see that during the loop-closing the
two are finally converging. In comparison during the forward
motion the reconstructed trajectory and the planned one match
well almost all the time. The final point and the initial point
of the circle have the same order of error compared to the real
measurements. Moreover, we experimented several ill-chosen
visual features discarded because of invalid match between the
prediction and the measurement. If this motion shows how the
pattern generator might help vision, it is not pertinent to show
how the vision might compensate for the pattern generator
drift. The second experiment in this regard is more interesting.

B. Experiment 2: Walking perpendicularly to a circle

As shown previously, this motion is realized differently
than what was planned by the pattern generator. There is a
strong drift in position and orientation between the desired
final position, and the one achieved. This motion is however
very helpful for vision, as it is mainly translational with few
rotation. In this case, we also experimented loop-closing with
an initialization not relying on the accurate positioning of
initial landmarks. Only 3 landmarks during our experiments
were able to close the loop. The reconstructed trajectory is
depicted in Fig. 7. In this experiment the robot is starting
at the origin and draws a circle facing the center at position



(0.75, 0), and going counterclockwise. Clearly the trajectory is
modified by the vision measurement during the second half of
the circle, However the final drift of the pattern generator is not
well represented in the final reconstructed trajectory along the
Y-axis (140 mm of difference) and the orientation, although it
is almost correct along the X-axis (30 mm of difference).

VI. DISCUSSION

During the experiments, we experienced often ill-chosen
landmarks such as highly-repetitive light-ceiling corners. Dur-
ing the first trial the experiments were conducted using an
open space of size 11m × 25m × 3m, to which must be
added an open office of size 7m × 25m × 3m. In this case
most of the landmarks were chosen at 10 to 12 meters with
big uncertainties, and did not allow the algorithm to give
meaningful results given the size of the motion. Therefore
the space was limited to the one similar to an office 7m ×
11m × 3m as depicted if Fig.(5). Another parameter to take
into account is the CPU bandwidth limitation. In the space
indicated the covariance matrix computation cost stays in the
real-time boundaries : 30 ms with some variations around 40
ms. In this context, the use of all the information allowed to
discard the ill-chosen features, and get rid of the landmark
initialization. Indeed the pattern generator allow to check if
the scale at which the features are perceived is correct. Using
only vision SLAM induced too much uncertainties and we
could not close loop with the motion of experiment 1.

The evaluation of the height was also checked, and its range
of variation is in a 4 cm interval. Also some discontinuities
clearly appear, we did not find any immediate link with the
foot impact, as shown in Fig. 8. However for the first experi-
ment, the forward motion appears to involve less perturbation
than for circling motion.

VII. CONCLUSIONS

We have shown that monocular visual 3D SLAM can be
achieved almost from the start in real-time and autonomously
for small scale environment. The key-point is to integrate the
information provided by the pattern generator inside the EKF
framework to help the vision process. This integration allows
also to get rid of the knowledge of initial landmarks to start
the SLAM process. Real experiments with visual loop-closing
were achieved. The range of motion used for the experiments
was the one used and intended for applications. We will extend
this work to longer and more complex behavior to test the
capabilities of the system. In the near future we would like
to test the performance of the system with more ambitious
motions — HRP-2 is capable of lying down on its back from
a standing position for instance.

Once reliable visual localization performance in a wide
range of scenarios is confirmed, and robust real-time operation
is fully achieved, the next step would of course be to close
the loop on motion estimation and control — SLAM would
enable the robot to move purposively around its environment,

revisit places or interest or remember the locations of task-
related items. We hope that this will provide a platform for
continuing research in increased robot autonomy.
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