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Abstract

We present a technique whereby a single camera can be used as a high precision
visual odometry sensor in a range of practical settings using simple, computationally
efficient techniques. Taking advantage of the local planarity of common floor surfaces,
we use real-time dense alignment of a 30Hz video stream as the camera looks down
from a fast-moving robot, making use of the whole texture available rather than sparse
feature points. Our key novelty, and crucial to the practicality of this approach, is rapid
and automatic calibration for 6DoF camera extrinsics relative to the robot frame. Our
experiments show robust performance over a range of low-textured real surfaces.

1 Introduction
Computer vision is now widely considered a suitable technology for mobile robot naviga-
tion, but few practical mass-market solutions rely solely on cameras for outward-looking
sensing. In this paper we focus on Visual Odometry (VO), or incremental camera-based mo-
tion estimation. The slip-induced errors of wheel odometry are well known, and are acute in
the case of light-weight, low-cost robots moving on unpredictable surfaces such as carpet.
VO eliminates these problems, but most VO are heavyweight, complicated systems which
reconstruct and track the world in full 3D in the form of a point cloud. Here, we instead take
direct advantage of the domain knowledge that wheeled mobile robots move on globally or
locally planar surfaces. We point a standard single camera down at the floor, and estimate
motion by tracking the natural floor texture using whole image dense alignment. By us-
ing every image pixel rather than sparse features to contribute to a global motion estimate,
we find that almost every surface has trackable texture when observed from close enough,
and we are able to show robust and accurate real-time performance on a range of normal
poorly-textured surfaces such as carpet, vinyl and wood.

An important aspect to ensure the practicality of a VO system is calibration; in order to
achieve unbiased motion estimation it is crucial that the position of the camera relative to
the robot is known accurately. We therefore present an accurate, rapid and fully automatic
auto-calibration procedure for the extrinsics of a downward-looking camera relative to the
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robot frame. We first auto-calibrate for the out-of-plane camera angles which are uniquely
consistent with planar motion. We then show that if a simple external source of relative
positioning information is available (such as wheel odometry in good conditions), we can
estimate the full metric 6DoF extrinsic camera pose in the robot frame of reference.

Our real-time vision implementation is implemented almost entirely in parallel and cur-
rently relies on a laptop PC GPU but looking ahead to the low-cost and low-power parallel
processors that will be available in embedded platforms in the near future.

2 Related Work

2.1 Visual odometry

Motion estimation using cameras has a long history, but the term ‘visual odometry’ was to
our knowledge coined by Nistér et al. [15], clarifying the important class of problems where
accurate but purely incremental motion estimation can usefully be provided by a camera sys-
tem. Since that time there have been several notable VO systems for general 6DoF motion;
the most successful relying on stereo vision (e.g. the incremental parts of [7, 14]).

VO becomes easier if domain assumptions can be brought strongly into play, and other
authors have considered the case of planar robot motion over a ground surface. As in our
work, Campbell et al. [2] demonstrated how a single camera can track floor texture, but they
used optical flow computation and with a partial forward-looking view to estimate orienta-
tion. In their system, which used feature correspondences, Kitt et al. [6] argued convincingly
for taking advantage of the prior knowledge that their camera was viewing a planar floor.

However, none of these authors went all the way in making the best possible use of the
planar scene assumption. Used properly it allows all the pixels in a video sequence to con-
tribute to motion estimation via iterative dense alignment. Lovegrove et al. [10] showed the
power of this approach in the specific application of on-road vehicle motion estimation from
a rear parking camera by observing the planar road surface. We adopt the core approach of
that work, but now bring it to the domain of a small indoor robot which drives and rotates
rapidly over a variety of real-world surfaces with different texture characteristics. Impor-
tantly, unlike the manual extrinsic calibration used by Lovegrove et al. [10] and the other
authors mentioned above we show that a planar VO system can be rapidly auto-calibrated
from a short sequence without the need for any special markers or targets. We demonstrate
experimentally that unbiased and robust VO is obtained from our system over the full range
of dynamics of our experimental robot’s motion, and in particular highlight the ability of our
VO to measure precise local motion at sub-millimetre resolution.

2.2 Extrinsic Auto-Calibration of Sensors

Our method for auto-calibration of the robot-camera configuration merits comparison with
other recent work on auto-calibrating the extrinsics of outward-looking sensors on mobile
robots. Most often this is achieved either with reference to a carefully-engineered ground
truth positioning system or against a full SLAM system in what is sometimes called SCLAM,
Simultaneous Calibration, Localisation and Mapping [3, 9]. Such methods are impressive
but heavyweight (with the normal complications associated with SLAM) compared to our
method, which has more in common with the recent work by Brookshire and Teller [1] who
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Tvc

Figure 1: Left: Robot and camera set-up; the camera view frustum intersects the ground
plane. Right: Keyframes registered into a local mosaic as part of the auto-calibration process.

demonstrated that external incremental pose measurements are sufficient to recover sensor
calibration provided that degenerate trajectories are avoided.

3 Dense VO from a Downward-Looking Camera
Visual odometry in our method uses a whole image alignment approach evolved from the
iterative technique introduced by Lucas and Kanade [11] to estimate the incremental planar
motion of a robot, which is consistent with the image motion observed by a single camera at
the front of the robot. Fig. 1 shows the essential geometry of our method.

3.1 Camera and Robot Geometry
Let Tvlvr be the transformation describing the relative motion of the robot between time-steps
when its camera captures two images: a live image I l and an overlapping earlier reference
image Ir. We assume that the camera is bolted to the robot in an arbitrary but fixed location,
described by transformation Tvc. Since Tvc is constant, the relative motion of the camera
between the two images in its own frame of reference, Tlr, is related to the motion of the
robot Tvlvr and can be parameterised by planar motion of the robot x ∈ se(2) as follows:

Tlr(x) = TcvTvlvr(x)Tvc . (1)

In this case, the vector x is equivalent to the vector (x,y,θ)>.

3.2 Homography Based Visual Odometry
Our two images (live I l and reference Ir) of the same ground plane are related by a plane-
induced homography Hlr. This homography transforms pixel coordinates in the reference
image into the pixels in the live image and depends on the camera motion Tlr = (Rlr | tlr)
and the parameters (n>,d) of the plane in the camera r frame of reference [5, p. 327]:

Hlr = KTlr(I | −ndc)
>K−1 . (2)

Here ndc =
n
d , where n is the unit vector normal to the plane, and d is the perpendicular

distance from the plane to the centre of the camera. K is the camera intrisic calibration
matrix. Using Eq. 1 we can parameterise the homography in terms of the robot’s motion
Tvlvr :

Hlr(x) = KTcvTvlvr(x)Tvc(I|−ndc)
>K−1 . (3)
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Figure 2: Typical dense tracking cost function. The function depends on the three degrees of
freedom of planar robot motion, but only a translational slice is shown here.

The goal of VO is to find a robot motion x that best registers I l and Ir using homography
Hlr. Let us first assume that the parameters of the plane (n>,d), camera pose Tvc and camera
intrinsics K are known and only the robot motion needs to be estimated. Determining camera
intrinsics is a straightforward, one-off procedure for a certain sensor and is out of the scope
of this work. A method for auto-calibrating (n>,d), and Tvc will be presented in Section 4.

3.3 Dense Tracking via Iterative Optimisation
In order to find the motion of the robot x, and thus the homography Hlr we transform all
pixels in the live image via the current motion estimate into the reference image, and define
an energy function F which measures the discrepancy across the whole image in the form of
the sum of squared differences between all pairs of superposed pixels:

F(x) =
1
2 ∑

p
( fp(x))2 =

1
2
‖I l(π(Hlr(x)p))−Ir(π(p))‖2

2 . (4)

Here p are homogeneous image coordinates and π is a function that performs homogeneous
projection, whereas the function fp(x) measures per pixel difference. An example plot of the
cost function with respect to the translational degrees of freedom of the robot can be seen
in Fig. 2. In order to minimise F(x) we perform an iterative optimisation based on Efficient
Second-order Minimisation (ESM) [12, 13], initialising the value of x to the value found on
the previous VO timestep. This approach requires us to evaluate the partial derivatives of the
cost function at 0 and at the solution x = x0. This can be computed by applying the following
update rule:

T̂vlvr ← T̂vlvrT(x̂) , (5)

where T̂vlvr is the current estimate of the solution, and T(x̂) is a small update to the estimate
parameterised by x̂ ∈ se(2), and using the gradients of the live and reference images to
calculate per pixel partial derivatives, as shown in [10]:

∂ fp(x)
∂xi

=
∂I l(a)

∂a

∣∣∣∣
a=π(Hlr(x)p)

∂π(b)
∂b

∣∣∣∣
b=Hlr(x)p

∂Hlr(x)
∂xi

p (6)

∂Hlr(x)
∂xi

= KTcvT̂vlvr ∂T(x)
∂xi

Tvc(I|−ndc)
>K−1 , (7)

where ∂T(x)
∂xi

∣∣∣
x=0

= G
SE(2)
i is the ith generator of the SE(2) group.
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4 Auto-Calibration
In Section 3 we assumed that the pose of the camera with respect to the robot frame of
reference and the normal of the plane were known. We will show now how these parameters
can be automatically calibrated using a short image sequence from the moving robot without
the need for targets or markers. This procedure has two main steps. First, based purely on
the image sequence and the knowledge that the sequence is obtained from planar motion, we
can determine the normal of the ground plane relative to the camera, which is equivalent to
recovering its elevation and roll angles. Second, we use relative motion estimates from an
external source to calibrate for the remaining parameters, which describe the position of the
camera relative to the robot: its yaw angle and metric 3DoF translational position.

4.1 Plane normal
When tracking the relative (up-to-scale) incremental ego-motion of the camera, the position
of the camera on the robot is irrelevant, and only the orientation of the camera with respect
to the ground and the normal of the plane is required. In order to be able to use the ESM
described in Section 3.3, we need to find a parametrisation that allows us to calculate per
pixel partial derivatives with respect to the robot motion (Eq. 7) and the parameters of the
plane. Unlike Silveira et al. [16] we do not use inverse depth to estimate the normal of the
plane, but instead exploit the fact that in our set-up the plane unit normal vector n is defined
by the camera orientation Rcv,

n = Rcv (0,0,1)> . (8)

and as the camera moves in the plane its elevation and roll angles do not change.
Since in Eq. 1, Tcv = (Rcv | tcv), where Rcv ∈ SO(3), tcv = (0,0,1)>, the homography

(Eq. 3) will depend on two sets of parameters: the planar motion from frame to frame x, and
the orientation of the camera with respect to the plane y = (y1,y2,y3)∈ so(3) (note that there
is still an ambiguity in the yaw angle, therefore we constrain y3 = 0):

Hlr(x,y) = KTcv(y)Tvlvr(x)Tvc(y)(I|−n(y))>K−1 . (9)

By rewriting parts of Eq. 9 as follows:

Tcv(y) = Rcv(y)M and Tvc(y)(I|−n(y))> = NRvc(y) , (10)

where

M=

 1 0 0 0
0 1 0 0
0 0 1 −1

 and N=


1 0 0
0 1 0
0 0 0
0 0 −1

 , (11)

we arrive at the expression for the homography

Hlr(x,y) = KRcv(y)MTvlvr(x)N Rvc(y)K−1 , (12)

which makes it possible to use the following update rule for ŷ ∈ so(3)

R̂cv← R̂cvR(ŷ) . (13)

Substituting 13 into 12, and using the fact that Rvc = (Rcv)−1 eventually leads to

Hlr(x,y) = KR̂cvR(y)MT̂vlvrT(x)N(R(y))−1(R̂cv)−1K−1 . (14)
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Since (R(y))−1 = R(−y), we arrive at the final expression for the homography:

Hlr(x,y) = KR̂cvR(y)MT̂vlvrT(x)NR(−y)R̂vcK−1 . (15)

In order to calculate the per pixel partial difference in a similar fashion to Eq. 6 we now only
need to derive the expressions for the partial derivatives of Hlr. With respect to x we have:

∂Hlr(x,y)
∂xi

∣∣∣∣
y=0

= KR̂cvMT̂vlvr ∂T(x)
∂xi

NR̂vcK−1 , (16)

and for y:
∂Hlr(x,y)

∂yi

∣∣∣∣
x=0

= KR̂cv ∂R(y)MT̂vlvrNR(−y)
∂yi

R̂vcK−1 . (17)

Using the fact that ∂R(y)
∂yi

∣∣∣
y=0

= G
SO(3)
i and ∂R(−y)

∂yi

∣∣∣
y=0

= −GSO(3)
i , where GSO(3)

i is the ith

group generator for SO(3), and applying product rule, we finally obtain:

∂R(y)MT̂vlvrNR(−y)
∂yi

∣∣∣∣
y=0

= G
SO(3)
i MT̂vlvrN−MT̂vlvrNG

SO(3)
i . (18)

Having arrived at this expression we can now efficiently use the ESM machinery introduced
in Section 3.3 to jointly find the frame to frame motion and the unit normal vector.

4.2 Keyframes
Although it is possible to estimate the plane normal from just two images, to better constrain
the estimation process we combine multiple frames into a local dense map and jointly es-
timate the motion between consecutive keyframes and the parameters of the plane normal.
An example of a dense local map is shown in Fig. 1. When the overlap between the last
keyframe and the current frame falls below a defined threshold we add this frame to the map.
We usually maintain maps of between 10 and 50 frames.

4.3 Graph Optimisation against External Reference
The planar motion of the robot is related to the motion of the camera via the rigid body
transformation (xc,yc,γ), and when the motion of the camera is calculated only up to a scale
then also by scale factor d, which is inversely proportional to camera height zc =

1
d . In

the final step of auto-calibration the goal is to find a set of parameters z = (xc,yc,d,γ) that
best explains the incremental measurements from VO relative to the corresponding synchro-
nised incremental reference measurements of robot motion; in our case wheel odometry in
good conditions. Our formulation is similar to that of [1] and is based only on incremental
measurements, but we model the problem as a hyper-graph (as proposed in [9]).

In the hyper-graph the nodes pi = (xi,yi,θi) represent robot poses along the trajectory,
and one additional node z = (xc,yc,d,γ) represents the camera configuration. Every time an
odometry measurement is available we add a new node to the graph. We assume that camera
and wheel odometry are well synchronised, and the jitter and synchronisation errors are
negligible. Two consecutive nodes pi and pi+1 are connected by two edges, one representing
the measurement obtained by wheel odometry wi,i+1 = (∆xwi,i+1 ,∆ywi,i+1 ,∆θwi,i+1) and the
second the visual odometry measurement vi,i+1 =(∆xvi,i+1 ,∆yvi,i+1 ,∆θvi,i+1). Visual odometry
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edges vi,i+1 are in fact hyper-edges as they are also connected to the camera configuration
z. There are no loops in this graph and the graph is fixed by the first node. Variables in the
graph are the poses of the robot pi and the camera calibration z.

The error function ew
i (pi,pi+1,wi,i+1) measures how well the parameters pi,pi+1 satisfy

the constraint arising from the wheel odometry wi,i+1:

ew
i (pi,pi+1,wi,i+1) = (pi+1	pi)	wi,i+1 , (19)

where 	 is the inverse of the usual motion composition operator ⊕. Another error function
ev

i (pi,pi+1,z,vi,i+1) measures how well the parameters pi, pi+1 and z satisfy the constraints
arising from the visual odometry measurement vi,i+1:

ev
i (pi,pi+1,z,vi,i+1) = (pi+1	pi)⊕ f (z,vi,i+1) , (20)

where f is the function that transforms the motion from the camera frame of reference to the
robot frame of reference using (xc,yc,γ) and the scale d. When the scale is equal to 1 this is
equivalent to f (z,vi,i+1) =	z⊕vi,i+1⊕ z.

The goal of the graph optimisation is to find a set of parameters (p?,z?) that maximise
the likelihood of the observed data. It is equivalent to minimising the function:

MLE(p,z) = ∑
i

ev
i
>

Ω̂
v
i ev

i +∑
i

ew
i
>

Ω
w
i ew

i , (21)

where Ωw
i is the information matrix of the measurement wi−1,i and Ω̂v

i is the projection of
the information matrix Ωv

i using the current estimate of z. The least squares estimation on
this hyper graph is performed using g2o [8].

5 Evaluation
A visual odometry system measures incremental motion, and will therefore lead to drifting
estimates of absolute motion, with absolute pose error increasing with distance. An appropri-
ate measure of performance is therefore a statistical evaluation of the accuracy of incremental
motion estimation. We have used a Point Grey Flea2 Camera capturing greyscale images at
640×480 resolution and 30Hz frame-rate with automatic camera settings for shutter time
and gain. Our robot platform is a Pioneer 3 DX with an adjustable rigid camera mount, car-
rying an NVidia GPU-equipped laptop for real-time vision processing. The mean frame-rate
of full resolution processing is about 270–300 FPS on a desktop GTX480 GPU and about
60–65 FPS on a mid-range laptop GT650M. In both cases the main CPU is virtually idle.

5.1 Justification for Evaluation Against Wheel Odometry
Our Pioneer 3 DX robot has apparently very accurate wheel odometry on surfaces with
good grip such as short carpet, but to verify this and enable its use as the reference for our
VO evaluation, we compared wheel odometry with ground truth from an external overhead
calibrated camera system observing a target marker on top of the robot. We see in Fig. 3 that
the Pioneer’s wheel odometry has no observable bias; and indeed that the robot has much
better local motion estimation accuracy. We conclude that on good surfaces, it is appropriate
to compare VO against this high quality wheel odometry. This of course does not invalidate
our general argument regarding the advantages of VO in practical problems with more basic
platforms and low grip. Note that in all evaluations we use different data from that used for
extrinsics auto-calibration.
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Figure 3: Comparison of ground truth (GT) and the wheel odometry (WO) for incremental
motion estimation over 1000 frames of varied motion.

Figure 4: Different surfaces used for evaluation.

5.2 VO Evaluation on Different Surfaces and Conditions
We experimentally evaluated our VO approach against accurate odometry by making ex-
tended runs of the robot with different camera heights (70–230mm) on a variety of different
surfaces. In each case the camera extrinsics were auto-calibrated using the method described
in Section 4, and the robot was driven using a joystick over a trajectory that featured a wide
range of motions and turns up to the maximum dynamics of the robot (peak linear velocity
0.8ms−1; peak angular velocity 1.5rads−1). Fig. 4 shows snapshots of the different surface
types we tested. Particularly interesting are the shiny, specular surfaces. The non-planar
motion of the robot on the surface with raised circular studs resulted in a more noisy motion
estimation. The second floor is smooth but also shiny, with strong specularities. Despite this,
with no modification, our algorithm gave good results in most cases.

Fig. 5 summarises the results in the form of a histogram. The tight packing of the error
around 0 indicates the unbiased estimation of robot motion and a good performance of the
algorithm most of the time. The same data, but for only the 130mm camera setting, is
presented in another form using a scatter plot, in which each point represents the estimated
velocity, both linear and angular, vs. wheel odometry for one frame of the sequence. In the
velocity range up to around 0.6ms−1 we observe robust performance, but beyond this limit
we see some tendency to underestimate the velocity resulting mostly from the reduced inter-
frame overlap and motion blur. Usually a failure only happens though when these effects are
combined with disadvantageous other issues such as shadows cast by the robot.

5.3 High Precision Incremental Motion
A final experiment investigated and highlighted the capability of downward-looking VO
to recover extremely high precision local motion. We mounted the camera at around 4cm
from the ground, and drove the robot straight forward at its lowest smooth velocity setting of
2cms−1. The camera observed and tracked a wooden board floor surface on top of which was
placed a ruler with clear millimetre markings. By inspecting the image sequence obtained
(Fig. 6) we were able confidently to confirm the ground truth motion per frame (at 30Hz) of
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Figure 5: Left: Comparison of the linear speed and angular velocity measured by VO and
WO. Upper right: Histogram of the error measured between VO and WO. Lower Right: An
example of the estimated per-frame robot linear velocity in units of mm per frame.

around 0.7mm per frame, corresponding to image motion of around 8 pixels per frame.
The results of planar VO applied to this sequence against idealised ground truth can be

seen in Fig. 6. We see a remarkable precision in incremental motion estimation, where the
per-frame motion is estimated with a standard deviation consistently within 0.1mm. Note
that the oscillation observed is due to real vibration of our robot when it first starts moving,
and can be seen to damp when a constant velocity is reached.
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Figure 6: Experiment to investigate ultra-high precision local motion estimation. Top: Im-
ages from 10 frame intervals. Bottom: VO against idealised ground truth.

6 Conclusion
We have demonstrated that dense alignment offers a robust and accurate solution for visual
odometry which is highly practical thanks to rapid auto-calibration and efficient parallel
implementation. Dense alignment methods are highly scalable, and it will be interesting
to see the trade-offs in VO when camera frame-rate and resolution are varied [4]. We see
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this work as a first step in a dense, auto-calibrated and parallelisable vision approach to
robot SLAM and navigation using ad-hoc, low-cost cameras. In near future work we plan
to harness the accurate motion estimates from our VO approach to enable the segmentation
and reconstruction of the non-planar regions observed by the camera.
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