
ROBOTC

Movement

Improved Movement • �©  Carnegie Mellon Robotics Academy  /  For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

You know how to make the robot move, and you’ve made improvements to its performance by 
having it brake and maneuver at a slower speed. Even so, you have probably noticed by now that 
the robot’s idea of “straight”… isn’t.

Even when you set the motors to go the same speed, the robot turns a little. Recall that a turn 
results from two motors moving at different speeds.

Improved Movement Manual Straightening

Off course
This robot has drifted noticeably 
to the left while running.

1
2
3
4
5
6
7
8
9

10
11
12

task main()
{

		 motor[motorC] = 50;
		 motor[motorB] = 50;
		 wait1Msec(4000);

		 motor[motorC] = -50;
		 motor[motorB] = 50;
		 wait1Msec(800);

}

Same speed?
If both motors are set the same, 
shouldn’t they go the same speed 
and therefore move straight?

Actually, SPEEDS aren’t set with the motor[] commands. Motor POWER is. However, not all motors 
are created equal. Various factors in the robot’s construction, and the manufacturing process for 
the motors themselves cause different amounts of energy to be lost to friction in each motor.

This means that even though both motors start with the same power at the plug, the amount of 
power that reaches the wheel to move the robot can vary quite a bit. Even with the same POWER 
being applied, SPEEDS may differ. And as you know, wheels moving at different speeds make the 
robot turn, even if just a little bit. So to fix this situation, let’s do the logical thing, we’ll change the 
power so the motors end up going the same speed.



ROBOTC

Movement

Improved Movement • �©  Carnegie Mellon Robotics Academy  /  For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Improved Movement Manual Straightening (cont.)

In this lesson, you will manually adjust your motor command powers to make your robot go 
straight, watching for patterns to make the process smoother in the future. 

1. We can’t speed up the slower motor, because it’s already going full power. So instead, we’ll 
have to slow down the faster one. The robot shown in this example has veered left, indicating 
that the right motor is going faster than the left.

Lesson Note
The example robot used in this lesson 
drifts slightly to the left. If your robot 
drifts in the other direction, simply apply 
the following steps to the other motor.

task main()
{

		 motor[motorC] = 50;
		 motor[motorB] = 45;
		 wait1Msec(4000);

		 motor[motorC] = -50;
		 motor[motorB] = 50;
		 wait1Msec(800);

}

1a. Modify this code
Reduce the faster motor’s power by 5% 
in the moving-forward behavior.

1
2
3
4
5
6
7
8
9

10
11
12

1b. Compile and Download
Select Robot > Compile and 
Download Program.

1c. Press Start
Press the Start button on the 
Program Debug menu.

1d. Observe behavior
Did the robot go straight? 
This one curves to the right now.



ROBOTC

Movement

Improved Movement • �©  Carnegie Mellon Robotics Academy  /  For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Improved Movement Manual Straightening (cont.)

2. We seem to have overcorrected, and our robot now curves in the opposite direction. So we’ll 
adjust our guess, and go with something in between the original and our last guess.

task main()
{

		 motor[motorC] = 50;
		 motor[motorB] = 48;
		 wait1Msec(4000);

		 motor[motorC] = -50;
		 motor[motorB] = 50;
		 wait1Msec(800);

}

2a. Modify this code
50 was too high, and 45 too low. 
Choose a value in between, like 48.

1
2
3
4
5
6
7
8
9

10
11
12

2b. Compile and Download
Select Robot > Compile and 
Download Program.

2c. Press Start
Press the Start button on the 
Program Debug menu.

2d. Observe behavior
Did the robot go straight? 
It looks a lot better now.

End of Section 
This method of manual straightening works, but it’s unwieldy. One big problem is that it 
requires reprogramming any time something changes. Running on a different table surface, 
negotiating a slope, running after the batteries have run down, and even tuning up the robot 
will all force you to re-adjust these values.

Worse still, the program values don’t work on every robot. In the example, we had to change 
our motor to 48%, but you probably had to do something quite different with yours. Worse 
yet, there are obstacles out there that can’t be accounted for by programming your robot 
hours or weeks in advance. Manual adjustment to robot power levels can work, but there 
must be a better way…



ROBOTC

Movement

Improved Movement • �©  Carnegie Mellon Robotics Academy  /  For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

We found that we could make a robot move straighter by adjusting power levels so that its 
wheels move at the same SPEED rather than just being driven with the same power. However, 
manual adjustment has severe limitations. What if we could find a way to make those 
adjustments automatically?

Improved Movement Principles of PID

In this lesson, you will learn how the PID speed control algorithm works.

Using the rotation sensors built into the NXT motors, the robot can be aware of how far each 
wheel has moved. By comparing the motor’s current position to its position a split second ago, 
the robot can calculate how fast the wheel is moving.

A short time later... (t=0.1s)
1/10th of a second later, the wheel has turned slightly. 
Since both the change in position and the change in time 
are known, the robot can calculate the rate of turn.

Starting position (t=0)
The initial position of the wheel as it starts turning.

Speed = ∆angle 
∆time

Suppose the wheel turned 30 degrees in the 0.1 seconds shown above. The robot would 
automatically calculate the speed as:

Speed = ∆angle 
∆time

Speed = 30º 
0.1sec

Speed = 300º/sec

This speed is translated into a “speed rating” in the NXT firmware so that a speed rating of 100 
would correspond to an “ideal motor” running at 100% power.

Since the robot can now tell how fast the wheel is actualy turning, it can use PID to tune the 
motor power levels to make sure it is running at the correct speed. If the motor’s actual speed 
is lower than it should be, the PID algorithm will increase its power level. If the motor is ahead, 
PID will slow it down. On the following page, we’ll find out how it works.



ROBOTC

Movement

Improved Movement • �©  Carnegie Mellon Robotics Academy  /  For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Improved Movement Principles of PID (cont.)

Without PID engaged, motor control is an “open loop” process. Motor power is set, but no 
mechanism is in place to see whether the desired speed is actually being acheived, and no 
corrections can be made.

Desired 
Speed

50

Motor 
Power

50

Desired 
Speed

50

Motor 
Power

50

Measured 
Speed

46

1. Motor Power
The motor is told to run at a power level that will theoretically 
produce the correct speed.

Without PID control, this is the only step used.

2. Measured Speed
With PID, the robot will also measure the actual speed of the motor, by 
measuring the position of the wheel over time (as shown on the previous page). 

Real motors very rarely match up perfectly with “ideal” values, therefore the actual speed is 
different when given the “theorotical” power.



ROBOTC

Movement

Improved Movement • �©  Carnegie Mellon Robotics Academy  /  For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Improved Movement Principles of PID (cont.)

Desired 
Speed

50

Motor 
Power

50

Measured 
Speed

46

Error 
 

4

Desired 
Speed

50

Motor 
Power

50

Measured 
Speed

46

PID 
Adjustment

+5

Error 
 

4

4. 	PID Adjustment
Based on the size of the error, 
the PID algorithm proposes an 
adjustment to the motor power that 
should get the motor’s actual speed 
closer to the desired speed.

3. Error
The difference between the desired speed and the actual speed 
is calculated. This difference is called the “error”. A large error 
indicates that the motor’s actual speed is significantly different 
from the speed it should be maintaining. 

How far off is the speed? The “error” term is simply the difference between the 
measured speed and the desired speed.

Based on the size of the error term, and how the error has been changing over 
time (has it been getting bigger or smaller?), the PID algorithm calculates an 
adjustment to the motor power that should help the motor’s actual speed to get 
closer to the desired speed.



ROBOTC

Movement

Improved Movement • �©  Carnegie Mellon Robotics Academy  /  For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Improved Movement Principles of PID (cont.)

6. Repeat Cycle
The motor runs with the new 
power, and the cycle repeats. 
The robot measures the new 
speed, calculates a new error, 
and a new adjustment. This 
process of self-adjustment 
continues as long as the 
program keeps running.

The new motor power is calculated by adding the PID adjustment factor to the original power.

The adjustment is applied to the motor power. The speed is measured again. The error is 
recalculated (hopefully it is now smaller!). A new adjustment factor is determined. The cycle 
continues forever, always ready to catch and compensate for any factor that may make the 
robot go at the wrong speed.

5. Apply Adjustment
The PID Adjustement factor is 
applied to the robot’s motor 
power (50 + 5 = 55).

Desired 
Speed

50

Motor 
Power

55

Measured 
Speed

46

PID 
Adjustment

+5

Error 
 

4

Desired 
Speed

50

Motor 
Power

55

Measured 
Speed

53

PID 
Adjustment

+2

Error 
 

-3



ROBOTC

Movement

Improved Movement • �©  Carnegie Mellon Robotics Academy  /  For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Improved Movement Principles of PID (cont.)

End of Section 
This setup, where the robot monitors and adjusts its speed based on measurements it takes 
itself, is called “closed loop” control. The term refers to the “loop” relationship formed by 
output (motor power) and feedback (speed measurement, error, and PID adjustment factor).

PID gives your robot the ability to intelligently self-adjust its motor power levels to the correct 
values to maintain a desired speed. The closed-loop system monitors the “error” difference 
between how fast the robot is going and how fast it should be, and makes adjustments to the 
motor’s power level accordingly.



ROBOTC

Movement

Improved Movement • �©  Carnegie Mellon Robotics Academy  /  For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

ROBOTC includes a PID algorithm already built into the firmware. In order to take advantage of 
PID speed control, you must first enable it in your program.

Improved Movement PID Programming

In this lesson, you will learn how to enable PID speed control for your robot’s motors, using 
ROBOTC’s built-in motor control features.

1. Start with your moving-and-turning Labyrinth program. Save your program with a new 
name: “LabyrinthPID”.

1a. Save program As...
Select File > Save As... to save your 
program under a new name.

1b. Browse to an 
appropriate folder
Browse to or create an appropriately 
named folder within your program 
folder to save your program. 

1d. Save 
Click Save. 

1c. Rename program
Give this program the 
new name “LabyrinthPID”.



ROBOTC

Movement

Improved Movement • 10©  Carnegie Mellon Robotics Academy  /  For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Improved Movement PID Programming (cont.)

2. PID control must be enabled for each motor on the robot.

3. Download and run. Keep your robot plugged in.

task main()
{

		 nMotorPIDSpeedCtrl[motorC] = mtrSpeedReg;
		 nMotorPIDSpeedCtrl[motorB] = mtrSpeedReg;

		 motor[motorC] = 50;
		 motor[motorB] = 50;
		 wait1Msec(30000);

		 motor[motorC] = -50;
		 motor[motorB] = 50;
		 wait1Msec(800);

}

2a. Add this code
Enable PID control on both 
motors by setting their 
nMotorPIDSpeedControl 
modes to mtrSpeedReg.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

2b. Modify this code
Restore the motor command 
settings to 50%.

3b. Download and Compile
Click  Robot > Download Program. 

3c. Run the program
Click “Start” on the onscreen 
Program Debug window.

3a. Block up the robot
Place an object under the robot so that 
its wheels can’t reach the table. This 
lets you run the robot without having 
to chase it around.

2c. Modify this code
We want enough time 
to see and test the 
effects of PID control. 
Change this value to 30 
seconds (30000 ms).



ROBOTC

Movement

Improved Movement • 11©  Carnegie Mellon Robotics Academy  /  For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Improved Movement PID Programming (cont.)

4.  A window should appear called the “NXT Device Control Display”. If it doesn’t appear...

4. NXT Device Control Display
Make sure this window is showing. If not, 
open it through Robot > Debug Windows > 
NXT Devices.

Checkpoint 
This debugger window is a troubleshooting tool that can help you see what your robot is doing, 
and what it thinks it’s doing. The lines we’re interested in are highlighted above: “Speed” and 
“PID” for Motors C and B.

The Speed column shows the desired speed for the motor, which we set to be 50%. The PID 
column shows the actual amount of power that the robot is giving the motor to make it move at 
that speed.

Adjusted motor power
The PID algorithm is having to give 
this motor 64% power to achieve 
50% speed. This is typical, because 
the motor needs additional power to 
overcome friction.



ROBOTC

Movement

Improved Movement • 12©  Carnegie Mellon Robotics Academy  /  For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

5. Hold one wheel in place and watch the power values on its corresponding motor.

5b. Observe motor power
The PID algorithm will notice that the 
motor’s measured speed is falling 
behind where it should be, and will 
increase the motor’s power level to try 
to bring the speed up.

6. Release the wheel and observe its reaction.

6a. Release the wheel
Let go of the wheel so it can turn 
freely again.

5a. Hold wheel
Grab one of the wheels on the robot 
and hold it so it stops. In the picture, 
motor C’s wheel is being held.

Improved Movement PID Programming (cont.)

6b. Observe motor power
Now that the wheel is going too fast, 
the motor will decrease its power until 
it reaches the correct speed.



ROBOTC

Movement

Improved Movement • 13©  Carnegie Mellon Robotics Academy  /  For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

7. End the program and return the timing to what it was before.

7. Modify this code
Change the timing back to 
4000ms (still at 50% speed).

End of Section 
PID control is a great way to make your robot’s movement more consistent. The algorithm 
monitors how fast the motors are turning versus how far they should be, and adjusts the motors’ 
power levels to keep them on track. This allows the robot to automatically adjust for minor 
variations both in the environment and in the motors themselves.

Improved Movement PID Programming (cont.)

task main()
{

		 nMotorPIDSpeedCtrl[motorC] = mtrSpeedReg;
		 nMotorPIDSpeedCtrl[motorB] = mtrSpeedReg;

		 motor[motorC] = 50;
		 motor[motorB] = 50;
		 wait1Msec(4000);

		 motor[motorC] = -50;
		 motor[motorB] = 50;
		 wait1Msec(800);

}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15



ROBOTC

Movement

Improved Movement • 14©  Carnegie Mellon Robotics Academy  /  For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Improved Movement Synchronized Motors

When we started, we said that we wanted the robot to go straight. Its motors should move at the 
same speed. PID control gave us that in a roundabout way: by asking both motors to maintain 
a target speed, and giving them both the same target, they moved the same speed. Sort of.

If we run into a tough spot like this, how should the robot react?

Using PID, the other motor will keep running at the speed it was set to, and the robot will begin 
to spin in a circle as if ordered to turn.

However, if going straight is the priority, then we need to change our perspective slightly. We’ll 
need to enforce identical speeds on the two motors as our first priority, not just tell both motors 
to seek the same target independently. The sameness of the values is more important than 
the exact speed.

ROBOTC includes a feature called Motor Synchronization, which allows you to pair two motors 
together, and define their speeds relative to each other. If you tell them that their goal is to stay 
exactly together with one another as they move, then they will, even if it means the faster one 
has to stop and wait. The goal of keeping both motors together takes precedence over reaching 
the “ideal” speed.

Stuck
The wheel is being held firmly 
in place... what should the 
other wheel do?



ROBOTC

Movement

Improved Movement • 15©  Carnegie Mellon Robotics Academy  /  For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

In this lesson, you will learn how to use Motor Synchronization to ensure that both motors run 
at the same speed, even if something unexpected happens to one of them.

1. Open ROBOTC and start a new program.

1. Create new program
Select File > New to create a 
blank new program.

2. Add the basic framework for a program.

Improved Movement Synchronized Motors (cont.)

task main()
{

}

2. Add this code
Add a task main() {}.

1
2
3
4
5

3. Engage Motor Synchronization on the robot, with the sync mode set to “synchBC”. 
The special term synchBC defines B and C as the motors to be synchronized.

task main()
{

		 nSyncedMotors = synchBC;

}

3. Add this code
Engage Motor 
Synchronization for 
Motors B and C, with 
B set as the master. 

1
2
3
4
5
6



ROBOTC

Movement

Improved Movement • 16©  Carnegie Mellon Robotics Academy  /  For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Improved Movement Synchronized Motors (cont.)

Checkpoint 
The program will now operate motors B and C in Synchronized mode. The order of the 
letters BC in “synchBC” does matter, because the two motors in a synchronized setup are not 
completely equal. Of the pair, one of the two motors will take the lead, and the other will 
play a more reactive role.

The motor B (the first letter in “synchBC”) is called the Master motor, and C (the second one) 
is called the Slave motor. All commands to the motor pair, such as speed or braking 
commands, are issued through the Master motor.

The Slave motor, C in this case, doesn’t receive a speed command. Instead, we give it a 
ratio command. This ratio is defined as a percentage of the first motor’s position. For 
moving forward, you always want the two motors to be at the same position, so we’ll set the 
Slave motor ratio to be 100% of the Master motor’s.

4. Set the slave motor to run at 100% of the master motor’s speed.

task main()
{

		 nSyncedMotors = synchBC;
		 nSyncedTurnRatio = 100;

}

4. Add this code
Set the turn ratio for 
the slave motor (C) to 
be 100%. Slave motor 
C will now attempt to 
maintain exactly 100% 
of the master motor B’s 
speed.

Note that the master 
motor’s speed has not 
been set yet, so the slave 
motor B will initially be 
running at 100% of 0 
(i.e. stopped).

1
2
3
4
5
6
7

5. Set the master motor to a desired speed of 50, and let the robot run for 4 seconds.

task main()
{

		 nSyncedMotors = synchBC;
		 nSyncedTurnRatio = 100;

		 motor[motorB] = 50;
		 wait1Msec(4000);

}

5. Add this code
Set a desired speed 
of 50 for the master 
motor. Master motors 
are automatically PID 
speed regulated.

1
2
3
4
5
6
7
8
9

10



ROBOTC

Movement

Improved Movement • 17©  Carnegie Mellon Robotics Academy  /  For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Improved Movement Synchronized Motors (cont.)

6. Save your program as “LabyrinthSynch”.

6a. Save program As...
Select File > Save As... to save your 
program under a new name.

6b. Browse to an 
appropriate folder
Browse to or create an appropriately 
named folder within your program 
folder to save your program. 

6d. Save 
Click Save. 

6c. Rename program
Give this program the 
new name “LabyrinthSynch”.

7a. Compile and Download
Click Robot > Compile and 
Download Program. 

7b. Run the program
Click “Start” on the onscreen 
Program Debug window.

5. Download and Run.



ROBOTC

Movement

Improved Movement • 18©  Carnegie Mellon Robotics Academy  /  For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

task main()
{

		 nSyncedMotors = synchBC;
		 nSyncedTurnRatio = -100;

		 motor[motorB] = 50;
		 wait1Msec(4000);

}

1
2
3
4
5
6
7
8
9

10

Improved Movement Synchronized Motors (cont.)

Checkpoint 
The motors are now constantly updating themselves to maintain identical positions as they move. 
If one motor happens to stop, the other motor will adjust, and maintain 100% of the new position!

Finally, motor synchronization is useful for far more than just going straight. Cleaning up turning 
is also quite easy. As you saw when you first encountered turns, all you need to do is set the 
motors to move at different speeds. To turn in place, the motors should go different speeds. For a 
point turn, they should be completely opposite. The Slave motor should go -100% of the Master 
motor’s speed.

8. Change the sync ratio to -100% to make the robot turn instead of moving straight.

8. Modify this code
Change the sync ratio 
100% to -100% to make 
the motors turn in exactly 
opposite directions.

9a. Compile and Download
Click Robot > Compile and 
Download Program. 

9b. Run the program
Click “Start” on the onscreen 
Program Debug window.

9. Download and Run.



ROBOTC

Movement

Improved Movement • 19©  Carnegie Mellon Robotics Academy  /  For use with LEGO® MINDSTORMS® Education NXT software and base set 9797

Improved Movement Synchronized Motors (cont.)

End of Section 
Motor synchronization allows you to control your robot in a way that prioritizes motor 
alignment over motor speed. This is a trade-off, but one that may be favorable when the 
most important thing is getting your robot to go straight.


