
Models and State Representation in Scene:

Generalised Software for Real-Time SLAM

Andrew J. Davison
Robotics Research Group

Department of Engineering Science
University of Oxford

UK
ajd@robots.ox.ac.uk

http://www.robots.ox.ac.uk/∼ajd/

May 12, 2006

1 Introduction

A major goal of Scene is to permit the uniform use of sequential estimation
methods across a wide possible range of robot, camera or other mobile sensor
platforms. To this end, a modular model system is used to represent the
specifics of a particular system, so that applying Scene to a new application is
hopefully a matter of creating new model classes which can be “plugged in” to
the main system.

In this document we will discuss in general the meaning of using mathemat-
ical models to represent real-world systems, and then look specifically at how
models are used in Scene to describe motion and measurements in one, two
and three dimensions, explaining the procedure needed to use Scene in a new
application domain by building new model classes.

This document is best read in combination with a study of the Scene source
code and application programs using Scene.

See [1] for more general information on the SLAM theory behind Scene.

2 Models

A model is a mathematical representation of a real-world process. If we wish to
make sense of any data obtained from measurements the real world, a model is
essential: it is what connects the numbers we put into and get out of a system.

The way we prefer to define models, however, is as follows:

• A model is a simplification of reality.

1



In the real world, systems are never made from pure geometrical objects
interacting in perfect ways. Even saying something like “the side of this object
is flat” is, if we examine the object closely enough, an approximation to its non-
smooth structure on a microscopic or molecular scale — while this is a rather
extreme way to think about things, we feel that it is important to realise what
is going on when we talk about models: they are always simplifications.

Constructing a model is a process of forming a description of a real-world
system which reduces its actual complexity to equations and a number of pa-
rameters describing the specifics of a simplified mathematical process. The
amount of complexity in the real-world system which we attempt to represent
in the model is always a choice. Think of building a model for an articulated
robot arm: the choice taken here would usually be to represent it as a chain
of rigid components joined by hinged couplings with motors and encoders. A
more complex model, though, might also take into account factors such as the
flexibility of the “rigid” components. A line must be drawn somewhere — usu-
ally in a position such that the model remains mathematically convenient while
representing reality with a high enough degree of realism to satisfy our needs.

As well as representing what we know about a system in a model, we must
also acknowledge the finer details that we don’t know about the system: this
is uncertainty in the model which is traditionally called “noise”. “Noise”
accounts for the things that we don’t attempt to model. There is of
course no such thing as random noise in (at least non-quantum) physics: bodies
move and interact deterministically. If we had a perfect description of a system
then we would not need measurements to tell us what was happening to it: all
we would need to do would be to set up the “perfect model” and let it run.
However, while in theory we could model everything (slipping wheels, joints,
muscles, chemical reactions, human thoughts!), in reality we can’t know all the
details of what is happening to a system. Models have to stop somewhere: the
rest of what is going on we call noise, and estimate the size of its effect. It is this
measure of the amount a model potentially differs from reality which means that
measurements are able to improve our knowledge of a system. Measurement
processes themselves have models with uncertainty, and thus can be combined
in a weighted sense with the estimates from our system model to get improved
estimates.

The above discussion may seem philosophical but it is nothing but a strong
statement of the principles of Bayesian probabilistic reasoning: probabilities do
not represent anything to do with random or stochastic processes; they model
the uncertainty in the mind of an observer reasoning about the world with
incomplete knowledge.

3 Using Models in Scene

Scene’s current domain of applicability can be defined as follows:

• Scene can be applied to any situation where we wish to estimate the states
of a generally moving robot and many stationary features of which it is

2



able to make measurements via one or more sensors which are mounted
in a fixed position relative to the robot.

(Note that there are several interesting ways of using Scene which fit these
criteria although they might not initially seem to do so. One is that a moving,
active sensor such as a pair of cameras mounted on a motorised platform can be
used as long as the whole setup is considered as a single sensor (with no internal
state) whose base is fixed rigidly to the main robot. Another is that Scene has
successfully been applied to a pair of cooperating robots in the case that only
one of them carries sensors able to make measurements of world features: the
second robot can be thought of as simply an extension to the first, in rather the
same way as we would naturally model a two-armed robot as a single system. It
does not matter that the two cooperating robots are not physically connected.)

We will often refer to the “state” of a system: this is the vector of param-
eters which, along with the equations specifying our model, represent what is
currently known about the system. In Scene, the total state vector x can be
partitioned as follows:

x =




xv

y1

y2

...


 , (1)

where xv is the state of the robot and yi is the state of the ith feature. Compu-
tation of how this state vector changes over time is the goal of all the processing
in Scene. The two main operations which take place on the state vector are:

• The process equation, which describes how the state of the robot changes
over time (the motion model):

xv(t + ∆t) = fv(xv(t),u, ∆t) + q . (2)

q is a zero-mean Gaussian noise vector with covariance Q (the process
noise). Since the features are assumed to be stationary, their states are
not involved in the process equation.

• The measurement equation, which describes how a measurement is made
of a feature (the feature measurement model):

zi = hi(xv,yi) + r . (3)

r is a zero-mean Gaussian noise vector with covariance R (the measurement
noise).

Which parameters belong in the state vector? Scene allows a free choice to
be made about what to choose as the representation for the robot state xv and
that of each feature type state yi. As discussed above, parameters are numbers
which describe the specifics of a mathematical model of a system. However,

3



the equations of a model might have parameters which need not be in the state
vector: they can be treated as constant, for instance, like the length of the
jointed sections of a robot arm. On a first reflection then, one might define
state parameters as “the parameters that change over time.”

However, sometimes it is worthwhile to include in a state vector a parameter
which represents something in the system which is expected to remain constant.
While that real quantity stays constant, our estimate of it can change (in fact
it can only improve) over time as more measurements are made. This is on-line
self-calibration.

As an example, in previous work on robot localisation it was found that our
model included one particularly significant systematic error: when a velocity
command was sent to the robot, the actual velocity achieved was not normally
distributed about the commanded value, but actually about some other mean
which differed significantly; e.g. when sending the command 1ms−1 the robot
was actually running at 0.9± 0.1ms−1 rather than 1.0± 0.1ms−1: there was a
scaling between the two which was not equal to unity. To overcome this problem,
we included in the state vector a parameter representing the scaling between
velocity commands sent and the real velocity of the robot. This is not something
which expected to change over time; rather it is a constant characteristic of a
particular robot about which we are not very certain. Therefore, taking a first
guess of the parameter’s value (e.g. 1), and a measure of the standard deviation
of that initial guess (e.g. 0.2), we initialise the parameter into the state vector
with non-zero covariance. Although the parameter does not get changed in the
model’s process equation, its involvement in various equations and Jacobians
means that over time and with measurements its estimated value will change
and its uncertainty will decrease. The estimate should converge towards the
true value.

In general, if we write down equations to model a system, any parameter
which appears in the equations could be placed in the state vector.
Parameters which are placed in the state vector will have their estimates im-
proved by measurements, while those left out will be constants whose estimated
value will not change. A choice must be made as to which parameters should be
placed in the state vector. The downside of including many parameters is that
this causes computational complexity to be increased. However, if the value of
a parameter is relatively uncertain, it is worth considering including it in the
state vector.

A final third type of parameter concerns the effect of known outside in-
fluences on the modelled system. Since physics is deterministic, a model of
any enclosed system will be deterministic: it will be possible to predict its state
all future times. However, when we model a real object such as a robot, we
do not usually have a truly enclosed system: there may be something which is
influencing it, for instance via purposive commands and inputs, whether human
operator or onboard computer. Whichever it is, its effect cannot be included in
a deterministic model: we do not try to represent the state of the computer or
a human brain in our state vector; but its influence is not constant either. Nev-
ertheless, we may have information about the inputs the robot is receiving and

4



these affect how the robot’s state will evolve. We call these input parameters
control parameters and in equations use the vector u to refer to them.

Note: there may also be various unknown outside influences on a system.
In this case, their effect must be included as uncertainty in the process equation.
For instance, if instead of a robot we have mounted a sensor on a human head
(such as a forehead-mounted, outward-looking camera) and aim to estimate the
head’s motion in the same way as which we would estimate the motion of a
robot equipped with the same sensor, the way in which the person moves is
unknown, but contributes uncertainty to the camera’s motion in a way which
can be modelled. Again, all we are doing here is accepting that noise in a model
represents the things we don’t attempt to model.

Summarising, parameters can be divided into three types:

• State parameters, which are parameters describing moving aspects of
the system, or stationary aspects of which we wish to improve initially
uncertain estimates.

• Constant parameters, of which we have an estimate with which we are
happy and which we are content not to improve.

• Control parameters, which are quantities which affect the future state
of the model but which are not known; they come from outside the system
under consideration, such as control inputs to a robot. They are like one-
off constants which appear in the system equations transiently.

4 Position State

We introduce here the concept of position state xp: this is a standard, minimal
way to represent the raw geometrical position and pose of a robot in 1, 2 or 3D
space.

Most implementations of robot localisation have made no distinction between
the concepts of state and position state: usually, what we would call the position
state — the minimal description of robot location — is what goes directly into
the state vector. However, as discussed above, modelling systems sometimes
calls for parameters additional to those purely describing position to be part of
the state vector — in systems with redundant degrees of freedom for example.
While it may be the case that the additional parameters appear in the state
vector simply in addition to those representing pure position, more generally
the position state is something which is functionally derived from all the state
parameters:

xp = xp(xv) (4)

For instance, if our system is a robot arm, the parameters which we store
in the state vector might be the angles of articulation at each joint. A sensor
mounted at the end of the arm has 3D position which is a rather complicated
function of all of these angles and the constant characteristics of the arm.

5



In Scene, we gain greatly from the concept of position state because it allows
separation of the details of a particular robot motion model from the essential
position information which allows that object to interact with other object in the
world. Specifically, we can separate the concepts of motion model and feature
measurement model.

When specifying a feature measurement model, we need to define functions
such as hi(xv,yi) (the measurement obtained of a feature as a function of the
robot state and the feature’s state). By abstracting this to hi(xp,yi) (the
measurement as a function of robot position and feature state), where we know
from the definition of position state xp(xv), we are able to use measurement
models which are decoupled from specific robot motion models. For instance,
we could use the same model of a camera whether it is fixed rigidly to a robot
vehicle or mounted at the end of an articulated robot arm.

It should be noted that the concept of position state, while convenient at
the current time, is only a step towards what we would like to achieve with the
future design of Scene, in which a robot models could have multiple “hooks” into
position-state-like quantities. This would be necessary if, for instance, a robot
consisted of multiple non-rigid parts, more than one of which was equipped with
a sensor, multiple sensors which could measure the same type of feature or the
true multi-robot case.

4.1 Position State in One Dimension

xp = (z) (5)

In 1D, the position state consists of a single parameter z describing displace-
ment along a straight line.

4.2 Position State in Two Dimensions

xp =




z
x
φ


 (6)

In 2D movement, position on a plane can be specified by 3 parameters: the
cartesian coordinates z and x and angle φ (restricted to the range −π < φ <= π)
representing orientation relative to the z axis. We apologise somewhat here for
our choice of z and x as our 2D coordinates rather than the more usual x
and y — this choice stems from our original application domain in computer
vision, where traditionally the z axis of coordinate frames are aligned with the
optic axis of cameras: for a robot with a forward-facing camera, this makes z
horizontal. See Figure 1 for clarification of this.

4.3 Position State in Three Dimensions

Representing position and pose in 3D is substantially more complicated than the
1D and 2D cases. There are several different ways to represent 3D orientation,

6



z

x

φ

Fixed World Coordinate 
Frame W

R

R

R Coordinate Frame
Carried With Robot

xW

zW

W

Figure 1: Coordinate frames in two dimensions.

but each has its disadvantages. Minimally, three parameters are needed to
represent 3D orientation (as in for example the Euler angle parameterisation),
with a further three required for cartesian position, leading to a total of six
parameters. However, we have chosen to add one parameter to this minimal six
for our standard representation of 3D position and pose and use a quaternion
of 4 parameters to represent orientation.

xp =




x
y
z
q0

qx

qy

qz




(7)

Quaternions are a well-established way to represent 3D orientation. Any 3D
rotation can be described by a single rotation about an appropriately placed
axis. In a quaternion, a unit vector u (with elements ux, uy, uz) representing
the axis of this rotation and its angular magnitude θ are stored as follows:




q0

qx

qy

qz


 =




cos θ
2

ux sin θ
2

uy sin θ
2

uz sin θ
2


 . (8)

Quaternions are defined in this way because they have an algebra which allows
rotations to be conveniently composed (applied in sequence). In Scene, in the
3D position state vector a quaternion represents the rotation of the robot with
respect to the fixed world coordinate frame. The following is a summary of the
relevant properties of quaternions:

7



• The magnitude of a quaternion, defined as the square root of the sum of
the squares of the elements, is always 1:

q2
0 + q2

x + q2
y + q2

z = 12 . (9)

• Quaternion q has a conjugate q̄ which represents a rotation about the
same axis but with negative magnitude, and which is defined as:

q̄ =




q0

−qx

−qy

−qz


 . (10)

• The rotation matrix R associated with quaternion q is defined as follows:

Rv = q× v × q̄ (11)

where v is an arbitrary 3× 1 column vector. We can calculate that:

R =




q2
0 + q2

x − q2
y − q2

z 2(qxqy − q0qz) 2(qxqz + q0qy)
2(qxqy + q0qz) q2

0 − q2
x + q2

y − q2
z 2(qyqz − q0qx)

2(qxqz − q0qy) 2(qyqz + q0qx) q2
0 − q2

x − q2
y + q2

z


 . (12)

So, if we have quaternion q as part of the position state of a robot and form
rotation matrix R as above, this R will relate vectors in the fixed world
coordinate frame W and the robot coordinate frame R (which is a
coordinate frame carried around by the robot) as follows:

vW = RvR . (13)

We prefer to be clear in our descriptions of rotation matrices, and refer to
this R as RWR since it relates vectors in frames W and R: the equation
becomes:

vW = RWRvR . (14)

Note that it is very difficult to get confused about rotation matrices when
this notation is used: in vW = RWRvR the two frame suffices of the
rotation matrix are on the sides closest to the vector specified in those
frames.

(When referring to vectors, we use the plain notation v to mean a purely
spatial vector, a directed segment in space not associated with any coordi-
nate frame. The notation vA means the vector of coordinate parameters
representing that spatial vector in frame A.)

• Composing rotations: if quaternion q1 represents the rotation RAB and
quaternion q2 represents the rotation RBC , then the composite rotation

8



RAC = RABRBC is represented by the product of the two quaternions,
defined as:

q3 = q1×q2 =




q10q20 − (q1xq2x + q1yq2y + q1zq2z)

q10




q2x

q2y

q2z


 + q20




q1x

q1y

q1z


 +




q1yq2z − q2yq1z

q1zq2x − q2zq1x

q1xq2y − q2xq1y







(15)

The disadvantage of the quaternion representation is that it is redundant,
using four parameters to represent something which can be described minimally
with three. This leads to the minor factor of extra computational complexity
in calculations due to the extra parameter, but more importantly it means that
care must be taken to make sure that the four parameters in the quaternion
part of the state vector represent a true quaternion: that is to say that they
satisfy the magnitude criterion above.

For this reason, generalised normalisation functionality has been built into
the models in Scene: a model class should know how to normalise its state
vector if necessary. In a model containing a quaternion, this involves enforcing
the magnitude constraint described above.

5 Model Classes

In Scene, modularity is implemented via a system of Model classes. There are
three types:

• Motion Model classes describing the movement of a robot or other sensor
platform.

• Feature Measurement Model classes each describing the process of mea-
suring a feature with a particular sensor.

• Internal Measurement Model classes describing measurements that a sys-
tem makes of itself.

Motion Model, Feature Measurement Model, Internal Measurement Model
base classes are defined in the source file SceneLib/Scene/models base.h within
the SceneLib distribution. When building a Scene application, specific model
classes are derived from these base classes. The derived classes will share the
interfaces of their parents but of course provide specific instatiation of the func-
tionality.

In a program using Scene, each specific model class to be used is instan-
tiated only once and then a pointer to that class is passed around as needed.
There will be just one motion model; zero or more feature measurement models
(several if there is more than one type of feature of which it is possible to make
measurements); and zero or more internal measurement models. The specific
model classes need to be defined by the creator of a new Scene application, and

9



then instantiated in a program so that pointers can be passed to Scene’s main
classes which will make use of the models’ functions to perform calculations.
Note that each model class should only be instantiated once within the applica-
tion program — the models do not store any long-term data and can be thought
of essentially as sets of functions.

The functions in model classes are used in a uniform way. A function named
func A and B(C, D) calculates the result vectors or matrices A and B from input
vectors or matrices C and D. The results will be stored in pre-allocated spaces
CRES and DRES in the model classes, from which they should be copied promptly
after calling the function because these result matrices will be overwritten the
next time the class is used.

Many of the functions calculate a vector a from input of other vectors
b, c, . . .. These functions usually also calculate the Jacobians of a with respect
to the input vectors. A Jacobian is a matrix of derivatives of one vector with
respect to another. If vector a(b) is a function of vector b, the Jacobian ∂a

∂b is
defined as follows:

∂a
∂b

=




∂a1
∂b1

∂a1
∂b2

∂a1
∂b3

. . .
∂a2
∂b1

∂a2
∂b2

∂a2
∂b3

. . .
∂a3
∂b1

∂a3
∂b2

∂a3
∂b3

. . .
...

...
...


 , (16)

where a1, a2, . . . are the scalar components a and so on. These Jacobians are an
important part of the key parts of Scene which use the Extended Kalman Filter
update state estimates.

In the following detailed look at each of the types of model class, vectors and
matrices are named as they appear in plain text form within the source code of
Scene: thus xv for example becomes xv.

5.1 Defining a Motion Model

Two levels of derivation are used with motion models. From the base class
Motion Model, motion model classes specific to a particular dimensionality of
movement OneD Motion Model, TwoD Motion Model are ThreeD Motion Model
are derived (again defined in the file SceneLib/Scene/models base.h). One of
these should then be used as the parent for a specific motion model to describe
a particular system.

In a specific motion model class, the following constants must be defined:

• STATE SIZE, the integer state vector size.

• CONTROL SIZE, the integer control vector size.

And the following functions:

• func fv and dfv by dxv(xv, u, delta t), the main motion model func-
tion (process equation) which calculates a new state fv as a function of the
old state xv, control vector u and time interval delta t. Also calculates
the Jacobian dfv by dxv.

10



• func Q(xv, u, delta t), which forms the covariance matrix Q of the
process noise associated with fv.

• func xp(xv), the function which defines the position state xp in terms of
xv.

• func dxp by dxv(xv) which is the Jacobian for func xp.

• func fv noisy(xv true, u true, delta t), a noisy version of the pro-
cess equation which is used in simulation only to This function should
follow the same basic form as func fv and dfv by dxv but incorporate
random noise to represent uncertainty in the model.

• func xvredef and dxvredef by dxv and dxvredef by dxpdef(xv, xpdef)
specifies how to redefine the robot state xv to xvredef when axes are re-
defined such that xpdef, a given position state, becomes the new zero of
coordinates.

These should optionally be defined depending on the system:

• func xvnorm and dxvnorm by dxv(xv), a function which defines how to
normalise the parameters in xv, forming a new state xvnorm.

• navigate to waypoint(xv, xv goal, u, delta t), which can be used
in systems with control parameters to set them automatically with the
aim of reaching a goal state xv goal.

5.2 Defining a Feature Measurement Model

The base class Feature Measurement Model is parent to two special types of
second tier base classes, Partially Initialised Feature Measurement Model
and Fully Initialised Feature Measurement Model which describe the be-
haviour of feature measurements during and after initialisation. To implement
a specific type of feature measurement, specific classes should be derived from
these two types and used in combination.

This splitting into two different classes is to represent the fact that different
types of probability propagation are often required during and after feature ini-
tialisation in SLAM. The specific example which led to this design was the use of
point features in high frame-rate monocular visual SLAM. Here, the approach
which has proven to work well is to represent a just-initialised point feature
with a line parameterisation which lives in the main EKF SLAM map plus an
independent particle distribution along the depth dimension. The reason for
this is that the dominant uncertainty in a just-initialised point, along the depth
dimension, is not well-represented with a Gaussian distribution. The assign-
ment of an independent particle distribution for this coordinate of the point is
of course an approximation, but works well because over several measurements
it rapidly collapses. Once the particle distribution has collapsed into something

11



which looks Gaussian, the line representation plus particle distribution is con-
verted into a standard point representation in the main SLAM map (see [?] for
more on this technique for monocular feature initialisation).

Generally, a Partially Initialised Feature Measurement Model allows
a just-initialised feature to have a number of parameters which go directly into
the main SLAM map with Gaussian representation and others which are more
poorly determined to be represented with particles. These we call the ‘free pa-
rameters’ of the partially initialised feature from the point of view of the main
SLAM map. A Partially Initialised Feature Measurement Model then de-
scribes how to make observations of the feature and eventually how to convert
it to a Fully Initialised Feature Measurement Model when the time comes.

5.2.1 Definitions for Feature Measurement Model

All types of Feature Measurement Model, whether fully or partially initialised,
should define the following constants:

• MEASUREMENT SIZE, the number of parameters representing a measure-
ment of the feature.

• FEATURE STATE SIZE, the number of parameters to represent the state of
the feature.

• GRAPHICS STATE SIZE, the number of parameters to represent an abstrac-
tion of the feature for use in graphical display (often this will be the same
as FEATURE STATE SIZE but sometimes it might be different).

And the following functions:

• func yigraphics and Pyiyigraphics(yi, Pyiyi), a function which takes
the state and covariance of the feature and calculates its graphics state:
this is the abstraction used for graphical display of the feature.

• func zeroedyi and dzeroedyi by dxp and dzeroedyi by dyi(yi, xp),
a function which defines how to redefine the state of the feature in the case
of a redefinition of axes. The position state xp at which the axes are to
be redefined is given, and a new feature state zeroedyi is calculated from
the current value yi, plus the relevant Jacobians. This function is used as
a first step in predicting measurement values.

• func Ri(hi), which calculates the covariance Ri of the measurement noise
for measurement hi.

• visibility test(xp, yi, xp orig, hi), which is used in active selec-
tion of measurements to decide whether the feature should be attempted
to be measured from robot position xp. As well as the feature state yi
and current predicted measurement hi, the position state xp orig of the
robot when the feature was first observed is passed. A criterion for the

12



expected measurability of the feature should be defined based on these
relative positions: for instance, if with vision we are attempting to match
a template patch via image correlation matching, success could only be
expected from within a limited range of robot motion away from the po-
sition from which the feature was first seen and the template stored. This
function is different from other model functions in that it returns a single
integer value representing success (0) or failure (other value).

• selection score(Si) is a function which calculates a score for a feature
representing its value for immediate measurement based on the innovation
covariance Si. This criterion will be used within Scene to compare candi-
date measurements of different features and allow resources to be devoted
to where they are most useful. In general, measurements with a high Si
should be favoured because it makes sense to make a measurement of a
feature where the result is uncertain rather than of one where it is possible
to accurately predict the result.

5.2.2 Definitions for Fully Initialised Feature Measurement Model

A Fully Initialised Feature Measurement Model must additionally define
the following functions:

• func hi and dhi by dxp and dhi by dyi(yi, xp), the main measurement
function and its Jacobians, which calculates a measurement hi from the
feature state yi and the robot position state xp.

• func nui(hi, zi), a function which calculates the innovation nui of a
measurement with predicted value hi and actual value zi. Normally this
function should perform the simple subtraction nui = zi − hi but the
function is left as user-definable because in some cases that is not the case:
for instance, if a measurement parameter is an angle in the range −π → π,
cases where zi and hi lie either side of π would give an incorrectly large
innovation if a simple subtraction was performed: in this case the user-
defined innovation function can normalise the angle to the −π → π range.

• func hi noisy(yi true, xp true), a noisy measurement function for
use in simulation, producing a measurement with random noise added.

5.2.3 Definitions for Partially Initialised Feature Measurement Model

Finally, a Partially Initialised Feature Measurement Model must define
this constant:

• FREE PARAMETER SIZE, the number of parameters for this partially ini-
tialised should be left outside of the main Gaussian-based representation
and represented with other means such as particles.

And it must define these additional functions:

13



• func ypi and dypi by dxp and dypi by dhi and Ri(hi, xp), the partial
initialisation function and its Jacobians, which calculates the partially ini-
tialised feature state ypi (e.g. the parameters of a line in the case of ini-
tialising a 3D point using monocular vision) from initial measurement hi
and the robot position state xp.

• func hpi and dhpi by dxp and dhpi by dyi(yi, xp, lambda), the mea-
surement function and its Jacobians, which calculates a measurement hpi
of the partially initialised feature from the feature state yi, the robot po-
sition state xp and a particular set of values lambda of the free parameters
for the feature.

• func yfi and dyfi by dypi and dyfi by dlambda(ypi, lambda), the con-
version function which specifies how to convert a partially initialised repre-
sentation ypi into fully initialised representation yfi using values lambda
of the free parameters.

5.3 Defining an Internal Measurement Model

The derivation hierarchy for internal measurement models does not have any
intermediate steps and all specific models should be derived directly from the
base class Internal Measurement Model. The constants and functions which
must be defined for an internal measurement model are very similar to those
for a feature measurement model. Note however, the important difference that
while a feature measurement model depends only on robot position state and
is thus potentially compatible with many different motion models, an internal
measurement model is specific to a particular motion model.

The following constant must be defined:

1. MEASUREMENT SIZE, the number of parameters in the measurement vector.

And the following functions:

• func hv and dhv by dxv(xv), the measurement function calculating mea-
surement hv and Jacovian dhv by dxv from the robot state xv.

• func Rv(hv), which calculates measurement noise Rv from predicted mea-
surement hv.

• func nuv(hv, zv), which calculates the innovation nuv from predicted
measurement hv and actual measurement zv.

• func hv noisy(xv true), the noisy measurement function for use in sim-
ulation.

• feasibility test(xv, hv), which calculates the feasibility of the mea-
surement based on the current robot state xv and predicted measurement
hv. Analogous to function visibility test in feature measurement mod-
els, this function returns 0 if the measurement is possible.

14



6 Conclusion

We have discussed the meaning of making mathematical models of real-world
systems, and shown how model classes should be defined for use in Scene. This
document will evolve as the design of Scene changes, hopefully towards a more
powerful generic modelling framework supporting systems where multiple mov-
ing objects can be equipped with multiple independent sensors.

References

[1] A. J. Davison and N. Kita. Sequential localisation and map-building in com-
puter vision and robotics. In Proceedings of the 2nd Workshop on Structure
from Multiple Images of Large Scale Environments (SMILE), in conjunction
with ECCV 2000, Dublin, Ireland. Springer-Verlag LNCS, 2000.

15


