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Abstract

This document summarises two Java packages (network and tools)
that combine to permit the simulation of multi-class queueing networks.
The packages have been designed so as to be easy to use and extend, whilst
providing powerful primitives for building queueing networks composition-
ally and for implementing customer- and/or state-dependent routing and
time delays, simultaneous resource possession etc. Additional application-
specific functionality can be introduced straightforwardly by subclassing.
Examples of each of the library features is presented and some details of
their internal implementation is provided where this adds insight to the
design. A number of complete case studies is presented at the end.

1 Disclaimer

The software described here is freely available and can be downloaded by follow-
ing the instructions below. The author accepts no responsibility for problems
that may arise from its use. Users may modify the source code in any way they
see fit. Any suggestions for improvements, bug reports etc. will be gratefully
received; please email all feedback to ajf@doc.ic.ac.uk.

2 Getting Started

The following instructions are for the Linux operating system. The procedure
is similar for Windows, although details are not provided.

The network and tools packages, together with JavaDoc documentation,
are located in a jar file called Simulation.jar which can be downloaded from
here:

http://www.doc.ic.ac.uk/~ajf/Software/Simulation.jar
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Updates to this code base will be made frequently and stored in the file LatestSimulation.jar
in the same location. You are free to use the latest version, but it is not guar-
anteed to be consistent with this user guide. The guide will be updated when a
new release is announced. A summary of the updates made in the latest version
is included in LatestSumulation.jar.

Place the Simulation.jar file where you want the various packages and
documentation to to end up, e.g. /homes/me/Code. Now extract the archive.
You can optionally delete the archive itself afterwards:

prompt% jar xf Simulation.jar

prompt% rm Simulation.jar

You will now find the directory Simulation, which contains both the source and
class directories for the network and tools packages, together with supporting
JavaDoc documentation for the API. An additional source directory examples

contains the source code for the examples given in Section 5.

prompt% ls

META-INF Simulation

prompt% cd Simulation

prompt% ls

classes html sources

prompt% ls sources/

examples network tools

prompt% ls sources/network/

BoxedQueue.java OrderedQueueEntry.java

ClassDependentBranch.java OrderedQueue.java

ClassDependentDelay.java PreemptiveRestartNode.java

Customer.java PreemptiveResumeNode.java

Debug.java PriorityQueue.java

Delay.java ProbabilisticBranch.java

FIFOQueue.java ProcessorSharingNode.java

InfiniteServerNode.java QueueingNode.java

LIFOQueue.java Queue.java

Link.java RandomQueue.java

Network.java ResourcePool.java

Node.java Sink.java

NullNode.java Source.java

Ordered.java

and so on. You are now advised to add the location of the class files to your
CLASSPATH. For example, in your .cshrc file, do something like:

setenv CLASSPATH BLAH:/homes/me/Code/Simulation/classes

where BLAH lists any other paths that you have already defined.
When developing code that uses these packages, you simply need to import

them at the top of your .java files, e.g. for MyClass.java:
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import network.* ;

import tools.* ;

class MyClass {
// Code for MyClass

}

To compile MyClass invoke javac or use your favourite IDE. For example,

prompt% javac MyClass.java

which compiles MyClass.java.
The next section details the use of the network package for modelling queue-

ing networks, by means of simple examples. The objectives are to explain the
operation of the various classes, and to show how they can be extended to add
application-specific functionality. Ideally this should be read sequentially as
some examples build on earlier ones. Section 4 summarises the key features of
the underlying discrete-event simulation tools that the library builds on.

The archive contains the complete source code for both packages. These are
locally documented and JavaDoc documentation for the API is available in the
html directory above.

3 The Queueing network Package

3.1 Nodes

A queueing network is a network of Nodes. There are several node classes all of
which are descended from a Node superclass. These can be assembled to form a
queueing network and the network can then be simulated. The simulation can
be repeated many times, for example to compute a confidence interval. Details
of the complete assembly process will be given later. The discussion of the API,
and how to extend it, will proceed bottom-up.

Before starting it is important to initialise the Network class, which is re-
sponsible for setting up a queueing network:

Network.initialise() ;

As a first example, here’s how to build a simple internal node called “Node”:

Node

Node node = new Node( "Node" ) ;
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Customers that enter this node are passed directly to the node’s output. It’s
not a very interesting type of node, but more useful behaviour is achieved in
the various Node subclasses.

3.2 Sinks

Here’s how to build a sink node – a subclass of Node – called ”Exit”:

Exit

Sink exit = new Sink( "Exit" ) ;

If a customer enters a sink node, the customer is absorbed. All nodes have to
be named explicitly.

3.3 Customers

The objects that flow around the network are Customers. Here’s how to build
an anonymous customer:

Customer c = new Customer() ;

Customers can optionally be associated with a particular integer class:

Customer c1 = new Customer( 1 ) ;

Customer c2 = new Customer( 2 ) ;

Within a class customers can optionally have an additional integer priority:

Customer c10 = new Customer( 1, 0 ) ;

Customer c11 = new Customer( 1, 1 ) ;

Customer c12 = new Customer( 1, 2 ) ;

All customers have a unique identifier. Their creation time and current location
in the network are also recorded internally. There are getter/setter methods for
all customer attributes, except for the arrivalTime which is read-only, e.g.

Customer c53 = new Customer( 5, 3 ) ;

int customerClass = c53.getclass() ;

int customerPriority = c53.getPriority() ;

int id = c53.id() ;

double arrivalTime = c53.arrivalTime() ;

Node location = c53.getLocation() ;
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It is thus possible for customers to change their class and/or priority as they
progress through a network. Note the small ‘c’ in getclass(), which avoids a
name clash with Java’s existing ‘final’ method getClass().

We can extend customers with additional application-specific attributes by
subclassing the Customer class, e.g.:

class Patient extends Customer {
int age ;

public Patient( int patientClass, int age ) {
super( patientClass ) ;

this.age = age ;

}
public int getAge() {
return age ;

}
}

There is a notion of customer ordering that is embodied in the interface Ordered:

public interface Ordered {
public boolean smallerThan( Customer e ) ;

}

The Customer class implements Ordered. The default ordering is based on the
customer’s class.

3.4 Source Nodes

Source nodes can be used to inject customers into a network with a specified
inter-arrival time distribution, e.g.

Source source = new Source( new Exp( 4 ) ) ;

which builds a Poisson process with arrival rate 4. The Exp( r ) constructor
builds an exponential distribution sampler with rate parameter r (type double).
This is provided in the tools package, described in more detail in Section 4.

The arrival process may also be batched, with the batch size distribution
being specified by an additional parameter, e.g.

Source batchedSource = new Source( new Exp( 4 ),

new Geometric( 0.2 ) ) ;

which generates batches of arrivals with a mean size of 5 customers. Internally,
this generates individual customers using a protected method buildCustomer

that may optionally be subclassed. Thus, to inject customers of some subclass
of Customer, one simply needs to subclass Source and redefine this method,
e.g.
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class PatientSource extends Source {
public PatientSource( String name, DistributionSampler d ) {
super( name, d ) ;

}
protected Customer buildCustomer() {
return new Patient( 1, 0 ) ;

}
}

This injects Patients (see above) with fixed class and age (1 and 0 respectively),
although these are easily generalised. The distribution samplers in the tools

package all return doubles; these are truncated down to the nearest integer
prior to being used to define the batch size. Note that a batch size of zero
causes zero customers to be injected – essentially a non-arrival event.

3.5 Links

Two nodes can be joined together via a link. The simplest link routes a departing
customer directly to a specified node, e.g.:

NodeSource

Link sourceToNode = new Link( node ) ;

source.setLink( sourceToNode ) ;

or

source.setLink( new Link( node ) ) ;

When two nodes are joined together a customer departing one node is routed
automatically to the next. Internally, this is done by invoking a method enter

defined the Node classs; the departing customer is passed as a parameter.
If necessary, the enter method can be invoked explicitly. For example, here

is how route customer c manually to our internal node:

node.enter( c ) ;

If a network is built simply by wiring together nodes, it will not be necessary
to invoke any enter methods explicitly as the routing of customers will be
performed automatically.

3.5.1 Probabilistic Branching

Several commonly-occurring branching structures are built in as subclasses of
Link. The simplest is a probabilistic brancher which routes (all) departing
customers to one of a number of nodes dependent on associated probabilities,
e.g.
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Exit

0.3

0.7
Node

Source

ProbabilisticBranch pb

= new ProbabilisticBranch( new double[] { 0.3, 0.7 },
new Node[] { exit, node } ) ;

source.setLink( pb ) ;

There can be any number of branches; the probabilities must sum to 1.

3.5.2 Class-dependent Branching

Branching may also be class-dependent, e.g.:
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1 2 3
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1

3

Delay

Exit

Delay2

ClassDependentBranch cb

= new ClassDependentBranch( new int[] { 1, 2, 3 },
new Node[] { exit, exit, node } ) ;

source.setLink( cb ) ;

which routes class 1 and 2 customers to the exit node and class 3 customers to
the internal node.

3.6 Infinite Server Nodes

Instances of the Node class are not that useful as they simply route customers
from the node’s input to its output. An InfiniteServer node (a subclass of
Node) delays customers for an amount of time determined by a distribution
sampler such as:

7



DistributionSampler e = new Exp( 1.0 ) ;

DistributionSampler w = new Weibull( 1.0, 2.0 ) ;

as defined in the tools package (Section 4.2). The simplest delay does nothing
more than sample a given distribution sampler, e.g.

DistributionSampler e = new Exp( 1.0 ) ;

Delay d = new Delay( e ) ;

InfiniteServerNode is = new InfiniteServerNode( "IS", d ) ;

or

InfiniteServerNode is

= new InfiniteServerNode( "IS", new Delay( new Exp( 1.0 ) ) ) ;

3.6.1 Class-dependent Delays

Delays can depend on the customer. For example, we may want to sample a
distribution that depends on the customer’s class:

int[] cs = { 1, 3 } ;

DistributionSampler[] ds = { new Exp( 1.0 ),

new Weibull( 1.0, 2.0 ) } ;

ClassDependentDelay d1 = new ClassDependentDelay( cs, ds ) ;

which uses an exponential sampler for class 1 customers and a Weibull sampler
for class 3 customers.

3.6.2 Attribute-dependent Delays

Delays can also depend on other state variables or customer attributes defined
in a Customer subclass. To achieve this we subclass Delay and redefine the
method sample, which takes the customer as a parameter and delivers a sample
delay, e.g.:

class PatientDelay extends Delay {
protected double sample( Customer c ) {
if ( (Patient)c.age < 50 )

return 10.0 ;

else

return w.next() ;

}
}

with the Weibull distribution sampler w as above. Then, for example:

InfiniteServer is2 = new InfiniteServer( "IS2",

new PatientDelay() ) ;
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3.7 Resource Pool Nodes

Customers may need to acquire resources in order to progress through a network.
A ResourcePool node contains a specified integer number of resources. When
all resources are busy customers queue in FIFO order. The FIFO queue has
infinite capacity – see below how to make this finite and also how to change the
queueing discipline.

Importantly, the resource is held until it is explicitly returned to the pool.
This is the (only) difference between a resource pool node and a conventional
queueing node. Once acquired the resource is held at the ResourcePool node
for a time that is determined by a specified delay. When the customer leaves
the node the resource is still held, however. For example,

Delay d = new Delay( new Deterministic( 0 ) ) ;

ResourcePool resPool = new ResourcePool( "Pool", d, 5 ) ;

In this example, customers leave the node as soon as the resource is acquired,
as the local resource holding time (d) is zero. All resources at a ResourcePool

node are identical in respect of the holding time distribution.
A unit of resource may be returned at any point by invoking the resource

node’s releaseResource method, e.g.:

resPool.releaseResource() ;

This will cause any waiting customer at the head of the queue to acquire the
resource. Note that ResourcePool is a subclass of InfiniteServer.

The queues at a resource node have infinite capacity by default, although a
finite-capacity queue can be built by supplying an additional integer capacity
parameter to any queue constructor—see Section 3.13. For example, a finite-
capacity FIFO queue can be built by suitably parameterising the FIFOQueue

constructor (see below) and by passing the queue explicitly to the ResourcePool
constructor, e.g.

FIFOQueue fq = new FIFOQueue( 6 ) ;

ResourcePool resPool = ResourcePool( "Res", d, 5, fq ) ;

With this parameterisation, customers that enter the node when the queue
is full are lost and are a sent to a special nullNode. They can instead be
routed to a nominated “loss node” by invoking the setLossNode method in
class ResourcePool, e.g.

Node lostCustomerSink = new Node( "Losses" ) ;

ResourcePool resPool

= new ResourcePool( "Res", 5, d, fq ) ;

resPool.setLossNode( lostCustomerSink ) ;

The current population of the queue associated with a ResourcePool node can
be obtained via the method queueLength, e.g.
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int pop = resPool.queueLength() ;

This can be used to implement queue-length-dependent routing, for example.
In addition to FIFO queues, the network package also supports LIFO queues

(LIFOqueue), queues with random insertion and removal from the head (RandomQueue),
priority queues (PriorityQueue) and ordered queues, which insert customers
according to a specified ordering, with removal from the head (OrderedQueue).
These are described in more detail in Section 3.13.

3.8 Queueing Nodes

Queueing nodes comprise a specified integer number of servers and a queue
of waiting customers. They are identical to resource nodes except that the
“resource” (i.e. a server) is released when the customer leaves the node. A
QueueingNode queues waiting customers in FIFO order by default, e.g.:

Delay serviceTime = new Delay( new Exp( 2.0 ) ) ;

QueueingNode qNode

= new QueueingNode( "QNode", serviceTime, 3 ) ;

which models a 3-server queueing node with exponentially-distributed service
times with rate 2 per server.

Again, finite-capacity FIFO queues and non-FIFO queues can be supported
as for a resource node, e.g.:

QueueingNode qNode2

= new QueueingNode( "QNode", 3, serviceTime, fq ) ;

Note that class QueueingNode is a subclass of ResourcePool.

3.9 Processor Sharing Nodes

A processor sharing node is a special node type that apportions processing
capacity evenly among a set of “queued” customers. Actually, the customers
are best thought of as sitting in a pool, each receiving the same amount of
service per unit time. For example,

ProcessorSharingNode psn

= new ProcessorSharingNode( "PS Node", serviceTime ) ;

with serviceTime as above. It is not possible to build a processor sharing node
with more than one server.

Note that class ProcessorSharingNode is a subclass of ResourcePool. How-
ever, an attempt to invoke releaseResource on a ProcessorSharingNode will
induce an error as all resource (and queue) handling is managed internally.
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3.10 Preemptive Queueing Nodes

Preemptive-resume and preemptive-restart mechanisms are built in as sub-
classes of QueueingNode. These both assume that the queue associated with
the node has infinite capacity and that there is a single server.

Customers are removed from the queue when they are placed into service
and returned to the head of the queue when they are preempted. The default
queue in both cases is LIFO but, as above, this can be replaced with any queue
type. However, note that LIFO, FIFO, random and ordered queues all behave
identically here, as customers are removed from the head. Priority queues will
behave differently. For example,

PreemptiveResumeNode resumeNode

= new PreemptiveResumeNode( serviceTime ) ;

PreemptiveRestartNode restartNode

= new PreemptiveRestartNode( serviceTime, pq ) ;

with pq as above.

3.11 Boxed Queues

A BoxedQueue node is a node containing just a queue. Customers entering the
node are placed in the queue. Because the queue is passive an additional method
dequeue is provided to remove the customer at the head of the queue, e.g.

BoxedQueue bq = new BoxedQueue( "BQ", new PriorityQueue( 4 ) ) ;

bq.enter( new Customer() ) ;

bq.enter( new Customer() ) ;

Customer c = bq.dequeue() ;

3.12 Adding Custom Functionality

3.12.1 Subclassing Node

The Node superclass contains protected methods accept and forward that can
usefully be overridden in subclasses, in order to extend a node’s functionality.
accept is invoked when a customer enters a node and forward is invoked when
a customer is about to leave a node. In the root Node class, for example, accept
invokes forward immediately. This sends the customer to the node’s output link
and subsequently on to some successor node in the network, depending on the
nature of the node’s link.
Implementation details: The various subclasses of Node work by redefining
the accept and forward methods. For example, class Sink redefines accept so
that the customer is registered as having completed:

Network.completions++ ;

Network.registerCompletion( Sim.now() - c.getArrivalTime() ) ;
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The ResourcePool class redefines the accept method of the parent class (in this
case InfiniteServerNode) so that incoming customers are queued (or rejected)
if no resources are available. In class QueueingNode, the forward method is
overridden from its definition in ResourcePool so that the acquired resource is
released immediately when a customer departs. Finally, note that a Source node
injects customers by invoking its own forward method for each new customer
that is generated. This passes the customer into the network via the source
node’s output link.
Example As an example, the following sketches the code for a router, a subclass
of a FIFOQueueingNode, that has an additional “recovery queue” in the event of
a packet being corrupted, having earlier been forwarded toward its destination.
The recovery queue is a circular buffer (not supported in the library described
here but assumed to be implemented elsewhere in the model code).

...

Nack

NormalNormal

Nack

FIFO Queue

Recovery
buffer

Packets forwarded are added to the buffer. If the forwarded packet is corrupted
down the line, a Nack is returned (here a different customer class) containing
the identifier of the corrupted packet. If the original packet is still in the buffer,
it is re-sent. If not, the Nack is passed back (presumably to the previous router)
in the hope that it can be recovered there and re-sent. Circular buffer lookups
are assumed to be based on packet identifier. The buffer has a finite capacity,
which is a parameter of the buffer contructor. The example does not show the
wiring of the network although it can be assumed that the outgoing Link routes
normal packets, Nacks and other packet types differently — they are different
classes of Packet, which is presumably a subclass of Customer.
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class Router extends QueueingNode {
CircularBuffer recoveryQueue ;

public Router( String id, Delay d, int qCap, int bufferCap ) {
super( id, d, 1, new FIFOQueue( qcap ) ) ;

recoveryQueue = new CircularBuffer( bufferCap ) ;

}

protected void accept( Customer c ) {
if ( c.getclass() == normalPacket ) {
super.accept( c ) ;

} else if ( c.getclass() == NackPacket ) {
if ( recoveryQueue.contains( NackPacket.getID() ) ) ;

Packet packet = recoveryQueue.lookUp( NackPacket.getID() ) ;

forward( packet ) ;

} else {
// Send Nack back down the line...

forward( c ) ;

}
} else {
// All other packets are ignored

}
}

protected void forward( Customer c ) {
Packet packet = (Packet)c ;

recoveryQueue.addToBuffer( packet ) ;

super.forward( packet ) ;

}
}

3.12.2 Subclassing InfiniteServer

The method invokeService( Customer c ) is defined in class InfiniteServer
where it schedules an event which implements the end of the service delay for
customer c (see below for how to manage events in general). This method can
be called by any subclass of InfiniteServer in order to add functionality prior
to the delay; however, it cannot be overridden.

3.12.3 Subclassing Link

In some situations it may be appropriate to induce application-specific actions
within a link, rather than at a node. As an example, a customer that departs
a specified node may need to release a resource acquired elsewhere in the net-
work, or it may need to change its class and/or priority. These effects can be
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achieved either by subclassing the node and redefining the forward method, or
by redefining the associated Link object at the node’s output.

To implement the latter we extend the Link class, or any of its subclasses,
and over-ride the method move which moves a given customer to a destination
node. The required “special action” can be added to the move method thus:

class SpecialBranch extends ClassBranch {
public SpecialBranch() {
super( new int[] { 1, 2, 3 },

new Node[] { exit, exit, node } ) ;

}
protected void move( Customer c ) {
// Do special action here

super.move( c ) ;

}
}

3.13 More on Queues

All queues store objects of type Customer. An important invariant of most
queues is that a customer is deemed not to be queueing whilst it is receiving
service. This greatly simplifies the implementation of multi-server nodes and
arguably better reflects reality. However, some care must be taken when inter-
preting various measures computed during a simulation. For example, in the
case of preeemptive disciplines the measured mean queueing time will not be
the same as the mean total time spent at a queue by a customer, as a customer
may rejoin the queue several times during its visit to a node. In a processor
sharing node a customer is demmed to be in the “queue” for its entire sojourn
at the node. The mean time in the queue is then the same as the mean waiting
time.

LIFO queues and random queues are parameterised as per FIFO queues, e.g.

Delay d = new Delay( new Deterministic( 100 ) ) ;

LIFOQueue lq = new LIFOQueue() ;

RandomQueue rq = new RandomQueue( 10 ) ;

ResourcePool resPool = new ResourcePool( "Res", d, 5, rq ) ;

The last line builds a resource pool with 5 resources and a random queue with
capacity 10 for queueing waiting customers; customers hold a resource locally
for 100 time units before leaving the node.

A priority queue comprises a specified number of sub-queues, each of which
is FIFO by default. The i

th queue stores customers of priority i and the highest
priority is 0. The constructor is parameterised by the number of priority classes
(number of sub-queues), e.g.

PriorityQueue pq = new PriorityQueue( 6 ) ;
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The sub-queues are FIFO by default but this can be modified by overriding
a protected method buildOneQueue() in the PriorityQueue class that builds
one such queue, e.g.

protected Queue buildOneQueue() {
return new RandomQueue( 4 ) ;

}

The combined effect of the above is to build a priority queue supporting cus-
tomer priorities 0-5, where the queue for each priority class has capacity 4 and
implements a random queueing discpline.

Ordered queues make use of the customer ordering (see Section 3.3 above).
The default ordering uses the customer class (0 is the minimum element in this
ordering). A different ordering can be used by redefining smallerThan in any
subclass of Customer, e.g.

class Patient extends Customer {
int age ;

public Patient( int patientClass, int age ) {
super( patientClass ) ;

this.age = age ;

}
public int getAge() {
return age ;

}
public boolean smallerThan( Customer e ) {
return this.getAge() <= ((Patient)e).getAge() ;

}
}

In this example, patients will be inserted in age order, with the youngest ap-
pearing first. For example

Node source = new PatientSource( "Source", new Exp( 1 ) ) ;

Delay d = new Delay( new Exp( 2 ) ;

OrderedQueue q = new OrderedQueue() ;

Node qn = new QueueingNode( "MM1", d, 1, q ) ;

Node sink = new Sink( "Sink" ) ;

source.setLink( new Link( qn ) ) ;

qn.setLink( new Link( sink ) ) ;

where PatientSource is as in Section 3.4. Each patient injected by the source
will have an ordering based on age. When these hit the queueing node (qn) they
will be queued in age order.
Implementation Note: Processor sharing nodes are implemented by storing
customers in order of their service completion time, with respect to a local
clock. This clock ticks slower as customers are added to the queue. A processor
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sharing “queue” is implemented internally using an ordered queue, where the
queue entries comprise customers and their finish times. The ordering is defined
by implementing the Ordered interface in a class OrderedQueueEntry:

public class OrderedQueueEntry extends Customer

implements Ordered {
double time ;

public Customer entry ;

public OrderedQueueEntry( Customer c, double t ) {
time = t ;

entry = c ;

}
public boolean smallerThan( Customer e ) {
return ((OrderedQueueEntry)this).time <=

((OrderedQueueEntry)e).time ;

}
}

3.14 Output

Each node in a queueing network maintains measurement variables internally.
At the end of a simulation (or at any point during a simulation, e.g. during a
‘batched means’ run) a summary of all the measures from a node can be logged
by invoking the method logResults on a that node, e.g.

source.logResults() ;

The measurements for an entire network, which comprises global network mea-
sures and local measures for each node, can be generated by invoking the static
method logResults in class Network, viz.

Network.logResults() ;

The logResults method can be invoked any number of times, up to some
specified limit.

Once the results have been logged they can be displayed by invoking the
static method Network.displayResults. An optional parameter is the confi-
dence level. The current values supported via encoded tables of the Student’s
‘t’ distribution are 0.01, 0.025, 0.05 and 0.1. If no confidence level is supplied a
value of 0.05 is assumed.

The accuracy of the confidence interval will depend on the properties of
independence and normality. If the logged measures are dependent and/or are
not normally distributed, the computed confidence interval will be inaccurate.
With independent replications, mean values will be approximately normal, but
variances and other measures may not. Some care is therefore needed in the
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interpretation of confidence intervals reported in the model output. The point
estimates in each case will, however, be reliable.

All node types have a resetMeasuresmethod that resets the node’s internal
measures (see also Section 4.4). This is typically used to “delete” measurements
taken during initialisation transients, when observing a system in its steady
state. There is no built-in mechanism for detecting approximate steady state
but, once the approximate length of the warm-up transient has been established,
there is a built-in mechanism for resetting measures after the warm-up has
expired; this is described in Section 4.4.1.

3.15 Tracing and Debugging

A trace of customer flow through a network can be generated by turning on a
debug trace facility via a static method in class Debug, thus:

Debug.setDebugOn() ;

This can be toggled (On/Off) dynamically if necessary. The default is Off.
Additional trace messages can be added via the static method Debug.trace

which displays a given string only if the debug toggle is on, e.g.

Debug.setDebugOn() ;

Debug.trace( "Debug is now on" ) ;

4 The Simulation tools Package

The classes Event and Sim can be used to construct an event-driven simulation.
The network package is built on top of these.

4.1 Events

All events are subclasses of Event and must implement a method invoke which
defines what the event does. The Event constructor is parameterised by the
time that the event is to be invoked, e.g.:

class NewEvent extends Event {
public NewEvent( double t ) {
super( t ) ;

}
public void invoke() {
System.out.println( "NewEvent has been invoked" ) ;

}
}
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4.2 Distribution Samplers

In addition to Exp( double r ) and Weibull( double alpha, double beta ) in-
troduced earlier, there are other distribution samplers. Here is the complete
list:

Cauchy( double a, double b )

Deterministic( double t )

Erlang( int k, double theta )

Exp( double r )

Gamma( double theta, int beta )

Geometric( double p )

Normal( double mu, double sigma )

Pareto( double k, double a, double b )

Uniform( double a, double b )

Weibull( double alpha, double beta )

There are also empirical samplers:

DiscEmpirical( double xs[], double fs[] )

which samples an empirical discrete distribution defined by a set of observed
values and their frequencies, and

ContEmpirical( double xs[], double fs[] )

similarly, except that the xs delimit contiguous intervals on the real line.
With the exception of the Gamma sampler and two empirical samplers,

there are equivalent static methods for sampling each distribution within the
associated class. For example Exp.exp( 2.0 ) generates a sample from the
exponential distribution with parameter 2 (mean 0.5).

4.3 Simulation

An event-driven simulation involves scheduling instances of the Event class in
a hidden time line and then processing them in time order.

A simulation is built by subclassing Sim. The Sim class contains entirely
static methods so that the various methods can be invoked from anywhere with-
out having to pass around a Sim object explicitly.

Sim is an abstract class which requires a termination function stop to be de-
fined (a call-back). This enables the application to define arbitrary termination
criteria, e.g. based on the model state, virtual time etc.

The preferred approach is for the Sim subclass to contain the complete model
state as instance variables and the set of events as inner classes; this also avoids
the need to prefix Sim method names with “Sim.”. This will be assumed in the
following.

The passage of time is modelled by an internal clock that can be inspected
via the method call now(), e.g.:
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double currentTime = now() ;

This is a static method, so the call Sim.now() works fine in all contexts. Within
a Sim subclass, the prefix can be dropped.

The Sim class also defines a static method schedule for adding a new event
instance to the time line and a method simulate which begins the processing
of the time line. Here is a simple example of a complete simulation model:

import tools.* ;

class TickerSim extends Sim {

// Example state variable

int n = 0 ;

// Example event

class Tick extends Event {
public Tick( double t ) {
super( t ) ;

}
public void invoke() {
n++ ;

System.out.println( "Tick " + n + " at time " + now() ) ;

schedule( new Tick( now() + 10.0 ) ) ;

}
}

// Example termination function; abstract in superclass

public boolean stop() {
return now() > 100 ;

}

// Here, the constructor starts the simulation.

public TickerSim() {
schedule( new Tick( 0.0 ) ) ;

simulate() ;

}

// Main method simply invokes the Sim constructor

public static void main( String args[] ) {
new TickerSim() ;

}
}

This schedules a Tick event every 10.0 time units. Each event invocation sched-
ules the next one. A single integer state variable tracks the number of tick events
to date. When executed, it produces the output:
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Tick 1 at time 0.0

Tick 2 at time 10.0

Tick 3 at time 20.0

Tick 4 at time 30.0

Tick 5 at time 40.0

Tick 6 at time 50.0

Tick 7 at time 60.0

Tick 8 at time 70.0

Tick 9 at time 80.0

Tick 10 at time 90.0

Tick 11 at time 100.0

Implementation detail: The InfiniteServer class implements a customer
delay by redefining the accept method to insert an event representing the end
of the service delay. The invokeService method introduced earlier uses the
static schedule method in class Sim to do this. Note that the “Sim” prefix is
required in this case as the call is being made from outside a Sim subclass.

4.4 Measures

Resource objects and the various types of Queue object all have built-in mea-
sures. The tools used to maintain these measures can be used elsewhere. A
CustomerMeasure maintains customer-oriented measures, such as mean wait-
ing time. A SystemMeasure maintains system-oriented measures such as mean
population. Both are subclasses of the abstract class Measure. The difference is
that the latter accumulates the integral under a step function, whilst the former
accumulates a sum.

By default, the first and second moments are maintained by a Measure. Up
to 10 moments can be computed by appropriately parameterising the Measure

constructor. The sample n
th moment and the the mean and variance of a

measure can be obtained through the API. For example,

CustomerMeasure cm = new CustomerMeasure() ;

cm.add( 1.0 ) ;

cm.add( 2.0 ) ;

cm.add( 3.0 ) ;

double m = cm.mean() ; // The sample mean will be 2

SystemMeasure sm = new SystemMeasure( 3 ) ;

sm.add( 1.0 ) ;

sm.add( 2.0 ) ;

sm.add( 3.0 ) ;

m = sm.mean() ;

double v = sm.variance() ;

double m3 = sm.moment( 3 ) ;

Note that the mean in the case of sm will be undefined in this example, as the
three calls to add occur at the same (virtual) time. In practice add will be called
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as a simulation progresses, i.e. over a passage of virtual time.

4.4.1 Measure Resets

All measures have a resetMeasures method that can be used to reset the
measure’s internal variables. This is necessary when “deleting” observations
during the transient warm-up phase of a simulation, when the user is interested
in modelling the steady state.

There is no built-in mechanism for detecting when a simulation is close
to a steady state. The warm-up period must be specified by the user and
will typically be based on observations of pilot runs of the model. When the
approximate warm-up period is known, the simulate method described above
can be optionally parameterised by this warm-up period. Internally this will
set up an “end of warm-up” event whose sole action is to invoke a method
resetMeasures() defined in the Sim class. This can be overridden to reset any
or all measures defined in the model. For example,

class SimSubclass extends Sim {
Resource server = new Resource() ;

// Rest of Sim subclass code

public void resetMeasures() {
server.resetMeasures() ;

}

public SimSubclass() {
simulate( 10000.0 ) ;

}
}

which resets the measures in a Resource object after the first 10000 time units
of the simulation. A warning will be issued if the resetMeasures method is not
overridden when a warm-up period is specified.
Implementation detail: All Queue objects in the network package maintain
the mean and variance of the queue length and time spent in the queue using
built-in measures. A Resource object maintains the resource utilisation using a
built-in SystemMeasure. Access to these measures is provided through methods
with obvious meaning, for example:

double mql = fq.meanQueueLength() ;

double vql = fq.varQueueLength() ;

double mtq = fq.meanTimeInQueue() ;

double u = server.utilisation() ;

These internal measures can be reset, for example to allow measurements taken
during initialisation transients to be ignored. Queue and Resource objects pro-
vide their own methods for resetting internal measures:
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fq.resetMeasures() ;

server.resetMeasures() ;

4.5 Independent Replications

4.6 Result Logging

A simulation can straightforwardly be repeated many times by re-invoking the
appropriate Sim subclass constructor. At the end of each run it will be normal
to log a summary of the measurements obtained during the run. The Logger

class contains static methods for logging a single result and for displaying a
summary of all logged results, possibly over many runs. Each result is logged
by passing a String identifying the result, and the result value, to the static
method logResult, e.g.

Logger.logResult( "PS node delay", psn.meanTimeInQueue() ) ;

with psn as in Section 3.9.
If logResult is called repeatedly with the same string identifier, each new

result will be added to those already logged. A set of logged results can be
displayed by invoking the static method Logger.displayResults directly. An
optional parameter specifies the confidence level, which functions as described
in Section 3.14.

The static method Network.displayResultsdescribed in Section 3.14 works
by invoking Logger.displayResults. For details of how confidence intervals
are produced from the logs, refer back to this section.

4.7 Replication Management

Using the above approach a simulation can be executed several times simply
by reinvoking the corresponding Sim subclass constructor. Automatic control
over the replication process is provided by an abstract class ReplicatedSim.
This contains an abstract method runSimulation which should be instanti-
ated so that it invokes a given simulation by invoking its constructor. The
ReplicatedSim has two parameters: the number of replications and a confi-
dence level. The runSimulation method is invoked the specified number of
times and the Logger.displayResults is then used to display a summary of
all the results logged during the runs. For example:
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public class ManySims extends ReplicatedSim {
public ManySims( int n, double a ) {
super( n, a ) ;

}
public void runSimulation() {
new OneSim() ;

}
public static void main( String args[] ) {
new ManySims( 3, 0.05 ) ;

}
}

which invokes the Sim subclass construtor OneSim three times and reports the
results using a confidence level of 0.05.

5 Examples

To illustrate how the various classes can be put together, some simple examples
are now provided. The source code for these can be found in the distribution.

5.1 MM1 Queue - Hand-coded Version

The following details an M/M/1 queue simulation build without using the
network package. Arrival and departure events are modelled explicitly and
the population of the queue is maintained by an integer instance variable. The
service rate is hard coded to 4 and the arrival rate to 2, although these are
easily generalised to be parameters. Only the server utilisation is measured (via
a Resource) and logged. The main method runs the model three times and
then displays a summary of the results.
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import tools.* ;

class SSQSim extends Sim {
Resource server = new Resource() ;

int pop = 0 ;

class Arrival extends Event {
public Arrival( double t ) {
super( t ) ;

}
public void invoke() {
schedule( new Arrival( now() + Exp.exp( 2 ) ) ) ;

pop++ ;

if ( server.resourceIsAvailable() ) {
server.claim() ;

schedule( new Departure( now() + Exp.exp( 4 ) ) ) ;

}
}

}
class Departure extends Event {
public Departure( double t ) {
super( t ) ;

}
public void invoke() {
pop-- ;

if ( pop > 0 )

schedule( new Departure( now() + Exp.exp( 4 ) ) ) ;

else

server.release() ;

}
}
public boolean stop() {
return now() > 1000000 ;

}
public SSQSim() {
schedule( new Arrival( now() + Exp.exp( 2 ) ) ) ;

simulate() ;

Logger.logResult( "Utilisation", server.utilisation() ) ;

}
public static void main( String args[] ) {
new SSQSim() ;

new SSQSim() ;

new SSQSim() ;

Logger.displayResults( 0.01 ) ;

}
}
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Here is some sample outout:

SUMMARY OF STATISTICS

Confidence level: 1.0%

Utilisation

Point estimate: 0.5002281258375239

Degrees of freedom: 2

C.I. half width: 8.417644702812562E-4

5.2 MM1 Queue - Queueing Network Version

The next example uses the network package to build the same simulation. The
system comprises a source node a queueing node and a sink. The simulation
maintains a large array of internal measures as detailed earlier. Here, however,
only the server utilisation is extracted for logging.
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import network.* ;

import tools.* ;

class MM1Sim extends Sim {

public MM1Sim() {
Network.initialise() ;

Delay serveTime = new Delay( new Exp( 4 ) ) ;

Source source = new Source( "Source", new Exp( 2 ) ) ;

QueueingNode mm1 = new QueueingNode( "MM1", serveTime, 1 ) ;

Sink sink = new Sink( "Sink" ) ;

source.setLink( new Link( mm1 ) ) ;

mm1.setLink( new Link( sink ) ) ;

simulate() ;

Network.logResult( "Utilisation", mm1.serverUtilisation() ) ;

}

public boolean stop() {
return Network.completions == 1000000 ;

}

public static void main( String args[] ) {
new MM1Sim() ;

new MM1Sim() ;

new MM1Sim() ;

Network.displayResults( 0.01 ) ;

}
}

This version executes approximately four times slower than the hand-crafted
original, but is very much easier to follow. Also, a full complement of measures
is maintained behind the scenes, even though only the utilisation is logged in
this case.

Note that the sink node can be omitted, but then no completions will be
logged and the stop method will always return false. The termination criteria
could be modified, however, e.g. so that it is based on time.

5.3 CPU Model

This example models a queueing network comprising a CPU and two disks as
shown below.
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Completions

Arrivals

Disk2

Disk 1

CPU

Jobs arrive according to a Poisson process and join the CPU. The mean CPU
visit time is 5ms. At the end of a visit the job either leaves (probability 1 in 121
visits) or visits one of two disks (probabilities 70/121 and 50/121 respectively).
The disk service times are 30ms and 27ms respectively. All time delays are
exponential. The code here shows one run of the model over 10000 completed
jobs.

The time delay distributions here are all exponential, so this model can be
analysed analytically. It is easy, however, to change the distributions.
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import network.* ;

import tools.* ;

class CPUSim extends Sim {

public CPUSim() {
Network.initialise() ;

Delay cpuTime = new Delay( new Exp( 1/0.005 ) ) ;

Delay disk1Time = new Delay( new Exp( 1/0.03 ) ) ;

Delay disk2Time = new Delay( new Exp( 1/0.027 ) ) ;

Source source = new Source( "Source", new Exp( 0.1 ) ) ;

QueueingNode cpu = new QueueingNode( "CPU", cpuTime, 1 ) ;

QueueingNode disk1 = new QueueingNode( "Disk 1", disk1Time, 1 ) ;

QueueingNode disk2 = new QueueingNode( "Disk 2", disk2Time, 1 ) ;

Sink sink = new Sink( "Sink" ) ;

double[] routingProbs = { 1.0/121.0, 70.0/121.0, 50.0/121.0 } ;

ProbabilisticBranch cpuOutputLink

= new ProbabilisticBranch( routingProbs,

new Node[] { sink, disk1, disk2 } ) ;

source.setLink( new Link( cpu ) ) ;

cpu.setLink( cpuOutputLink ) ;

disk1.setLink( new Link( cpu ) ) ;

disk2.setLink( new Link( cpu ) ) ;

simulate() ;

Network.logResults() ;

}

public boolean stop() {
return Network.completions == 10000 ;

}

public static void main( String args[] ) {
new CPUSim() ;

Network.displayResults() ;

}
}
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