
2009 Haskell January Test

Binary Decision Diagrams

This test comprises four parts and the maximum mark is 25. Parts I, II and III are worth 23 of
the 25 marks available. The 2009 Haskell Programming Prize will be awarded for the best
attempt(s) at Part IV.

Credit will be awarded throughout for clarity, conciseness, useful commenting and the appropriate
use of Haskell’s various language features and predefined functions.

WARNING: The examples and test cases here are not guaranteed to exercise all aspects of your
code. You may therefore wish to define your own tests to complement the ones provided.

1

1 Introduction

Binary Decision Diagrams, or BDDs, are directed acyclic graphs that are used to represent boolean
expressions1. Operations on BDDs are often substantially more efficient than the equivalent
operations on expressions and this makes them attractive when working with large-scale problems
involving boolean logic. Common applications of BDDs include circuit synthesis and “Satisfiability
Solvers” (SAT solvers) that are used extensively in verification.

2 Boolean Expressions

In this exercise you are going to manipulate an abstract representation of well-formed boolean
expressions that comprise the boolean constants False and True, boolean variables (e.g. x1,
x2,...), negation (¬), and the binary operators and (∧) and or (∨). Here are some examples:

False
x1 ∧ True
¬(x7 ∧ (x2 ∨ ¬x3))
¬x3 ∨ (x2 ∨ ¬x9)

The operations ¬, ∧ and ∨ have the usual meaning, as shown in Table 1. Boolean expressions

a ¬a
False T rue
T rue False

a b a ∧ b a ∨ b
False False False False
False T rue False T rue
T rue False False T rue
T rue T rue T rue T rue

Table 1: Truth tables for ¬, ∧ and ∨.

such as these can be represented in Haskell using the following algebraic data type:

type Index = Int

data BExp = Prim Bool | IdRef Index | Not BExp | And BExp BExp | Or BExp BExp

deriving (Eq, Ord, Show)

type Env = [(Index, Bool)]

with Not, And and Or representing ¬, ∧ and ∨ respectively. Note that boolean variables are
represented by a positive integer that uniquely identifies the variable, e.g. 5 for x5. As an example,
the boolean expression ¬(x1 ∧ (False ∨ x2)) will be represented thus:

Not (And (IdRef 1) (Or (Prim False) (IdRef 2)))

1Here, boolean expressions are synonymous with boolean functions in the sense that an expression defines a

mapping from boolean variable values to one of {False, T rue}.

2

3 Binary Decision Diagrams

An alternative way to represent a boolean expression is as a Binary Decision Diagram, or BDD,
which provides a succinct and often very efficient way to implement boolean operations. Each
internal node in a BDD specifies an integer variable index, e.g. 5 for x5. This variable can assume
either the value False or True and there is a separate subtree for each case; we will adopt the
convention that the left subtree always corresponds to False and the right subtree to True. Each
path through the tree thus represents a unique assignment of values to variables and leads to a leaf

that represents the value of the expression under the corresponding variable assignment; again,
this is either False or True.

A complete BDD is conceptually very similar to a binary tree that encodes all possible as-
signments of the boolean variables contained in a given expression. If there are n such variables,
then there are 2n possible assignments. For the bulk of this exercise BDDs will be assumed to be
complete in this sense; such BDDs are sometimes referred to as Binary Decision Trees.

As an example, Figure 1 shows two BDDs for the expression ¬(x1 ∧ (False∨ x2)). The leaves
F and T in the figure are shorthand for False and True respectively. The number associated with

T

FT

F F TT

F T

FT

F F TT

2 2

1 2

1 1

F

Figure 1: The two complete BDDs for ¬(x1 ∧ (False ∨ x2))

each internal node is the variable index. Each variable in an expression corresponds to one layer
in the tree, so there are only two possible BDDs in this case: one where the variable references
appear in the order [1,2] from top to bottom (left) and the other where they appear in the order
[2,1] (right).

As an example, when x1 = True and x2 = False, the expression evaluates to True because
the corresponding path through the BDD (right, left for the BDD on the left of Figure 1 and
left, right for the one on the right) leads to the leaf corresponding to True (T).

Notice that there is only one leaf corresponding to the expression False (F), similarly True
(T), and that these are shared by the internal nodes. Indeed, we shall see examples later on where
the internal nodes of a BDD can also be shared. BDDs in general are thus Directed Acyclic Graphs

(DAGs) and can be represented in Haskell by a pair comprising the identifier of the root node of
the BDD and a list of internal nodes that collectively describe the structure of the BDD. Each
internal node comprises a unique node identifier, a positive integer, and a triple (i, l, r), where i is
the integer index of a boolean variable and l and r are the identifiers of the nodes corresponding
to the left and right subtrees respectively:

type NodeId = Int

type BDDNode = (NodeId, (Index, NodeId, NodeId))

type BDD = (NodeId, [BDDNode])

Because the leaves representing False and True are potentially part of every BDD, they will not
be explicitly included in the representation. Instead, the reserved labels 0 and 1 will be used to

3

label the ‘invisible’, but ever-present, leaves corresponding to False and True respectively. For
example, the BDDs in Figure 1 might be represented respectively as:

(2,[(4,(2,1,1)),(5,(2,1,0)),(2,(1,4,5))])

(2,[(2,(2,7,3)),(7,(1,1,1)),(3,(1,1,0))])

Note that the node identifiers must be unique but are otherwise arbitrary and that the order of
the elements in the list is not significant. What if there are no internal nodes, as in the case of
the expression False, for example? The corresponding BDD in this case contains no nodes other
than that for False itself and so will be represented by the pair (0,[]).

3.1 Operations on BDDs

One of the advantages of working with BDDs is that various operations on boolean expressions can
be performed directly on the corresponding BDD, often much more efficiently than if they were
performed on the expressions themselves. In this exercise you will implement two such operations:

1. checkSat (check satisfiability) which checks whether a given set of variable assignments
satisfies the corresponding expression, i.e. causes it to be True. For example, in the
BDD of Figure 1, the assignment (x1 = True, x2 = False) satisfies the expression but
(x1 = True, x2 = True) does not. To check for satisfiability in a BDD you simply traverse
the BDD from top to bottom proceeding either left or right depending on the given assign-
ment (False ⇒ turn left, True ⇒ turn right). The expression is satisfied iff you end up at
the ‘invisible’ leaf corresponding to True (node identifier 1).

2. allSat, which returns the set of all variable assignments that will cause the expression to
be True. For example, for the BDD of Figure 1 the ‘satisfying’ variable assignments are
(x1 = False, x2 = False), (x1 = False, x2 = True) and (x1 = True, x2 = False). Each
element of the set corresponds to a path from the root node of the BDD that ends with the
leaf corresponding to True (node identifier 1).

4 What to do

The exercise is broken down into four parts. The majority of the marks are assigned to the first
three parts. You are advised not attempt the last part until you have completed the first three.

A number of example expressions, b1, ..., b8, each of type BExp, are included in the template
file for testing purposes, including those referred to in the text:

b1 False
b2 ¬(x1 ∧ (False ∨ x2))
b3 x1 ∧ True
b4 x7 ∧ (x2 ∨ ¬x3)
b5 ¬(x7 ∧ (x2 ∨ ¬x3))
b6 (x1 ∧ x2) ∨ (x3 ∧ x4)
b7 ¬x3 ∨ (x2 ∨ ¬x9)
b8 x1 ∨ ¬x1

Note that b8 is a tautology: the expression is True regardless of the value of x1. A valid BDD for
each expression, assuming the indices are listed in ascending order (e.g. [2,3,7] for b4), is also
included in the template. These are labelled bdd1, ..., bdd8.

4

Part I - Basics

1. Define a polymorphic function lookUp :: Eq a => a -> [(a, b)] -> b that will per-
form generic table look-up. A precondition is that there is exactly one occurrence of the
item being searched (type a) in the table. For example, lookUp 5 [(4,1),(5,2),(9,9)]

should return 2 and lookUp (2,1) [((1,2),True),((2,1),False)] should return False.

[1 mark]

2. Define a function checkSat :: BDD -> Env -> Bool that will return True if the variable
assignments given in the environment Env satisfy the expression corresponding to the given
BDD; False otherwise. An environment (type Env) maps a variable index to its value, which
will be either False or True. The type synonym Env is defined in the template as follows:

type Env = [(Index, Bool)]

For example,

*Main> checkSat bdd2 [(1,True),(2,False)]

True

*Main> checkSat bdd7 [(3,True),(2,False),(9,True)]

False

Hint: You’ll need a helper function to walk you from top to bottom through the BDD,
starting with the root node. You’ll need two table look-ups here: one to look up the current
node identifier in the BDD and the other to look up the variable index (given in the node)
in the given environment. Don’t forget that you can assume nothing about the internal
node identifiers in the BDD, except that they are positive and unique, nor the order of the
elements in either the BDD or the environment.

[4 marks]

3. Define a function sat :: BDD -> [[(Index, Bool)]] that will compute the list of all sets
of variable assignments that cause the boolean expression corresponding to the given BDD
to be True. Each ‘set’ of assignments is a list of (Index, Bool) pairs. For example,

*Main> sat bdd1

[]

*Main> sat bdd2

[[(1,False),(2,False)],[(1,False),(2,True)],[(1,True),(2,False)]]

*Main> sat bdd8

[[(1,False)],[(1,True)]]

Hint: You’ll need a helper function similar to that for checkSat above, wherein the base
cases should be [] when you hit the node representing False (identifier 0) and [[]] when
you hit the node representing True. This is because there is no satisfying assignment for
the expression False and exactly one satisfying assignment for True – the empty one.

[5 marks]

5

Part II

1. Define a non-recursive function simplify :: BExp -> BExp that will simplify a given
boolean expression by applying the rules defined in the truth tables of Table 1 in the cases
where the argument(s) to ¬, ∧ and ∨ are primitive booleans (Prim). If they are not then
the expression should be returned unmodified. For example,

Main> simplify (Not (Prim False))

Prim True

Main> simplify (Or (Prim False) (Prim False))

Prim False

Main> simplify (And (IdRef 3) (Prim True))

And (IdRef 3) (Prim True)

Note that the third example could be further simplified to IdRef 3 by exploiting the se-
mantics of ∧, but this type of simplification is not required here.

[2 marks]

2. Define a recursive function restrict :: BExp -> Index -> Bool -> BExp that replaces
a specified variable in a boolean expression, given by its integer Index, with a given boolean
constant. Note that the replacement may allow one or more of the simplification rules above
to be applied, so you should invoke your simplify function each time you build a new Not,
And or Or expression. For example,

*Main> b7

Or (Not (IdRef 3)) (Or (IdRef 2) (Not (IdRef 9)))

*Main> restrict b7 2 True

Or (Not (IdRef 3)) (Or (Prim True) (Not (IdRef 9)))

*Main> restrict (restrict b7 2 True) 9 False

Or (Not (IdRef 3)) (Prim True)

*Main> restrict (restrict (restrict b7 2 True) 9 False) 3 True

Prim True

[5 marks]

Part III

You are now going to build the BDD for a given expression by defining a function

buildBDD :: BExp -> [Index] -> BDD

The [Index] contains the variable indices referenced in the expression, in some order. A precon-
dition is that this contains exactly one occurrence of each identifier in the expression and no other
elements.

You can implement this function in any way you wish, but the suggested method is in terms
of a helper function whose declaration is included in the template file:

buildBDD’ :: BExp -> NodeId -> [Index] -> BDD

6

The NodeId is the identifier that you should assign to the next node in the BDD, as you build it.
Because the node identifiers 0 and 1 have been reserved to represent False and True respectively,
the first unused identifier is 2. From this, it is easy to see how buildBDD should be defined (as
can be found in the template):

buildBDD e xs

= buildBDD’ e 2 xs

Figure 2 illustrates the idea. The numbers to the left of each node are the node identifiers – see
below for how to assign them. In this example, the Index list passed to buildBDD would have

T

F

2

1

6

F

3

l r

2

4 5

8 9

18

Figure 2: Building a BDD

been of the form [2,6,1,3,...etc.]. The diagram shows the situation where the node labelled 18
is about to be built. The corresponding call to buildBDD’ would be of the form:

buildBDD’ e 18 [3,...]

In this case the next node will be of the form (18,(3,l,r)), where l and r are the integer
identifiers associated with the left and right ‘subtrees’. You will obtain these by recursion. Note
that when you recurse, you will need to restrict the current expression, e, with either (3,False)
or (3,True) depending on whether you are recursing into the left or right subtree respectively.
Use your restrict function above to do this.

Remark: This use of restriction is the essence of the Shannon Expansion, which says that a
boolean expression E can be rewritten to x → E[True/x], E[False/x], where E[b/x] means E
with x replaced throughout by b (restriction) and where P → Q,R means “if P then Q else R”.

Choosing Node Identifiers

As you build the BDD you need to ensure that each node is given a unique identifier. The easiest
way to do this is for a node labelled n to arrange for the root nodes of its left and right subtrees to
be labelled 2n and 2n+ 1 respectively, but see below for the base case. You’ll see that this gives
you a unique labelling in any binary structure. Figure 2 illustrates this. Two additional nodes
(labels 5 and 8) have been included in the diagram to make the numbering scheme clear.

When the Index list is empty ([]) you have reached a leaf in the tree. In this case you return
a pair of the form (b,[]) where b is either 0 or 1 depending on the value of the expression e.
Crucially, if you have implemented restrict correctly then the expression will be either Prim

False or Prim True because you will by now have given each variable in the expression a value.
[6 marks]

7

Part IV

You are advised not to attempt this part until you have completed Parts I-III above. It is worth
only 2 of the 25 marks available.

Reduced Ordered BDDs

It usually turns out that a complete BDD contains a lot of redundancy. If this is removed then it
is often possible to reduce substantially the amount of memory required to store the BDD. The
last part of this exercise invites you to build these more optimal representations, referred to as
Reduced Ordered BDDs or ROBDDs.

There are two optimisations that you can perform on a BDD to make an ROBDD. The first
eliminates a node if the two subtrees it refers to are the same, as illustrated in Figure 3. The

1

2

1

F T

T

T

F F

3 3

Figure 3: Node elimination

second shares subtrees wherever possible. An example is shown in Figure 4. Here, the subtree
rooted at X is identical to the subtree rooted at Y. If node X already exists at the point where
node Y is about to be built, the whole subtree that would otherwise be generated can be avoided,
and instead we can generate a reference directly to X. If, for example, that subtree were being
built as a consequence of building some other node, Z say (as in the diagram), then the effect of
the optimisation will be for Z to be linked directly to X, as shown.

F TF T

2

5 5

1

F

F

F T

F

4F

T

Y

X X

ZZ2

5 5

1

F

F T

F

2

4F

T

T

F

TF

T
T T

Figure 4: Subtree sharing

To illustrate the effect of the above optimisations, first see Figure 5 which shows the complete
(unoptimised) BDD for the expression

(x1 ∧ x2) ∨ (x3 ∧ x4)

8

This corresponds to b6 in the template. Notice the enormous amount of redundancy.

TF

2 2

3 3 3

4 4 4 4 44

3

1

4 4

F T

F F F F

F TTF

T TTT

Figure 5: The unoptimised BDD for (x1 ∧ x2) ∨ (x3 ∧ x4)

Now look at Figure 6 which shows two possible ROBDDs for the same expression. Notice
that they contain many fewer nodes than the unoptimised case. Interestingly, the structure of the
resulting ROBDD depends on the order in which the variable indices are listed during the build.
Indeed, the effect on both size and structure can sometimes be quite radical. The ROBDDs of
Figure 6 were obtained using the variable index order [1,3,2,4] and [1,2,3,4] respectively.2

Thus, define a function buildROBDD :: BExp -> [Index] -> ROBDD that builds an ROBDD by

F T

F T

1

F T

3

F T

2
F

T

F

F

F T

T

3

2

4 T

T

1

F T

23 F

F

TF

T4

Figure 6: Two ROBDDs for (x1 ∧ x2) ∨ (x3 ∧ x4)

applying the above optimisations as the ROBDD is being built.
[2 marks]

2Determining the variable order that results in the smallest ROBDD is an example of an NP-complete problem;

in practice, this means that you have to try all possible variable orderings in order to find the best one, which is

computationally intractable for large n.

9

