
2013 Haskell January Test
Binomial Heaps

This test comprises three parts and the maximum mark is 25. Parts I and II are worth 22 of
the 25 marks available. The 2013 Haskell Programming Prize will be awarded for the most
elegant solution overall.

Credit will be awarded throughout for clarity, conciseness, useful commenting and the appropriate
use of Haskell’s various language features and predefined functions.

WARNING: The examples and test cases here are not guaranteed to exercise all aspects of your
code. You may therefore wish to define your own tests to complement the ones provided.
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1 Introduction

A binomial heap is an elegant data structure for supporting ordered collections of values efficiently.
In this exercise you’re going to implement, along with some other functions, three of the operations
usually associated with a binomial heap, namely the insertion of new values, the extraction of the
minimum value and the deletion of the minimum value. The crucial property of a binomial heap
is that operations such as these execute in a time that is proportional to the logarithm of the
size of the collection in the worst case. It thus avoids the problems associated with some other
branching data structures, e.g. binary trees, where an imbalance in the structure can cause it to
behave more like a linked list. When this happens operations like the above can end up scaling
linearly with the size of the collection, in the worst case, instead of logarithmically.

The ordering on values will be determined by the functions/operators of Haskell’s Ord class
(<, <=, >, etc.), i.e. the types of the values we can place in a binomial heap will be required to be
instances of the Ord class.

2 Binomial Trees

A binomial heap will be implemented as a list of binomial trees – see below for the details – where
a binomial tree is defined recursively as follows:

1. A binomial tree of rank 0 is a single node comprising an item of some type a. In the examples
used here, a will be Int, but in general it can be any type that is a member of Ord.

2. A binomial tree of rank r comprises a root node containing an item of type a and a list of
subtrees, which are binomial trees of rank r − 1, r − 2, . . . , 1, 0, in that order. For the
purposes of this exercise each binomial tree will satisfy the minimal-heap property, which
means that the value stored at a root of a tree is smaller than or equal to all the values stored
within its subtrees. We’ll call these ordered trees. From hereon all trees will be assumed to
be ordered, so we will occasionally omit the qualifier ‘ordered’ when the meaning is clear.

Figure 1 shows examples of ordered trees of Ints of rank 0, 1, 2 and 3. Note that the Int values
are in ascending order – ascending numerical order in the case of Ints – on each path from the
root of each tree to its leaves – this is the minimal-heap property.

Notice that a binomial tree of rank r has exactly 2r nodes and that the number of nodes at
depth d, 0 ≤ d ≤ r, is given by (

r
d

)
=

r!

d! (r − d)!

hence the name “binomial tree”. Note also that the root of a tree is at depth 0.
In this exercise, binomial trees will be represented by the following Haskell data type:

data BinTree a = Node a Int [BinTree a]

deriving (Eq, Ord, Show)

The BinTree type has a single node constructor, Node with three arguments: the value stored at
the corresponding node (of type a), the rank of the tree rooted at the node (of type Int) and a
list of children, which are subtrees of type [BinTree a]. Recall that each child is itself a binomial
tree. For example, the rank-2 tree in Figure 1 will be represented as follows:

Node 2 2 [Node 8 1 [Node 9 0 []], Node 7 0 []]

The representations of all four trees shown in Figure 1 are defined in the template as t1–t4.
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Figure 1: Examples of ordered binomial trees of rank 0, 1, 2 and 3.

2.1 Combining trees

The key operation on binomial trees is that which combines two ordered trees of the same rank, r
say, into a single ordered tree of rank r + 1. The rank is r + 1 because the combined tree contains
twice as many nodes as the original trees.

Combining works by first determining the tree, t say, with the minimum root value. Clearly,
the root of this tree must become the root of the combined tree in order that the combined tree
is itself ordered. The combine operation is completed by adding the other tree as an additional
child of t. Note that it must be added to the front of the list of t’s subtrees in order to satisfy the
second recursive property above: because the combined tree has rank r + 1 the first child of the
root node of the combined tree must be a tree of rank r.

Note that binomial trees can contain several instances of the same value (they are not sets).
If the root values are the same when combining trees then we’ll make the arbitrary decision to
proceed as if the second tree contained the minimum root value, i.e., the first tree should end up
as the first child of the second tree.

Figure 2 shows an example of two trees of rank 2 being combined to form a tree of rank 3.

3 Binomial Heaps

A binomial heap is a collection of binomial trees, stored in increasing order of their rank. Impor-
tantly, no two trees in the heap may have the same rank. Thus, for a particular rank r ≥ 0, a
heap will contain either zero or one occurrences of a binomial tree of rank r.

In Haskell, we can represent heaps as lists of binary trees, although we’ll have to maintain the
rank order ourselves. Figure 3 shows an example of a binomial heap comprising trees of rank 0, 1
and 3. Here, the tree structures are shown with bold lines, as in the examples above, whilst the
elements of the Haskell list making up a heap are shown linked by dashed lines. For example, the
heap shown corresponds to the three-element Haskell list [t1, t2, t4] where t1, t2 and t4 are
sample binomial trees defined in the template. For convenience the type synonym BinHeap has
been defined in the template as a list of BinTrees:

type BinHeap a = [BinTree a]
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Figure 2: Combining two ordered trees of rank 2, making a tree of rank 3.

Binomial heaps satisfy the following properties:

• The minimum value in the heap is contained in one of the root nodes of the list of trees. In
Figure 3, for example, the minimum value is 1.

• If the total number of nodes is N then the heap contains at most blog2(N)c+ 1 trees. Thus,
the minimum value in the heap can be found in at most blog2(N)c+ 1 steps.

• If the heap contains trees of rank r1, r2, . . . , rk for some k ≥ 0, then the number of nodes in
the tree is:

k∑
i=0

2ri

For example, the heap in Figure 3 contains trees of rank 0, 1 and 3 so the total number of
nodes is 20 + 21 + 23 = 11.

3.1 Merging Heaps

The key operation on binomial heaps is merging, which merges two binomial heaps into one. Each
node in the two original heaps occurs somewhere in the merged heap and the merged heap itself
satisfies all the properties of a binomial heap. In particular, the minimum element in the merged
heap is the smallest of the minimum elements in the original heaps and thus appears in the root
node of one of the trees making up the merged heap. As an example, Figure 4 shows two heaps
and the result of merging them together.

The merging of two heaps h and h’ works recursively according to the following rules:

• If either heap is empty, i.e. [], then the result is the other heap.

• If the two heaps respectively contain trees t and t’ at the heads of the corresponding lists,
then the merge proceeds on the basis of the ranks of those trees:

– If the rank of t is less than that of t’ then t forms the head of the resulting heap and
the remainder of the heap is formed by recursively merging the remaining elements of
h (i.e. the tail of h) with h’.
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Figure 3: A binomial heap corresponding to h3 = [t1, t2, t4], as given in the template file.

– The symmetric rule applies if the rank of t’ is less than that of t.

– If the two ranks are the same, then t and t’ are combined, as decribed above, and
the resulting combined tree is added to the result of recursively merging the remaining
elements of h and the remaining elements of h’, i.e. the tails of both lists. The simplest
way to add the combined tree is to form a singleton heap, i.e. a singleton list, from it
and then merge this with the heap that is returned from the recursive call.

Referring back to Figure 4, the tree with root value 4 appears first in the merged heap because
it has the smallest rank (0). The rest of the heap is formed by merging the original heap on the
left of Figure 4(a) with the tail of the heap on the right, i.e. the heap comprising the single tree
containing values 12 and 16.

At this point the heads of both heaps contain trees of rank 1 and these are therefore combined
to form the rank-2 tree below:

1

512

16

which we’ll call t’’. This is then added to the heap, h’’ say, that results from recursively merging
the tails of the two heaps: the first tail comprises the singleton tree with values 4, 6, 8 and 10 and
the second is the empty heap ([]); this invokes one of the base cases and h’’ is thus the heap
comprising values 4, 6, 8 and 10 in a single rank-2 tree, t′′′, say.

The addition of t’’ to h’’ is implemented by merging the singleton heap [t’’] with h’’.
Applying the merging rules again in turn, t’’ is then combined with t’’’ (they are both of rank
2) forming a rank-3 tree comprising values 1, 4, 6, 8, 10, 12, 16 and 5. This is then added to the
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Figure 4: Merging two heaps.

result of recursively merging the two heap tails which, in this case, are both empty. We thus end
up with the heap shown in Figure 4(b).

3.2 New value insertion

Once the merging function has been defined it is easy to implement a function for inserting a new
value into a heap: simply form a singleton heap comprising a singleton tree of rank 0, made using
the given value, and merge this with the given heap.

3.3 Exracting and deleting minimal values

Extraction of the mimimum value in a heap simply involves inspecting the value of the root nodes
of the trees representing the heap and returning the smallest. For example, the minimum value
in the heap shown in Figure 3 is 1.

Deleting the root node with the smallest value is a little more involved. The trick is to observe
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that the children of the root node form a list of binomial trees that is itself a perfectly valid
binomial heap, but with the elements in the reverse order. For example, the minimum value of
the merged heap of Figure 4(b) is 1, as we have just seen. The children of the corresponding node
are represented by a list of binomial trees of rank 2, 1 and 0 respectively. If you reverse this, you
then have a list of trees with rank 0, 1 and 2 – a valid binomial heap, h’, say. So, to effect the
deletion you simply remove the tree rooted at 1 from the original heap, in this example leaving
the singleton heap comprising the rank-0 tree with root value 4, and then merge this with h’. The
result is shown in Figure 5.
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Figure 5: The result of deleting the minimum value from Figure 4(b).

Note that there may be several root nodes with the same minimal value, in which case the
leftmost one, i.e. the one with the lowest rank, is arbitrarily chosen for deletion.

4 What To Do

Parts I and II require you to implement the various functions described in the text above and one
additional one. Part III contains a separate, rather fiddly, problem that you are required to work
out largely for yourselves. This carries only 3 of the 25 marks, so you are advised to complete
Parts I and II before attempting Part III.

A number of test trees and heaps are included in the template for testing purposes; most of
these represent the trees and heaps in the above figures. These are labelled t1, . . . , t8 and h1,
. . . , h7 respectively.

4.1 Part I – Binomial Trees

1. Define three functions: value :: BinTree a -> a, rank :: BinTree a -> Int and
children :: BinTree a -> [BinTree a] that respectively return the value, rank and
children of the root node of a given binomial tree. For example, value t4 should return 2,
rank t7 should return 3 and children t2 should return [Node 5 0 []]. You may wish to
use these functions in the questions that follow.

[1 mark]
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2. Define a function combineTrees :: Ord a => BinTree a -> BinTree a -> BinTree a

that will combine two binomial trees as described in Section 2.1 above. For example, the
application combineTrees t5 t6 should yield t7, as per Figure 2.

[3 marks]

4.2 Part II – Binomial Heaps

1. Define a function extractMin :: Ord a => BinHeap a -> a that will return the mini-
mum value stored in a given binomial heap. A precondition is that the heap is non-empty.
For example, extractMin h3 (the heap shown in Figure 3) should return 1.

[2 marks]

2. Define a function mergeHeaps :: Ord a => BinHeap a -> BinHeap a -> BinHeap a that
will merge two heaps as described in Section 3.1. For example, mergeHeaps h4 h5 should
return h6.

[6 marks]

3. Define a function insert :: Ord a => a -> BinHeap a -> BinHeap a that will insert a
given value into a given heap, as outlined in Section 3.2. For example, insert 7 [Node 4

0 []], equivalent to insert 7 [t1], should yield [Node 4 1 [Node 7 0 []]].

[1 mark]

4. Define a function deleteMin :: Ord a => BinHeap a -> BinHeap a that removes the
minimum value from a give heap, as described in Section 3.3. For example, deleteMin h6

should generate the heap shown in Figure 5, defined as h7 in the template.

[5 marks]

5. Define a “binomial sorting” function binSort :: Ord a => [a] -> [a] that sorts the
elements of a given list of items in ascending order, using a binomial heap as an intermediate
data structure. You should do this by inserting the list items one by one into an initially
empty heap. You can extract the sorted list by repeatedly extracting, and then deleting, the
minimum element, until the heap becomes empty. For example, binSort "BinomialHeap"

should return "BHaaeiilmnop".

[4 marks]

4.3 Part III – Binary Heap Counting

Recall from the above that a binomial heap contains at most one binomial tree of a given rank
and that a tree of rank r contains 2r nodes, r ≥ 0. The number of nodes in the heap can thus be
represented in binary as bR, bR−1, . . . , b1, b0, where bi, 0 ≤ i ≤ R, is 1 if the heap contains a tree
of rank i and 0 if not, and where R is the rank of the largest tree in the heap. Assuming there
are no leading zeros, we can assume that bR=1.

1. Define a function toBinary :: BinHeap a -> [Int] that generates the binary represen-
tation of the number of nodes in a given heap. For example, toBinary h2 should return
[1,1,0,0], the binary representation of 12. Try to avoid using ^, div and mod.

2. In order to test whether, for example, the number of elements in a merged heap is the same
as the sum of the number of elements in the two original heaps you could work with integers,
or you could instead write something like:
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toBinary (mergeHeaps h h’) == binarySum (toBinary h) (toBinary h’)

where h and h’ are the original heaps. Define the binarySum function that sums directly
the binary representations of two non-negative integers using ripple carry addition, i.e. by
recursively traversing the representations of the two numbers from right to left (least signif-
icant to most significant bit), applying a full adder at each bit position. A full adder takes
the two bits that are to be summed and the carry bit from the right and generates a sum
bit and a carry bit according the obvious rules:

Inputs Outputs
b1 b2 Carry in Sum Carry out
0 0 0 0 0
1 0 0 1 0
0 1 0 1 0
1 1 0 0 1
0 0 1 1 0
1 0 1 0 1
0 1 1 0 1
1 1 1 1 1

Test your function by verifying that, for example, binarySum (toBinary h4) (toBinary

h5) generates [1,0,0,1]. Did you use the reverse function? If so, can you define the
function without it?!

[3 marks for the two questions]
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