
2021 Haskell January Test

Graph colouring and register

allocation

This test comprises five parts and the maximum mark is 30.

The 2021 Haskell Programming Prize will be awarded for the best overall solution, or solu-
tions.

Part V carries no marks, so will only be used as a tie-breaker when determining the prize winner(s).

Credit will be awarded throughout for clarity, conciseness, useful commenting and the appropriate
use of Haskell’s various language features and predefined functions.

WARNING: The examples and test cases here are not guaranteed to exercise all aspects of your
code. You are therefore advised to define your own tests to complement the ones provided.

1

1 Introduction

Graph colouring involves assigning one of C given colours to each node of a graph so that no
two nodes that are connected have the same colour. Graph colouring has many applications in
scheduling, timetabling and program optimisation. In this exercise we will be concerned with the
problem of register allocation which here means renaming some or all of the variables in a program
so that the new names correspond to the registers of the target machine. This can substantially
improve the performance of the compiled program because register accesses are much faster than
normal variable accesses, which typically involve referencing main memory. Register allocation is
an important topic in optimising compilers, but we’ll consider here just a part of the problem.

2 Graph colouring

Figure 1 (left) shows an example of a graph with four nodes that has been successfully coloured
using two colours.

In general it may not be possible to colour a graph with the given number of colours. Further-
more, a particular colouring algorithm may not be able to find a colouring when, in theory, one
exists. In these cases one or more of the nodes may end up being left out, which is equivalent to
assigning “blank” colours to those nodes. To illustrate this, Figure 1 (middle) shows a graph that
cannot be coloured using just two colours and you can see that the colouring shown has left out
node 1 by assigning it a blank colour, which is shown in white. It is possible to colour this graph
using three colours, however, as shown in Figure 1 (right).

2

4

1

3

2

4

1

3

2

4

1

3

Figure 1: Graph colourings

3 Register allocation

Compilers perform register allocation on the low-level representation of a program, but in this
exercise we’ll apply the same ideas to the source program instead. Of course, a lot of important
details will have to be omitted to make the problem tractable, but many of the key ideas still
apply.

3.1 Interference graphs

There are many algorithms for performing register allocation. The one we will be using here
is based on colouring an Interference Graph (IG), which is a graph whose nodes represent the
variables in a program and where an edge between nodes v and v’ means that there is at least
one point in a program where the variables v and v’ are both “live”. A variable is live at a given
point if its value may be needed later on in the execution of the program. Variables that are live

2

fun fact(n) {

0: if (n == 0) {

1: return = 1;

} else {

2: prod = 1;

3: i = n;

4: while (i >= 1) {

5: prod = prod * i;

6: i = i + -1;

}

7: return = prod;

}

}

n i

prod

fun fact(n) {

0: R2 = n;

1: if (R2 == 0) {

2: return = 1;

} else {

3: R1 = 1;

4: while (R2 >= 1) {

5: R1 = R1 * R2;

6: R2 = R2 + -1;

}

7: return = R1;

}

}

Figure 2: Factorial function

simultaneously at some point in a program are said to interfere, hence the name “interference
graph”. Two variables that interfere cannot be renamed to use the same register.

Don’t worry if the concepts of live variables and interference are unfamiliar to you - you don’t
need to understand the details in order to solve the problem.

3.2 Register allocation via graph colouring

Given R available registers in the target computer, the problem of replacing some or all of the
variables of a program with register references is equivalent to finding an R-colouring of the
interference graph for that program. To illustrate this, Figure 2 (left) shows the source code of
a function for computing the factorial of a given integer n. Its interference graph is shown in
Figure 2 (middle), which has been successfully coloured using two colours. In this example, the
colour blue corresponds to register 1 (variable prod) and red to register 2 (variables n and i).
The graph tells us that the variables n and prod interfere, as do prod and i, but that n and i

do not. Thus n and i can be renamed to use the same register, but prod must use a different
one. Using this assignment of colours (registers) to variables we can rename the variables of the
original factorial function without changing its behaviour; the transformed function is shown in
Figure 2 (right) where a reference to register i is denoted Ri, i=1,2.

Notice that the assignment i = n on line 3 of the original function has been eliminated in the
transformed version, as both i and n both map to register 2 (R2). The assignment R2 = R2, and
in general any assignment of the form v = v, is clearly redundant. The ability to remove some
assignment statements from a program is a nice side effect of register allocation.

Another example is shown in Figure 3 where we assume that there are three registers (colours)
available. The nodes a, c, d and n in the interference graph have been coloured green (register 2),
green, red (register 2) and blue (register 1) respectively, so the corresponding program variables
get mapped to R3, R3, R2 and R1 respectively. However, node b could not be coloured using just
the three available colours and so is left out; recall that this is equivalent to colouring the node
white. Thus, the program variable b cannot be renamed, other than to itself, which is what will
actually happen. The transformed program is shown on the right.

Remark: In practice, if a compiler cannot colour an interference graph completely using the
available colours it will typically add code to the program to save register values to memory so
that it can re-use a previously allocated register – this is called register spilling. Here we will
side-step that problem altogether and say that a program variable is either mapped everywhere

3

fun f(a, n) {

0: b = 0;

1: while (n >= 1) {

2: c = a + b;

3: d = c + b;

4: if (d >= 20) {

5: b = c + d;

6: d = d + 1;

}

7: a = c * d;

8: n = n + -1;

}

9: return = d;

}

n d

b ca

fun f(a, n) {

0: R3 = a;

1: R1 = n;

2: b = 0;

3: while (R1 >= 1) {

4: R3 = R3 + b;

5: R2 = R3 + b;

6: if (R2 >= 20) {

7: b = R3 + R2;

8: R2 = R2 + 1;

}

9: R3 = R3 * R2;

10: R1 = R1 + -1;

}

11: return = R2;

}

Figure 3: A function with an incomplete graph colouring

to the same register, or not mapped at all, equivalent to mapping it to itself, as above. This
simplifies the register allocation problem considerably, but that’s fine, as we’re only focusing on a
part of the problem.

4 Representation

The language you will be working with is similar to a stripped-down version of Kotlin with the
following differences:

� The only type supported is integer (Int), so variables and functions have no associated type
decorator: everything is an Int.

� Booleans are represented as integers, with false and true being represented by 0 and 1
respectively.

� The only operators supported are addition (+), multiplication (*), equals (==) and greater-
or-equal (>=).

� Function results are returned by assigning to a special return variable, rather than by
treating return as a keyword.

A function comprises a sequence of statements, which we shall refer to as a block. Each statement
is either a variable assignment (e.g. v = e), a conditional of the form if (p) {b1} else {b2}

or a while loop of the form while (p) {b}. The two arms of each conditional and the body of
each while loop are themselves blocks and may be empty.

The right-hand side of an assignment and the predicates attached to conditionals and while
loops are expressions, each of which is either a constant (e.g. 0, 1, -9, ...), a variable reference
(e.g. x, prod, ...) or the application of an operator to two (sub)expressions (e.g. x + y - z, a *

2, n >= 0, ...).

4

4.1 Program representation

The following Haskell data types define the internal representation of functions, which should be
self-explanatory:

type Id = String

data Op = Add | Mul | Eq | GEq

deriving (Eq, Show)

data Exp = Const Int | Var Id | Apply Op Exp Exp

deriving (Eq, Show)

data Statement = Assign Id Exp |

If Exp Block Block |

While Exp Block

deriving (Eq, Show)

type Block = [Statement]

type Function = (Id, [Id], Block)

The three components of a Function are the function name (Id), the argument names ([Id]) and
the function body (Block). For example, the fact function above will be represented by:

fact :: Function

fact

= ("fact",

["n"],

[If (Apply Eq (Var "n") (Const 0))

[Assign "return" (Const 1)]

[Assign "prod" (Const 1),

Assign "i" (Var "n"),

While (Apply GEq (Var "i") (Const 1))

[Assign "prod" (Apply Mul (Var "prod") (Var "i")),

Assign "i" (Apply Add (Var "i") (Const (-1)))

],

Assign "return" (Var "prod")

]

]

)

It is useful to be able to display programs in “pseudo” source syntax as illustrated in the above
figures. A function showFun is provided for this purpose which also numbers (only) the lines
associated with assignments and the predicates attached to if and while statements. For example,
the program on the left of Figure 2 can be produced via showFun fact. A similar function called
showBlock is provided for displaying blocks (see later).

4.2 Graph representation

A graph will be represented by a pair comprising a list of node labels and a list of the edges of the
graph, each of which is a pair of labels. Graphs in general are polymorphic, so labels can have any

5

type a. An interference graph (IG) is a specific type of graph where the nodes represent program
variable names, i.e. strings (type synonym Id above).

Colours will be represented by positive integers, and the “blank” colour (white) by the integer
0. A Colouring of a Graph a is a mapping from labels (type a) to colours. Hence:

type Edge a = (a, a)

type Graph a = ([a], [Edge a])

type IG = Graph Id

type Colour = Int

type Colouring a = [(a, Colour)]

Notice that a graph comprising a single node has no edges. As an example, the graph of Fig-
ure 1 (middle) might be represented by ([1,2,3,4],[(1,2),(1,3),(1,4),(2,4),(3,4)]) and
its 2-colouring by: [(2,2),(1,0),(3,2),(4,1)]. Similarly, the interference graph for the fact

function above might be represented by (["i","n","prod"],[("i","prod"),("n","prod")])

and its 2-colouring by [("i",2),("n",2),("prod",1)]. The order of the elements within these
various lists is unimportant.

5 Graph colouring algorithm

The problem of determining whether or not a graph can be coloured with C colours is NP-complete,
which essentially means that you can only answer the question for sure by looking at all possible
colourings – a “brute force” approach. This is computationally intractable for all but the simplest
problems.

In order to make graph colouring practical it is necessary to use heuristics, i.e. rules that lead
to efficient solutions in many cases, but that do not always guarantee to find a colouring when
one exists. In this exercise we will use Chaitin’s colouring algorithm which is known to work well
when applied to the register allocation problem considered here.

5.1 Chaitin’s algorithm

Chaitin’s colouring algorithm proceeds as follows: to colour a graph g with at least one node,
using colours 1, 2, ..., C:

� Pick the node n (or any node n, if there is more than one) in g with the smallest degree.
The degree of a node is the number of other nodes to which it is connected.

� Remove n and its associated edges from g, giving g′.

� Recursively colour g′, giving a Colouring, cMap say, i.e. a mapping from node labels to
colours, for each node in g′.

� Colour n with the smallest integer colour, c say, that is different to the colours assigned to
n’s neighbours in g. If no colours are available assign n the “blank” colour c = 0.

� Return the result of adding (n, c) to cMap.

6

The base case is where the graph has no nodes, in which case the result is the empty colouring,
i.e. the empty mapping [].

For example, to colour the interference graph for fact we start with g=(["i","n","prod"],

[("i","prod"), ("n","prod")]). The nodes "i" and "n" both have the smallest degree, 1,
so we can choose either to remove first. Given a choice we’ll arbitrarily pick the one with the
smallest identifier, assuming the usual dictionary ordering on strings, so we pick "i" first, because
"i"<"n". Removing "i" from g we get g′=(["n","prod"], [("n","prod")]). Colouring g′

recursively yields [("n",2),("prod",1)] – the 1 and 2 here correspond to colours. Node "i"

has only one neighbour in g, i.e. prod, so we pick the numerically smallest colour that is not
the same as the one assigned to prod, i.e. 2. Hence, the final colouring is [("i",2), ("n",2),

("prod",1)]. The ordering isn’t important, but here ("i",2) has been added to the left of the
list returned (presumably using :).

Colouring the graph in Figure 3, but now using three colours, proceeds similarly. The original
graph has five nodes. We first pick and remove node "a", because it has the (equal) smallest degree,
2, and its Id is lexicographically smaller than the other node with degree 2, i.e. "c". Recursively
colouring the graph with "a" removed yields the colouring [("b",0),("c",3),("d",2),("n",1)].
Node "a” is connected to "b", "d" and "n" in the original graph and these have been coloured
blank (0), 2 and 1 respectively. This leaves one spare colour, i.e. 3, so we add "("a",3) to the
list returned.

Why is "b" assigned the blank colour, 0 (white)? Because when it is removed, leaving nodes
"c", "d" and "n", those three nodes end up being coloured 3, 2 and 1 respectively. Because "b"

is connected to all three in the original graph there are no colours left to assign to it.

6 What to do

There are five parts to this exercise. Part V carries no marks and is really hard, so you should
only attempt this question if you have completed Parts I–IV and want to compete for the prize.

The Examples module contains some examples that you can use for testing. These include
the factorial function of Figure 2 (fact :: Function) and its various associated structures, and
similarly the function in Figure 3 (fig3 :: Function). The transformed versions are suffixed
with “Transformed”.

All programs, and the associated data structures, are assumed to be well formed according to
the rules of Section 4. Also, all variables referenced will be defined either by virtue of being named
parameters of the function or the targets of some initial assignment in the body of the function –
there are no undefined variables.

Inteference graphs can be assumed to be acyclic, e.g. there will be no edges from a node to
itself, and to have no duplicate edges.

A function lookUp :: (Eq a, Show a, Show b) => a -> [(a, b)] -> b is provided in
the Types module, which you should find useful.

6.1 Part I: Preliminaries

1. Define a function count :: Eq a => a -> [a] -> Int that will count the number of
occurrences of a given item in a list. For example

*Alloc> count ’a’ "b"

0

*Alloc> count 3 [2,4,1,3,2,3,3]

3

7

[1 Mark]

2. Using count, or otherwise, define a function degrees :: Eq a => Graph a -> [(a, Int)]

that will compute the degree of each node (type a) in a given graph. The degree of a node
is the number of edges which either begin or end at that node. For example (fig1Left is
the graph of Figure 1 (left) without the colours):

*Alloc> degrees ([1], [])

[(1,0)]

*Alloc> fig1Left

([1,2,3,4],[(1,2),(1,3),(2,4),(3,4)])

*Alloc> degrees fig1Left

[(1,2),(2,2),(3,2),(4,2)]

The order of the elements in the result list is unimportant.
[3 Marks]

3. Define a function neighbours :: Eq a => a -> Graph a -> [a] that returns the neigh-
bours of a given node in a graph. For example,

*Alloc> neighbours 1 ([1], [])

[]

*Alloc> neighbours 2 fig1Left

[1,4]

The order of the elements in the result list is unimportant.
[3 Marks]

4. Define a function removeNode :: Eq a => a -> Graph a -> Graph a that will return
the result of removing a given node from a graph. For example,

*Alloc> factIG

(["i","n","prod"],[("i","prod"),("n","prod")])

*Alloc> removeNode "i" factIG

(["n","prod"],[("n","prod")])

*Alloc> removeNode "prod" factIG

(["i","n"],[])

The order of the elements in the result list is unimportant.

[3 Marks]

6.2 Part II: Graph colouring

1. Define a graph colouring function colourGraph :: (Ord a, Show a) => Int -> Graph

a -> Colouring a that uses the algorithm of Section 5.1 to compute a colouring for a
given graph. You may find the lookUp function defined in the Types module useful. The
first argument is the number of colours, equivalently the maximum colour number, and the
available colours range from 1 to that maximum. For example,

8

*Alloc> fig1Middle

([1,2,3,4],[(1,2),(1,3),(1,4),(2,4),(3,4)])

*Alloc> colourGraph 2 fig1Middle

[(2,2),(1,0),(3,2),(4,1)]

*Alloc> fig3IG

(["a","b","c","d","n"],[("a","b"),("a","d"),("a","n"),("b","c"),("b","d"),

("b","n"),("c","d"),("c","n"),("d","n")])

*Alloc> colourGraph 2 fig3IG

[("a",0),("b",0),("c",0),("d",2),("n",1)]

*Alloc> colourGraph 3 fig3IG

[("a",3),("b",0),("c",3),("d",2),("n",1)]

The order of the elements in the result list is unimportant. Note that the last example
corresponds to Figure 3.

Hint: If you compute the list of node degrees in the given graph then the Id of the node
you need to pick for removal is that of the minimum element of the list you get by swapping
each (Id, Int) pair in that list. The list subtraction operator \\ defined in Data.Listmay
also prove useful when assigning a colour to a node.

[8 Marks]

6.3 Part III: Variable renaming

1. Define a function buildIdMap :: Colouring Id -> IdMap that uses an interference graph
colouring to compute a mapping (IdMap) from existing program variables (Id) to new ones.
The type IdMap is defined in the Types module thus:

type IdMap = [(Id, Id)]

If node v is coloured 0 (white) then you should build the identity mapping entry (v, v); if
the node is coloured n > 0 then you should build the mapping entry (v, "Rn"). Because
the "return" variable is special, the mapping should always include the identity mapping
("return", "return"). For example,

*Alloc> factColouring

[("i",2),("n",2),("prod",1)]

*Alloc> buildIdMap factColouring

[("return","return"),("i","R2"),("n","R2"),("prod","R1")]

*Alloc> fig3Colouring

[("a",3),("b",0),("c",3),("d",2),("n",1)]

*Alloc> buildIdMap fig3Colouring

[("return","return"),("a","R3"),("b","b"),("c","R3"),("d","R2"),("n","R1")]

The order of the elements in the result list is unimportant.

9

Hint: you can use the show function to generate the string representation of a given integer,
e.g. show 27 yields "27".

[2 Marks]

2. If one or more of the arguments to a function is mapped to a register then we need to prefix
the body of the function with corresponding assignment statements, each of the form Rn =

a where a is the argument name and where (a, Rn) is contained in a given IdMap. You can
see an example of this in Figure 2, where the (only) argument n has been mapped to the
register variable R2. Hence define a function buildArgAssignments :: [Id] -> IdMap

-> [Statement] that returns a list of such assignments. The [Id] is the list of argument
names and the assignments should be produced in the same order as the corresponding
arguments. For example,

*Alloc> idMap1

[("a","a"),("b","R1"),("y","R1"),("x","R6")]

*Alloc> buildArgAssignments ["x","y"] idMap1

[Assign "R6" (Var "x"),Assign "R1" (Var "y")]

[2 Marks]

3. Define a function renameExp :: Exp -> IdMap -> Exp that will rename the variable ref-
erences in an expression using a given IdMap. A precondition is that every variable referenced
in the expression is in the idMap. For example,

*Alloc> e1

Apply Add (Var "a") (Var "b")

*Alloc> renameExp e1 idMap1

Apply Add (Var "a") (Var "R1")

*Alloc> e2

Apply Mul (Apply Add (Var "x") (Const 2)) (Var "y")

*Alloc> renameExp e2 idMap1

Apply Mul (Apply Add (Var "R6") (Const 2)) (Var "R1")

[2 Marks]

4. Using renameExp Define a function renameBlock :: Block -> IdMap -> Block that will
similarly rename the variables in a block. Before returning the renamed block you should
filter out any assignments of the form v = v, as discussed in Section 3.2. A precondition is
that every variable referenced in the block is in the idMap. For example,

*Alloc> showBlock factB

0: if (n == 0) {

1: return = 1;

} else {

2: prod = 1;

3: i = n;

4: while (i >= 1) {

5: prod = prod * i;

6: i = i + -1;

}

7: return = prod;

10

}

*Alloc> showBlock (renameBlock factB factIdMap)

0: if (R2 == 0) {

1: return = 1;

} else {

2: R1 = 1;

3: while (R2 >= 1) {

4: R1 = R1 * R2;

5: R2 = R2 + -1;

}

6: return = R1;

}

Notice that the assignment i = n in the original function gets renamed to R2 = R2 and has
thus been removed as part of the renaming (see Section 3.2).

A function renameFun has been defined in the template which uses the above definitions to
complete the job of renaming functions:

renameFun :: Function -> IdMap -> Function

renameFun (f, as, b) idMap

= (f, as, buildArgAssignments as idMap ++ renameBlock b idMap)

For example,

*Alloc> renameFun fact factIdMap == factTransformed

True

*Alloc> renameFun fig3 fig3IdMap == fig3Transformed

True

Also showFun (renameFun fact factIdMap) should correspond to Figure 2 (right).

[4 Marks]

6.4 Part IV: Interference graph construction

1. Define a function buildIG :: [[Id]] -> IG that will build the interference graph from
the live variable sets of a function. These specify the variables that are live at each point in
the body of a function (see Section 3). A “point” here corresponds to an assignment, or to
a conditional in an If or While statement, i.e. to the numbered lines in the functions shown
above. For example, there are eight numbered lines in the fact function (numbers 0–7) and
there is one live variable set for each. These turn out to be:

*Alloc> factLiveVars

[["n"],[],["n"],["n","prod"],["i","prod"],["i","prod"],["i","prod"],["prod"]]

It’s not important (yet!) to understand all the details of live variable sets, but the predicate
in the first line of the fact function, n == 0, refers only to "n" so only "n" is live at
this point. The second line, return 0, contains no variable references, so the live set is
[]. In the third statement, prod = 1, the variable "n" is live because it’s referred to in a

11

later statement, i = n, and no other variables are referenced, other than the target of the
assignment. And so on.

Building an interference graph from the live variable sets is actually quite simple: there is
an edge between v and v’ in the graph if there is at least one point where v and v’ are live
simultaneously, i.e. there is at least one element of the live variable set that contains both
variables. For example i and prod are both live at points (list indices) 4 and 5, but n and
i are never live together. Hence, for example:

*Alloc> buildIG factLiveVars

(["n","prod","i"],[("n","prod"),("prod","i")])

A function sortGraph for sorting the various components of a graph is included in the Types
modules and you may find this useful for testing. The example IGs in the Examples module
are already sorted. For example:

*Alloc> sortGraph (buildIG factLiveVars) == factIG

True

[2 Marks]

6.5 Part V: Completing the pipeline

This question carries no marks and there are few clues, so good luck! There are two questions
here which together complete the register allocation “pipeline”. You can pick either, or both, if
you have time and want a challenge.

The control flow graph (CFG) of a given function contains, for each point in the body of a
function:

1. A (def, use) pair, where “def” is the name of the variable assigned at that point and “use”
is the list of variables used in the expression on the right of the assignment. If the point
corresponds to the predicate in an If or While statement then def is taken to be the “dummy”
variable " ".

2. The list of successor points, “succ”, which are integer indexes into the CFG. These are the
program points that could possibly be visited next during the function’s execution.

For example, after some helpful formatting, the CFG for the fact function (type CFG in the Types
module) looks like:

*Alloc> factCFG

[(("_",["n"]), [1,2]),

(("return",[]), []),

(("prod",[]), [3]),

(("i",["n"]), [4]),

(("_",["i"]), [5,7]),

(("prod",["i","prod"]),[6]),

(("i",["i"]), [4]),

(("return",["prod"]), [])]

The program points are implicitly numbered 0–7 and if a statement is the last to be executed the
successor list is [].

12

The set of live variables at line n is given by the solution to the following dataflow equations,
expressed using mathematical set notation:

live(n) = use(n) ∪





⋃

s∈succ(n)

live(s)



 \ def(n)

where, for example, succ(n) corresponds to the successors of the nth element of the given CFG,
e.g. [5,7] for the conditional on line 4 of the fact function. S \x denotes the set S with element
x removed. Note that line(n) is initially empty for all n and several passes over the CFG may
be required to arrive at the solution. The solution is reached when the live variable sets are
unchanged in successive passes. Hence, define one or both of:

1. A function liveVars :: CFG -> [[Id]] that computes the live variable sets from a given
CFG. For example, the nth element of liveVars factCFG and factLiveVars should contain
the same variables, although the order of those variables is unimportant. Each element of
factLiveVars is sorted, so map sort (liveVars factCFG) == factLiveVars should be
True.

2. A function buildCFG :: Function -> CFG that builds the control flow graph for a given
function. The order of elements in the use and succ lists is unimportant. To aid with
testing, the Types module contains a function sortCFG :: CFG -> CFG that will produce
a version of a given CFG with these lists sorted. For example, sortCFG (buildCFG fact)

== factCFG should return True (factCFG is already sorted).
[0 Marks]

13

