
2017 Haskell January Test

Decision Trees

This test comprises three parts and the maximum mark is 30. The 2017
Haskell Programming Prize will be awarded for the best overall solution.

Credit will be awarded throughout for clarity, conciseness, useful commenting
and the appropriate use of Haskell’s various language features and predefined
functions.

WARNING: The examples and test cases here are not guaranteed to exercise all
aspects of your code. You should therefore define your own tests to complement
the ones provided.

1



1 Introduction

A decision tree is a data structure for classifying data that is organised as a
collection of records. Each record specifies the values of a given set of attributes,
together with a classification for that record. A path from the root of a decision
tree to each leaf encodes a sequence of attribute tests that, when applied to
an arbitrary record in the data set, correctly identifies the class to which that
record belongs. Once a tree has been built from so-called “training” data, the
idea is to use the tree to classify previously-unseen data. The tree thus provides
a mechanism for “learning” rules from data that can then be usefully applied
in other contexts. Decision trees are extensively used in decision analysis and
machine learning.

1.1 Example

To illustrate the idea, Table 1 shows a data set that describes the weather
conditions on each of 14 fly-fishing days, together with a classification of what
the fishing was like on each of those days1. The data is presented in the form of
a table with four “input” attributes, outlook, temp (temperature), humidity,
wind, and one “output” attribute, result, which serves to classify the data.
The result attribute has two possible values, bad and good, and the values
associated with the other attributes are:

Attribute Values
outlook sunny, overcast, rainy
temp hot, mild, cool
humidity high, normal
wind windy, calm

Figures 1 and 2 show two possible decision trees for the data in Table 1.
Each internal node (rectangle) denotes a test on an attribute and the arcs em-
anating from the node are labelled with the possible outcomes of the test, i.e.
the possible values of the attribute. The leaves of the tree denote the clas-
sification (good or bad). A path through the tree thus represents a series of
attribute tests so, for example, the combination outlook=rainy, temp=mild,
humidity=high, wind=windy in Figure 1 leads to the classification bad, which
reflects the information in the last row of Table 1.

The special null leaf is used when a path represents a set of attribute values
that does not appear in the corresponding data set. For example, the combi-
nation outlook=rainy, temp=hot does not appear anywhere in Table 1, hence
the null at the end of the corresponding path.

Notice that the tree in Figure 2 is very much simpler than that of Figure 1 yet
is able to classify the same data correctly without reference to the temp attribute.
Notice also that in both trees the test outlook=overcast leads immediately
to the classification good without having to test any other attributes. We’ll see
later that the size and structure of the tree depends on the order in which the
attributes are selected when building it.

1This is the classic and often-cited data set described in the seminal paper by Ross Quinlan
(J. R. Quinlan. Induction of decision trees. Mach. Learn., 1(1):81106, March 1986.), but
adapted here for a much more exciting application!

2



outlook temp humidity wind result

sunny hot high calm bad

sunny hot high windy bad

overcast hot high calm good

rainy mild high calm good

rainy cool normal calm good

rainy cool normal windy bad

overcast cool normal windy good

sunny mild high calm bad

sunny cool normal calm good

rainy mild normal calm good

sunny mild normal windy good

overcast mild high windy good

overcast hot normal calm good

rainy mild high windy bad

Table 1: Sample data set and classification

bad

bad

bad bad

good

good

good good

good

good

sunny rainyovercast

hot mild cool hot mild

high normalnormalhigh

cool

high normal

temp

outlook

temp

humidityhumidity

null

humidity null

wind wind

calmwindywindy calm

Figure 1: Complex decision tree for Table 1

sunny rainyovercast

high normal

humidity

outlook

bad good bad good

good

calmwindy

wind

Figure 2: Optimised decision tree for Table 1

3



2 Representation

Data sets and decision trees can be represented in Haskell using the following
type synonyms and data types, where we assume that all attribute names and
values are Strings:

type AttName = String

type AttValue = String

type Attribute = (AttName, [AttValue])

type Header = [Attribute]

type Row = [AttValue]

type DataSet = (Header, [Row])

data DecisionTree = Null |

Leaf AttValue |

Node AttName [(AttValue, DecisionTree)]

deriving (Eq, Show)

An Attribute comprises its name (equivalent to a String) and the possible
values it can take (equivalent to a [String]). A data set (DataSet) consists of
a header (Header) and a data table comprising a list of rows ([Row]). Each row
contains the values of both the input attributes (the data “record” in the above
sense) and its classification. The header specifies the attributes referenced in
each row of the data set, in order. A universal assumption is that the values
in each row are consistent with the corresponding attribute in the header. To
illustrate this, the representation of the data set of Table 1 is shown below:

fishingData :: DataSet

fishingData

= (header, table)

header :: Header

table :: [Row]

header

= [outlook, temp, humidity, wind, result]

table

= [["sunny", "hot", "high", "calm", "bad" ],

["sunny", "hot", "high", "windy", "bad" ],

["overcast", "hot", "high", "calm", "good"],

["rainy", "mild", "high", "calm", "good"],

["rainy", "cool", "normal", "calm", "good"],

["rainy", "cool", "normal", "windy", "bad" ],

["overcast", "cool", "normal", "windy", "good"],

["sunny", "mild", "high", "calm", "bad" ],

["sunny", "cool", "normal", "calm", "good"],

["rainy", "mild", "normal", "calm", "good"],

4



["sunny", "mild", "normal", "windy", "good"],

["overcast", "mild", "high", "windy", "good"],

["overcast", "hot", "normal", "calm", "good"],

["rainy", "mild", "high", "windy", "bad" ]]

Each row in the table has exactly five attribute values: four representing the
data record, and one representing the classification. We’ll see later that, in
general, the classification ‘column’ can appear anywhere in a table, although in
this example it happens to be the last column. Note that the header comprises
a list of Attributes, rather than a list of Strings, because it is important to
know the set of values that are allowed to appear in each column of the table.
As an example, the attribute temp is declared in the template as follows:

temp :: Attribute

temp

= ("temp", ["hot", "mild", "cool"])

The template includes the above definitions and also those of the remaining
attributes (outlook, humidity, wind and result).

At this point you are in a position to answer the questions in Part I. You might
wish to complete these before reading on.

3 Evaluating a tree

A decision tree (DecisionTree) can be evaluated with respect to the informa-
tion in a given row of data (Row) by using the attribute values in that row to
traverse the tree from its root to a leaf. As an example, consider the Haskell
representation of the first row of Table 1:

*Main> table !! 0

["sunny","hot","high","calm","bad"]

These values can be used to trace a path through a corresponding decision tree
that leads to a leaf labelled bad. It is important to appreciate the following:

• In order to know which row value(s) to use it is essential to know the cor-
responding header, because the internal nodes of the tree refer to attribute
names which need to mapped to attribute values; the attribute values are
used to determine which branch to take at each node in the tree. In the
example here the header is:

[outlook, temp, humidity, wind, result]

which tells us that "sunny" is a value of the outlook attribute, "hot" is
a value of temp, "high" is a value of humidity and "calm" is a value of
wind.

• The order in which we need to look up the attribute values may, in general,
be different to the order in which the attributes appear in the header. For
example, in Figure 2 the left branch requires the attributes to be tested in
the order outlook followed by humidity, which is different to the attribute
order in the corresponding header (outlook followed by temp).

5



• The classifying attribute (result in the example) and its associated values
aren’t needed to evaluate a tree, but we can safely leave them in both the
header and row data. This is because there will never be an internal node
in a tree labelled with that attribute.

At this point you are in a position to answer the questions in Part II. You might
wish to complete these before reading on.

4 Building a tree

A decision tree for a data set is built by partitioning the data based on a par-
ticular attribute and then recursively building a subtree for each partition. For
example, suppose we choose to partition the data in Table 1 using the outlook
attribute. This splits the table into three sub-tables, one for each possible value
of outlook, as shown in Table 2. Notice that each partition represents a valid
data set (DataSet), but with the outlook attribute removed from both the
sub-table and its header.

In the Haskell representation, a Partition comprises the value of the at-
tribute used to partition the data (sunny, overcast and rainy respectively
for the three partitions shown in Table 2), together with the DataSet for that
partition. The following type synonym is defined in the template:

type Partition = [(AttValue, DataSet)]

The outlook attribute forms the root node (Node) of the resulting decision
tree and the DataSets in the three partitions are used to build three child sub-
trees of that root node recursively: one for the attribute value sunny, one for
overcast and one for rainy. Note that in the Haskell representation each
child is represented by a pair comprising the value of the attribute (AttValue)
and the corresponding sub-tree (DecisionTree). This is mirrored in Figures 1
and 2, where the arcs are labelled with the attribute value associated with each
sub-tree.

The above recursive building process terminates when either every row in
the given data set has the same value for the classification attribute or the data
set is empty, i.e. its corresponding table (type [Row]) is []. For example, when
we build the child sub-tree corresponding to the overcast sub-table in Table 2
(second sub-table) we find that each row has the same classification, good. In
this case we return Leaf "good", as reflected in Figures 1 and 2. If the data
set is empty, we return Null.

4.1 Choosing the next attribute for partitioning

The structure of the tree generated by the recursive algorithm above is deter-
mined by the choice of attribute used at each stage to perform the partitioning.
For example, Figure 1 uses the attributes in the order that they appear in the
header, i.e. first outlook, then temp then humidity then wind. On the other
hand, Figure 2 chooses the next attribute on the basis of information gain, as
will be detailed in Section 5.4. The two tree building variants differ only in the
choice of next attribute, so when you come to code your tree building function

6



temp humidity wind result

hot high calm bad

hot high windy bad

mild high calm bad

cool normal calm good

mild normal windy good

temp humidity wind result

hot high calm good

cool normal windy good

mild high windy good

hot normal calm good

temp humidity wind result

mild high calm good

cool normal calm good

cool normal windy bad

mild normal calm good

mild high windy bad

Table 2: Partitions for the sunny, overcast and rainy values of outlook

the attribute selection function will be a parameter of that function, i.e. the
building function will be higher-order.

At this point you are in a position to answer the questions in Part III.

5 What to do

There are four parts to this exercise and all but three of the marks are assigned to
the first three parts. You should only attempt Part IV when you have completed
Parts I–III.

The fishing data set (fishingData) is included in the template along with
the representations of the trees in Figures 1 and 2 (fig1 and fig2 respectively)
for testing purposes.

A function lookUp :: (Eq a, Show a, Show b) => a -> [(a, b)] ->

b is defined in the template that will look up the value of an item of type a in a
list of (a, b) pairs. If there is no binding for the item in the list the function
displays a useful error message that may help you if you need to debug your
code.

Universal preconditions

There are two universal preconditions in what follows:

• There is a header (Header) associated with every data row (Row), and thus
every table ([Row]), and the attribute values in each row are consistent
with the corresponding header.

• All data records are unique, so it is not possible for the same record to
have two conflicting classifications.

7



5.1 Part I: Utilities

1. Define a function allSame :: Eq a => [a] -> Bool that will return
True if every item in a given list is the same; False otherwise. For exam-
ple,

*Main> allSame []

True

*Main> allSame [9,9,9]

True

*Main> allSame "abc"

False

[2 Marks]

2. Define a function remove :: Eq a => a -> [(a, b)] -> [(a, b)] that
will remove an item of type a from a table of (a, b) pairs. If the item
isn’t found the table should be returned unmodified. For example,

*Main> remove 1 [(3,’a’),(1,’b’),(7,’a’)]

[(3,’a’),(7,’a’)]

*Main> remove 6 []

[]

[2 Marks]

3. Using the predefined lookUp function, define a function lookUpAtt ::

AttName -> Header -> Row -> AttValue that will look up the value of
a given attribute in a given data row. Note that in order to do this you
need the header information which is also a parameter of the function. A
precondition is that the attribute name is present in the given header. For
example,

*Main> table !! 0

["sunny","hot","high","calm","bad"]

*Main> lookUpAtt "temp" header (table !! 0)

"hot"

Note that header and table are the header and rows of the fishing data
set (fishingData) and are defined in the template.

[2 Marks]

4. Define a function removeAtt :: AttName -> Header -> Row -> Row

that will remove the value of a named attribute from a given data row.
The order of the elements in the result must be the same as in the original
row. Again, you need the corresponding header to do this. For example,

*Main> table !! 0

["sunny","hot","high","calm","bad"]

*Main> removeAtt "temp" header (table !! 0)

["sunny","high","calm","bad"]

[2 Marks]

8



5. A mapping (sometimes just called a map, but not to be confused with
Haskell’s map function) is a table that associates an item with a list of val-
ues. As an example, each Attribute in this exercise is a specific type of
mapping from AttNames to lists of AttValues. Define a polymorphic func-
tion addToMapping :: Eq a => (a, b) -> [(a, [b])] -> [(a, [b])]

that will add a new (x, v) pair to a given mapping. If there is already
a binding for x then v should be added to the front of the existing list of
values associated with x. A precondition is that there will be at most one
binding for x in the table. If there is no existing binding for x then then
the new binding (x, [v]) should be added to the mapping. For example,

*Main> addToMapping (1,’a’) [(2,"b")]

[(2,"b"),(1,"a")]

*Main> addToMapping (5,’a’) [(2,"b"),(5,"bcd")]

[(2,"b"),(5,"abcd")]

The order of the elements in the mapping returned is unimportant.

[3 Marks]

6. Define a function buildFrequencyTable :: Attribute -> DataSet ->

[(AttValue, Int)] that will build a frequency table that counts the num-
ber of occurrences of each value of a given attribute in a given data set.
For example,

*Main> buildFrequencyTable result fishingData

[("good",9),("bad",5)]

*Main> buildFrequencyTable outlook fishingData

[("sunny",5),("overcast",4),("rainy",5)]

*Main> buildFrequencyTable outlook ([],[])

[("sunny",0),("overcast",0),("rainy",0)]

The order of the elements in the resulting table is unimportant.

[3 Marks]

5.2 Part II: Functions on trees

1. Define a function nodes :: DecisionTree -> Int that will count the
total number of nodes and leaves in a given decision tree. A Null tree is
defined to have a count of zero. For example,

*Main> nodes fig1

18

*Main> nodes fig2

8

[2 Marks]

9



2. Using the lookUp and lookUpAtt functions, define a function evalTree

:: DecisionTree -> Header -> Row -> AttValue that will evaluate
a given tree using the attribute values in a given data row. Again, in
order to do this you need the header corresponding to the given data, as
described in Section 3. If the tree is Null the function should return "".
For example,

*Main> evalTree fig1 header (table !! 5)

"bad"

*Main> evalTree fig2 header (table !! 4)

"good"

[3 Marks]

5.3 Part III: Building a tree

This part requires you to write two functions that, used together, will build a
decision tree from a given data set. In this part of the problem we’ll assume that
a tree is always built by selecting the first attribute in the data set’s header,
unless this happens to be the classifier attribute in which case we pick the next
one along. This was how the tree of Figure 1 was built. A function for selecting
attributes in this way is predefined in the template thus:

type AttSelector = DataSet -> Attribute -> Attribute

nextAtt :: AttSelector

nextAtt (header, table) (classifierName, _)

= head (filter ((/= classifierName) . fst) header)

The idea is for the tree building function to take an attribute selector function
(AttSelector) as a parameter. We can then change the behaviour of the build-
ing function simply by passing in different selector functions. Note that the
type synonym representing the attribute selection function appears at the top
of the template along with the other type synonyms.

1. Using the utility functions in questions 2–5 of Part I, or otherwise, define a
function partitionData :: DataSet -> Attribute -> Partition that
will partition a data set using the specified attribute, as described in Sec-
tion 4. A constant outlookPartition :: Partition representing the
result of partitioning the fishing data set using the outlook attribute is
defined in the template for testing purposes. For example,

*Main> partitionData fishingData outlook == outlookPartition

True

*Main> let ps = partitionData fishingData outlook

*Main> let (val, (header’, table’)) = ps !! 1

*Main> header’

[("temp",["hot","mild","cool"]),("humidity",["high","normal"]),

("wind",["windy","calm"]),("result",["good","bad"])]

*Main> table’

[["hot","high","calm","good"],["cool","normal","windy","good"],

["mild","high","windy","good"],["hot","normal","calm","good"]]

10



[5 Marks]

2. Define a tree-building function buildTree :: DataSet -> Attribute

-> AttSelector -> DecisionTree that will use the given attribute se-
lector function to build a decision tree from a given data set, as described
in Section 4. The Attribute parameter denotes the classification at-
tribute; in the fishing data set this happens to be the last ‘column’, but
in general it doesn’t have to be. The AttSelector is the function that
selects the next attribute, given a DataSet and classifier Attribute, as
described above. As a example, given the fishing data set and the simple
nextAtt selector function defined above, buildTree should generate the
tree shown in Figure 1:

*Main> buildTree fishingData result nextAtt == fig1

True

[4 Marks]

5.4 Part IV: Partitioning using information gain

The nextAtt function above always chooses the first attribute in the current
header as the basis of the partition. However, this typically leads to trees that
are far from optimal. A smarter way is to choose the attribute that maximises
the information gain; this was how the tree in Figure 2 was built.

The idea is to construct a probability distribution for the classification at-
tribute, which defines how each of its values is apportioned in the classification
‘column’ of a given data set. For example, in the fishing data set the classifica-
tion attribute result has just two possible values: good and bad. There are 9
occurrences of good and 5 of bad out of a total of 14 rows in the original data
set, F say, so the probability distribution is defined by the two probabilities
Prob(F, result, good) = 9

14
and Prob(F, result, bad) = 5

14
. It is easy to see

how this generalises to more than two values.
Given an arbitrary data set D, the entropy of a probability distribution for

an attribute A that has nA associated values, VA,i, 1 ≤ i ≤ nA, is defined to be:

E(D,A) =

nA
∑

i=1

−pi × log
2
pi

where pi = Prob(D,A, VA,i) and

Prob(D,A, x) =
no. of occurrences of value x for attribute A in D

no. of rows in D

For example, for the above fishing data (F , say), we get:

E(F, result) = −Prob(F, result, good)× log2(Prob(F, result, good))

−Prob(F, result, bad)× log2(Prob(F, result, bad))

= −
9

14
× log

2

(

9

14

)

−
5

14
× log

2

(

5

14

)

= 0.940

11



to three decimal places (d.p.)
The gain for a particular attribute is a measure of the reduction in entropy

that would arise by picking that attribute for partitioning. Given a data set D,
classification attribute C and partitioning attribute P , the gain is:

G(D,P,C) = E(D,C)−

nP
∑

i=1

Prob(D,P, i)× E(D[P, VP,i], C)

where D[P, x] is the partition of D associated with value x of attribute P .
As an example, the three sub-tables in Table 2 correspond to F [outlook, sunny],

F [outlook, overcast] and F [outlook,rainy] respectively. The associated en-
tropies for these using result as the classification attribute (i.e. C = result

above) are respectively:

E(F [outlook,sunny], result) = −
2

5
× log2

(

2

5

)

−
3

5
× log2

(

3

5

)

= 0.971

E(F [outlook,overcast], result) = −
4

4
× log2

(

4

4

)

−
0

4
× log2

(

0

4

)

= 0.0

E(F [outlook,rainy], result) = −
3

5
× log2

(

3

5

)

−
2

5
× log2

(

2

5

)

= 0.971

where 0× log
2
(0) is taken to be 0. The other probabilities are given by:

Prob(F, outlook,sunny) =
5

14

Prob(F, outlook,overcast) =
4

14

Prob(F, outlook,rainy) =
5

14

Thus, the gain for outlook is:

G(F, outlook, result) = 0.940−

(

5

14
× 0.971 +

4

14
× 0.0 +

5

14
× 0.971

)

= 0.246

to three d.p. (this actually comes out to 0.247 to three d.p. if you don’t round
the intermediate calculations).

In order to use this to build an optimised decision tree we simply pick the
attribute that has the largest information gain.

1. A function xlogx has been defined in the template to compute x× log2 x
for a given x. Using this, define a function entropy :: DataSet ->

Attribute -> Double that computes the entropy of a given data set with
respect to a given attribute, as described above. The buildFrequencyTable
function from Part I should help you here. The entropy of an empty data
set is defined to be 0.0. For example,

*Main> entropy fishingData result

0.9402859586706309

*Main> entropy fishingData temp

1.5566567074628228

*Main> entropy (header, []) result

0.0

12



2. Define a function gain :: DataSet -> Attribute -> Attribute ->

Double that computes the information gain of a given data set with re-
spect to a given partitioning attribute (first Attribute argument) and
classification attribute (second Attribute argument), as described above.
For example,

*Main> gain fishingData outlook result

0.2467498197744391

*Main> gain fishingData temp result

2.9222565658954647e-2

*Main> gain fishingData humidity result

0.15183550136234136

*Main> gain fishingData wind result

4.812703040826927e-2

Note that the maximum gain is for outlook, so you would pick this one
next to partition on.

3. Define an attribute selection function bestGainAtt :: AttSelector that
selects the attribute that has the largest information gain, as described
above.

Important: when deciding which attribute to select using gain you must
first remove the classification attribute (result in the fishing example)
from the header. This is because there is a chance that this attribute
could yield the maximum gain and we don’t want to partition the data
based on it. Its job is solely to classify.

Thus, for example:

*Main> bestGainAtt fishingData result

("outlook",["sunny","overcast","rainy"])

*Main> buildTree fishingData result bestGainAtt

Node "outlook" [("sunny",Node "humidity" [("high",Leaf "bad"),

("normal",Leaf "good")]),("overcast",Leaf "good"),

("rainy",Node "wind" [("windy",Leaf "bad"),

("calm",Leaf "good")])]

*Main> buildTree fishingData result bestGainAtt == fig2

True

2 Marks total for Part IV

13


