2024 Haskell January Test
Symbolic Integration

THREE HOURS TOTAL

The maximum mark is 30.

The 2024 Haskell Programming Prize will be awarded for the
best overall solution, or solutions.

e Please make your swipe card visible on your desk.

e Work in the file named Int.hs inside the integration/src sub-
folder of your Home folder. Do not move any files.

e You are not permitted to edit the folder structure, or edit the
hft.cabal, cabal.project, src/Utilities.hs, or src/Types.hs
files without having been directed by the Examiners; any changes
will be reverted.

e You may add additional tests, which will be reflected in the final
script (like in the PPTs), but these will not be assessed. However,
any changes made to the code that cause the original given tests
to not compile will incur a compilation penalty.

It is important that you comment out any code that does not com-
pile before you complete the test. There will be a TWO MARK
PENALTY applied to any program that does not compile.

Credit will be awarded throughout for style, clarity and the appropri-
ate use of Haskell’s various language features including list compre-
hensions, higher-order functions etc.



1 Introduction

Symbolic integration is the process of determining the integral of a function algebraically, i.e. by
transforming the representation of a function to that of its integral. Symbolic integration (and also
differentiation) tools are key features of mathematical software packages such as Mathematical
and MATLAB? and have numerous applications in mathematics, science and engineering. In this
exercise we’ll focus on indefinite integrals, although it is relatively simple to extend this to definite
integrals via substitution®.

Implementing symbolic differentiation is straightforward, but symbolic integration is much
harder, as there is no equivalent of the chain rule, which says that if h(z) = f(g(x)), then

() = f'(g(x)) g’ (x)

However, there are a number of ‘tricks’ that one can play that collectively address most functions
of practical significance. Implementing these in full goes far beyond the scope of this exercise, so
we will focus on some of the basic rules of integration, together with the inverse chain rule (or
‘reverse’ chain rule), which is explained below. The differentiation and integration rules that are
relevant to this exercise are given in Figure 1.

1.1 The inverse chain rule

The inverse chain rule applies to a product of the form ¢'(z) f(g(z)), or f(g(z)) ¢'(x). The trick
is to observe that by setting u = g(x) we get du/dx = ¢'(z), which means that ¢'(z)dz = du.
Hence:

/ ¢'(@) f(g(a)) do = / f(u)du where u = g(z)

So, for example,

1 ]. 1 1 2 3
| de = | = (@1 z dp = Sdu = —u? =
[ Viogt@de= [ L tog(@)? do= [ubdu=Zut e

Here, u = g(z) = log (z), f(u) = u? and ¢'(z) = 1. ¢ is the constant of integration.

e

(log ()

W Do

2 Representation

In this exercise ‘base’ expressions, such as 4, =z, —%J:, 223 — 2z + 2 etc. will be polynomials. All
polynomials will be expressed in standard form, which means that the individual terms will be
written in decreasing powers of a single variable, x, as in the examples above. For the purposes
of the exercise the exponent (power) of each polynomial term will be a non-negative Integer and
its coefficient a Rational.

All expressions in this exercise are assumed to be relative to the variable x, so when representing
polynomials we only need to encode the coefficient and exponent of each term. The representation
used is a list of (coefficient, exponent) pairs:

type Coefficient = Ratiomal

type Exponent = Integer

type Term = (Coefficient, Exponent)
type Polynomial = [Term]

'https://www.wolfram.com/mathematica/

2https://uk.mathworks.com/products/matlab.html
3

3B.g. [y a¥de = [[ a? dx]z = [%]: = #



—z =1
Z“ . /af(x)dx - a/f(a:)dx
Li@ role) = fa)+d) / f@) +glz)de = / f(w)do + / 9(x) dx
L r@ow) = s@d@ I [erar = e ngo
Lan = par [at = [Ld—top(o) e
%log(sc) = é / log ()dz = a(log(x)—1)+c (see footnoted)
o)) = F(g@)g'(x) (chain rule)

Figure 1: Some differentiation and integration rules. a is an arbitrary constant, ¢ is the constant
of integration. In this exercise the exponent n will either be an integer (polynomials) or a rational
(expressions).

Using this, the polynomials above will be represented in standard form by [(4,0)], [(1,1)],
[(-2 % 3,11, [(2,3),(-2,1),(2,0)] respectively. Recall that a Rational can be built using
the constructor :%, the operator %, or the Fractional operator /, e.g. -2 :% 3,-2 % 3,-2 / 3.

Important: the constant 0 is represented by [(0,0)] and [] is therefore not a valid polynomial.
Throughout the exercise you may assume that a function expecting a polynomial argument will
never be applied to []. Furthermore, all constants will be polynomials of the form [(c, 0)];
thus, for example, logarithms and powers of constant expressions will not occur.

2.1 Functions

A function f(z) = e will be encoded by the representation of the defining expression e. For
simplicity there are just five types of expression: (base) polynomials, sums, products, powers and
logarithms. These will be represented by the Expr type defined thus:

data Expr = P Polynomial

| Add Expr Expr

| Mul Expr Expr

| Pow Expr Rational

| Log Expr

deriving (Eq, Ord, Show)

There is no subtraction function so, for example, the expression e—1, will be represented by Add e
(P [(-1, 0)]1). Similarly, —e will be represented by multiplying e by -1. Note that for powering,
the exponent is a Rational, whereas the exponent in a polynomial term is a non-negative integer.
The type definitions can be found in the module Types.

4You can derive this using integration by parts:

/log(m)dm:/log(x) X 1dx:10g(x)/1dzf/(% log(:p)/ldm) dz = zlog () —z+c=z(log () —1)+c



A Utilities module is provided, which includes the functions pretty and prettyPrint for
pretty-printing objects, respectively in the form of a String, and using I0. The functions are
overloaded and are defined to operate on both polynomials and expressions.

To make clear the distinction between ‘+’ in a polynomial and ‘+’ in an expression, polynomials
are displayed in square brackets with multiplication expressed via juxtaposition, as in [2x], for
example. The multiplication of two Exprs will be written using ‘.’ (i.e. ‘.” does not denote
composition!). Rationals are rendered by the pretty-printing functions using parentheses, e.g.
(2/3) for 2 :% 3. Various polynomials (p1, ..., p5) and expressions (el, ..., e16, with ei =P pi
for i=1..5) are defined in the template for testing purposes. The variable x is also defined in the
template to be the same as e2=P [(1,1)]). So, for example:

*Main> pb

(2% 1,3),0(-2) % 1,1),(2 % 1,0)]
*Int> pretty pb

"[2x73 - 2x + 2]"

*Main> prettyPrint pb

[2x"3 - 2x + 2]

*Main> prettyPrint e2

[x]

*Main> prettyPrint x

[x]

*Main> prettyPrint [(2 / 3, 1)]
[(2/3)x]

*Main> prettyPrint el2

[4x - 3] . log[2x"2 - 3x + 1]

and so on.

2.2 Normal forms

There is no notion of a “normal form” for a mathematical expression, i.e. a single canonical way of
writing it, because in general it is not possible two determine whether two functions, f and g satisfy
the property that Vz, f(z) = g(z). However, humans typically apply a number of simplification
rules when performing algebraic manipulation “by hand”, in order to keep expressions short and
maintain a consistent structure. These rules include:

1

e+0=0+4+e=¢ exl=1xe=e¢; e =¢; act+be=(a+b)e

em en — em—i—n

log (a) + log (b) = log (ab); log(e™) =n log (e)

Encoding these rules is straightforward but long-winded and (very!) messy, so a function simplify
is also provided in the Utilities module which simplifies a given expression to something akin to
a ‘syntactic normal form’. simplify encodes the above rules and applies various refactorings of
polynomials, including the extraction of common constant factors. It also orders the terms in an
expression to reflect the ordering (Ord) derived for Expr above; for example, the simplified version
of log (x) + 522 will place the polynomial 522 before the log (x), viz. [6x~2] + logl[x]. Here are
some more examples:

*Main> prettyPrint eb
[2x"3 - 2x + 2]



xMain> prettyPrint (simplify eb)

(2] . [x"3 - x + 1]

*Main> prettyPrint (simplify (Pow e5 2))

[4] . [x"6 - 2874 + 2873 + x"2 - 2x + 1]

*Main> prettyPrint (Add (Pow e5 (1/2)) e2)

([2x73 - 2x + 2])7°(1/2) + [x]

*Main> prettyPrint (simplify (Add (Pow e5 (1/2)) e2))
[x] + ([2] . [x"3 + x + 11)°(1/2)

3 What to do

There are three parts to the exercise. Part III is considerably harder than Parts I and II, as there
is much less hand-holding, so you might wish to complete Parts I and II before attempting it.
When performing integration the output should always include a constant of integration. In
this exercise the constant of integration will be ignored, on the understanding that a complete
implementation will mostly likely add it at the end. For example, if a symbolic integration rule
yields 22 + 3 then we should strictly write it as 22 + ¢, as the ‘3’ will be absorbed into the constant
of integration. However, for the purposes of the exercise we will leave the constant intact: when
you see one or more constants in the integration result, consider them collectively to be equivalent
to ‘c’.
About the tests: In many cases, two expressions that denote the same function will be identical
after applying the simplify function. However, if you happen to construct a result that is evidently
correct but which fails a test because of the limitations of simplify, or otherwise, don’t worry;
just add a short comment in your code in order to alert the marker.

3.1 Partl

1. Define functions addP :: Polynomial -> Polynomial -> Polynomial andmulP :: Polynomial
-> Polynomial -> Polynomial that will respectively add and multiply two polynomials in
standard form, delivering the result in standard form. For example:

*Main> prettyPrint p2

[x]

*Main> prettyPrint (addP p2 p2)

[2x]

*Main> prettyPrint (addP p3 p4)
[2x"2 + x - 2]

*Main> prettyPrint (addP p5 [(0,0)])
[2x73 - 2x + 2]

*Main> prettyPrint (mulP p3 p4)
[6x"3 - 18x"2 + 13x - 3]

Note that each term in [2x3 - 2x + 2] above has a common factor, 2. It is not necessary
to factor this out here; where necessary any such factorisation will be done via simplify
later on.

[8 Marks]

2. Define functions sumP :: [Polynomial] -> Polynomial and prodP :: [Polynomial]
-> Polynomial that will respectively compute the sum and product of a list of polynomials.
For example,



*Main> prettyPrint (sumP [[(0,0)]1])

(o]

*Main> prettyPrint (sumP [pl,p2,p3,p4,p5]1)
[2x"3 + 2x72 + 5]

*Main> prettyPrint (prodP [p3,p5])

[4x"5 - 6x"4 - 2x"3 + 10x"2 - 8x + 2]

[1 Mark]
3. Define functions diffT :: Term -> Term and intT :: Term -> Term that will respec-
tively deliver the derivative and integral of a polynomial term, with respect to x. For
example,
*Main> diffT (1,0) -- 1
0 % 1,0)
*Main> diffT (2,3) -- 2x°3
(6 % 1,2)
*Main> intT (1,0)
1%1,0D
*Main> intT (2,3)
1% 2,4
Note that the constant of integration is omitted, as explained above.
[3 Marks]
4. Using diffT and intT, or otherwise, define functions diffP :: Polynomial -> Polynomial
and intP :: Polynomial -> Polynomial that will respectively deliver the differential and
integral of a given polynomial, with respect to x. For example,
*Main> prettyPrint (diffP p3)
[4x - 3]
*Main> prettyPrint (intP p3)
[(2/3)x"3 + (-3/2)x"2 + x]
[1 Mark]

3.2 Part Il

This question relates to expressions (Expr). A function toExpr is defined in the template that
will convert a Rational to an Expr by wrapping it up as a polynomial:

toExpr :: Rational -> Expr
toExpr n = P [(n, 0)]

A function isConstant is also defined that returns True iff the argument is a constant (recall that
all constants in the exercise are assumed to be polynomials):

isConstant (P [(_, 0)]) = True
isConstant _ = False

Feel free to use these as you see fit.

Using diffP, define a function diffE :: Expr -> Expr that will differentiate a given expres-
sion with respect to the variable x. To help with testing, a function simplifiedDiff :: Expr
-> Expr is defined in the template that simplifies the result generated by diffE:



simplifiedDiff :: Expr -> Expr
simplifiedDiff = simplify . diffE

During testing you may find it useful to inspect the result of both diffE and simplifiedDiff, but
recall that the simplify function is not guaranteed to produce a unique normal form. Also, your
version of diffE may produce output that is syntactically different to that shown in the examples,
e.g. including terms like + 0, . [1] etc.; however it should be mathematically identical to that
shown. The tests are based on the results after simplification: any output that is mathematically
correct after simplification will be sufficient for the purposes of awarding credit (see the above
note “About the tests”).

If you want to pretty-print a simplified derivative, a function printDiff = prettyPrint .
simplifiedDiff is also provided for this purpose. Hence, for example:

*Main> prettyPrint e3
[2x"2 - 3x + 1]

*Main> prettyPrint (diffE e3) -- Your output may look slightly different
[4x - 3 + 0]

*Main> prettyPrint (simplifiedDiff e3)

[4x - 3]

*Main> printDiff e3  -- Shorthand for the above

[4x - 3]

*Main> prettyPrint el0

[4x - 3] . [2x"2 - 3x + 1]

*Main> prettyPrint (diffE e10)

[4x - 3] . [4x -3 +0] + [4 +0] . [2x"2 - 3x + 1]
*Main> printDiff el0

[24x~2 - 36x + 13]

*Main> prettyPrint ell

[x]~-1 . loglx]

*Main> prettyPrint (diffE ell)

[x1"-1 . [1] . [x1°-1 + [1] . [-1] . [x]"-2 . loglx]
*Main> printDiff ell

[-1] . [x]"-2 . loglx] + [x]~-2

[7 Marks]

3.3 Part III

Because we’re only implementing a small set of rules for symbolic integration it may be the case
that an attempt to integrate a given expression will fail. To allow for this, the integration function
for Expressions is defined to return a Maybe Expr rather than an Expr. If the integration succeeds
with result i the result will be Just 1i; if it fails it will return Nothing.

Your job is to define the function intE :: Expr -> Maybe Expr. The function should im-
plement the basic rules of integration given in Figure 1, together with the inverse chain rule,
described in Section 1.1. You can proceed in any way you see fit, but the suggestion is that you
break the problem down by starting with the first three rules for intE which will go something
like this:

1. If the argument is a polynomial, use intP.

2. If the argument is the sum of two expressions, use the integration rule for addition (Figure 1).



3. If the argument is the product of a constant (isConstant) and an arbitrary expression (or
vice versa), use the corresponding integration rule (Figure 1).

At this point you’ll need an additional, temporary, ‘catch-all’ rule which delivers Nothing in all
other cases; you can replace this later on.

To help with testing, a function simplifiedInt :: Expr -> Maybe Expr applies simplify
to the result of intE, if there is one (Just ...) and returns Nothing otherwise. Mirroring
printDiff above, a function printInt :: Expr -> I0 () shows the integral of the given func-
tion, if one is found (Just ...), and “Fail” otherwise. The function fromJust from Data.Maybe
might also be useful for testing. For example,

*Main> intE e3

Just (P [(2 % 3,3),((-3) % 2,2),(1 % 1,1D1)

*Main> simplifiedInt e3

Just (Mul (P [(1 % 6,00]1) (P [(4 % 1,3),((-9) % 1,2),(6 % 1,101))
*Main> printInt e3

[(1/6)] . [4x"3 - 9x"2 + 6x]

*Main> prettyPrint e6

[2x"2 - 3x + 1] + [2x"3 - 2x + 2]

*Main> prettyPrint (fromJust (intE e6))

[(2/3)x"3 + (-3/2)x"2 + x] + [(1/2)x"4 - x"2 + 2x]
*Main> prettyPrint (fromJust (simplifiedInt e6))
[(1/6)1 . [3x"4 + 4x°3 - 15x"2 + 18x]

*Main> printInt e6

[(1/6)] . [3x"4 + 4x"3 - 15x72 + 18x]

*Main> printInt el6

Fail

3.3.1 Completing the exercise

Recall that the inverse chain rule states that:
[ @ sta@)de= [ slo@) g @ de = [ sw)au

where v = g(z). In the first instance the function f refers here to powering (Pow) and logarithm
(Log). However, it can also refer to the identity function id(x) = x. In this case,

2

/g’(a:)g(a:) do = /g'(x) id(g(x)) dz — /udu = where u = g(x)

In other words, the product of a function and its derivative is also an instance of the rule.

What about simple functions of z, like \/x = z? or log (2)? You could code these separately,
but they can also be seen as instances of the inverse chain rule because the expression e is the
same as 1 x e; thus, when g(z) = = we have ¢'(z) = 1 so that ¢’(x) x f(g(z)) =1 x f(x). Note
that this ‘trick’ introduces an additional multiplication that wasn’t there before.

You're now in a position to complete the definition of intE by replacing the ‘catch-all’ case
above as follows:

4. If the argument is the product of two expressions, try the inverse chain rule, including the
case for the identity function (see above).

5. In all other cases, try the ‘multiplication by 1’ trick above.



If you're following this approach you’ll likely end up needing a helper function applyICR :: Expr
-> Expr -> Maybe Expr to implement the inverse chain rule, where the two expressions are ¢'(x)
and f(g(x)), or vice-versa — you choose! The type signature is provided, should you wish to use
it. For example (for brevity these examples only show the results of applying printInt):

*Main> printInt e8

[x] . ([-1] + loglx])

*Main> printInt e9

log[x]

*Main> printInt el0

[(1/2)] . [4x"4 - 12x"3 + 13x"2 - 6x + 1]
*Main> printInt ell

[(1/2)] . (loglx])"2

*Main> printInt el2

[2x"2 - 3x + 1] . ([-1] + logl2x"2 - 3x + 1])
*Main> printInt el3

[(2/8)1 . ([2x"2 - 3x + 11)7(5/2)

*Main> printInt el4

[(2/25)1 . ([51 . [2x"2 - 3x + 11)"(5/2)
*Main> printInt elb

[(1/3)] . [x"3 - 3x] . ([-1] + log[x~3 - 3x1)
*Main> printInt el6

Fail

Note that e16 cannot be integrated using the rules covered here (but maybe you can do better?!)
[10 Marks]

Hints

When implementing the inverse chain rule on the product el x f(e2), say, you might like to start
by using == to determine whether the result of differentiating e2 is identical to el. You may also
need to try the terms the other way round, viz. f(e2) x el®. This will get you a long way, but
there’s a twist!

If you encounter the ‘twist’ then the following may help: if one polynomial is a constant
multiple of another then their simplified forms will differ only in their respective factors, e.g.

*Main> prettyPrint (simplify (Mul el e5))
[10] . [x"3 + x + 1]
*Main> prettyPrint (simplify (Mul e5 el))
[10] . [x"3 + x + 1]

Good luck!

5Even if you simplify each expression before attempting to integrate it, it may not be the case that the differential
of e2 is ‘smaller than’ el in the Expr ordering.



