
2012 Haskell January Test

Labelled Transition Systems

This test comprises four parts and the maximum mark is 30. Parts I–III are worth 28 of the 30
marks available. Part IV carries 4 marks, giving a potential total of 32 marks, but your final mark
will be capped at 30. The 2012 Haskell Programming Prize will be awarded for the best
attempt(s) at Part IV.

Credit will be awarded throughout for clarity, conciseness, useful commenting and the appropriate
use of Haskell’s various language features and predefined functions.

WARNING: The examples and test cases here are not guaranteed to exercise all aspects of your
code. You may therefore wish to define your own tests to complement the ones provided.

1

1 Introduction

State Transition Systems are used extensively in computing to model the behaviour of a system at
an abstract level and, subsequently, to establish whether it behaves as intended, e.g. with respect
to given correctness and/or performance criteria. This exercise focuses on a class of transition
systems called Labelled Transition Systems (LTSs) and an accompanying ‘language’ called FSP
(an acronym for Finite State Process) that can be used to define them. This exercise, including
many of the examples used, is based on the material in the popular textbook:

“Concurrency: State Models and Java Programs” by J. Magee and J. Kramer, 2nd
Edition, John Wiley & Sons, ISBN:978-0-470-09355-9.

2 Labelled Transition Systems (LTSs)

An LTS is a directed graph where the nodes of the graph correspond to the states that a system
can be in and where the edges correspond to transitions which model actions that change the
system’s state. Each transition is labelled with an action name which, by convention, is a string
beginning with a lower case letter. We say that a transition from state s to state t occurs as the
result of ‘executing’ an action a if there is a transition from s to t labelled with a in the LTS. The
resulting transition will be written s →a t. Here, s is the source state and t the target state of the
transition.

Throughout this exercise each state is assumed to be numbered using a non-negative integer
identifier and there will always be a starting state that has identifier 0; the other states (if there
are any) can be labelled with arbitrary positive integers, so long as they are unique. In a given
state there may be more than one possible transition, in which case any one of the corresponding
actions can execute. In this case we say that there is a non-deterministic choice among the set of
actions at that point.

1 0 3 2
off

red

coffee

blue

tea

Figure 1: The LTS for the vending machine.

Figure 1 shows an example LTS that represents, at an abstract level, the behaviour of a simple
vending machine that dispenses coffee or tea after a red or blue button is pressed, or turns off
(forever) after an off switch is pressed. There are four states numbered 0, 1, 2 and 3, and five
transitions. The three transitions out of state 0 (labelled off, blue and red) correspond to the
non-deterministic choice between the three buttons that can be pressed when the machine is in
state 0. The set of action names in an LTS is called the alphabet of the LTS; in the example the
alphabet is {red, blue, tea, coffee, off}.

In this exercise, an LTS will be represented in Haskell by a list of transitions, thus:

2

type Id = String

type State = Int

type Transition = ((State, State), Id)

type LTS = [Transition]

type Alphabet = [Id]

For example, the LTS of Figure 1 can be represented by the list:

[((0,1),"off"),((0,2),"blue"),((0,3),"red"),((2,0),"tea"),((3,0),"coffee")]

Note that the order in which the transitions are listed is unimportant.
All LTSs can be assumed to be well-formed in the sense that every state in the LTS is reachable

from state 0, i.e. there is a (possibly empty) sequence of transitions, i.e. a path, from state 0 to
every other state.

2.1 Traces

An LTS defines a potentially infinite set of execution traces which are obtained by following a
sequence of transitions from the starting state, 0. For example, the LTS for the vending machine
in Figure 1 includes the traces:

blue→ tea→ off→ . . .

blue→ tea→ red→ coffee→ . . .

red→ coffee→ blue→ tea→ . . .

red→ coffee→ red→ coffee→ . . .

. . .

and so on. Note that in general an LTS may have infinitely many traces and that some traces may
be infinitely long by virtue of cycles in the LTS. Conversely, if an LTS contains no cycles then it
will have a finite number of traces, each of which will be finite in length.

At this point you are in a position to answer the questions in Part I.

3 Finite State Processes (FSP)

FSP is a simple recursive language for specifying labelled transition systems at a high level. An
FSP program comprises a set of process definitions where, by convention, each process name is an
upper case string, as in NAME = . . . where the “. . . ” denotes a process. An FSP process is either:

1. STOP, the ‘stopped’ process, for which there are no executable actions.

2. A reference to a named process in the program, i.e. an upper case string, for example P, Q,
. . . .

3. An action prefix of the form a -> P, where a is an action label (a string beginning with a
lower case letter) and P is a process.

4. A choice of the form (P1 | P2 | ... | Pn) where each Pi is a process. Choice processes
can be assumed to be well formed in the sense that each Pi will begin with an action prefix;
the choice thus defines a non-deterministic choice between the execution of the actions of
each subprocess.

3

Note that a reference can be replaced by its definition without changing the meaning of the process
which uses it, e.g. the recursive definition P = a -> P has the same meaning as a -> a -> P and
also a -> a -> a -> P and so on.

As an example, the following FSP process corresponds to the vendor LTS shown in Figure 1.

VENDOR = (red -> coffee -> VENDOR |

blue -> tea -> VENDOR |

off -> STOP)

Note that the cycles in the LTS arise as a result of the recursive references to VENDOR inside its
own definition.

In the same way that an LTS can generate a set of traces, so can an FSP process, this time by
following action prefixes and replacing process names, e.g. “VENDOR”, by their defining process.
As an example, the VENDOR process above produces the identical set of traces to its corresponding
LTS (Figure 1), some examples of which were listed in Section 2.1 above.

Two further examples of FSP processes are CLOCK and PLAY, whose definitions and correspond-
ing LTSs are shown in Figure 2.

0 1 2 0 1

PLAY = (think -> move -> PLAY | end -> STOP)

end

think

move

tick

tock

CLOCK = (tick -> tock -> CLOCK)

Figure 2: The CLOCK and PLAY processes.

A process corresponds to an LTS in the sense that each syntactic (sub)term that can be reached
following the execution of zero or more actions defines a unique state that the process can be in.
Furthermore, each action prefix corresponds to a transition from one state (subterm) to another.
For example, in the PLAY process of Figure 2, PLAY itself (the start process) corresponds to state 0
in the LTS and the two subterms ‘move -> PLAY’ and ‘STOP’ (reached after execution of think and
end respectively) to states 1 and 2 respectively. The (recursive) reference to PLAY is synonymous
with the start process, and hence state 0. The transitions in the LTS correspond to the action
prefixes ‘think ->. . . ’ (state 0 to state 1), ‘move -> PLAY’ (state 1 to state 0) and ‘end -> STOP’
(state 0 to state 2). Because the STOP process has no executable actions there are no transitions
from state 2.

4

FSP process definitions can be represented in Haskell by the following types:

data Process = STOP |

Ref Id |

Prefix Id Process |

Choice [Process]

deriving (Eq,Ord,Show)

type ProcessDef = (Id, Process)

As an example, the VENDOR process can be represented as follows:

vendor = ("VENDOR",

Choice [Prefix "red" (Prefix "coffee" (Ref "VENDOR")),

Prefix "blue" (Prefix "tea" (Ref "VENDOR")),

Prefix "off" STOP])

The representations of all the FSP processes defined in this document are included in the template
file.

At this point you are in a position to answer the questions in Parts I and II. As the next section
is quite involved you may wish to complete these parts before reading on.

4 Composition

The composition of two FSP processes yields an LTS which is obtained by composing the LTSs
of the individual processes. The resulting LTS captures all possible interleavings of the individual
LTSs. As an example, the LTS for the composition of the CLOCK and PLAY processes in Figure 2
is shown in Figure 3.

0 1 2 3 4 5
end

tick

tock

tick

end

tock

think

move

tock

move

tick

think

Figure 3: The LTS for the composition of CLOCK and PLAY.

The six states, numbered 0–5, in the composed process correspond to the pairs of states (0, 0),
(0, 2), (0, 1), (1, 0), (1, 2), and (1, 1) respectively, where, in the pair (s, t), s is a state of the CLOCK
process and t is a state of the PLAY process. The following are thus valid traces in the composed
LTS:

5

end→ tick→ tock→ . . .

tick→ end→ tock→ . . .

tick→ tock→ tick→ think→ . . .

think→ tick→move→ end→ . . .

think→ tick→ tock→move→ . . .

. . .

and so on.

4.1 Synchronization

If two processes have an action in common then the shared action must be executed at the same
time by both processes – this models synchronization. As an example, consider the processes:

MAKER = (make -> ready -> MAKER)

USER = (ready -> use -> USER)

Here the processes have a shared action, ready, i.e. the action label ready is a member of the
alphabets of both processes. Thus, a ready action in one process cannot execute until a ready

action can execute in the other. The LTS for the composition of MAKER and USER is thus as shown
in Figure 4, and some valid traces include:

make → ready → use → make → ready → make → . . .
make → ready → make → use → ready → use → . . .
. . .

Note that because the actions make and use are not shared they can execute without constraint.
Indeed, if both make and use are available for execution at the same time, as in state 2, then
either can execute first (non-deterministic choice).

0 1

0 1 2 3

10

make

ready

ready

use

make ready make

useuse

The composition of MAKER and USER

MAKER

USER

Figure 4: The MAKER and USER processes, together with their composition.

6

5 Implementing Composition

The composition of two LTSs is built by composing pairs of transitions in the individual LTSs
and then pruning the resulting list of transitions so that only those reachable from state 0 are
included; the resulting list of transitions is then a well-formed LTS.

5.1 Composing Two Transitions

The composition of two transitions will generate either zero, one or two new transitions which
may ultimately form part of the required LTS. Suppose the two transitions in question are s →a t

(from the first LTS) and s′ →a′ t
′ (from the second LTS). Each new transition, if there is one, will

have a source identifier that corresponds to the pair of states (s, s′) and a target state identifier
that corresponds to a pair that is some combination of the states s, s′, t and t′. In what follows,
the mapping from these state pairs to new identifiers is assumed to be defined by a function I. For
example, for the composition of CLOCK and PLAY above, I will be such that I(0, 0)=0, I(0, 2)=1,
and so on (see Section 4). We assume that it will always be the case that s1 = s′1 = 0 and that
I(s1, s

′

1) = 0, i.e. state 0 in the composed process always corresponds to the pair comprising the
0 states in the constituent LTSs.

The composition of the two transitions s →a t and s′ →a′ t
′ is built according to the following

rules. These rules must be read in order, as if they were a sequence of Haskell guards (that’s a
hint!); recall that α1 and α2 denote the alphabets of LTS1 and LTS2 respectively:

1. If a = a′ then the action is shared and the result is a single
new transition from state pair (s, s′) to (t, t′) labelled a,
i.e. the new transition is I(s, s′) →a I(t, t

′), using the new
state numbering scheme. Otherwise, . . .

I(s, s′) I(t, t′)
a

2. If a ∈ α2 and a′ ∈ α1 then neither a nor a′ can execute so
there are no resulting transitions. Otherwise, . . .

I(s, s′)

3. If a′ ∈ α1 then a′ cannot execute but a can, so the result is
a single new transition I(s, s′) →a I(t, s

′). Otherwise, . . .
I(s, s′) I(t, s′)

a

4. If a ∈ α2 then a cannot execute but a′ can, so the result is
a single new transition I(s, s′) →a′ I(s, t

′). Otherwise, . . .
I(s, s′) I(s, t′)

a
′

5. Both a and a′ can execute without constraint so the result
comprises the two new transitions: I(s, s′) →a I(t, s

′) and
I(s, s′) →a′ I(s, t

′).

I(s, s′)

I(t, s′)

I(s, t′)

a

a
′

You are now in a position to answer the questions in Part III. You might wish to complete these
before reading Section 5.2.

7

5.2 Composing LTSs

In the algorithm you are required to implement, the composition of two LTSs is produced by first
building the cartesian product of the sets of states in each LTS. Suppose the two LTSs are called
LTS1 and LTS2 with alphabets α1 and α2 respectively. Suppose also that they comprise the states
s1, s2, . . . , sm and s′1, s

′

2, . . . , s
′

n
respectively, for some m,n > 0. From Section 5.1 we also have

that s1 = s′1 = 0. The composed LTS will comprise the new states 0, 1, . . . ,mn− 1 corresponding
to all possible pairs of states in the constituent processes, i.e. the cartesian product: (s1, s

′

1),
(s1, s

′

2), . . . , (s2, s
′

1), (s2, s
′

2), . . . , (sm, s′
n
). The I function above encodes this mapping where, as

noted, s1 = 0, s′1 = 0 and I(s1, s
′

1) = 0.
The next task is to determine the transitions between these new states. To do this, look at

each pair of states in turn. For each such pair, (s, s′) say, you first need to extract the sets of
transitions out of the two states in the original LTSs. Suppose state s in LTS1 has transitions
to target states t1, . . . , tu for some integer u with corresponding action labels a1, . . . , au; similarly
t′1, . . . , t

′

v
for state s′ in LTS2 with corresponding action labels a′

1
, . . . , a′

v
. This situation is depicted

in Figure 5. The algorithm now proceeds by inspecting all possible pairs of transitions from these
two sets (another cartesian product) and applying the rules given in Section 5.1 above to compose
them. The final list of transitions is the concatenation of the results of the individual transition
compositions.

s
...

t1

tu

s′
...

t′
1

t′
v

a1

au

a
′

1

a
′

v

Figure 5: Composing a pair of states requires examining the cartesian product of their transitions.
s is a state of LTS1 and s′ a state of LTS2.

5.2.1 Pruning

A feature of the algorithm above is that it may generate more states, and thus more transitions,
than are required to build a well-formed LTS. For example, composing the LTSs for the two
processes

P = a -> b -> c -> STOP

Q = d -> c -> b -> Q

yields an LTS with just four states (Figure 6), even though the LTSs for P and Q comprise 4 and
3 states respectively, suggesting a composed LTS with 12 states. The reason is that for the two
subprocesses b -> c -> STOP and c -> b -> Q no action is executable, as they share the actions
b and c; only actions a and d can execute without constraint. One way to fix this is to ‘prune’
the resulting states to include only those reachable from state 0. Figure 6 shows the result of this
process, where the states other than 0, 1, 3 and 4 have been pruned.

8

0 1 3 4

d
a

a
d

Figure 6: The LTS for the composition of P and Q.

5.2.2 The Catch

There is one final problem: if one of the states being considered at any point has no outgoing
transitions then the transitions of the other state will be ignored, since the cartesian product of
the two sets of transitions will be empty. Suppose state s has no outgoing transitions and state
s′ has zero or more transitions labelled a1, a1, ..., an, for some n ≥ 0. One way to fix the problem
in this case is to add a ‘dummy’ transition labelled with a special sentinel action label that is
guaranteed to be different to those in the LTSs being composed. For example, if we assume that
action labels always begin with a letter then a suitable choice of sentinel might be "$". The target
state is unimportant because the transition will never appear in the composed process; thus any
transition s →$ s′ for some s′ will suffice. Note that when composing transitions t and t′ from
transition systems lts and lts’ respectively, if t’s action label is a sentinel then this will need to
be added to the alphabet of lts’ in the call to composeTransitions. Likewise, if t′’s action label
is a sentinel then the alphabet of lts will need to be extended similarly. Beware, however: it may
be that both s and s′ above have no outgoing transitions, in which case two sentinel values will need
to be used. These will need to be distinct (e.g. "$" and "$’"), otherwise composeTransitions

will end up synchronising them, creating a transition that shouldn’t be there.

6 What To Do

The questions are spread over four parts. If you get stuck at any point you are advised to try a
different question, as most of the questions can be answered independently of the others.

A number of test FSP process definitions are included in the template, along with their corre-
sponding LTSs that you can use for testing purposes. By convention, the LTS for the FSP process
represented in Haskell by p is named pLTS.

6.1 Part I – LTS Utilities

1. Define a function lookUp :: Eq a => a -> [(a, b)] -> b that will look up a given item
in a list of (item, value) pairs. A precondition is that the given item is present in the list.

[1 mark]

2. Using nub, define a function states :: LTS -> [State] that computes a list of the state
indices in a given LTS, without duplicates. For example, states vendorLTS should return
[0,1,2,3] in some order. Hint: nub once by defining a helper function and nubbing the list
it returns.

[2 marks]

9

3. Define a function transitions :: State -> LTS -> [Transition] that will return the
list of transitions from a specified state in a given LTS. For example, transitions 0

vendorLTS should return the list [((0,1),"off"),((0,2),"blue"),((0,3),"red")] in
some order.

[3 marks]

4. Define a function alphabet :: LTS -> Alphabet that will return the alphabet of a given
LTS, again with no duplicates. For example, alphabet playLTS should return the list
["end","move","think"] in some order.

[2 marks]

6.2 Part II – FSP Functions

1. Define a function actions :: Process -> [Id] that will compute the (duplicate free)
list of action names in a given FSP process. For example, actions (snd maker) should
return ["make","ready"] in some order. Recall that maker is of type ProcessDef, hence
the use of snd to extract its corresponding Process. Note that a testable axiom is that
actions p should contain the same elements as alphabet pLTS. Hint: both the STOP and
Ref constructors yield no actions ([]).

[5 marks]

2. Define a function accepts :: [Id] -> [ProcessDef] -> Bool that delivers True iff the
given list of process definitions is capable of producing the given trace (list of action identi-
fiers), which can be assumed to be finite. A precondition is that the first item in the list of
process definitions is that of the start process. For example, accepts ["on","off","on"]

[switch,on,off] should return True; accepts ["use","use"] [user] should return
False and accepts [] [user] should return True (every process accepts the empty trace).
Hint: Use a helper function to recurse over the start process. Note also that the Ref con-
structor case in the helper involves a look-up in the given list of definitions.

[6 marks]

6.3 Part III – Transition Functions

1. Define a non-recursive function composeTransitions that implements transition composi-
tion as described in Section 5.1. The function’s type is:

composeTransitions :: Transition -> Transition

-> Alphabet -> Alphabet

-> StateMap

-> [Transition]

The first transition is assumed to come from an LTS whose alphabet is given by the first
Alphabet parameter; likewise the second. The StateMap is a table that encodes the I

function described in Section 5.1:

type StateMap = [((State, State), State)]

10

Thus, if m is a state map then lookUp (s, s’) m will compute I(s, s′). All (four) possible
pairs of source and target states drawn from the two argument Transitions can be assumed
to be contained in the given StateMap. For example, if m is a state map given by:

m = [((0,0),0),((0,1),1),((1,0),2),((1,1),3)]

then:

*Main> composeTransitions ((0,1),"a") ((0,1),"c") ["a"] ["b","c"] m

[((0,1),"c"),((0,2),"a")]

*Main> composeTransitions ((1,1),"a") ((1,0),"c") ["a"] ["a","c"] m

[((3,2),"c")]

*Main> composeTransitions ((0,1),"a") ((1,1),"c") ["a","c"] ["a","c"] m

[]

Note that the resulting list of transitions comprises either 0, 1 or 2 elements.

[5 marks]

2. Define a function pruneTransitions :: [Transition] -> LTS that, given a list of transi-
tions, will return those that are ‘reachable’ from state 0, i.e. those transitions that collectively
form the paths from state 0 to the states reachable from it. For example, pruneTransitions
[((0,1),"d"),((1,4),"a"),((2,5),"a")] should return [((0,1),"d"),((1,4),"a")],
as states 2 and 5 are not reachable from state 0.

Hint: Use a helper function visit :: State -> [State] -> [Transition] that accepts
a state to be visited (initially 0) and a list of states that have already been visited (initially
[]). When visiting a state s, say, that has not been visited before visit should process each
of the outgoing transitions of state s, obtained using the transitions function above. Each
such transition, ((from, to), a), say, forms part of the solution and the search should
then continue by visiting the target state (to), noting that from should be added to the list
of seen states in the recursive call.

[4 marks]

6.4 Part IV – LTS Composition

1. Using composeTransitions and pruneTransitions from Part III above, define a function
compose :: LTS -> LTS -> LTS that composes two labelled transition systems using the
method described in Section 5.

[4 marks]

11

6.5 Part V – LTS Construction

Welcome to the hidden part(!), for which there are no marks. Anyone completing this question
will be inducted into Imperial College’s Haskell Hall of Fame. Good luck!

1. Define a function buildLTS :: [ProcessDef] -> LTS that will build an LTS for the start
process in the given list of FSP process definitions. Recall that the start process is always
at the head of the list of definitions. A precondition is that if the start process is defined in
terms of one or more additional processes then their definitions will also be contained in the
list of definitions. Thus, for example:

*Main> buildLTS [vendor]

[((0,3),"red"),((3,0),"coffee"),((0,2),"blue"),((2,0),"tea"),((0,1),"off")]

Remember that the start state must be numbered 0, but that the remaining state indices
can be arbitrary positive integers so long as the LTS (graph) structure is correct. Note also
that there may be many (possibly infinitely many) LTSs which are behaviourally identical,
in that they produce identical sets of traces. For example, the SWITCH process given by:

SWITCH = OFF

OFF = (on -> ON)

ON = (off -> OFF)

has an optimal LTS with two states, e.g. [((0,1),"on"),((1,0),"off")], but the LTS
[((0,1),"off"),((1,2),"on"),((2,1),"off")], which has three states, also produces the
same traces. For this exercise, the less optimal LTS is OK – you’ll still be inducted into the
Hall of Fame!

Hint: There are many ways to solve the problem, but you might like to consider writing
a helper function that carries, among other things, the state identifier to be assigned to
that process and the next available identifier (for use in recursive calls, presumably). What
should it return? The LTS for the process and next available identifier (of course), but what
else. . . ? It may also be useful to note that Process is an instance of Eq.

[0 marks, but eternal glory]

12

