
2015 Haskell January Test

Functions, Procedures and

Memoisation

This test comprises four parts and the maximum mark is 30. Parts I, II and III are worth 28 of
the 30 marks available. The 2015 Haskell Programming Prize will be awarded for the best
overall solution.

Credit will be awarded throughout for clarity, conciseness, useful commenting and the appropriate
use of Haskell’s various language features and predefined functions.

WARNING: The examples and test cases here are not guaranteed to exercise all aspects of your
code. You may therefore wish to define your own tests to complement the ones provided.
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1 Introduction

Memoisation is an optimisation that involves remembering the values returned by a function in
order to avoid computing the same value more than once. The mapping between a function’s
argument value(s) and its corresponding result is stored in a table, the memo table for that
function, and if the function is called again with the same argument(s) the result is retrieved from
the table, rather than being re-computed. In order for memoisation to work the function being
memoised must return the same answer when given the same argument value(s), i.e. they must
be ‘pure’ functions, like those in Haskell. Memoisation can sometimes change the fundamental
complexity of a function, but this must be traded off against the increased cost, in both time and
space, of maintaining a memo table.

1.1 An Example

The classical example that illustrates the idea is the function to compute the nth number in the
Fibonacci sequence, fib(n), n ≥ 0, which begins 0, 1, 1, 2, 3, 5, 8, ... and so on. The zeroth number
is defined to be 0, the first is 1 and the successive numbers are given by the sum of the previous
two. To simplify the examples in this exercise we’ll omit the zeroth number and will consider the
sequence to begin 1, 1, 2, 3, ... etc. In that case the function that computes fib(n), n > 0, can be
written in Haskell as follows:

fib :: Int -> Int

-- Pre: n > 0

fib n

= if n < 3 then 1 else fib (n - 1) + fib (n - 2)

The call graph for the execution of fib n is shown in Figure 1 (top). The nodes of the graph show
the argument values for the calls to fib that will be made during a standard evaluation of fib n,
e.g. using GHC(i). Notice that there is an enormous amount of redundancy, e.g. the call graph
for fib (n - 1) appears once; that of fib (n - 2) twice, fib (n - 3) three times, and so on.
Indeed, fib (n - k) is computed fib (k + 1) times during the evaluation of fib n, 0 ≤ k ≤ n

and it can be shown that the overall execution time for fib n is exponential in n.
Now suppose that when we compute the value of fib n for the first time we associate n with

the computed value of fib n in a memo table, e.g. by assigning that value to the nth element of a
Java-like array. The idea is to retrieve the saved value from the memo table if we later attempt to
recompute the same expression, fib n. The effect of the memoisation in this case is to eliminate
the redundant computations entirely, so that fib n is evaluated exactly once for all n > 0. With
memoisation the call graph now essentially shares nodes with identical values, as shown in Figure 1
(bottom): two or more references to a node implies that the first reference will compute the value
and memoise it and the remaining references will extract the saved value from the memo table.

Note that we need to be able to detect whether or not a memo table entry has been previously
computed and this can be done using a corresponding table of booleans: the nth element will be
true if the nth element of the memo table has been computed; false otherwise. Note also that, as
described, the boolean and memo tables need to be updated during the execution of the program –
this is easy to do in a language like Java, but is not so easy in Haskell. We’ll therefore be exploring
memoisation in a very simple procedural language for which you will be required to implement
an interpreter. As it happens, the bulk of the exercise is concerned with the development of this
interpreter.
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Figure 1: The Fibonacci call pattern before and after memoisation.

2 The Language

The language you will be working with is a very simple procedural language containing an em-
bedded purely functional sublanguage. We’ll begin with this sublanguage.

2.1 Expressions and ‘pure’ functions

The functional component of the language is centred around expressions which can be one of:

1. A constant value. The language supports just two value types: integers and one-dimensional

arrays of integers (see below). Note that booleans are not supported directly, so they are
encoded as integers: true will be represented by the integer 1 and false by 0.

2. A variable reference. User-defined variable identifiers will always begin with a letter, e.g. x,
y, y’, VAR, camelCase etc.
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3. A binary operator application. The operators supported are addition, multiplication, less-
than, equal and index. The first four, corresponding to +, *, < and == in Haskell, take
integer parameters only (we can’t compare two arrays) and produce an integer result. For
both less-than and equal the results will be either 0 or 1, representing false and true respec-
tively. The index operator implements array indexing: the first argument is the array and
the second the (integer) index.

4. A conditional expression comprising a predicate and ‘then’ and ‘else’ expressions akin to
Haskell’s if P then Q else R or Java’s ternary operator P ? Q : R.

5. A user-defined function application. Functions in the language are first-order (no partial
application) and a function definition comprises the name of the function, a list of argument
identifiers and a right-hand side expression, akin to an uncurried Haskell function definition
like f(x1, x2, ..., xn) = e.

Programs in this functional sublanguage can be defined at an abstract level by the following
Haskell type definitions:

type Id = String

data Value = I Int | A [(Int, Int)]

deriving (Eq, Show)

data Op = Add | Mul | Less | Equal | Index

deriving (Eq, Show)

data Exp = Const Value |

Var Id |

OpApp Op Exp Exp |

Cond Exp Exp Exp |

FunApp Id [Exp]

deriving (Eq, Show)

type FunDef = (Id, ([Id], Exp))

2.2 Arrays and array indexing

Integers and arrays are distinguished by the constructors I and A in the Value data type. The
elements of an array are represented by a list of pairs that maps an array index to a value. For
example, an array represented by A [(3, 1), (0, 3), (5, 12)] has values defined at indices 0,
3 and 5 so indexing the array at these positions will return values 3, 1 and 12 respectively. Note
that the order of the elements within the mapping list is unimportant and that indices do not have
to form a contiguous range. Furthermore, there should be no duplicate entries for a particular
index: an array with values at n defined (and unique) indices should be represented by a mapping
list with exactly n elements. The value of an array at an unspecified index is assumed to be zero,
so an attempt to index the above array at positions 1, 2, 4, 6, 7... will deliver 0. In this sense
arrays in the language are unbounded even though their representations are finite.

2.3 Examples

To illustrate the language at the source level we’ll invent a “pseudocode” notation that is a mixture
of Haskell- and Java-like syntax. You won’t need to manipulate source code – we’ll just use it to
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help clarify the examples. As an example, the function biggest that returns the biggest of two
integers might be written in pseudocode as:

biggest(m, n)

= if m < n then n else m

This will be represented by the following FunDef:

biggest :: FunDef

biggest

= ("biggest",

(["m", "n"], Cond (OpApp Less (Var "m") (Var "n"))

(Var "n")

(Var "m")

)

)

As another example, the fib function defined above would be written identically in pseudocode
notation, but without the type declaration. This can be represented by:

fib :: FunDef

fib

= ("fib",

(["n"], Cond (OpApp Less (Var "n") (Const (I 3)))

(Const (I 1))

(OpApp Add (FunApp "fib" [OpApp Add (Var "n") (Const (I (-1)))])

(FunApp "fib" [OpApp Add (Var "n") (Const (I (-2)))]))

)

)

To illustrate array indexing, the following sums elements 0...n of an array a:

sumA(a, n)

= if n < 0 then 0 else a[n] + sumA(a, n - 1)

and this will be represented thus:

sumA :: FunDef

sumA

= ("sumA",

(["a", "n"], Cond (OpApp Less (Var "n") (Const (I 0)))

(Const (I 0))

(OpApp Add (OpApp Index (Var "a") (Var "n"))

(FunApp "sumA"

[Var "a", OpApp Add (Var "n")

(Const (I (-1)))]))

)

)
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2.4 Expression evaluation

An evaluator for expressions will need to carry around a list of user-defined function definitions
(FunDefs), in order to implement function application (FunApp), and a state, which will provide the
values of the variables that are in scope, e.g. the values of the function’s arguments. The evaluator
will treat the latter as local variables. Later on we’ll need also to consider global variables, in order
to implement memo tables. In general, therefore, a state may contain both local and global
variables, so we introduce the following types:

data Scope = Local | Global

deriving (Eq, Show)

type Binding = (Id, (Scope, Value))

type State = [Binding]

For the purposes of expression evaluation it matters not whether a variable is local or global, so
the Scope field can be ignored for now.

The result of an expression evaluation is an object of type Value, which may may be either an
integer of the form I n for some integer n, or an array of the form A elems where elems is the
list mapping indices to values.

At this point you are in a position to implement Parts I and II. You may wish to complete these
before reading on.

3 Procedures

The rest of the language is procedural and can be thought of as a very simple stripped-down version
of Java, without objects. A procedure (a ‘method’ in Java parlance) comprises the procedure name
and a list of argument names, as for a function. The difference is that the right-hand side of a
procedure is a list of statements, which we shall refer to as a block. Each statement can be one of:

1. An assignment to a variable, e.g. x = e in pseudocode syntax, where e is an expression,
as above. If the variable is already in scope then its value is replaced with the value of the
expression on the right-hand side. Otherwise the assignment serves to introduce x as a new
local variable.

2. An assignment to an array element, e.g. a[i] = e in pseudocode, where a is an array, i is
an integer index and e is an expression. For the program to be well formed the array variable
a must already be in scope, i.e. an element assignment of the form a[i] = e cannot be used
to define a new array a.

3. An ‘if ’ statement, equivalent to a Java statement of the form if (P) then {B} else {B’},
where P is a boolean-valued expression (predicate) and B and B’ are blocks. The predicate
P can be assumed to evaluate to either false (0) or true (1). Note that ‘if’ statements should
not be confused with conditional expressions above.

4. A while loop, e.g. while (P) {B} in pseudocode, where p is a predicate and b is a block of
statements. The predicate P can be assumed to evaluate to either false (0) or true (1) and
the block B is executed repeatedly whilst the predicate is true.
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5. A user-defined procedure call. If a procedure returns a value then that value can be bound
to a variable, as in x := p(e1, ..., en) in pseudocode, where p is the procedure name
and the ei are the argument expressions; if not, then the procedure call will be of the form
p(e1, ..., en). Note that procedure calls are not expressions in this language1, so binding
the result of a procedure call is not the same as assigning an expression’s value to a variable.
A ‘binding’ statement (:=) in the pseudocode is thus used to make the distinction clear.

6. A return statement, e.g. return e in pseudocode, where e is an expression. It can be
assumed that a return statement will always be the final statement to be executed within a
block.

Procedures, as defined, can be represented by the following Haskell types:

type Block = [Statement]

data Statement = Assign Id Exp |

AssignA Id Exp Exp |

If Exp Block Block |

While Exp Block |

Call Id Id [Exp] |

Return Exp

deriving (Eq, Show)

type ProcDef = (Id, ([Id], Block))

Note that a procedure definition (ProcDef) is similar to a function definition (FunDef) except that
the right-hand side is a block rather than an expression.

A procedure call of the form x := p(e1, ..., en) in pseudocode will be represented by the
expression Call "x" "p" [e1, ..., en]. If the procedure does not return a result then the first
Id in the representation will be "", as in: Call "" "p" [e1, ..., en].

3.1 Block execution

Because a procedure can invoke both user-defined functions (during evaluation of an Exp) and
user-defined procedures, an executor for statements must carry around both a list of FunDefs, as
above, and a list of ProcDefs. As with the expression evaluator it will also need to access the
values of the variables that are in scope via an additional State parameter.

The state passed to a procedure should contain bindings for the procedure’s argument values
and the values of the global variables at the point of call. The local variables that are in scope
at the point of call should not be included as they are not visible outside the calling procedure.
Importantly, if an argument has the same name as one of the global variables then the argument
takes precedence over the global variable with regards its scope. The global variable in that case
will thus be ‘invisible’ during the execution of the procedure body.

Any changes made to the global variables in the called procedure will be reflected in the state
returned from it. The state after a call should therefore be comprised of the local variables that
existed in the state prior to the call together with the (possibly modified) global variables in the
state returned from the call. The state returned may also contain additional local variables used
by the calling procedure, but these should should be ignored as they are out of scope as soon as
the called procedure returns. The only exception is when a value is returned from a procedure call:

1This is a deliberate design decision that ensures that expression evaluation cannot have side effects.

7



the statement return e in pseudocode will be implemented by assigning a special local variable
$res to the value of e and this will be passed back to the caller as part of the returned state.
If the first argument of the corresponding Call constructor is a non-empty string, "x", say, then
the binding for "x" in the calling procedure’s state must be updated with the value of the special
$res variable when the procedure returns. If the variable is "" then no update is required. Note
that for a program to be well formed there must be a binding for $res in the returned state if the
caller is expecting one; that is, for each call of the form Call x p es where x is non-empty the
procedure p will always exit with a Return statement.

3.2 Examples

The following procedure, expressed in pseudocode notation, sums two given integers and assigns
the result to a variable, gSum.

gAdd(x, y) {

gSum = x + y;

}

If gSum is in scope as a global variable in the state passed to gAdd then the effect will be to change
its value as a result of the call; if not then the assignment will simply construct a new local variable
with the same name. The internal representation of gAdd looks like this:

gAdd :: ProcDef

gAdd

= ("gAdd",

(["x", "y"], [Assign "gSum" (OpApp Add (Var "x") (Var "y"))])

)

Note that gAdd does not return a value, so a call to it will be represented by a statement of the
form Call "" "gAdd" [ex, ey] where ex and ey are the argument expressions whose values will
be bound to x and y respectively in the state passed to gAdd.

A second example is a procedural version of the sumA function above that uses a while loop to
accumulate the array sum, as shown by the following pseudocode:

sumA’(a, n) {

s = 0;

i = 0;

limit = n + 1;

while (i < limit) {

s = s + a[i]

i = i + 1;

}

return s;

}

Note that all the variables here are local. The internal representation looks like this:
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sumA’ :: ProcDef

sumA’

= ("sumA’",

(["a", "n"], [Assign "s" (Const (I 0)),

Assign "i" (Const (I 0)),

Assign "limit" (OpApp Add (Var "n") (Const (I 1))),

While (OpApp Less (Var "i") (Var "limit"))

[Assign "s" (OpApp Add (Var "s")

(OpApp Index (Var "a") (Var "i"))),

Assign "i" (OpApp Add (Var "i") (Const (I 1)))

],

Return (Var "s")]

)

)

You are now in a position to implement Part III. You should complete this before reading on
and/or attempting Part IV.

4 Implementing Memoisation

In this exercise memoisation will be applied only to pure functions and each such function will be
replaced by two mutually-recursive procedures. The first will manage updates to the global memo
table for the function and the second will be the memoised procedural version of the function that
invokes the table manager in place of recursive function calls. For example, the two procedures
required to implement the fib function above might be written in pseudocode as follows2

fibTableManager(n) {

if (fibPres[n] == 0) {

x := fibM(n);

fibPres[n] = 1;

fibTab[n] = x;

}

return fibTab[n];

}

fibM(n) {

if (n < 3) {

fn = 1

} else {

fn1 := fibTableManager(n - 1);

fn2 := fibTableManager(n - 2);

fn = fn1 + fn2;

}

return fn

}

Notes:

1. The code shown is not entirely optimal – we could plant a return in both arms of the ‘if’
statement on the right and avoid the need for the variable fn, for example. However, it is
the sort of code that might be generated automatically by a translator. Indeed, this is the
subject of Part IV.

2. The variables fibPres and fibTab here are both global arrays that are assumed to have
been initialised at the top-most level.

2The expression fibPres[n] == 0 is actually asking whether fibPres[n] is false. An expression like

not(fibPres[n]) might therefore be preferable, but the language does not support unary operations as defined.
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3. In order to simplify the exercise all memoisable functions are assumed to take just a single ar-
gument which enables the corresponding memo table to be implemented as a one-dimensional
array. In general, this will be not be the case, of course.

4.1 Generating the table manager

The table manager procedure for a function f can be generated entirely mechanically by instan-
tiating a skeleton procedure that can be written in pseudocode in the form:

tableManager(n) {

if (isPresent[n] == 0) {

x = f(n);

isPresent[n] = 1;

table[n] = x;

}

return table[n];

}

with specific values of tableManager, n, f, isPresent and table. The following Haskell function
memoise, defined in the template, implements exactly this instantiation:

memoise :: Id -> Id -> Id -> Id -> Id -> ProcDef

memoise p a f pt mt

= (p,

([a], [If (OpApp Equal (OpApp Index (Var pt) (Var a)) (Const (I 0)))

[Call "x" f [Var a],

AssignA pt (Var a) (Const (I 1)),

AssignA mt (Var a) (Var "x")

]

[],

Return (OpApp Index (Var mt) (Var a))

]

)

)

For example, the call memoise "fibTableManager" "n" "fibM" "fibPres" "fibTab" will gen-
erate the representation of fibTableManager shown in pseudocode above, i.e.:

("fibTableManager",

(["n"], [If (OpApp Equal (OpApp Index (Var "fibPres") (Var "n")) (Const (I 0)))

[Call "x" "fibM" [Var "n"],

AssignA "fibPres" (Var "n") (Const (I 1)),

AssignA "fibTab" (Var "n") (Var "x")

]

[],

Return (OpApp Index (Var "fibTab") (Var "n"))

]

)

)
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4.2 Generating the memoised procedure

The memoised procedural implementation of a pure function is much harder to generate and is the
subject of Part IV of this exercise. In the case of fib the result of the translation should be a
representation of the fibM procedure above, i.e. something like this:

("fibM", (["n"],

[If (OpApp Less (Var "n") (Const (I 3)))

[Assign "$3" (Const (I 1))]

[Call "$1" "fibTableManager" [OpApp Add (Var "n") (Const (I (-1)))],

Call "$2" "fibTableManager" [OpApp Add (Var "n") (Const (I (-2)))],

Assign "$3" (OpApp Add (Var "$1") (Var "$2"))

],

Return (Var "$3")

]

)

)

Because this is generated automatically from the internal representation of the fib function the
variable names have to be chosen so as not to clash with any user-defined variables; hence the
identifiers $1, $2 and $3, which do not begin with a letter. Notice how the recursive function

calls have been replaced by procedure calls and that the conditional expression in fib (constructor
Cond) has been replaced by an ‘if’ statement (constructor If).

5 What to do

There are four parts to this test and most of the marks are for Parts I–III. Part IV is worth only
two of the 30 marks available and is hard, so you are advised to attempt it only when you have
completed Parts I–III.

The example functions above are all defined in the template for testing purposes. There are
also some pre-defined utility functions that will prove useful throughout:

lookUp :: (Eq a, Show a) => a -> [(a, b)] -> b

lookUp x t

= fromMaybe (error ("\nAttempt to lookUp " ++ show x ++

" in a table that only has the bindings: " ++

show (map fst t)))

(lookup x t)

-- Turns an Int into an Exp...

intToExp :: Int -> Exp

intToExp n

= Const (I n)

-- Turns a [Int] into an Exp...

listToExp :: [Int] -> Exp

listToExp

= Const . listToVal

-- Turns a [Int] into a Value...
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listToVal :: [Int] -> Value

listToVal xs

= A (zip [0..] xs)

Note that the lookUp function provided prints a helpful error message if you mess up (you will

mess up!). Note also that if a state contains two bindings for the same variable then the leftmost

binding, i.e. the most recent, will be returned by lookUp.
There are also a number of predefined states, arrays and expressions that you can use for

testing purposes, including the following sample State that we shall refer to shortly:

sampleState

= [("x", (Local, I 5)), ("y", (Global, I 2)), ("a", (Global, listToVal [4,2,7]))]

You may assume throughout that all programs are well formed in the following sense:

1. All operators, functions and procedures will always be applied to the correct number of
arguments, all of which will be of the appropriate type.

2. Boolean-valued expressions will always evaluate to either 0 (false) or 1 (true).

3. In an array assignment of the form a[i] = e the array a will always be in scope.

4. In a procedure call of the form x := p(...) the procedure p will always exit via a Return

statement.

5. A return statement will always be the last statement to be executed in a procedure’s defining
code block (there is no ‘dead code’).

5.1 Part I: Basic utilities

1. Define a function getValue :: Id -> State -> Value that uses the predefined lookUp

function above to look up the Value of a given variable in a given state. The scope of that
variable should be ignored. For example, getValue "x" sampleState should return I 5.
A precondition is that there is a binding for the variable identifier in the state.

[1 Mark]

2. Define two functions, and getLocals, getGlobals :: State -> State that will return
the list of local and global variables in a given state respectively, in the order in which they
appear in that state. For example, getLocals sampleState should return [("x",(Local,I

5))] and getGlobals sampleState should return [("y",(Global,I 2)),("a",(Global,A

[(0,4),(1,2),(2,7)]))].

[2 Marks]

3. Define a function assignArray :: Value -> Value -> Value -> Value such that the
expression assignArray a i v returns an array that is the same as a except for its ith

element, which should be bound to v in the array’s mapping list. For example, assignArray
(getValue "a" sampleState) (I 2) (I 1) should return, for example, A [(2,1), (0,4),

(1,2)]; note that the order of the elements in the array’s mapping list is unimportant, but
no index should appear more than once.

[2 Marks]
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4. Define a function updateVar :: (Id, Value) -> State -> State that will update the
value of a variable in a given state whilst preserving its scope. If the variable does not have a
binding in the state then a new one should be added in which the variable has Local scope.
For example,

*Main> sampleState

[("x",(Local,I 5)),("y",(Global,I 2)),("a",(Global,A [(0,4),(1,2),(2,7)]))]

*Main> updateVar ("x", I 6) sampleState

[("x",(Local,I 6)),("y",(Global,I 2)),("a",(Global,A [(0,4),(1,2),(2,7)]))]

*Main> updateVar ("z", I 3) [("g", (Global, I 8))]

[("g",(Global,I 8)),("z",(Local,I 3))]

The order of the elements within the state is unimportant, unless the variable being updated
has two or more bindings in the given state. In that case the new (correct) binding must
appear to the left of any others that remain after the update.

[3 Marks]

5.2 Part II: Expression evaluation

1. Define a function applyOp :: Op -> Value -> Value -> Value that will apply the given
operator to the given argument values. For the case of Index (array index) the result should
be zero (representation I 0) if there is no binding for the given index in the given array. For
example,

*Main> applyOp Add (I 6) (I (-2))

I 4

*Main> applyOp Mul (I 3) (I 4)

I 12

*Main> applyOp Less (I 7) (I 0)

I 0

*Main> applyOp Equal (I 2) (I 2)

I 1

*Main> applyOp Index (A [(1,1),(0,3)]) (I 0)

I 3

*Main> applyOp Index (A [(1,1),(0,3)]) (I 2)

I 0

[3 Marks]

2. Define a function bindArgs :: [Id] -> [Value] -> State that, given a list of variable
identifiers and corresponding values will generate a list of bindings, i.e. a State, in which
each variable is declared as being Local and bound to its corresponding value. For example,

*Main> bindArgs ["x", "a"] [I 6, A [(1,1),(0,3)]]

[("x",(Local,I 6)),("a",(Local,A [(1,1),(0,3)]))]

A precondition is that the two lists have the same length.

[1 Mark]
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3. Define two mutually recursive functions: eval :: Exp -> [FunDef] -> State -> Value

and evalArgs :: [Exp] -> [FunDef] -> State -> [Value] for evaluating expressions.
eval evaluates an expression in the context of a given list of FunDefs and State, and
returns the value of the expression. evalArgs should apply eval to each element of a list of
expressions, giving back a list of values. The eval function should obey the following rules:

• The value of a constant (Const c) is just c.

• The value of a variable is obtained from the given state (use getValue).

• The value of a conditional will be the value of either the ‘then’ or ‘else’ subexpression,
depending on the value of the predicate, which can be assumed always to evaluate to
one of the integers 0 (false) or 1 (true), suitably tagged with the I constructor.

• The value of an operator application is obtained by invoking applyOp on the evaluated
arguments.

• To evaluate the application of a function f to a list of expressions es, say, you first
need to look up f in the list of FunDefs provided; this will give you a pair, (as, e),
say, where as is the list of argument names and e is the right-hand side expression.
Next you need to evaluate each expression in es to give a list of values, vs say, using
evalArgs. Then you need to bind the as to the vs using bindArgs – this will add the
Local scope tag accordingly. Finally, you need to evaluate e in a state that is the one
given augmented with the bindings generated by bindArgs. Note that you can use ++
to add new bindings to a state, so long as the new bindings are placed to the left of
those already in the state.

For example,

*Main> sampleState

[("x",(Local,I 5)),("y",(Global,I 2)),("a",(Global,A [(0,4),(1,2),(2,7)]))]

*Main> eval (Const (I 1)) [] sampleState

I 1

*Main> eval (Var "y") [] sampleState

I 2

*Main> eval (OpApp Add (Var "x") (Const (I 2))) [] sampleState

I 7

*Main> eval (Cond (Const (I 1)) (Var "x") (Const (I 9))) [] sampleState

I 5

*Main> eval (FunApp "fib" [Const (I 6)]) [fib] sampleState

I 8

The test expressions here are defined in the template as e1, ..., e5.

[8 Marks]

5.3 Part III: Procedure execution

Define two mutually recursive functions: executeStatement :: Statement -> [FunDef] ->

[ProcDef] -> State -> State and executeBlock :: Block -> [FunDef] -> [ProcDef]

-> State -> State that will respectively execute a single statement and a block (list of state-
ments). The effect of the execution is to transform the given input state into a final state.

The parameters of these functions are similar to those for expression evaluation above. How-
ever, to implement procedure calls a list of ProcDefs is also required. Note that the list of function
definitions (FunDefs) is required solely for expression evaluation, via eval.
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5.3.1 Notes

• When executing an assignment statement (Assign), if the variable being assigned to does
not have a binding in the current state then a new binding must be added (Section 3). Using
updateVar defined earlier will ensure that this happens automatically.

• An assignment to an individual array element (AssignA) assumes that the array being
updated is in scope, i.e. that the array identifier has a binding in the given state. Use
updateVar and assignArray to implement this.

• When implementing procedure calls you need to be particularly careful to pass the correct
state into the called procedure and to return the correct state at the end; you may wish
to re-read Section 3.1 before developing your solution. Use the functions getLocals and
getGlobals to implement the rule for Call.

5.3.2 Testing

In order to test your implementation you can use some of the examples included in the template.
For example, if sampleArray is defined to be the expression listToExp [9,5,7,1] then:

*Main> sampleArray

Const (A [(0,9),(1,5),(2,7),(3,1)])

*Main> executeBlock [Call "s" "sumA’" [sampleArray, intToExp 3]][] [sumA’] []

[("s",(Local,I 22))]

which binds the local variable s to the sum of the elements of the sample array, i.e. 22. To save
you typing the template includes some test functions that will execute example blocks of code like
the one above, e.g.:

*Main> execSumA’ [9,5,7,1] 3

[("s",(Local,I 22))]

Note that if the top-level state is initialised to contain s as a global variable when we make the
call then we get a slightly different result:

*Main> executeBlock [Call "s" "sumA’" [sampleArray, intToExp 3]]

[] [sumA’] [("s", (Global, I 0))]

[("s",(Global,I 22))]

*Main> execGlobalSumA’ [9,5,7,1] 3

[("s",(Global,I 22))]

You are also now in a position to explore the performance benefits of memoisation when calculating
fibonacci numbers. Start by trying to calculate fib 35 using the naive recursive version defined
in the template:

*Main> executeBlock [Return (FunApp "fib" [intToExp 35])] [fib] [] []

[("$res",(Local,

If you get bored waiting, hit CTRL-C! Now try the memoised version, which consists of the two
mutually-recursive procedures described in Section 4 (fibState is primed with empty global arrays
named "fibPres" and "fibTab"):
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*Main> fibState

[("fibPres",(Global,A [])),("fibTab",(Global,A []))]

*Main> executeBlock [Call "f" "fibM" [intToExp 35]] [] [fibM, fibTableManager] fibState

[("fibPres",(Global,A [(34,1),(33,1),(32,1),(31,1),(30,1),(29,1),(28,1),(27,1),

(26,1),(25,1),(24,1), (23,1),(22,1),(21,1),(20,1),(19,1),(18,1),(17,1),(16,1),

(15,1),(14,1),(13,1), (12,1),(11,1),(10,1),(9,1),(8,1),(7,1),(6,1),(5,1),(4,1),

(3,1),(1,1),(2,1)])), ("fibTab",(Global,A [(34,5702887),(33,3524578),

(32,2178309), (31,1346269), (30,832040),(29,514229),(28,317811),(27,196418),

(26,121393),(25,75025),(24,46368), (23,28657),(22,17711),(21,10946),(20,6765),

(19,4181),(18,2584),(17,1597),(16,987), (15,610),(14,377),(13,233),(12,144),

(11,89),(10,55),(9,34),(8,21),(7,13),(6,8),(5,5),(4,3),(3,2),(1,1),(2,1)])),

("f",(Local,I 9227465))]

(To save you typing the test function execFibM 35 does the same thing.) Wow! Instant! The
resulting state includes the two global tables which have been modified during the execution: the
fibPres table, where all the entries are 1, corresponding to true, and the memo table fibTab,
whose nth element is fib n. The result we want (the 35th) has been bound to f as the result of
the call, i.e. 9227465.

[8 Marks]

5.4 Part IV: Memoisation

The final part of this exercise invites you to translate a pure function into a memoised procedure.
For example, in the case of the fib function the translator should return the representation of a
procedure that is equivalent to fibM in Section 4 above. Several things have to happen in this case:
1. The function name needs to change to a procedure name (fib → fibM); 2. The recursive calls to
fib in the right-hand side need to be replaced with calls to the procedure that manages the memo
table (here called fibTableManager); 3. The conditional expression needs to be replaced with an
‘if’ statement which involves turning the ‘then’ and ‘else’ expressions into statement blocks; 4. An
explicit Return needs to be added.

The top-level function to do the translation has been defined in the template thus:

translate :: FunDef -> Id -> [(Id, Id)] -> ProcDef

translate (name, (as, e)) newName nameMap

= (newName, (as, b ++ [Return e’]))

where

(b, e’, ids’) = translate’ e nameMap [’$’ : show n | n <- [1..]]

Note that this implements 4. above in that it adds the Return statement. Your job is to define the
helper function: translate’ :: Exp -> [(Id, Id)] -> [Id] -> (Block, Exp, [Id]) to do
the rest. The second argument is a mapping table that identifies the names of the functions that
have been memoised (there may be more than one) and the corresponding procedures that need
to be called in their place. In the example, a call to the function fib needs to be replaced with
a call to the procedure fibTableManager so the table will comprise the single pair [("fib",

"fibTableManager")]. The third argument is a list of fresh variable identifiers, the infinite list
[$1, $2, ...], which will be required if the translator needs to generate new local variable
identifiers, e.g. to bind the results of procedure calls. The result tuple comprises: 1. The block of
code that should replace the expression – if the expression contains no memoised function calls this
should be []; 2. An expression that, when evaluated in conjunction with the returned code block,
will return the value of the original expression; 3. The list of unused fresh variable identifiers (a
suffix of the original list).
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Hint 1: You may need to extend the block of code you are accumulating (Block) with either:
i. a procedure call, i.e. when replacing a memoised function call, ii. an ‘if’ statement – you’ll need
this if at least one of the predicate, ‘then’ or ‘else’ expressions have been ‘proceduralised’ into a
non-empty block, iii. an assignment statement, i.e. to ensure that the result from each arm of an
‘if’ statement is assigned to the same variable.

Hint 2: In some sense the ‘clever’ bit here is the returned expression. If the expression you’re
given contains no memoised function calls then the body returned should be [] and the returned
expression should be exactly the one we started with. You’ll see that the top-level translate
function simply generates a ProcDef that returns the expression’s value in that case. What
expression should you return in general?

To test your solution, try running translate on the various test functions in the template, e.g.
fib, testFun etc. In particular, the constant fibMGenerator in the template, which is defined in
terms of translate, should generate a procedure that is equivalent to fibM in Section 4 and also
defined in the template. Depending on how you define your translation function, the fresh variable
names inserted by your translator may be different to those shown in fibM; that’s absolutely fine
provided the generated procedure does the right thing. If you happen to choose exactly the same
variable names then you might be able to establish that if fibMGenerator = translate fib

"fibM" [("fib", "fibTableManager")] then:

*Main> fibMGenerator == fibM

True

Good luck!
[2 Marks]
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