
2014 Haskell January Test
Regular Expressions and Finite

Automata

This test comprises four parts and the maximum mark is 25. Parts I, II and III are worth 23 of
the 25 marks available. The 2014 Haskell Programming Prize will be awarded for the best
attempt(s) at Part IV.

Credit will be awarded throughout for clarity, conciseness, useful commenting and the appropriate
use of Haskell’s various language features and predefined functions.

WARNING: The examples and test cases here are not guaranteed to exercise all aspects of your
code. You may therefore wish to define your own tests to complement the ones provided.

1

1 Introduction

Regular expressions, or regexes, are used to describe search patterns in text processing applica-
tions. Examples of their use include Linux’s grep filter utility, text editors like vim and emacs

and also programming languages like Ruby, Java and, of course, Haskell! This exercise aims to
explore some of the algorithms and data structures traditionally associated with regular expression
implementations.

2 Regular Expressions

For the purposes of this exercise a regular expression is defined recursively to be either:

1. A terminal character that defines a pattern that matches only that character in a given input
string. For example the expression a defines a pattern that matches only the string "a".

2. A sequence of two juxtaposed regular expressions. For example, the regular expression ab
comprises two terminals, a and b, in sequence and this defines a pattern that will match
only the string "ab". Note that parentheses can optionally be used to bracket subterms of a
regular expression in the usual way, and that, for example, a(bc), (ab)c and abc all represent
the same expression (i.e. sequencing is associative).

3. An alternative, written (e | e′) where e and e′ are regular expressions. For example, the
expression (ab | c) defines a pattern that matches either the string "ab" or the string "c".
Note that the | operator is associative and commutative, so the expressions (a | bb | ac),
(ac | (bb | a)) and ((a | ac) | bb) all define the same matching pattern. In this exercise we will
always enclose alternative expressions in parentheses.

4. A repetition (“Kleene star”1) of zero or more occurrences of a given expression, e say, written
e∗. For example, ab∗c defines a pattern that matches the character ’a’ followed by zero or
more occurrences of the character ’b’ followed by a single occurrence of the character ’c’.

5. A repetition (Kleene plus) of one or more occurrences of a given expression, e, written e+.
For example, ab+c defines a pattern that matches the string "abbbc", but not "ac", as there
must be at least one ’b’ following the initial ’a’.

6. An optional occurrence of a given expression, e, written e?. For example, (ab)?d+ defines a
pattern that matches the strings "d", "dd", "abd", "abdd" and so on.

7. The null expression, which matches only the empty string (""). For example, the expression
(a |) defines a pattern that matches the strings "a" and "" only. A common convention is
to denote null expressions explicitly by the special symbol ε, as in (a | ε) for example, and
this idea will feature later on in Section 3.

Some more examples of regular expressions and matching/non-matching strings are shown in
Table 1. If a regular expression e defines a pattern that matches a string s then we say that e
accepts s. For example, the expression (ab | c)∗ accepts the strings "", "c", "abababccab" etc., as
shown in the table.

1Named after the American mathematician Stephen Cole Kleene.

2

Regex Matching string examples Non-matching string examples
(x | y)(1 | 2) "x2" "x"

"y1" "x3"

x′∗ "x" "y"

"x’" "’"

"x’’’" "x’x"

(ab | c)∗ "" "d"

"c" "ac"

"abababccab" "cccb"

(a |)a "a" "b"

"aa" "aaa"

(ab)?d+ "d" "ab"

"abd" "bd"

"abddd" "ababd"

Table 1: Some regular expressions and examples of matching/non-matching strings

2.1 Simplification Rules

The + and ? operators are, in fact, unnecessary and can expressed in terms of the other operators
via the identities:

e+ ≡ ee∗

e? ≡ (e |)

for all expressions e.

2.2 Representation

Regular expressions, as described above, can be implemented in Haskell via the following data
type:

data RE = Null | -- Null expression

Term Char | -- Terminal

Seq RE RE | -- Sequence

Alt RE RE | -- Alternation

Rep RE | -- Repetition (*)

Plus RE | -- Repitition (+)

Opt RE | -- Optional expression (?)

deriving (Eq, Show)

Table 2 gives some examples of regular expressions whose representations are defined in the tem-
plate file for testing purposes.

You are now in a position to answer the questions in Part I. You may wish to complete these
before reading on.

3

Regex Representation Template variable
(x | y)(1 | 2) Seq (Alt (Term ’x’) (Term ’y’)) (Alt (Term ’1’) (Term ’2’)) re1

x′∗ Seq (Term ’x’) (Rep (Term ’́’)) re2

(ab | c)∗ Rep (Alt (Seq (Term ’a’) (Term ’b’)) (Term ’c’)) re3

(a |)a Seq (Alt (Term ’a’) Null) (Term ’a’) re4

(ab)?d+ Seq (Opt (Seq (Term ’a’) (Term ’b’))) (Plus (Term ’d’)) re5

Table 2: Example representations defined in the template

3 Non-deterministic Automata

A key property of regular expressions is that the patterns they define can be described by a Non-
Deterministic (Finite) Automaton, or NDA, which is an example of a labelled state transition
system with a finite number of states. An example NDA for the regular expression (a | b)∗c
(reFigure in the template) is shown in Figure 1.

21

5Eps

3
Eps

7

Eps

9Eps

8a

10b

6

Eps

Eps

Eps
Eps

4Eps c

Figure 1: NDA for (a | b)∗c

An NDA has a unique start state (state 1 in Figure 1) and a unique accepting state, which we
will also refer to as the terminal state, which is shown as a double circle (state 2 in Figure 1).
The sequence of non-Eps transition labels visited on a path through the NDA from the start state
to the accepting state defines a string that is “accepted” by, i.e. can be matched by, the regular
expression. There may be many such paths, indeed possibly infinitely many, and these collectively
determine the set of strings that are accepted by the regular expression.

A transition labelled with the special symbol Eps corresponds to a null regular expression2

and can be traversed unconditionally; indeed, if there are multiple Eps-labelled transitions out
of a state then any of them may lead to a successful match, so each, in principle, must be
explored non-deterministically. The choice of which path to take is called ‘non-deterministic’
because we don’t know in advance which one (if any) will lead to a successful match — in the
worst case, we may have to try them all. The strings accepted by the NDA of Figure 1 are
precisely those defined by the corresponding regular expression (a | b)∗c, e.g. "ac" (via the path

2Recall from Section 1 that null expressions are often denoted explicitly by the symbol ε, hence the name Eps

used here.

4

1 → 5 → 7 → 8 → 6 → 3 → 4 → 2), "bc" (path 1 → 5 → 9 → 10 → 6 → 3 → 4 → 2), "aac"
(path 1→ 5→ 7→ 8→ 6→ 5→ 7→ 8→ 6→ 3→ 4→ 2) and so on.

Turning things around, we can ask whether a given input string will be accepted by an NDA
by using the individual characters of that string to ‘fire’ the non-Eps transitions in the NDA,
beginning from the start state. If all the characters of the input string have been used up and it is
possible to reach the accepting state unconditionally from the current state then the input string
is accepted by the NDA. If not, or if we reach a point where no transitions can fire, then the string
is rejected. For example, the strings "ac", "bc", "aac" etc. will all be accepted. However, "cc"
will be rejected, because we will reach the terminal state with the second ’c’ left unused. For
the string "ad" the ’a’ will fire the transition from 7 to 8 but none of the successor transitions
(states 4, 7 and 8) are labelled with a ’d’, so this will also be rejected.

Note that a ∗ in a regular expression creates a cycle in the corresponding NDA. For example,
in Figure 1 the ∗ in (a | b)∗c is implemented via the “backward” transition from state 6 to 5. Note
also that the “short-circuit” transition from 1 to 3 allows the NDA to accept ’a’ or ’b’ zero
times, as required.

Remark: The NDAs shown here are not necessarily optimal, but are shown here as generated by
the NDA construction algorithm that you will be implementing later on.

3.1 Representation

An automaton can be described using the following Haskell data types:

type State = Int

data Label = C Char | Eps

deriving (Eq, Ord, Show)

type Transition = (State, State, Label)

type Automaton = (State, [State], [Transition])

States are labelled with unique integer identifiers. A transition comprises a source state, a target
state and a label, which is either Eps (unconditional transition) or of the form C c where c is a
character. An automaton is a 3-tuple comprising, in order:

1. The (unique) start state

2. The list of terminal states†

3. The list of transitions

†Note: Although an NDA has only one terminal state, in general an automaton can have many,
as we shall see in Part IV.

As an example, the NDA of Figure 1 (ndaFigure in the template) will be represented by:

(1,[2],[(1,3,Eps),(1,5,Eps),(3,4,Eps),(4,2,C ’c’),(5,7,Eps),

(5,9,Eps),(6,3,Eps),(6,5,Eps),(7,8,C ’a’),(8,6,Eps),

(9,10,C ’b’),(10,6,Eps)])

and that of x′∗ (nda2 in the template) by:

5

(1,[2],[(1,3,C ’x’),(3,4,Eps),(4,2,Eps),(4,5,Eps),(5,6,C ’\’’),

(6,2,Eps),(6,5,Eps)])

The order in which the states, terminals and transitions are listed is not significant, although we
always display each of them sorted lexicographically. The NDAs for the examples given in Table 1
are shown graphically in Table 3. Note that the NDA for (ab)?d+ corresponds to the simplified
version of the expression in which the + and ? have been removed, viz. (ab |)dd∗.

4 What to do

There are four parts to this test and most of the marks are for Parts I–III. Part IV is worth only
two of the 25 marks available and is hard, so you are advised to attempt it only when you have
completed Parts I–III.

The example expressions referred to above, (re1, re2, ...) and their corresponding NDAs,
(nda1, nda2, ...), are included in the template for testing purposes. There are also some examples
of so-called deterministic automata (da1, da2, ...) each of which has the same structure as a
non-deterministic automaton, but with possibly more than one terminal state. These feature in
Part IV but are still useful elsewhere for testing purposes.

A function showRE :: RE -> String is also defined in the template for testing purposes;
this produces a compact textual representation of a given RE. For example, showRE re5, where
re5 is Seq (Opt (Seq (Term ’a’) (Term ’b’))) (Plus (Term ’d’)), produces "(ab)?d+".

4.1 Part I: Basics

1. Define a function: lookUp :: Eq a => a -> [(a, b)] -> b that will look up a given
item in a list of item/value pairs, delivering the corresponding value. A precondition is that
there is exactly one occurrence of the item in the list.

[1 mark]

2. Define a function simplify :: RE -> RE that will remove any + or ? expressions using the
simplification rules in Section 2.1. For example, showRE (simplify re5) should produce
"(ab|)dd*".

[3 marks]

4.2 Part II: Functions on NDAs

1. Define the following three functions for indexing automata:

startState :: Automaton -> State

terminalStates :: Automaton -> [State]

transitions :: Automaton -> [Transition]

that will return respectively the start state, the list of terminal states and the list of tran-
sitions in a given automaton. For example, terminalStates nda1 should return [2]. Use
these wherever you see fit in the questions that follow.

[1 mark]

6

Regex NDA
(x | y)(1 | 2)

21

5Eps

7

Eps

6x

8y

3

Eps

Eps 4Eps

9Eps

11

Eps

101

122

Eps

Eps

x′∗

21 3x 4Eps Eps

5

Eps

6'
Eps

Eps

(ab | c)∗

21

Eps

3

Eps 5Eps

7
Eps

9a

8c

10
Eps

6
b

4

Eps

Eps

Eps

Eps

(a | ε)a

21

5Eps

7

Eps

6a

8Eps

3

Eps

Eps 4Eps a

(ab)?d+

2
1

5Eps

7

Eps

9
a

8Eps

10
Eps

6b

3

Eps

Eps 4Eps 11d 12Eps Eps

13

Eps

14d
Eps

Eps

Table 3: NDAs for the regular expressions in Table 1

7

2. Define a function isTerminal :: State -> Automaton -> Bool that delivers true iff the
given state is a terminal (accepting) state in the given automaton. For example, isTerminal
2 nda1 and isTerminal 3 da4 should both return True and isTerminal 5 nda2 should
return False.

[1 mark]

3. Define a function transitionsFrom :: State -> Automaton -> [Transition] that re-
turns the list of transitions emanating from a given state in a given automaton. For exam-
ple the application transitionsFrom 5 ndaFigure should return [(5,7,Eps),(5,9,Eps)]

and transitionsFrom 10 nda3 should return [(10,6,C ’b’)]. If the state doesn’t appear
in the atomaton then the result should be [].

[2 marks]

4. Define a function labels :: [Transition] -> [Label] that returns the labels in the
given list of transitions, with no duplicates. Any Eps transitions should be excluded from
the result. For example, labels [(1,2,Eps)] should return [] and labels (transitions

nda3) should return [C ’a’,C ’c’,C ’b’]. Hint: use nub from Data.List to remove any
duplicates.

[1 mark]

5. Define a function accepts :: Automaton -> String -> Bool that returns True iff the
given automaton accepts the given input string using the so-called “backtracking” approach,
which is described below. Note that this is not the most efficient way to solve the problem,
but it is the simplest.

[6 marks]

Acceptance testing using backtracking

The idea is to try to match all possible paths from a given state against the given input string.
If any of them succeeds then the string is accepted. To implement this, define a helper func-
tion, accepts’ :: State -> String -> Bool, that takes the current state, s say, (initially the
unique start state) and the string we’re trying to match (initially the input string), and does the
following:

• If the state is a terminal state and the string is null then the string is accepted, i.e. there
are no unmatched characters left. Use the isTerminal function defined earlier and the null

function from the prelude.

• Otherwise, you need to use the transitionsFrom function to get the list of transitions ema-
nating from s and then “try” each of them looking for a match; this is the “non-deterministic”
bit. The match succeeds if any of these paths leads to the string being accepted; conversely,
it fails if the string is rejected by every path followed. To implement this part of the solu-
tion it is suggested, although not required, that you define another helper function try ::

String -> Transition -> Bool that ‘tries out’ one such transition using the following
rules:

– If the transition is labelled with an Eps with target state t then you simply continue
the process from state t by invoking accepts’ recursively; the string is unchanged.

8

– If the transition is labelled with a character, c say, with target state t, then you need
to examine the input string (use pattern matching!). If the string is empty then the
match fails at this point and we abort (return False). If it is non-empty then look at
the item at the head, c’ say. If c’ == c then you continue by invoking accepts’ on
the tail of the string starting with state t; otherwise the match has again failed at this
point and you return False.

4.3 Part III: Constructing an NDA

Define a function makeNDA :: RE -> Automaton that will generate an NDA from a given regular
expression. There is a simple algorithm for doing this which you should try to follow exactly, in
order to simplify testing and marking. We start with the top-level function, which is provided in
the template thus:

makeNDA :: RE -> Automaton

makeNDA re

= (1, [2], sort transitions)

where

(transitions, k) = make (simplify re) 1 2 3

Your job is to define the function make, which has type

make :: RE -> Int -> Int -> Int -> ([Transition], Int)

In addition to the expression we’re converting, the function takes three integers, m, n and k say,
in that order. The idea is to construct an NDA which starts in the state numbered m and ends in
the state numbered n. The k represents the next available identifier that can be used to number
any additional states. The top-level call defines the start state of the final NDA to be 1 and the
end state to be 2, but this is just a convention – NDAs in general can have arbitrary start and
terminal states. Because this is the top level, 2 must therefore be the unique terminating state
for the whole NDA, hence the [2] in the resulting 3-tuple. Because state identifiers 1 and 2 have
been used, the next available identifier is 3, hence the fourth parameter to make. The transitions
returned by make are sorted lexicographically, using the sort function imported from the module
Data.List, in order to help with testing and marking.

To make the NDA for a given regular expression you simply put together nodes and transitions
according to the rules defined in Figure 2. The dotted lines indicate where the NDAs for any
subexpressions should be placed; these sub-NDAs will be built recursively.

As an example, given an expression Seq r1 r2 you recursively make the NDA for r1 with
start and end states m and k respectively, then do the same for r2 with start and end states k+1

and n respectively. You then add one additional transition labelled Eps between states k and k+1

and you’re done. You have to be careful to maintain the next available state identifier at each
point: making the NDA for r1 may consume an arbitrary number of such identifiers, for example.
However, it tells you which ones it used as part of its return value, whose type is (([Transition],
Int). The Int here is the next available identifier, having built the entire sub-NDA for re1, as
represented by the list of transitions. The idea is then to use this as the k parameter when making
the NDA for r2. Once you see how this works for sequences, very similar rules apply for the other
two recursive cases.

The base cases are simple. The result in each case is a single transition appropriately labelled
and the next available state identifier is the one we started with, as no additional nodes are
required.

9

m nEps m nC c

(a) Null and terminal cases: Eps and C c

m kr1 goes here k+1Eps nr2 goes here

(b) Sequence: Seq r1 r2

m

kEps

k+2

Eps

k+1r1 goes here

n

Eps

k+3r2 goes here
Eps

(c) Alternative: Alt r1 r2

m

kEps

nEps

k+1

r goes here

Eps Eps

(d) Repetition: Rep r

Figure 2: Rules for constructing an NDA

If you follow the state numbering scheme exactly as described then you should be able to
reproduce the NDAs for each example expression in the template. For example makeNDA re2

should yield, ideally exactly, if not the equivalent of, nda2, i.e.

(1,[2],[(1,3,C ’x’),(3,4,Eps),(4,2,Eps),(4,5,Eps),(5,6,C ’\’’),

(6,2,Eps),(6,5,Eps)])

10

You can test the bases cases separately, e.g. makeNDA (Term ’x’) should yield the 3-tuple
(1,[2],[(1,2,C ’x’)]), or the equivalent.

Note that an exact reproduction isn’t necessary to get the marks, however; what matters is
whether the NDA does the right thing.

[8 marks]

5 Part IV: Deterministic Finite Automata

The final part of this exercise invites you to remove the Eps transitions in the NDAs from Part III,
generating a Deterministic Automaton, or DA, where the next transition, if one is possible, is
uniquely determined by the transition labels. To illustrate what you need to achieve, Table 4
shows the deterministic equivalents of the NDAs in Table 3. These DAs are defined in the template
and can be used for testing.

There are several ways of building a DA from an NDA. The algorithm below explains the
general idea, together with details of a particular approach, superset construction, that falls out
elegantly in Haskell that you may wish to follow. Feel free to try a different approach, however, if
you think you have a better idea!

However you do it, the objective is to define a function makeDA :: Automaton -> Automaton

that converts an NDA into a DA. Note that the representations of both NDAs and DAs are the
same. The functions you defined earlier will thus work equally well on both.

Translating an NDA into a DA

The idea is for the states of the DA, the so-called “metastates”, to correspond to sets of states
in the original NDA. The first objective is to compute the list of metastates and transitions
representing the DA, together with the root (start) metastate. Then all you need to do is map
metastates into ordinary, integer-labelled, states and determine the set of terminal states – there
may be more than one.

The suggestion is that you make the list of new metastates and new transitions accumulating
parameters of a helper function. The algorithm then proceeds as follows:

• We work with input sets of states from the original NDA, represented as lists, beginning
with the singleton set containing just the start state, e.g. [1] if the start state is 1. Now
compute the frontier of the NDA, which is the list of non-Eps transitions that can be reached
by following Eps transitions as far as possible, starting from each state in the input set. If
the frontier reaches the terminal state then the special “phantom” transition (t, t, Eps)

should be included in the list returned (see below). In order to avoid the need to do explicit
cycle detection we’ll assume a precondition that any cycle in the NDA must include at
least one non-Eps transition – it will if the NDA has been built as described earlier. For
example, the frontier of the NDA for (ab | c)∗, i.e. nda3, starting from input state set [1],
is [(2,2,Eps),(5,9,C ’a’),(7,8,C ’c’)]. In general there may be several states in the
input set, so simply concatenate the frontiers for each of them together. The recommendation
is that you define a function getFrontier :: State -> Automaton -> [Transition] for
calculating frontiers as described. The type signature for this function is provided in the
template.

• The set of unique source states of each transition in the frontier defines a new “metastate”,
which will be associated with a state in the DA being constructed. For example, the metas-
tate for the frontier above will be [2,5,7]. Note the role of the phantom transition: this

11

metastate will (later) be marked as a terminal state because it contains 2 - the unique termi-
nal state in this particular NDA. Hint: use nub and sort imported from Data.List to ensure
that the metastate “identifiers” are uniquely determined by the original state identifiers they
contain.

• If the metastate has been visited before then return immediately as we’ve reached a state
that we’ve seen before: the root is the metastate and the accumulated lists of metastates
and transitions are unchanged.

• Otherwise, group the frontier transitions by transition label — there may be several transi-
tions with the same label and these need to be combined (see below). If the frontier contains
the special phantom transition then this should be removed at this point. In the exam-
ple above the grouped transitions will be [(C ’a’,[9]),(C ’c’,[8])] as the labels are
unique. However, the frontier of the NDA for (a |)a from state 1 contains two ’a’ transi-
tions, i.e. [(3,7,C ’a’),(5,9,C ’a’)], so these will be grouped thus: [(C ’a’,[7,9])].
The recommendation is that you use the labels function defined earlier to define a func-
tion groupTransitions :: [Transition] -> [(Label, [State])] to group transitions
as described, making sure that the states in the list ([State]) are unique. The type signa-
ture for this function is provided in the template. Hints: use a list comprehension and notice
that the labels function will conveniently remove the phantom transition automatically, if
it is present, because it is an Eps transition.

• You now add the new metastate, m say, to the accumulated list of metastates and recursively
visit each target node set, adding one new transition to the accumulated transitions list
after each recursive call. For example, if the grouped transitions are [(C ’a’,[5,6,7]),(C

’c’,[8,9])] you recurse with the state sets (lists) [5,6,7] and [8,9], maintaining the
list of new metastates and transitions as you go (a fold?!). If the first of these generates
the root r, and transition and metastate lists ts and ms respectively, then you add one new
transition of the form (m, r, C ’a’) to ts before recursing again on the state list [8,9]

and doing likewise.

If you choose to follow the algorithm as described you may like to use the following function types
defined in the template:

type MetaState = [State]

type MetaTransition = (MetaState, MetaState, Label)

makeDA :: Automaton -> Automaton

-- Suggested helper function for makeDA...

makeDA’ :: [State] -> [MetaState] -> [MetaTransition]

-> (MetaState, [MetaState], [MetaTransition])

The second and third parameters of makeDA’, and similarly the result tuple, are the accumulating
parameters suggested.

Good luck!
[2 marks]

12

Regex DA
(x | y)(1 | 2)

31 2x
y

1
2

x′∗

2

'

1 x

(ab | c)∗

1

c

2a
b

(a | ε)a

2 3a1 a

(ab)?d+

2

d

1
d

3

a

4b
d

Table 4: DAs for the examples in Table 1

13

