
2019 Haskell January Test
SAT Solving

This test comprises four parts. Any marks accumulated in Part IV are bonus marks and these
will be added to the total obtained from Parts I-III, the maximum mark for which is 25. The
total mark will be capped at a maximum of 25. The 2019 Haskell Programming Prize will
be awarded for the best overall solution.

Credit will be awarded throughout for clarity, conciseness, useful commenting and the appropriate
use of Haskell’s various language features and predefined functions.

WARNING: The examples and test cases here are not guaranteed to exercise all aspects of your
code. You are therefore advised to define your own tests to complement the ones provided.
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1 Introduction

The Satisfiability, or SAT, problem is that of determining whether there are assignments to the
variables of a propositional logic formula which make the formula True. SAT problems are key
to many real-world applications that can be formulated in propositional logic, such as industrial
product design, hardware/software verification and task scheduling.

In theoretical computer science the SAT problem is also important as it is an example of an
NP-complete problem – a class of decision problems for which no efficient solution algorithm is
known in the general case. Fortunately, there are some simple heuristics, i.e. rules that work
well in practice without guaranteeing optimality, that can massively reduce the SAT solving time
for many practical examples. This exercise concerns the famous DP (Davis-Putnam) algorithm
which augments an exhaustive “brute force” search strategy with an additional heuristic called
unit clause propagation1 designed to reduce the size of the search space. Astonishingly, this very
simple heuristic often leads to extremely short solution times when the brute-force strategy alone
would render the problem essentially intractable.

Note that an alternative way to solve a SAT problem is to build a Binary Decision Diagram
(BDD) from the given propositional formula and then determine whether any of the terminal
leaves of the BDD is labelled True. This was the subject of a previous test.

2 Propositional logic

In this exercise you will be working with a subset of propositional logic formulae comprising just
propositional variables, e.g. a, b, c, ..., each of which can assume the values False or True, and
the familiar logical connectives not (¬), and (∧) and or (∨). The implication (→) and iff (⇔)
connectives are omitted as they can be straightforwardly rewritten in terms of the other three.
Some examples of well-formed propositional formulae are shown in the left column of Table 1.
The operations ¬, ∧ and ∨ have the usual meaning:

a ¬a
False True
True False

a b a ∧ b a ∨ b
False False False False
False True False True
True False False True
True True True True

2.1 Conjunctive normal form

The DP algorithm assumes that propositional formulae are in Conjunctive Normal Form, or CNF,
i.e. in the form of a conjunction (∧) of zero or more clauses, each of which is a disjunction (∨) of
zero or more literals, each of which is either a variable or its negation, e.g. a or ¬a. For example,
the middle column of Table 1 shows the CNF equivalents of the example formulae in the left
column. Note that we can optionally drop the brackets when writing out nested conjunctions and
disjunctions, although the examples in Table 1 retain them. For example, A ∧ (B ∧ C) can be
written A ∧B ∧ C and (A ∨B) ∨ C can be written A ∨B ∨ C.

1The published algorithm also uses a second heuristic called pure literal elimination, but this is only beneficial
in the boolean (yes/no) satisfiability problem. Here, we are interested in computing all satisfying assignments, so
it is therefore omitted for simplicity.
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Formula CNF Flattened Representation
¬(¬a) a [[1]]

a ∧ b a ∧ b [[1],[2]]

¬(¬a ∧ ¬b) a ∨ b [[1,2]]

¬(b ∨ (a ∧ ¬c)) ¬b ∧ (¬a ∨ c)) [[-2],[-1,3]]

(a ∧ (¬(b ∨ c))) ∨ ¬d (a ∨ ¬d) ∧ ((¬b ∨ ¬d) ∧ (¬c ∨ ¬d)) [[1,-4],[-2,-4],[-3,-4]]

Table 1: Some examples of propositional formulae (respectively f1, f3, f4, f6 and f8 in the
template) and their CNFs

2.1.1 Conversion to NNF

In order to convert a propositional formula into CNF it is first necessary to convert it to Negation
Normal Form, or NNF. To do this, you use De Morgan’s laws and the law of double negation, so
that all negations end up being attached only to variables:

¬(A ∨B) ≡ ¬A ∧ ¬B
¬(A ∧B) ≡ ¬A ∨ ¬B

¬¬A ≡ A

where A and B are arbitrary sub-formulae, which we shall sometimes refer to as terms. Note
that these rules have to be applied recursively, as A and B may themselves contain sub-formulae
(terms) to which the same rules must be applied.

2.1.2 Conversion to CNF

Once a formula is in NNF it is straightforward to convert it to CNF by distributing Ors inwards
over Ands via:

A ∨ (B ∧ C) ≡ (A ∨B) ∧ (A ∨ C)
(A ∧B) ∨ C ≡ (A ∨ C) ∧ (B ∨ C)

2.2 Flattened CNF representation

When implementing the DP algorithm it is convenient to work with a flattened representation
of CNFs, which we’ll call CNFRep, which exploits the fact that CNFs are simply “Ands of Ors”.
In this representation propositional variables will be encoded as positive integers, e.g. 3 for c,
and their negation by their negative equivalent, e.g. −3 for ¬c. Each clause (disjunction) will be
represented by a list of literals, each encoded as an integer as above, and the top-level conjunction
will be represented by a list of these flattened clauses. For example, assuming that a, b, c and
d are encoded as 1, 2, 3 and 4 respectively, the right column of Table 1 shows the flattened
representations of the CNFs in the middle column. We adopt Haskell’s list notation for obvious
reasons!

3 Haskell types

For the purposes of this exercise you’re going to work with the following representation for propo-
sitional formulae and CNFs, which is self-explanatory:
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type Id = String

data Formula = Var Id

| Not Formula

| And Formula Formula

| Or Formula Formula

deriving (Eq, Show)

type NNF = Formula

type CNF = Formula

type CNFRep = [[Int]]

type IdMap = [(Id, Int)]

These types are provided in a file called Types.hs which is separate from the main template.
Notice that, for simplicity, both NNF and CNF are synonymous with Formula. An assumption

throughout is therefore that all NNFs and CNFs are well-formed in that they respect the definition
of the respective normal form. Thus, for example, you may assume that an object with type NNF

will be in Negation Normal Form even though formulae that are not in that form could be assigned
the type NNF.

To help with testing, a function called printF is provided in the template, which will print
a shorthand version of a given Formula, using the symbols !, & and | to represent ¬, ∧ and ∨
respectively. Thus, for example:

*SAT> f1

Not (Not (Var "a"))

*SAT> printF f1

!!a

*SAT> f4

Not (And (Not (Var "a")) (Not (Var "b")))

*SAT> printF f4

!(!a & !b)

*SAT> f8

Or (And (Var "a") (Not (Or (Var "b") (Var "c")))) (Not (Var "d"))

*SAT> printF f8

((a & !(b | c)) | !d)

At this point you are in a position to complete Parts I and II. You may wish to work on these
these before reading on.

4 The DP algorithm

Given a propositional formula in CNF the DP algorithm will determine whether there exists
an assignment of variables to truth values, i.e. to False or True, that will make the formula
True. However, simply knowing that a formula is satisfiable isn’t that useful without knowing
which assignments, if any, satisfy it. This exercise therefore seeks to build a version of DP that
computes all satisfying assignments of a given formula, should any such assignments exist.
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An exhaustive “brute force” approach would be to try all possible variable assignments and
check each in turn to see whether the formula is True under the given assignment. Unfortunately,
if there are n variables then there are 2n possible assignments, so the problem is computationally
intractable except for small values of n. As an example, the so-called n-queens problem is to place
n queens on a chessboard in such a way that no two queens can take each other. On an 8×8 chess
board there are 64 possible locations, so a propositional formula that describes all the constraints
for a solution to be valid will involve 64 variables. A brute force approach would thus require all
264 = 18446744073709551616 possible assignments to be explored. To put this in perspective, if a
billion assignments could be tested each second then it would take approximately 585 years(!) to
compute all solutions, of which there are known to be just 92.

The DP algorithm is essentially the brute force approach but with an additional heuristic2,
unit clause propagation, designed to prune out parts of the search space so that, hopefully, only a
tiny fraction of all possible assignments end up being considered. For example, the DP algorithm
can compute all 92 solutions to the n-queens problem in under a second on most lab machines.

4.1 Unit clause propagation

Consider a formula in CNF comprising a conjunction of clauses, each representing a disjunction
of literals. Clauses comprising just a single literal are called unit clauses. For example, in the
formula a∧ ((b∨ c)∧¬c), equivalently a∧ (b∨ c)∧¬c, both a and ¬c are unit clauses, but (b∨ c)
is not.

The reasoning behind unit clause propagation goes as follows. Suppose we have a CNF formula,
F , that contains a unit clause U , i.e a single literal comprising a propositional variable or its
negation. In order for F to be satisfied, U must be True, otherwise F , which is a conjunction,
would contain a False term and would hence itself be False. Thus, the following deletion rules
apply:

1. Clause deletion: If any clause (disjunction) in F contains U then that clause can be
deleted, because: i. a disjunction of terms, at least one of which is U = True, must itself
be True, i.e. True ∨ A ≡ A ∨ True ≡ True; ii. a conjunction of terms, at least one of
which is True, is the same as the conjunction with the True term(s) removed, because
True ∧ A ≡ A ∧ True ≡ A. Notice that this rule also has the effect of deleting the unit
clause itself (U) from F .

2. Literal deletion: If U is True then ¬U is False, e.g. if the unit clause ¬c is True then
c must be False. Thus, if any of the other clauses in F contains the literal ¬U , then that
literal can be deleted from the clause, because False ∨A ≡ A ∨ False ≡ A.

4.2 Worked example

To illustrate the DP algorithm acting on a flattened CNF, consider cnf2 defined in the template,
which corresponds to the following propositional formula in CNF:

(¬a ∨ ¬d) ∧ ((b ∨ (a ∨ e)) ∧ ((c ∨ ¬b) ∧ (d ∧ ((c ∨ ¬e) ∧ ((¬c ∨ ¬g) ∧ ((a ∨ (g ∨ f)) ∧ (¬c ∨ f)))))))

or, equivalently:

(¬a ∨ ¬d) ∧ (b ∨ a ∨ e) ∧ (c ∨ ¬b) ∧ d ∧ (c ∨ ¬e) ∧ (¬c ∨ ¬g)) ∧ (a ∨ g ∨ f) ∧ (¬c ∨ f)

The flattened equivalent, cnf2Rep, is also defined in the template, thus:

2Actually two additional heuristics as originally described – see the footnote above.
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*SAT> :t cnf2

cnf2 :: CNF

*SAT> cnf2

And (Or (Not (Var "a")) (Not (Var "d"))) (And (Or (Var "b") (Or (Var "a") (Var

"e"))) (And (Or (Var "c") (Not (Var "b"))) (And (Var "d") (And (Or (Var "c")

(Not (Var "e"))) (And (Or (Not (Var "c")) (Not (Var "g"))) (And (Or (Var "a")

(Or (Var "g") (Var "f"))) (Or (Not (Var "c")) (Var "f"))))))))

*SAT> printF cnf2

((!a | !d) & ((b | (a | e)) & ((c | !b) & (d & ((c | !e) & ((!c | !g) &

((a | (g | f)) & (!c | f))))))))

*SAT> cnf2Rep

[[-1,-4],[2,1,5],[3,-2],[4],[3,-5],[-3,-7],[1,7,6],[-3,6]]

Notice that the nested invocations of And and Or in the original CNF have been flattened into a
single conjunction of eight clauses in the corresponding CNFRep. Each clause (a disjunction) has
been flattened similarly, e.g. Or (Var "c") (Not (Var "e")) becomes [3,-5]. From here on
we will work with the flattened representations (CNFReps) only.

Unit clauses correspond to the literals associated with singleton lists in the CNFRep representa-
tion. In the example above, there is one such list, [4], with associated unit clause 4, corresponding
to variable d in the original CNF. After propagating this using the deletion rules from Section 4.1,
we end up with:

[[-1],[2,1,5],[3,-2],[3,-5],[-3,-7],[1,7,6],[-3,6]]

Notice that the clause [4] has been deleted by Rule 1 above because, by definition, it contains
the literal 4. In this case it is the only such clause and so is the only one to be deleted. The literal
-4 has also been removed from every clause by Rule 2 above, so the element [-1,-4], has been
replaced by [-1]. This is now a singleton list, so -1 represents a new unit clause, corresponding
to variable a in the original formula. The process therefore repeats, yielding:

[[2,5],[3,-2],[3,-5],[-3,-7],[7,6],[-3,6]]

This time the literal 1 has been removed from every clause by Rule 1 above. There were no
occurrences of -1 other than the unit clause itself, so Rule 2 did not apply.

At this point the unit clauses propagated have been 4 and -1 and this has yielded a non-
empty CNF in which there are no further unit clauses. When this happens the algorithm moves
into “brute force” mode by picking one of the remaining variables, (any one will do) and then
recursively invoking the DP algorithm twice – once assuming the variable to be False and then
again assuming it to be True. For the purposes of this exercise, the next variable to pick will be
the one associated with the first literal in the current CNF. In this case it is 2, corresponding to
b in the original formula.

The order in which we consider the recursive calls is not important, as we are looking for all
satisfying assignments, so let’s first consider the case where we set b to True. This is done by
adding the unit clause 2 to the above CNFRep in the form of a singleton list, for example at the
front, as in [[2],[2,5],[3,-2],[3,-5],[-3,-7],[7,6],[-3,6]], before recursing. Notice that
this is equivalent to a propositional formula of the form (b ∧ ...) which can only be True when b
is True, as required. Notice also that 2 is a (new) unit clause, so the recursive invocation of the
DP algorithm will immediately remove it as part of the unit propagation process.

The recursive call thus proceeds as follows: first the unit clause 2 is propagated, yielding:

[[3],[3,-5],[-3,-7],[7,6],[-3,6]]
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which exposes 3 as a new unit clause. Propagating this yields:

[[-7],[7,6],[6]]

There are now two unit clauses to choose from and it matters not which one you pick. If you
propagate -7 first then the result is:

[[6],[6]]

and propagating the unit clause 6 from either of these will knock out the other (Rule 1), yielding
[]. An empty conjunction, i.e. [], corresponds to True, i.e. success in the trivial case where
there are no variables left to assign.

If you instead propagate the 6 first then the result is:

[[-7]]

and further propagation of -7 will again lead to [], i.e. success.
Whenever the current CNF becomes [] (success) the result returned is the singleton list com-

prising the list of all unit clauses that were propagated during the current invocation of the
algorithm; in this case this is:

[[2,3,-7,6]]

which corresponds to the (single) assignment b → True, c → True, g → False, f → True. The
order of the elements in the list is unimportant.

The second invocation of the algorithm proceeds similarly, this time by adding the unit clause
-2 to the above CNF, e.g. via [[-2],[2,5],[3,-2],[3,-5],[-3,-7],[7,6],[-3,6]], before
recursing. This corresponds to setting b to False. Proceeding similarly to the above, succes-
sive propagations again reduce the CNF to [] (success) and the following (single) assignment is
returned:

[[-2,5,3,-7,6]]

To generate the result list of satisfying assignments in the top-level call to DP, all that remains is
to concatenate the list of unit clauses that were propagated prior to the recursive calls, i.e. 4 and
-1 in the example, to each assignment returned from those calls. This yields the following:

[[4,-1,2,3,-7,6],[4,-1,-2,5,3,-7,6]]

Notice that in the first assignment there is no reference to variable number 5, i.e. to e in the original
formula. This means that the result implicitly encodes two solutions, [5,4,-1,2,3,-7,6] and
[-5,4,-1,2,3,-7,6], as the solution is insensitive to the value assigned to e.

If, at any point, one of the clauses in the flattened CNF becomes [], e.g. [[-3],[],[1,-2,4]],
then the algorithm fails by returning the empty list of assignments, []. This is because an empty
disjunction corresponds to False and a conjunction containing a False term is itself False.

5 What to do

There are four parts to this test. The first three parts are independent, so if you get stuck on one
part you may wish to move on to another. The module TestData contains a number of constants
and functions that you can use for testing, including the formulae in Table 1 above. You should
refer to the comments in TestData.hs for further details.
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5.1 Part I: Utilities

1. Define a function lookUp :: Eq a => a -> [(a, b)] -> b that will look up an item in
a list of (item, value) pairs. For example,

*SAT> lookUp 3 [(2,1),(3,8)]

8

A precondition is that the item being looked up has a unique binding in the list.

[1 Mark]

2. Using nub and sort from the imported module Data.List, define a function vars ::

Formula -> [Id] that will return a sorted list of the variable names appearing in a propo-
sitional formula, without duplicates. For example,

*SAT> f1

Not (Not (Var "a"))

*SAT> vars f1

["a"]

*SAT> printF cnf3

((!c | !g) & ((b | (c | e)) & ((a | !b) & ((a | !e) & ((!a | !d) &

((c | (d | f)) & ((!a | !f) & g)))))))

*SAT> vars cnf3

["a","b","c","d","e","f","g"]

Note that the function can be applied to any formula, including those in CNF.

[3 Marks]

3. Using vars, define a function idMap :: Formula -> IdMap that will generate a list of
(Id, Int) pairs associating the variable identifiers in a given formula with the integers 1,
2, ... and so on, in order. For example,

*SAT> idMap cnf3

[("a",1),("b",2),("c",3),("d",4),("e",5),("f",6),("g",7)]

Note that the elements are implicitly in sort order by virtue of vars.

[1 Mark]

5.2 Part II: Normal forms

1. Define a function toNNF :: Formula -> NNF that will convert a given formula into Nega-
tion Normal Form (NNF), as per Section 2.1.1. For example:

*SAT> toNNF f1

Var "a"

*SAT> printF f6

!(b | (a & !c))

*SAT> printF (toNNF f6)

(!b & (!a | c))
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*SAT> printF f8

((a & !(b | c)) | !d)

*SAT> printF (toNNF f8)

((a & (!b & !c)) | !d)

[4 Marks]

2. Define a function toCNF :: Formula -> CNF that will convert a given formula into Con-
junctive Normal Form (CNF). In order to do this your first need to convert it to NNF,
using toNNF, and then convert the result into CNF using the distribution rules given in Sec-
tion 2.1.2. These rules are predefined in the template in the form of a function distribute

:: CNF -> CNF -> CNF. Your toCNF function should thus use a helper function to recurse
into the arguments of all Ands and Ors, replacing each Or with a call to distribute. Note
that all Nots will be applied to Vars only, as the formula is in CNF, and therefore also in
NNF. For example:

*SAT> printF f4

!(!a & !b)

*SAT> printF (toCNF f4)

(a | b)

*SAT> printF f6

!(b | (a & !c))

*SAT> printF (toCNF f6)

(!b & (!a | c))

*SAT> printF f8

((a & !(b | c)) | !d)

*SAT> printF (toCNF f8)

((a | !d) & ((!b | !d) & (!c | !d)))

[3 Marks]

3. Using idMap, define a function flatten :: CNF -> CNFRep that will generate the flattened
version of a given CNF formula. For example,

*SAT> printF c3

(a & b)

*SAT> flatten c3

[[1],[2]]

*SAT> printF c4

(a | b)

*SAT> flatten c4

[[1,2]]

*SAT> printF cnf3

((!c | !g) & ((b | (c | e)) & ((a | !b) & ((a | !e) & ((!a | !d) &

((c | (d | f)) & ((!a | !f) & g)))))))

*SAT> flatten cnf3

[[-3,-7],[2,3,5],[1,-2],[1,-5],[-1,-4],[3,4,6],[-1,-6],[7]]

The order of the elements in the resulting list, and their sublists, is unimportant. Note that
idMap is defined to take a Formula, rather than a CNF. However, the types CNF and Formula

are synonymous, as all CNFs are valid formulae.

[4 Marks]
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5.3 Part III: The DP algorithm

1. By implementing the rules described in Section 4.1, and illustrated in Section 4.2, define a
function propUnits :: CNFRep -> (CNFRep, [Int]) that will take the flattened version
of a CNF and return a pair comprising:

• The CNFRep that results from propagating all unit clauses in the original CNFRep

• The list of all unit clauses propagated as part of this process

By definition, the CNFRep returned in the result pair should contain no unit clauses.

Note that a unit clause in a CNFRep is a singleton list comprising just an integer, which may
be positive or negative, depending on whether or not the corresponding variable is negated,
as described in Section 2.2. For example:

*SAT> propUnits []

([],[])

*SAT> cnf1Rep

[[1,2,3],[1,2,-3],[1,-2,3],[1,-2,-3],[-1,2,3],[-1,2,-3],[-1,-2,3]]

*SAT> propUnits cnf1Rep

([[1,2,3],[1,2,-3],[1,-2,3],[1,-2,-3],[-1,2,3],[-1,2,-3],[-1,-2,3]],[])

*SAT> cnf2Rep

[[-1,-4],[2,1,5],[3,-2],[4],[3,-5],[-3,-7],[1,7,6],[-3,6]]

*SAT> propUnits cnf2Rep

([[2,5],[3,-2],[3,-5],[-3,-7],[7,6],[-3,6]],[4,-1])

The order of the elements in the resulting lists and sublists is unimportant.

Hint: It’s easier if you propagate one unit clause at a time, i.e. if a CNF has multiple unit
clauses then select one of them to propagate. The others will be picked up by recursion.

[5 Marks]

2. To complete the DP algorithm, use the function propUnits to define a function dp ::

CNFRep -> [[Int]] that will return the list of all satisfying assignments for the given
CNFRep, as described in Section 4.

For example,

*SAT> dp cnf1Rep

[[1,2,3]]

*SAT> dp cnf2Rep

[[4,-1,2,3,-7,6],[4,-1,-2,5,3,-7,6]]

*SAT> dp cnf3Rep

[]

The order of the elements in the resulting lists and sublists is unimportant. Note that
cnf1Rep has only a single satisfying assignment and cnfRep3 has none. As described in
Section 4.2, cnf2Rep has three solutions, but two of them are implicitly encoded in the
assignment [4,-1,2,3,-7,6] where the variable corresponding to the number 5, i.e. e here,
can assume either the value False or True.
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Hint: The termination conditions (Section 4.2) can be based on inspection of the CNF after
unit propagation via propUnits, noting, as in the example above, that if the given CNF is
[] then the CNF in the pair returned by propUnits will also be [].

n-Queens: The TestData module contains a function that will build a propositional formula
representing the constraints that must be satisfied in order to solve the n-queens problem.
If you get your dp function to work correctly, you might like to time it on the 8-queens
problem; you can get GHCi to time executions by typing :set +s at the prompt. There’s
also a function printBoard in TestData that will print the chess board given a single
satisfying assignment (a CNFRep) and the size of the board (an Int); you can use this for
testing. Thus, for example:

*SAT> let sols = dp (queensCNFRep 8)

*SAT> length sols

92

*SAT> printBoard (head sols) 8

O O O O O O O X

O O O X O O O O

X O O O O O O O

O O X O O O O O

O O O O O X O O

O X O O O O O O

O O O O O O X O

O O O O X O O O

Your own solver may produce solutions in a different order, so your first solution may be
different, but it should be a valid solution and there should be 92 of them for the 8-queens
problem.

(Unassessed: How long does it take for n = 8, 9, 10, 11...?)

[4 Marks]

5.4 Part IV: All-SAT (Bonus question)

Finally, using the utility functions from Part I, or otherwise, define a function allSat :: Formula

-> [[(Id, Bool)]] that will return the list of all satisfying assignments for a given propositional
formula as a list of (Id, Bool) pairs, ordered by Id. The formula cannot be assumed to be
in conjunctive normal form so you will have convert and flatten it before invoking dp. The
post-processing of the result should produce a complete set of variable assignments, including the
False and True bindings of any variables missing in an assignment returned by dp (see Section 4.2
above). For example:

*SAT> allSat cnf1

[[("a",True),("b",True),("c",True)]]

*SAT> allSat cnf2

[[("a",False),("b",True),("c",True),("d",True),("e",False),("f",True),("g",False)],

[("a",False),("b",True),("c",True),("d",True),("e",True),("f",True),("g",False)],

[("a",False),("b",False),("c",True),("d",True),("e",True),("f",True),("g",False)]]

*SAT> allSat cnf3

[]
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*SAT> allSat cnf4

[[("a",False),("b",True),("c",True),("d",False)],

[("a",True),("b",False),("c",False),("d",True)]]

Note that cnf4 is a variant of the n-queens problem with rooks instead of queens, assuming a
2× 2 board. a and b correspond to the top row and c and d the bottom row.

[Bonus 2 Marks]

Good luck!
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