
2018 Haskell January Test
Constant Propagation

This test comprises three parts (with one optional additional part) and the max-
imum mark is 30. The 2018 Haskell Programming Prize will be awarded
for the best overall solution.

Credit will be awarded throughout for clarity, conciseness, useful commenting
and the appropriate use of Haskell’s various language features and predefined
functions.

WARNING: The examples and test cases here are not guaranteed to exercise all
aspects of your code. You should therefore define your own tests to complement
the ones provided.

1

1 Introduction

A compiler takes the source code of a program, e.g. written in Java, C, Haskell
etc. and translates it into some form of low level “machine code” that can
be executed directly by the hardware of the target platform, e.g. a desktop
computer.

As part of the compilation process the program is typically subjected to
a number of automatic optimisations, each of which is designed to reduce the
compiled program’s execution time. When applying these optimisations con-
siderable care is needed to ensure that the optimised program computes the
same answer as the original. In order to simplify the analysis needed to ensure
this, most modern compilers first translate the program into an intermediate
representation known as Static Single Assignment (SSA) and then apply the
optimisations to the program’s SSA representation.

In this exercise you’re going to implement two commonly-applied compiler
optimisations, constant propagation and constant folding, to the internal SSA
representation of imperative functions, which are akin to Java methods with
int return type.

2 SSA and constant propagation/folding

(You may wish to skip some of the details in this section on first reading and
return to it later when you have read Section 3 and completed Part I.)

Static Single Assignment (SSA) is a way of representing a program where each
variable is assigned exactly once, hence the term “single assignment”, and where
operators like +, * etc. are applied to constants and variables only, i.e. there
are no nested operator applications. Variables must be defined, i.e. assigned
to, before they can be referenced, but once defined they can be referred to any
number of times. The word “static” simply relates to the fact that SSA is a
way of representing (static) program text.

To illustrate the idea, consider the following function, written in an imagi-
nary source language for defining functions:

1: basicBlock() {

2: x = 1

3: y = 2

4: x = x + y

5: y = x * 3

6: $return = y

7: }

We’ll refer to the notation as “pseudocode”, as it’s not really the source code of a
proper language. However, functions written in pseudocode look a bit like Java
methods with an implicit int return type, but without the semicolons. Integers
are the only type supported so the pseudocode has no type annotations.

The value to be returned by the function is explicitly assigned to the special
variable $return, i.e. there is no return statement, as in Java. You can think
of $return as being a special global variable that is visible to all functions. In
general, functions can take an arbitrary number of arguments, but this one has
none, and so always returns the same value.

2

A function, showFun, has been provided for you in the template which will
display the representation of a given function in the above pseudocode form.
For example, you can output the above by typing showFun basicBlock at the
ghci prompt.

2.1 Single assignment

Note that the variables x and y in this example are re-assigned having been
initialised to their respective values (1 and 2). In an equivalent SSA represen-
tation each assignment must be to a unique identifier. In this example that’s
easy: just invent multiple numbered versions of each identifier, e.g. x0, x1, y0,
y1 and use these instead (showFun basicBlockSSA):

1: basicBlock() {

2: x0 = 1

3: y0 = 2

4: x1 = x0 + y0

5: y1 = x1 * 3

6: $return = y1

7: }

You can now see why the single-assignment property is important: if a variable
is assigned to a constant, e.g. x0 = 1, then every time we see the variable
elsewhere in the body of the function we can safely replace it with its value
and the original assignment can be deleted. This is because the same variable
can never be re-assigned – a very familiar concept to Haskell programmers!
This replacement process is called constant propagation. By propagating the
constants x0 = 1 and y0 = 2 it is easy to see that we can rewrite the function
thus:

1: basicBlock() {

2: x1 = 1 + 2

3: y1 = x1 * 3

4: $return = y1

5: }

Furthermore, if we now spot the fact that 1 + 2 = 3 – this is called constant
folding – then we can establish that x1 = 3 and hence, by further propagation,
that y1 = 3 * 3. We can now use constant folding again to rewrite this assign-
ment to y1 = 9 and this can then be propagated to the return statement. The
resulting function body ends up as a one-liner (showFun basicBlockOptimised):

1: basicBlock() {

2: $return = 9

3: }

2.2 Phi functions: conditionals

The problem comes when a variable can be assigned to two or more different
values, e.g. depending on the outcome of a conditional. As an example, consider

3

the function shown on the left below (showFun example)1 and its SSA form,
which is shown on the right. Note the argument (x).

1: example(x) {

2: a = 1

3: b = x + 2

4: c = 3

5: if (x == 10) {

6: a = 1

7: c = 5

8: }

9: d = a + 3

10: e = d + b

11: $return = e + c

12: }

1: example(x) {

2: a0 = 1

3: b0 = x + 2

4: c0 = 3

5: if (x == 10) {

6: a1 = 1

7: c1 = 5

8: }

9: a2 = ???

10: c2 = ???

11: d0 = a2 + 3

12: e0 = d0 + b0

13: $return = e0 + c2

14: }

In the SSA form, each assignment has been given a unique target variable, as
required. However, there are now two choices for the values assigned to a2

and c2, depending on whether or not the body of the “true” branch of the
conditional (lines 6 and 7) is executed. The trick is to introduce a special
construct called a phi function, usually written using the Greek letter φ, but
here written verbatim as PHI, which indicates the possible values that the target
variable can be assigned to (showFun exampleSSA will display the complete SSA
version):

1: example(x):

:

9: a2 = PHI(a1, a0)

10: c2 = PHI(c1, c0)

:

13: $return = e0 + c2

14: }

For example, line 9 says that a2 can either assume the value of a1 or the value
a0, depending on which path the program’s execution took in order to reach
that line2. In this exercise we won’t attempt to execute phi functions, but
will instead remove them once any optimisations have been applied, as would a
compiler. This removal process forms Part III of the exercise.

Let’s see how the optimisation might proceed with the above example. The
variables a0, c0, a1 and c1 are all assigned constant values so we can replace
them throughout with their respective values, i.e. 1, 3, 1 and 5. Doing so we
end up with:

1This is a contrived example and would score no points in a programming style contest,
but don’t worry about that here!

2In general phi functions can take any number of arguments, but in this exercise they will
always have exactly two, by construction.

4

1: example(x) {

2: b0 = x + 2

3: if (x == 10) {

4: }

5: a2 = PHI(1, 1)

6: c2 = PHI(5, 3)

7: d0 = a2 + 3

8: e0 = d0 + b0

9: $return = e0 + c2

10: }

Notice that the conditional is still there (this is important) but both its branches
are empty. Now look at line 5: this says that, regardless of the value of the
conditional, the variable a2 will always be assigned the value 1 – you can verify
this by inspecting the original non-SSA version of the function. In general,
any assignment of the form v = PHI(c, c), where c is a constant, can be
replaced with v = c and we’ll consider this to be another instance of constant
folding. Applying this rule here yields a2 = 1, a new constant assignment, which
will replace the original. As we’ve now uncovered a new constant assignment
we repeat the propagation process by removing a2 = 1 from the function and
replacing a2 with 1 throughout. From this we establish, by further substitution
and constant folding, that d0 is 4. Another iteration of the propagation process
replaces the assignment to e0 with e0 = 4 + b0 and we end up with (showFun
exampleSSAPropagated):

1: example(x) {

2: b0 = x + 2

3: if (x == 10) {

4: }

5: c2 = PHI(5, 3)

6: e0 = 4 + b0

7: $return = e0 + c2

8: }

There’s nothing more we can do now, as there are no further constant assign-
ments to propagate. All that remains is to remove the assignments involving
phi functions – a process that’s often called “unPhi”. In this case this has the
effect of inserting the assignment c2 = 5 at the end of the “true” branch of the
preceding conditional and, similarly, c2 = 3 at the end of the “false” branch
(see Section 4.3 for the rules). This results in the following, optimised, version
(showFun exampleOptimised):

1: example(x) {

2: b0 = x + 2

3: if (x == 10) {

4: c2 = 5

5: } else {

6: c2 = 3

7: }

8: e0 = 4 + b0

9: $return = e0 + c2

10: }

5

2.3 Phi functions: do-while loops

What if the program contains a do-while loop? Recall that in a do-while loop
of the form do <body> while <cond> the body of the loop is executed repeat-
edly until the condition, <cond>, evaluates to false, i.e. it executes whilst the
condition is true. Importantly, the body of a do-while loop is executed at least
once, unlike a while loop where the body may not be executed at all, depending
on the value of the condition.

Similar to a conditional, some assignments in a do-while loop will require
a phi function as the variable being assigned can assume one of two possible
values depending on whether the loop body is being executed for the first time,
or the nth time, n > 1. To illustrate this consider the loop on the left below
(showFun loop) for computing

∑n
i=0(i+ 2k)(i+ 2k+ 1) but in the specific case

where k = 03. Note that this is not in SSA form.

1: loop(n) {

2: i = n

3: k = 0

4: sum = 0

5: if (i == 0) {

6: $return = 0

7: } else {

8: do {

9: sum = sum + (i + 2 * k) *

(i + 2 * k + 1)

10: i = i + -1

11: } while (i > 0)

12: $return = sum

13: }

14: }

1: loop(n) {

2: i0 = n

3: k0 = 0

4: sum0 = 0

5: if (i0 == 0) {

6: $return = 0

7: } else {

8: do {

9: sum1 = PHI(sum0, sum2)

10: i1 = PHI(i0, i2)

11: k1 = k0 * 2

12: a0 = i1 + k1

13: k2 = k0 * 2

14: b0 = k2 + 1

15: b1 = i1 + b0

16: m0 = a0 * b1

17: sum2 = sum1 + m0

18: i2 = i1 + -1

19: } while (i2 > 0)

20: $return = sum2

21: }

22: }

In the first iteration of the loop, i assumes the value of the argument (n).
In subsequent iterations it assumes the value of the updated i, i.e. from the
assignment i = i + -1. In the SSA version of the function shown on the right
(showFun loopSSA) an assignment to a phi function has therefore been planted
accordingly. A similar line of reasoning applies to sum.

Notice that there are several redundant expressions that can be eliminated
by a combination of constant propagation and constant folding. By propa-
gating the constant k0 = 0 we can establish that k1 and k2 are both 0 * 2

which, by constant folding, gives k1 = 0 and k2 = 0. From this we can estab-

3This code might be auto-generated from a version where k is also a parameter, but where
the compiler has decided to build a “specialisation” of the function for a particular value of
k, here 0.

6

lish that a0 = i1 + 0 = i1, another type of constant folding. Similarly, we
also have that b0 = 1 and therefore that b1 = i1 + 1. Doing all this we end
up with the optimised SSA representation shown on the left below (showFun
loopSSAPropagated).

1: loop(n) {

2: i0 = n

3: if (i0 == 0) {

4: $return = 0

5: } else {

6: do {

7: sum1 = PHI(0, sum2)

8: i1 = PHI(i0, i2)

9: a0 = i1

10: b1 = i1 + 1

11: m0 = a0 * b1

12: sum2 = sum1 + m0

13: i2 = i1 + -1

14: } while (i2 > 0)

15: $return = sum2

16: }

17: }

1: loop(n) {

2: i0 = n

3: if (i0 == 0) {

4: $return = 0

5: } else {

6: sum1 = 0

7: i1 = i0

8: do {

9: a0 = i1

10: b1 = i1 + 1

11: m0 = a0 * b1

12: sum2 = sum1 + m0

13: i2 = i1 + -1

14: sum1 = sum2

15: i1 = i2

16: } while (i2 > 0)

17: $return = sum2

18: }

19: }

In order to remove the phi functions here (see Section 4.3) new assignments to
sum1 and i1 must be inserted both before the start of the loop (first loop entry)
and then at the end of the loop (subsequent entries). The two phi function
arguments tell you what to place on the right hand side in each case. The final
version of the function is shown on the right above (showFun loopOptimised).

Notice that the number of multiplications (*) and additions (+) have been
reduced from 3 and 5 in the original loop body to 1 and 3 respectively. However,
the function isn’t completely optimal, e.g. it is possible in this example to
eliminate a0, sum2 and i2, but we’ll not worry about this here. Redundant
variables will invariably be removed by a later phase of compilation, e.g. by
register allocation, which is not part of this exercise.

2.4 Correctness

We can check that the original and optimised versions of a function compute
the same results by executing the two versions for the same input arguments(s)
and comparing their outputs. The first part of this exercise involves building
an interpreter for functions that will enable you to do this.

3 Haskell representation

For the purposes of this exercise you’re going to work with the internal repre-
sentation of our pseudocode language via the following Haskell data types:

type Id = String

7

fact :: Function

fact

= ("fact",

["n"],

[If (Apply Eq (Var "n") (Const 0))

[Assign "$return" (Const 1)]

[Assign "prod" (Const 1),

Assign "i" (Var "n"),

DoWhile

[Assign "prod" (Apply Mul (Var "prod") (Var "i")),

Assign "i" (Apply Add (Var "i") (Const (-1)))

]

(Apply Gtr (Var "i") (Const 0)),

Assign "$return" (Var "prod")

]

]

)

Figure 1: The representation of a function for computing factorials

type Function = (Id, [Id], Block)

type Block = [Statement]

data Statement = Assign Id Exp |

If Exp Block Block |

DoWhile Block Exp

deriving (Eq, Show)

data Exp = Const Int | Var Id | Apply Op Exp Exp | Phi Exp Exp

deriving (Eq, Show)

data Op = Add | Mul | Eq | Gtr

deriving (Eq, Show)

A function is represented by a triple comprising its name (a String), a list of
its argument identifiers (a [String]) and the function body, which is a block
of code (Block) represented by a list of zero or more statements. A statement
(Statement) is either the assignment of a variable to an expression (Assign),
a conditional (If) with a predicate (Exp) and a block (Block) for the true and
false branches respectively, or a do-while loop (DoWhile) comprising the loop
body (a Block) and the termination predicate (Exp).

Booleans are not supported directly, so they will be encoded as integers: true
will be represented by the integer 1 and false by 0. The predicate expressions
in the representation of conditionals (If) and do-while loops (DoWhile) can be
assumed always to evaluate to either 0 or 1.

Expressions are either integer constants (Const), e.g. 9, -1, 0, ..., variable
identifiers (Var), binary operator applications (Apply) or phi functions (Phi).

8

In general, operator arguments may contain arbitrary nested subexpressions.
However, if the function is in SSA form then operator arguments will comprise
only constants and variables.

Identifiers are represented by strings and we will assume that they all begin
with a lower case letter, e.g. "x", "a1", "number", ..., except for the special
function return identifier $return. The operators supported are addition (Add,
equivalent to + in Java), multiplication (Mul, equivalent to *), equal (Eq, equiv-
alent to ==) and greater-than (Gtr, equivalent to >).

As an example, Figure 1 shows the representation of the following function,
which is not in SSA form, for computing the factorial of a given integer, n≥ 0
(showFun fact):

1: fact(n) {

2: if (n == 0) {

3: $return = 1

4: } else {

5: prod = 1

6: i = n

7: do {

8: prod = prod * i

9: i = i + -1

10: } while (i > 0)

11: $return = prod

12: }

13: }

4 What to do

There are three parts to this test, plus an optional part that is not for credit.
Most of the marks are allocated to Parts I and II. If you get stuck on one part
you can switch to one of the others, as they can be solved independently.

The example functions referred to in this specification are all defined in the
template for testing purposes and the following naming convention applies:

• fun – the original function with name fun

• funSSA – an SSA version of the function

• funSSAPropagated – the SSA version of the function after constant prop-
agation/folding

• funOptimised – as above but also after removal of phi functions (unPhi).

As you have already seen, there is a predefined function, showFun, for displaying
functions, which you should use for testing. Another function, showBlock, is
also provided for displaying blocks, e.g.

*Main> let (_, _, body) = basicBlock in showBlock body

1: x = 1

2: y = 2

3: x = x + y

4: y = x * 3

5: $return = y

9

In most cases no attempt has been made to format the internal representations
of the various sample functions to make them more readable; you should use
showFun and showBlock to display these and any representations you generate
yourself.

You may assume throughout that all programs are well formed in the fol-
lowing sense:

1. All variable names, except for $return, will begin with a lower-case letter
and all variables will have a value when they are referenced, i.e. there will
be no uninitialised (“free”) variables.

2. All functions will assign their result to the special variable $return before
exiting.

3. Predicates will always evaluate to either 0 (false) or 1 (true).

4. There will be no nested operator applications in a function in SSA form,
i.e. the arguments to all operators in SSA form will comprise only con-
stants and variables. This restriction only applies to functions in SSA
form.

Finally, note that phi functions will occur in one of two places only in this
exercise:

1. Immediately after a conditional

2. At the beginning of a do-while loop

4.1 Part I: Interpreter

The first task is to write an interpreter for executing Functions. Execution will
be with respect to a State, which is a list that associates variable identifiers
with their integer bindings:

type State = [(Id, Int)]

A look-up function has been defined for you in the template for returning the
binding of a given item (e.g. identifier) in a given look-up table (e.g. state); it
prints a helpful error message if the item isn’t found:

lookUp :: (Eq a, Show a) => a -> [(a, b)] -> b

lookUp i table

= fromMaybe (error ("lookup failed on identifier: " ++ show i))

(lookup i table)

In addition to various test functions, a number of example states and expressions
are also provided for testing purposes – see the examples below.

1. Define a function update :: (Id, Int) -> State -> State that will
update a given state with a new binding for a variable. If the variable is
not bound in the state its binding should be added. For example:

10

*Main> s1

[("x",7),("y",8)]

*Main> update ("x", 3) s1

[("x",3),("y",8)]

*Main> update ("z", 0) s1

[("z",0),("x",7),("y",8)]

The order of the elements in the resulting state is not important.

[2 Marks]

2. Define a function apply :: Op -> Int -> Int -> Int that applies a
given operator to its two arguments (both Ints). For example:

*Main> apply Add 7 5

12

*Main> apply Gtr 4 9

0

[2 Marks]

3. Define a function eval :: Exp -> State -> Int that will evaluate a
given expression with respect to a given state. There are two precondi-
tions: the variables in the expression will all be bound in the state and
there will be no phi functions (Phi), as they are not executable. For
example,

*Main> s1

[("x",7),("y",8)]

*Main> e1

Var "x"

*Main> e2

Apply Mul (Apply Add (Var "x") (Const 1)) (Var "y")

*Main> eval e1 s1

7

*Main> eval e2 s1

64

[3 Marks]

4. Define two mutually recursive functions: execStatement :: Statement

-> State -> State and execBlock :: Block -> State -> State

that will execute statements and blocks respectively. Note that they must
be mutually recursive because If and DoWhile statements themselves con-
tain blocks. The result should be the state after execution of the state-
ment/block. The decision as to whether to execute the first or second
branch of a conditional (If) will be determined by the value of the cor-
responding predicate expression: 1 for the first and 0 for the second, cor-
responding to true and false respectively. To execute a do-while loop the
termination condition should be tested with respect to the state after each
execution of the loop body – it is not a while loop!

You can test these functions using execFun, defined for you in the tem-
plate, which will execute the a given function by applying execBlock to

11

the function’s body and an initial state containing the values of the func-
tions arguments:

execFun :: Function -> [Int] -> State

execFun (name, args, p) vs

= execBlock p (zip args vs)

For example,

*Main> execFun fact [5]

[("$return",120),("i",0),("prod",120),("n",5)]

*Main> execFun loop [4]

[("$return",40),("i",0),("sum",40),("k",0),("n",4)]

*Main> execFun loopOptimised [4]

[("$return",40),("i1",0),("sum1",40),("i2",0),("sum2",40),

("m0",2),("b1",2),("a0",1),("i0",4),("n",4)]

Again, the order of the elements in the resulting state is unimportant.

For the loop function note that when k = 0,
∑n

i=0(i+ 2k)(i+ 2k + 1) =
n(n+ 1)(n+ 2)/3, which is 40 when n = 4.

[7 Marks]

4.2 Part II: Constant propagation and folding

For each of the functions in this section there is a precondition that all blocks
and/or expressions are in SSA form, so operator arguments will comprise only
constants and variables.

1. Define a function foldConst :: Exp -> Exp that will simplify expres-
sions in SSA form using (only4) the following rules:

• If c is a constant then PHI(c, c) can be simplified to c.

• If c1 and c2 are constants then c1 <op> c2 can be replaced by ap-
plying the operator <op> to c1 and c2.

• If v is a variable then v + 0 and 0 + v can be replaced by v.

For example,

*Main> e3

Phi (Const 2) (Const 2)

*Main> e4

Apply Add (Const 0) (Var "x")

*Main> foldConst e3

Const 2

*Main> foldConst e4

Var "x"

[3 Marks]

4You can probably think of other folding optimisations, e.g. 1 * x = x but you should
only encode the rules given, in case you mess up the autotesting.

12

2. Define a function sub :: Id -> Int -> Exp -> Exp that will substi-
tute a given identifier with a given integer in a given expression and then
apply the foldConst function above to the result. For example,

*Main> e5

Apply Add (Var "a") (Var "x")

*Main> sub "a" 0 e5

Var "x"

[3 Marks]

3. Define a function propagateConstants :: Block -> Block that will
apply constant propagation and constant folding to a given code block
in SSA form. There are several ways of doing this and here are two you
might consider:

(a) Worklist Algorithm: The idea is to maintain a worklist, which is
a list of constant assignments extracted from a block of code, each
in the form of an Assign statement or (better?) an (Id, Int) pair.
Starting with the original code block, build the initial worklist, i.e.
the list of constant assignments in the block, removing those assign-
ments from the block in the process (see below). In each iteration of
the algorithm, remove one of the items, (v, c), say, from the work-
list – it doesn’t matter which, but presumably the item at the head
is a good choice! Now scan the modified block replacing v with c

and applying constant folding where possible, using the sub function
above. Clearly you need to locate every expression (Exp) in the block
in order to do this.

There is one special case: given an assignment to the return variable,
$return = e, you should apply substitutions to e, but you must
not remove the assignment if e ends up as a constant; recall that
functions must always return a value.

The result of each scan should be a (possibly) modified block and
a new worklist comprising any new constant assignments that were
generated as a result of the scan. For example, substituting x for 6 in
v = x + 1 will result in a new constant assignment v = 7, so (v, 7)

will need to form part of the worklist returned and the assignment
v = 7 will need to be removed from the block. At the end of the
scan, the new worklist is then appended (++) to the current worklist
and the process continues with the modified block. Eventually, the
worklist will become empty ([]) whereupon the result is the current
(modified) version of the block. This suggests a helper function with
a type something like the following:

type Worklist = [(Id, Int)]

scan :: Id -> Int -> Block -> (Worklist, Block)

How should you build the initial worklist? Well, you could perform a
“dummy” scan such as scan "$INVALID" 0 block where $INVALID

is an identifier that is known not to appear in the block. This will
return the list of constant assignments and a modified version of the

13

block with those assignments removed, but no substitutions will be
performed – exactly what you want to get started.

For example,

*Main> let (_, _, b) = basicBlockSSA

*Main> showBlock b

1: x0 = 1

2: y0 = 2

3: x1 = x0 + y0

4: y1 = x1 * 3

5: $return = y1

*Main> let (worklist, modifiedBlock) = scan "$INVALID" 0 b

*Main> worklist

[("x0",1),("y0",2)]

*Main> showBlock modifiedBlock

1: x1 = x0 + y0

2: y1 = x1 * 3

3: $return = y1

(b) Substitution algorithm: The idea is similar to the worklist al-
gorithm above except that the “worklist” now comprises a single
function that applies any number of substitutions (sub) to a given
expression in a single scan. This suggests the following type for the
scan function:

scan :: (Exp -> Exp) -> Block -> (Exp -> Exp, Block)

Clearly, to add a new substitution to the worklist you’ll need to
compose (.) substitution functions. For example, if s1 and s2 are
substitution functions of type Exp -> Exp then s2 . s1 (likewise
s1 . s2) is a function, also of of type Exp -> Exp, that will apply
both substitutions simultaneously.

How should you build the initial worklist now? Well, how about
applying the “identity” substitution to the original block, viz. scan

id block? How do you know when to terminate the process, as you
no longer have a list of work items that you can inspect? One way is
to keep going until the “modified” block you get back from scan is
the same as the one you passed in. Another way is to arrange for scan
also to return a boolean telling you whether or not any expressions
were modified during the scan. Maybe you can think of another.

A function called applyPropagate is provided in the template for testing
the output of your propagateConstants function. For example,

*Main> showFun (applyPropagate exampleSSA)

1: example(x) {

2: b0 = x + 2

3: if (x == 10) {

14

4: }

5: c2 = PHI(5, 3)

6: e0 = 4 + b0

7: $return = e0 + c2

8: }

*Main> applyPropagate loopSSA == loopSSAPropagated

True

[7 Marks]

4.3 Part III: UnPhi

Because we’re working with a fairly high level representation of functions, the
rules for removing phi functions are straightforward:

• If a conditional (If) statement is followed by one or more phi function
assignments then, for each assignment of the form v = PHI (e1, e2) add
the statement v = e1 to the end of the first (true) block of the conditional
and v = e2 to the end of the second (false) block; the phi assignment is
deleted.

• If the body of a do-while (DoWhile) loop begins with one or more phi
function assignments then, for each assignment of the form v = PHI(e1,

e2) add the statement v = e1 before the start of the do-while loop and v

= e2 to the end of the body of the do-while loop; again, the phi assignment
is deleted.

Thus, define a function unPhi :: Block -> Block that will remove the phi
assignments from any function in SSA form. A function applyUnPhi has been
defined in the template for testing purposes. Another function, optimise, will
test the combination of both propagateConstants and unPhi. However, you
can also use your interpreter. For example,

*Main> showFun max2SSAPropagated

1: max2(x, y) {

2: if (x > y) {

3: m0 = x

4: } else {

5: m1 = y

6: }

7: m2 = PHI(m0, m1)

8: $return = m2

9: }

*Main> showFun (applyUnPhi max2SSAPropagated)

1: max2(x, y) {

2: if (x > y) {

3: m0 = x

4: m2 = m0

5: } else {

15

6: m1 = y

7: m2 = m1

8: }

9: $return = m2

10: }

*Main> applyUnPhi (loopSSAPropagated) == loopOptimised

True

*Main> optimise loopSSA == loopOptimised

True

*Main> execFun loop [4]

[("$return",40),("i",0),("sum",40),("k",0),("n",4)]

*Main> execFun (optimise loopSSA) [4]

[("$return",40),("i1",0),("sum1",40),("i2",0),("sum2",40),

("m0",2),("b1",2),("a0",1),("i0",4),("n",4)]

[3 Marks]

4.4 Part IV: Generating SSA form

If you’ve finished Parts I-III you might now like to attempt the missing part of
the story. Thus, define a function makeSSA :: Function -> Function that
will convert a given function to SSA form. If there are no conditionals or do-
while loops this is actually a straightforward process of making all variables
single assignment and breaking down expressions involving nested operator ap-
plications into multiple assignments. In general, however, you need to introduce
phi functions. What are the rules?

There is no credit for attempting this part, but it might be used as a tie-breaker
for the Haskell Prize. Please include a comment in your submission outlining
your strategy.

Good luck!

16

