
2011 Haskell January Test

Type Inference

This test comprises four parts and the maximum mark is 30. Parts I, II and III are worth 28
of the 30 marks available. The 2011 Haskell Programming Prize will be awarded for the
best attempt(s) at Part IV. One bonus mark is available should you manage to complete the final
question in Part IV. This will be added to your total, although your final mark will be capped
at 30.

Credit will be awarded throughout for clarity, conciseness, useful commenting and the appropriate
use of Haskell’s various language features and predefined functions.

WARNING: The examples and test cases here are not guaranteed to exercise all aspects of your
code. You may therefore wish to define your own tests to complement the ones provided.

1

1 Introduction

You will know by now that if you omit a function type declaration in a Haskell program the
compiler/interpreter will work out the function’s type automatically. For example, given the
Haskell definitions:

c = False

f x = 1 + x

g b = if b then 0 else 1

h x b = if x > 0 then True else b

id x = x

and assuming that 0 and 1 are taken as being of type Int, it is relatively easy to see that their
most general types are:

c :: Bool

f :: Int -> Int

g :: Bool -> Int

h :: Int -> Bool -> Bool

id :: a -> a

The process of working out types automatically is called type inference and is the subject of this
exercise.

2 A Simple Language

Your task is to develop a function for inferring the type of an expression in a simple stripped-down
language similar to Haskell. The algorithm for doing this is the famous “Algorithm W” developed
by Luis Damas and Robin Milner.

The stripped-down language supports just two basic types, integers and booleans, and a small
suite of primitive functions over them, viz. +, >, == and not. These will be used in prefix form
only, i.e. there are no infix operators, and they have meanings that are similar to the equivalent
functions in Haskell. Their types can be written in Haskell syntax as follows:

+ :: Int -> Int -> Int

> :: Int -> Int -> Bool

== :: Int -> Int -> Bool

not :: Bool -> Bool

There is no overloading, so +, > and == are defined to operate only on integers. Like Haskell,
functions are curried in the sense that they take one argument at a time. The type of +, for
example, might be written Int -> (Int -> Int) in Haskell syntax and an application such as
+ x 1, equivalent to x + 1 or (+) x 1 in Haskell, might be written (+ x) 1; the meaning is the
same.

2.1 Expressions

Expressions are built from basic values, i.e. integer and boolean constants, variable identifiers,
primitive functions, conditionals and function applications. User-defined functions are also sup-
ported (constructor Fun below), but these will only feature in the last part of the exercise and can
be ignored until then. The following Haskell data type will be used to represent expressions, as
defined:

2

-- Ignore the Fun constructor for Parts I-III

data Expr = Number Int |

Boolean Bool |

Id String |

Prim String |

Cond Expr Expr Expr |

App Expr Expr |

Fun String Expr

deriving (Eq, Ord, Show)

As an example, the expression

if not (> x y) then x else + y 1

will be represented in Haskell as follows:

Cond (App (Prim "not") (App (App (Prim ">") (Id "x")) (Id "y")))

(Id "x")

(App (App (Prim "+") (Id "y")) (Number 1))

2.2 Types

In order to infer the type of an expression we need a representation for types. The following
Haskell data type suffices:

-- Ignore the TVar constructor for Parts I-II

data Type = TInt |

TBool |

TFun Type Type |

TErr |

TVar String

deriving (Eq, Ord, Show)

TInt and TBool represent the integer and boolean types respectively. The TFun constructor
encodes the equivalent of the ‘arrow’ (->) function type operator in Haskell. TErr represents a
type error: an expression that is badly typed, e.g. the expression not 1, will have its type inferred
as TErr. TVar will be used to represent type variables, e.g. a and b in the type a -> b -> b,
for example. However, type variables will only be relevant when we consider polymorphic types
(Parts III and IV) and so can be ignored for now.

As an example, the type of the ‘greater than’ function, >, can be represented as TFun TInt

(TFun TInt TBool), equivalent to Int -> Int -> Bool in Haskell syntax. For convenience, the
types of each of the primitives have been packaged up in a table (type synonym TypeTable) that
maps identifiers (Strings) to types thus:

type TypeTable = [(String, Type)]

primTypes :: TypeTable

primTypes = [("+", TFun TInt (TFun TInt TInt)),

(">", TFun TInt (TFun TInt TBool)),

("==", TFun TInt (TFun TInt TBool)),

("not", TFun TBool TBool)]

3

Note: You may find it easier to display types in the more familiar Haskell style, e.g. for debugging
purposes. A function showT :: Type -> String has therefore been defined in the template to
do this. For example,

Main> showT (TFun TInt (TFun TInt TBool))

"(Int -> (Int -> Bool))"

Do NOT attempt to define Type as an explicit instance of class Show, e.g. using showT as the
default show function, as this will break the autotester.

3 Monomorphic Type Inference

The objective of type inference is simply stated: given an expression in the form of an object
of type Expr, compute its type as an object of type Type. In the absence of type variables and
user-defined functions this can be done fairly straightforwardly using the following rules:

1. Constants (Constructors Number, Boolean) The types of the integer and boolean constants
are trivially known. For example, the type of Number 6 is TInt and the type of Boolean
False is TBool.

2. Identifiers (Constructor Id) The type of an identifier is given by a supplied type environment

which is simply a table that associates variable identifiers in expressions with types. Note
that the type of this table is exactly the same as that of TypeTable above, hence the type
synonym:

type TEnv = TypeTable -- i.e. [(String, Type)]

Thus, for example, if the expression is Id "x" and the environment contains a binding
("x",TInt) then the expression can be inferred to have type TInt. A simple table lookup
is all that’s required for this case.1

3. Primitives (Constructor Prim) The type of a primitive function is determined by looking up
its identifier in the primTypes table above. For example, if the expression is Prim "==" the
inferred type will be TFun TInt (TFun TInt TBool).

4. Conditionals (Constructor Cond) For a conditional expression to be correctly typed the type
of the condition, i.e. the first argument of Cond, must be a boolean (TBool) and the type of
the ‘then’ and ‘else’ alternatives, i.e. the second and third arguments of Cond respectively,
can be any type so long as they are the same. In the absence of type variables these properties
can be established by simple equality tests on the inferred types of the three components,
each of which can be computed recursively. If any of these properties is violated then the
inferred type of the conditional is TErr; otherwise it is the inferred type of either the two
alternatives, as their types will be the same.

5. Applications (Constructor App) In the absence of type variables and user-defined functions
the type of a function application can be inferred straightforwardly from the types of its
two components, i.e. the function and argument expressions, computed recursively. For the
expression to be correctly typed the recursively computed function type must be of the form

1Note that it is only possible to introduce an identifier via a user-defined function (constructor Fun above).
However, for testing purposes an expression will be allowed to contain any identifier provided the type of that
identifier is given in the type environment.

4

Subexpression Inferred type Comment

1 Number 1 TInt By rule 1

2 Id "x" TInt By rule 2

3 Id "y" TInt By rule 2

4 Prim "+" TFun TInt (TFun TInt TInt) By rule 3

5 App (Prim "+") (Id "y") TFun TInt TInt See *

6 App (App (Prim "+") (Id "y")) (Number 1) TInt See **

* Because Prim "+" has inferred type TFun TInt (TFun TInt TInt) (line 4) and the inferred
type of (Id "y") (line 3) matches the underlined domain type of +, i.e. TInt.
** Because App (Prim "+") (Id "y") has type TFun TInt TInt (line 5) and the inferred type
of Number 1 (line 1) matches the underlined domain type TInt.

Figure 1: Example of type inference.

TFun t t’ and the recursively computed argument type must be t, i.e. the same as the
domain type of the function. If these properties hold then the application as a whole has
type t’. In all other cases the expression is incorrectly typed and the inferred type will be
TErr.

Note that the types inferred at this point are called monomorphic because they do not contain
type variables.

To illustrate the first three rules, Figure 1 shows a breakdown of how they apply to each
subexpression in the ‘then’ and ‘else’ alternatives, i.e. the second and third arguments of the Cond
constructor respectively, in the example expression in Section 2.1 above. In each case the type
environment is assumed to be [("x", TInt), ("y", TInt)], which asserts that the identifiers
"x" and "y" are both integers.

To illustrate rule 4 consider now how to infer the type of the outer Cond expression in the
example. The condition has inferred type TBool, as required, and the two alternatives have the
same inferred type (TInt in this case, from lines 2 and 6), again as required. Thus, the expression
as a whole has type TInt, i.e. the type inferred for both the ‘then’ and ‘else’ alternatives.

At this point you are now in a position to answer Parts I and II of the exercise. You may wish to
tackle these before proceeding to the next Section.

4 Polymorphic Type Inference – enter the TVars

In order to infer the type of expressions involving user-defined functions (Fun constructor) we need,
in general, to be able to handle types containing type variables. When we allow type variables the
question as to whether two types are “the same” no longer boils down to a simple test for syntactic,
i.e. structural, equality, as above. Instead we have to ask whether the two types are unifiable,
i.e. whether they can be ‘made the same’ by a suitable substitution of the type variables they
contain. As an example, suppose that when typing a conditional the ‘then’ and ‘else’ alternatives
are inferred to have the (function) types

TFun TInt (TVar "a")

and

5

TFun (TVar "b") TBool

respectively. These are clearly not syntactically the same, but they are unifiable, i.e. the types
of the two alternatives can be made the same by associating the type variable "a" with the type
TBool and, similarly, "b" with TInt. In this sense the two alternatives are consistently typed. A
set of type associations of this sort is called a type substitution and will be represented as a list of
(String, Type) pairs, which again is another form of TypeTable2:

type Sub = TypeTable -- i.e. [(String, Type)]

As an example, the substitution above might be represented by the list [("a",TBool), ("b",TInt)],
although the order of the elements in the list is not significant.

The result of the unification of two types will be an object of type Sub, if a unifying substitution
can be found. If not then the unification fails – see below for details of how to handle this.

4.1 The Martelli-Montanari Unification Algorithm

In this exercise you are going to use the Martelli-Montanari unification algorithm to unify two
types. The algorithm actually operates on a list of pairs of types of the form

[(t1, t1’), (t2, t2’), ..., (tn, tn’)]

and a substitution (Sub) which is initially empty ([]) and which ‘grows’ as the algorithm proceeds.
The order of the elements in the list of type pairs, and indeed the order of the two elements within
each type pair, is unimportant. The algorithm generates as its result either a unifying substitution,
or failure.

To unify two types t and t’ we initialise the algorithm with the singleton list [(t,t’)] and
the empty substitution []. The algorithm repeatedly examines the type pair at the head of the
list and applies the following rules to the two types contained therein:

• Two TInts unify successfully in which case the pair (TInt,TInt) is essentially ‘discarded’
and the algorithm recurses on the remaining type pairs in the list. The substitution is
unmodified. A similar rule applies in the case of two TBools.

• Two type variables TVar v and TVar v’ unify successfully if v == v’, in which case the
algorithm recurses on the remaining type pairs and an unmodified substitution. In all other
cases where at least one of the types is a type variable, TVar v, say, and the other some
type t 6= TVar v, the binding (v,t) is added to the substitution list (e.g. using :) and the
remaining pairs in the list of type pairs are updated by applying the singleton substitution
[(v,t)] to both types within each pair. For example, if the head of the list is the pair (TVar
"a", TInt) and the remaining elements, i.e. with the head removed, are

[(TBool, TBool), (TFun (TVar "a") (TVar "b"), TVar "c"), (TInt, TVar "a")]

then the algorithm recurses with the updated list

[(TBool, TBool), (TFun TInt (TVar "b"), TVar "c"), (TInt, TInt)]

2Note that the structure of a Sub is the same as the previous TEnv except that the Strings in the table represent
type variable names rather than identifiers.

6

and with the substitution updated with ("a", TInt). Notice that all occurrence of TVar
"a" have been replaced with TInt in the list of type pairs. An important exception is when
the variable v appears anywhere in t, in which case the unification fails. This is the only
exception. This test is sometimes called the occurs check and prevents infinite loops from
occurring during type inference. An example of this is given later on.

• Given two function types, TFun t1 t2 and TFun t1’ t2’, say, the pairs (t1, t1’) and
(t2, t2’) are added to the remaining elements in the list (e.g. using : or ++) and the
algorithm recurses. Note that the two pairs can be added anywhere in the list, although the
head end will suffice. The substitution is unmodified.

• In all other cases the unification fails.

Termination: If the list of type pairs becomes empty ([]) when the substitution is s then the
unification succeeds and the resulting substitution is s.

4.1.1 Coping with Failure

The unification process needs to distinguish between a successful unification, which results in
a (possibly empty) substitution, and a unification failure. A nice way to handle this is to use
Haskell’s Maybe data type:

data Maybe a = Nothing | Just a

to distinguish the two. The result of a unification in this exercise will thus be an object of type
Maybe Sub, where Nothing represents unification failure and Just s represents the result of a
successful unification with the unifying substitution being s.

5 What to Do

There are four parts to this exercise. Most of the marks are allocated to the first three parts. The
last part is extremely hard and should only be attempted if you have completed the first three.

5.1 Part I

1. Define two functions:

(a) lookUp :: Eq a => a -> [(a, b)] -> b that will look up the binding of a given
item in a list of (item, value) pairs. A precondition is that the search item is in the
given list. For example, lookUp "x" [("hello",1),("x",9),("dolly",1)] should
return 9 and lookUp "not" primTypes should return TFun TBool TBool.

(b) tryToLookUp :: Eq a => a -> b -> [(a, b)] -> b that will look up the binding
of a given item (of type a) in a given list of (item, value) pairs. If the item is not
contained in the list the result is the default value (of type b) provided. For example,
tryToLookUp "k" 0 [("hello",1),("x",9),("dolly",1)] should return 0.

Hint: you can optionally define lookUp in terms of tryToLookUp by passing the ‘dummy’
value undefined in place of the default value.

[3 marks]

7

2. Define a function reverseLookUp :: Eq b => b -> [(a, b)] -> [a] that, given a value
and a list of (item, value) pairs, will generate the list of all items with that value. For
example, reverseLookUp 1 [("hello",1),("x",9),("dolly",1)] should return the list
["hello","dolly"] and reverseLookUp (TFun TInt (TFun TInt TBool)) primTypes

should return [">","=="].

[2 marks]

3. Define a function occurs :: String -> Type -> Bool that will return True iff a given
type variable identifier (String) occurs in a given type (Type). For example, occurs

"x" (TVar "y") and occurs "x" TBool should both return False and occurs "x" (TFun

TBool (TVar "x")) should return True. Note that a variable v occurs in TFun t t’ if it
occurs in either of t or t’.

[3 marks]

5.2 Part II

Remark: If you get stuck in this part of the exercise you might wish to take a break by tackling
question 1 of Part III before continuing.

Define a function inferType :: Expr -> TEnv -> Type that, given an expression and a
type environment, will infer the type of the given expression using the rules outlined in Section 3
above. For the case of identifiers, e.g. Id i, a precondition is that there will be a binding for i in
the given type environment.

IMPORTANT: The expression is guaranteed not to contain any user-defined functions at this
point, so you do not need a rule for the Fun constructor.

Hint: You might find it useful to define a helper function, inferApp, say, to infer the type of a
function application, App f a, say, in terms of the inferred types of the function (f) and argument
(a), computed recursively.

The supplied template includes several examples of expressions, together with their types, that
you can use for testing purposes. A sample type environment is also provided:

env :: TEnv

env = [("x",TInt),("y",TInt),("b",TBool),("c",TBool)]

The examples given in the template assume the type environment env and are as shown in Table 1.
You can use these, and the examples in Section 3 above, in part to test your code.

[10 marks]

5.3 Part III

This part of the exercise requires you to handle type variables (constructor TVar) and to implement
the type unification function as described in Section 4.

1. Using tryToLookUp defined earlier, define a function applySub :: Sub -> Type -> Type

that will apply a given type substitution, s say, to a given type, t say. To do this you need
to locate each type variable of the form TVar v in t and then replace it with the binding
for v in s, if there is one; if not, the type variable should be left unmodified. For example,
if the given substitution is s = [("a",TBool),("b",TFun TBool TInt)] then: applySub

s TInt should return TInt – this is a base case, so no substitution is needed; applySub s

8

e inferType e env

Number 9 TInt

Boolean False TBool

Prim "not" TFun TBool TBool

App (Prim "not") (Boolean True) TBool

App (Prim ">") (Number 0) TFun TInt TBool

App (App (Prim "+") (Boolean True)) (Number 5) TErr

Cond (Boolean True) (Boolean False) (Id "c") TBool

Cond (App (Prim "==") (Number 4)) (Id "b") (Id "c") TErr

Table 1: Some example expressions and inferred types.

t t’ unify t t’

TFun (TVar "a") TInt TVar "b" Just [("b",TFun (TVar "a") TInt)]

TFun TBool TBool TFun TBool TBool Just []

TFun (TVar "a") TInt TFun TBool TInt Just [("a",TBool)]

TBool TFun TInt TBool Nothing

TFun (TVar "a") TInt TFun TBool (TVar "b") Just [("b",TInt),("a",TBool)]

TFun (TVar "a") (TVar "a") TVar "a" Nothing

Table 2: Unification examples.

(TFun TBool (TVar "a")) should return TFun TBool TBool, i.e. with TVar "a" replaced
with TBool by virtue of the binding for "a" in s; and applySub s (TVar "c") should return
TVar "c", as there is no binding for "c" in s.

[2 marks]

2. Define a function unifyPairs :: [(Type, Type)] -> Sub -> Maybe Sub that implements
the Martelli-Montanari algorithm described in Section 4.1. Use the applySub function
from 1. above to apply the (singleton) substitution as described in Section 4.1 (TVar case).
Don’t forget to include the occurs check, which you should implement using the occurs

function from Part I.

The top-level unification function (unify) for invoking the algorithm is provided for you in
the template:

unify :: Type -> Type -> Maybe Sub

unify t t’

= unifyPairs [(t, t’)] []

The template also contains a number of unification examples for illustration and testing
purposes, as shown in Table 2. Note that the last example fails because of the occurs check;
indeed it would fail even with a single occurrence of TVar "a" anywhere in t. Note also that
the order of the elements in the resulting substitution is unimportant for correctness, but it
will simplify testing if you stick to the order given.

[8 marks]

9

5.4 Part IV

Using your unification function above, develop a new polymorphic type inference function that
will infer the type of an arbitrary expression that may include user-defined functions. Anonymous
functions are represented using the Fun constructor: the expression Fun "x" e is the representa-
tion of the function \x -> e in Haskell syntax, i.e. the unnamed function of x that computes the
value of the expression e.

When attempting this question do NOT modify the inferType function in any way. Instead
define a new function inferPolyType :: Expr -> Type that returns the type of a given expres-
sion. To do this, you should consider using a helper function with a type such as:

inferPolyType’ :: Expr -> TEnv -> Int -> (Sub, Type, Int)

or

inferPolyType’ :: Expr -> TEnv -> [String] -> (Sub, Type, [String])

Both are defined in the template. The first two arguments should be self-explanatory. The result
includes not only the inferred expression type, but also the substitution for any type variables in
the given type environment that leads to the inferred type. We’ll discuss the additional argument
and result component shortly.

The rules for the Number, Boolean and Prim cases are straightforward translations of those
in inferType. You should first attempt to implement the rule for Fun, which can be tested
independently; then have a go at App. You are NOT required to implement the rule for Cond for
credit, but you are welcome to try, especially if you are competing for the prize.

You need to understand the role of the substitution (Sub) in the result. Its job is to ‘add
information’ about the type variables in the type environment. For example, if the type envi-
ronment includes the binding ("x", TVar "a"), which just says that x has some type a, and we
use this to type the expression App (Prim "+") (Id "x") then the substitution that’s returned
by the App rule will include the binding ("a",TInt) – see below for details of how. This is new

information that we didn’t have before and is computed in part by unification. If at any point we
need to call inferPolyType’ again we do so with a modified type environment that’s obtained
by applying this substitution to each type in the given environment. A function updateTEnv ::

TEnv -> Sub -> TEnv has been defined in the template for this purpose. In the example, the call
to updateTEnv would replace the binding ("x", TVar "a") with ("x",TInt), which says that
we now know that "x" has type TInt.

1. Implement the rules for the base cases (no credit, but needed for the other cases) and the
case for the Fun constructor (2 marks). To implement the Fun x e case you need to add a
new binding (x, TVar a) to the given type environment, where a is a unique type variable
name (String), and then use that to infer the type of e. The result type will be of the form
TFun <something> te, where te is the type of e. The <something> would be TVar a but,
crucially, the substitution that’s returned from the recursive call may include a substitution
for a. You therefore need to apply the substitution to TVar a before returning it – use your
applySub function defined earlier. Of course, if the type of te is TErr then the result should
be TErr, not TFun (TVar "a1") TErr, for example.

You may now see the role of the extra Int (or [String]) argument: the type variable names
have to be unique so the suggestion is that you use the names a1, a2, a3. . . , or similar. This
requires you to pass in, and hence out, the next available type variable identifier – this might
be either in the form of an integer (the Int argument) that you can use to build a name, or a
list (possibly infinite?) of pre-made names (the [String] argument). Some additional test

10

expressions are defined in the template file that you can use for testing. Note: the identifiers
you choose for your type variables may not align with those given in the examples, but this
is not important so long as the results agree up to an arbitrary consistent renaming.

[2 marks] (Fun rule)

2. Now have a go at the App rule. This requires making two recursive calls to inferPolyType’.
For the second call you need to update the given type environment using the substitution
returned from the first call, using updateTEnv.

Unification is essentially used in place of equality in the App rule in inferType. Given App

f e you first need to infer the type of f and e and then unify the type inferred for f with
the type TFun te (TVar a). Here, te is the inferred type of e and a is another unique type
variable identifier. Remember that you need to update the type environment (updateTEnv)
for the second call to inferPolyType’, as described above. The substitution you need
to return in the result is derived by combining the substitutions that come from the two
recursive calls to inferPolyType’ and the unifiying substitution. A function combineSubs

to do this has been defined for you in the template. Make sure you combine the substitutions
in the right order (see the comment in the code). The result type is the result of applying
the unifying substitution to the type variable TVar a that you chose earlier. Note that if
the unification fails then the result type should be TErr. The test expressions ex11...ex14
can be used in part to test your App rule.

[1 BONUS mark] (App rule) that will be added to your total

3. If you get this far, have a go at the Cond case. There are no hints, so you’ll have to work
it out from what you’ve learnt so far. There is no credit for this question — it’s for prize
candidates only. Good luck!

11

