
2016 Haskell January Test

XML and XSL Transformations

This test comprises three parts and the maximum mark is 30. The 2016 Haskell Programming
Prize will be awarded for the best overall solution.

Credit will be awarded throughout for clarity, conciseness, useful commenting and the appropriate
use of Haskell’s various language features and predefined functions.

WARNING: The examples and test cases here are not guaranteed to exercise all aspects of your
code. You should therefore define your own tests to complement the ones provided.

1

1 Introduction

The EXtensible Markup Language, or ‘XML’, is a ubiquitous standard for the storage and trans-
portation of data1. The syntax of XML is very simple, which makes it easy for a human to
understand and also for a computer to parse and analyse. Furthermore, and of particular signifi-
cance to this exercise, it is possible to define languages for processing XML “documents” (repre-
sented as text strings) that are themselves specified in XML. One such language is the eXtensible
Stylesheet Language, or ‘XSL’, which provides a templating language (XSLT) for transforming
one XML document into another. This exercise aims to develop an implementation of a very
simple subset of XSLT.

2 XML

At the topmost level, an XML document comprises exactly one XML element, which has an
associated name and an arbitrary combination of:

• Attributes

• Text fields

• Other ‘child’ elements

A new element is introduced by placing its name, often referred to as its start tag, within angle
brackets, as in <name>. For the XML document to be well formed there must be a matching end

tag later in the document which is identical to the start tag, but with a ‘/’ preceding the tag name,
as in </name>. An optional set of attributes, each of which is simply a name/value pair separated
by an ‘=’, can be associated with the element, as in a="value", for example. Attribute values are
strings delimited by double quotes. Element and attribute names must begin with a letter2 but
can thereafter comprise any combination of letters, digits, full stops (.) and hyphens (-); they
are not allowed to contain spaces.

As an example, the XML document shown in Figure 1 represents a mark-up of some data
relating to films. When we come to process such documents they will be in the form of a Haskell
String containing explicit ‘escape’ characters such as ‘\n’ and ‘\"’, but the document in the figure
is shown as it would appear in a text file.

Note that at the topmost level the document comprises exactly one element called filmlist.
This contains three child elements, each named (tagged) film and each with a single attribute
containing its title, e.g. "Rear Window". Notice that any whitespace around the components of
an attribute definition (name, ‘=’ and value) is not significant, i.e. is not part of the data specified
by the XML. To illustrate the point, Figure 1 contains slightly different whitespace in and around
the three title attributes.

Each film element contains a number of child elements that define properties of the film, such
as its director, music composer(s) and year of release. The values of these elements are strings
that are delimited by ‘>’ and ‘<’ characters rather than double quotes ("), e.g. Franz Waxman

representing the composer of Rear Window. Importantly, all characters between a ‘>’ character
and the next ‘<’ character, including whitespace, collectively constitute a text field of the enclosing
element. For example, the whitespace between the ‘>’ of <filmlist> and the ‘<’ of <film title

1JSON (JavaScript Object Notation) is another data interchange standard which has a number of advantages
over XML. However, XML is still widely used and has a number of advantages of its own, one of which is the ability
to define template-based transformations using XSLT.

2The standard also allows names to begin with a ‘ ’, but we will banish underscores from this test for obvious
reasons!

2

<filmlist>

<film title = "Rear Window">

<director>Alfred Hitchcock</director>

<composer>Franz Waxman</composer>

<year>1954</year>

</film>

<film title = "2001: A Space Odyssey">

<director>Stanley Kubrick</director>

<composer>Richard Strauss</composer>

<composer>Gyorgy Ligeti</composer>

<composer>Johann Strauss</composer>

<year>1968</year>

</film>

<film title="Lawrence of Arabia" >

<duration>228</duration>

<director>David Lean</director>

<composer>Maurice Jarre</composer>

</film>

</filmlist>

Figure 1: A list of films marked up in XML

= "Rear Window"> constitutes a text field (indeed, the first text field) of the filmlist element.
In this case the whitespace comprises a newline character and two space characters: "\n ".

Remark: Whitespace between elements is sometimes removed from XML documents and el-
ement/attribute values are sometimes normalised to reduce the whitespace. However, in this
exercise we will preserve all whitespace during parsing; it can easily be removed/normalised later,
if required.

Elements have no prescribed format with respect to the elements they contain, or the order in
which they occur. All that matters is that the XML is syntactically well formed. For example,
the element for the film ‘Lawrence of Arabia’ contains a child element named duration which is
not included in the other two. It also does not contain a year element whereas the other two do.
Furthermore, three composers are listed for “2001: A Space Odyssey”, whereas the others have
only one. The XML is perfectly valid; it’s just that different elements with the same name are
allowed to contain different data depending on need.

2.1 Haskell representation

We can represent the type of XML data just described with the following Haskell types:

type Name = String

type Attributes = [(String, String)]

data XML = Text String | Element Name Attributes [XML]

deriving (Eq, Show)

3

Note that an element can contain an arbitrary number of child elements, so the corresponding
constructor (Element) has a list of XML objects representing its children3. As an example, consider
the following mark-up for the film Casablanca:

<film title="Casablanca">

<director>Michael Curtiz</director>

<year>1942</year>

</film>

Written out as a string the input might look like this4:

"<film title=\"Casablanca\">\n <director>Michael Curtiz</director>\n \

\<year>1942</year>\n</film>\n\n\n"

You can see whitespace in the text, in between the various elements and after the last ‘>’ character.
The internal representation of the document, its parsed version, will be the following object of
type XML, suitably formatted here to aid readability:

Element "film"

[("title","Casablanca")]

[Text "\n ",

Element "director" [] [Text "Michael Curtiz"],

Text "\n ",

Element "year" [] [Text "1942"],

Text "\n"]

Notice how the whitespace has been preserved during parsing except for the trailing whitespace
("\n\n\n") which is not part of the mark-up and which has been removed. Notice also that the
only attribute is a film’s title, so the Attributes list associated with the director and year

elements is []. The text string above is predefined in the template as casablanca and its parsed
version as casablancaParsed.

You are now in a position to answer the questions in Part I, but you might like to read the
next section on parsing before attempting them.

3 XML parsing

An XML parser takes the contents of an XML document as a String, and generates an internal
representation of the document as an object of type XML. In what follows, and throughout the rest
of the exercise, all XML input is assumed to be well formed in the sense that:

• All elements are properly nested and each start tag is matched by a corresponding end tag

• Element and attribute names are correctly formed and contain no spaces

• Attribute names and values are separated by a ‘=’ character and attribute values are enclosed
in matching double quotes

3A tree structure whose nodes have a variable number of children is called a Rose Tree.
4Recall that Haskell literal strings can be spread over several lines to aid readability by using ‘\’ characters to

mark the end of one line and its resumption on the next. Recall also that a double quote character in a Haskell
string must be prefixed with a backslash, as in ‘\"’.

4

3.1 Parsing rules

The parsing process works by maintaining a stack of partially-processed elements, which is needed
in order to match up the start and end tags of an element: an element is pushed onto the stack
when its start tag is detected and it is popped off when its end tag is detected. The stack will be
modelled in Haskell by a list of XML elements:

type Stack = [XML]

Notionally, the stack is initially empty, but in practice it will be primed with a single ‘sentinel’
element, Element "" [] [], whose role will soon become apparent. Assuming that we first skip
any whitespace preceding the first ‘<’ character (this is insignificant whitespace and should be
ignored), the parsing rules, which should be read from top to bottom, are as follows:

1. If the input string is empty ("") then the result is the first child of the element at the top
of the stack (see below).

2. Otherwise, apply the following rules in the order written:

(a) If the first character is a ‘<’ and the second is a ‘/’ then we are at the beginning of an
end tag, so we read the characters up to and including the next ‘>’ and recurse on the
remaining text5:

</element-name>
︸ ︷︷ ︸

skip this

rest of text...
︸ ︷︷ ︸

recurse on this

The element on the top of the stack is now complete and this must be popped off and
added to the children of the next outermost element, i.e. the element which is in the
next position on the stack. Note that we should strictly check that the name inside
the end tag matches that of the element at the top of the stack, but if the XML is well
formed then this will always be the case: a start tag name is always matched by an end
tag /name, for example, so there is no need to do the check.

(b) If the first character is a ‘<’ (i.e. no following ‘/’) then we are at the beginning of a
start tag, so we read the element name and any attributes which are present, including
the next ‘>’ character, and recurse on the remaining text:

< element-name
︸ ︷︷ ︸

read the name

attributes>
︸ ︷︷ ︸

read attributes

rest of text...
︸ ︷︷ ︸

recurse on this

Because we have discovered a new element, at this point we must push a new, partially-
completed element, Element element-name attributes [], onto the stack before
making the recursive call.

(c) Otherwise, the first character must be the start of a new text field, so this needs to be
read up to, but not including, the next ‘<’ character. The text field is added to the
children of the element on top of the stack, i.e. the one we are currently assembling,
and we recurse on the remaining text:

some text characters
︸ ︷︷ ︸

read the text

<rest of text...
︸ ︷︷ ︸

recurse on this

Note that the next character on the input for the recursive call in this case will be a ‘<’
by construction, unless there is trailing whitespace in the document (see Section 3.3
below).

5Note that if the first character is a ‘<’ then there is guaranteed to be a character following it if the XML is
well formed.

5

3.2 Parsing attributes

Assuming the XML document is well formed, the structure of an attribute list is very precisely
defined and is easy to parse:

1. First skip over any whitespace, giving the string s, say, and inspect its first character.

2. If this character is a ‘>’ we’re done and the result is the pair comprising the empty list of
attributes and the characters after the ‘>’.

3. Otherwise there is at least one attribute, which can be read by:

(a) Reading its name

(b) Reading, and skipping over, the next ‘=’ character

(c) Reading, and skipping over, the next (opening) ‘"’ character

(d) Reading the attribute’s value, which is (all) the text up to the next ‘"’ character

(e) Reading, and skipping over the next (closing) ‘"’ character

The attribute name and value form a pair, which is the first attribute in the list returned.
Any remaining attributes are obtained by recursing on the characters that are left after the
second ‘"’ has been read and discarded.

Note that the “skipping over” process above includes reading and discarding any whitespace either
side of the ‘=’ and after the closing ‘"’, as such whitespace is not part of the data specified by the
XML.

At this point you are in a position to answer the questions in Parts I and II, although you may wish
to go through the parsing example below before attempting Part II. You are advised to complete
Parts I and II before attempting Part III.

3.3 Example

Note: You may wish to skip over the details in this section on first reading, and refer back to it

later.

To illustrate the parsing process the following shows the state of the input string and the stack
when parsing the XML mark-up for Casablanca shown above. In each case the stack is shown
after applying the named parsing rule from Section 3.1. The characters of the input text that are
consumed in each step are shown underlined. Initially the stack contains just the sentinel element,
Element "" [] [].

Input: "<film title=\"Casablanca\">\n <director>Michael Curtiz</director>..."

Rule: 2b
New stack: [Element "film"

[("title","Casablanca")]

[],

Element "" [] []]

6

Input: "\n <director>Michael Curtiz</director>\n <year>1942</year>..."

Rule: 2c
New stack: [Element "film"

[("title","Casablanca")]

[Text "\n "],

Element "" [] []]

Input: "<director>Michael Curtiz</director>\n <year>1942</year>..."

Rule: 2b
New stack: [Element "director" [] [],

Element "film"

[("title","Casablanca")]

[Text "\n "],

Element "" [] []]

Input: "Michael Curtiz</director>\n <year>1942</year>\n</film>\n\n\n""
Rule: 2c
New stack: [Element "director" [] [Text "Michael Curtiz"],

Element "film"

[("title","Casablanca")]

[Text "\n "],

Element "" [] []]

Input: "</director>\n <year>1942</year>\n</film>\n\n\n"
Rule: 2a
New stack: [Element "film"

[("title","Casablanca")]

[Text "\n ",

Element "director" [] [Text "Michael Curtiz"]],

Element "" [] []]

Input: "\n <year>1942</year>\n</film>\n\n\n"
Rule: 2c
New stack: [Element "film"

[("title","Casablanca")]

[Text "\n ",

Element "director" [] [Text "Michael Curtiz"],

Text "\n "],

Element "" [] []]

Input: "<year>1942</year>\n</film>\n\n\n"
Rule: 2b
New stack: [Element "year" [] [],

Element "film"

[("title","Casablanca")]

[Text "\n ",

Element "director" [] [Text "Michael Curtiz"],

Text "\n "],

Element "" [] []]

7

Input: "1942</year>\n</film>\n\n\n"
Rule: 2c
New stack: [Element "year" [] [Text "1942"],

Element "film"

[("title","Casablanca")]

[Text "\n ",

Element "director" [] [Text "Michael Curtiz"],

Text "\n "],

Element "" [] []]

Input: "</year>\n</film>\n\n\n"
Rule: 2a
New stack: [Element "film"

[("title","Casablanca")]

[Text "\n ",

Element "director" [] [Text "Michael Curtiz"],

Text "\n ",

Element "year" [] [Text "1942"]],

Element "" [] []]

Input: "\n</film>\n\n\n"
Rule: 2c
New stack: [Element "film"

[("title","Casablanca")]

[Text "\n ",

Element "director" [] [Text "Michael Curtiz"],

Text "\n ",

Element "year" [] [Text "1942"],

Text "\n"],

Element "" [] []]

Input: "</film>\n\n\n"
Rule: 2a
New stack: [Element ""

[]

[Element "film"

[("title","Casablanca")]

[Text "\n ",

Element "director" [] [Text "Michael Curtiz"],

Text "\n ",

Element "year" [] [Text "1942"],

Text "\n"]]]

8

Input: "\n\n\n"
Rule: 2c
New stack: [Element ""

[]

[Element "film"

[("title","Casablanca")]

[Text "\n ",

Element "director" [] [Text "Michael Curtiz"],

Text "\n ",

Element "year" [] [Text "1942"],

Text "\n"],

Text "\n\n\n"]]

The input string is now empty (""), so rule 1 now applies and we return the first child of the
element at the top of the stack, which is the correctly parsed XML, but without the trailing
whitespace.

4 Extensible Stylesheet Language, XSL(T)

XML imposes no constraints on the names of the elements and attributes in a document. However,
by giving a defined meaning to specific names and attributes it becomes possible to use the XML
syntax to define a language for manipulating other documents. One such example is XSLT (XSL
Transformations), which is an XML-based language for generating an output XML document
from a given source XML document. For brevity we will refer to XSLT as ‘XSL’, although,
strictly, XSL denotes a family of recommendations for defining XML document transformation
and presentation. The beauty is that an XSL(T) document is itself a valid XML document and
so can be parsed by an XML parser.

An XSL document is essentially a template file that contains a mixture of output elements and
XSL transformation operator elements (rewrite rules). When an input file is applied to it, each
transformation is applied and the result, which comprises zero or more new elements, replaces the
transformation element in the output.

Figure 2 shows an example of an XSL document6 that will generate HTML (HyperText
Markup Language) – an XML-like syntax for specifying how information should be displayed by
a web browser. You don’t need to know HTML for the exercise but if you’re curious, h2 denotes
a level-2 heading, th denotes a table header, tr denotes a table row and td denotes table data7.
The rest is fairly self-explanatory.

Figure 3 shows the output that will be generated by the XSL of Figure 2 using Figure 1 as
the source XML document. Notice how the output is a copy of the XSL template but with one
table row (tr) for each combination of filmlist and film in the source. These tr elements are
generated by the for-each transformation operator, as described below, and replace the for-each
element in the output document.

4.1 XSL operators and XPaths

XSL supports a number of transformation operators and in this exercise we will consider just two
of them: for-each and value-of. Both have a single attribute called select whose value is an

6The syntax in Figure 2 isn’t precisely that of XSLT: various headers have been omitted and we do not support
so-called namespaces, which XSL would normally assume.

7The HTML embedded within the XSL document is slightly archaic as it uses “presentational” markup, rather
than the preferred Cascading Style Sheets (CSS) language. No matter – it works fine and simplifies the exercise.

9

<html>

<body>

<h2>Film List</h2>

<table border="1">

<tr>

<th align="left">Title</th>

<th align="left">Director</th>

<th align="left">Principal composer</th>

</tr>

<for-each select="filmlist/film">

<tr>

<td><value-of select="@title"></value-of></td>

<td><value-of select="director"></value-of></td>

<td><value-of select="composer"></value-of></td>

</tr>

</for-each>

</table>

</body>

</html>

Figure 2: An XSL document

XPath, which defines a set of paths through the element hierarchy of the source document. These
paths are defined relative to a given starting element/attribute, referred to as the context, and
lead to zero or more elements/attributes in the source.

In this exercise we will use a subset of the XPath language wherein an XPath is a sequence of
steps separated by ‘/’ characters. A step can be:

• The current context, written ‘.’.

• An element name, in which case the step refers to all children of the current context that
have the specified name. These children are ‘visited’ in the same order as they appear in
the source XML, i.e. elements are processed from top to bottom.

• An attribute name of the form @name, in which case the step denotes the value of the named
attribute of the current context.

For example, with reference to the film list (source) of Figure 1, if the current context is the
top-level (‘root’) element then the XPath ‘filmlist/film’ specifies every film element contained
within every filmlist element, in the order that they appear in the source. If the context
is a particular film element, e.g. set by some outer XPath ‘filmlist/film’, then the XPath
‘director’ specifies the director element of that film and ‘@title’ specifies the film title (an
attribute). If the context is a particular composer element then the XPath ‘.’ refers to the current
context, i.e. to the same composer element.

A for-each element has zero or more child elements and for each element/attribute specified
by its associated XPath these child elements are recursively transformed; thus, a single for-each
element may generate many copies of its child elements. In Figure 2, for example, there is one
for-each element whose XPath is ‘filmlist/film’ and it has a single child element named "tr"

and this is duplicated for each film in the filmlist.
A value-of element denotes a single value, i.e. a text string, which is the value of the

element/attribute specified by its associated XPath. However, an XPath leads to a set of ele-

10

<html>

<body>

<h2>Film List</h2>

<table border="1">

<tr>

<th align="left">Title</th>

<th align="left">Director</th>

<th align="left">Principal composer</th>

</tr>

<tr>

<td>Rear Window</td>

<td>Alfred Hitchcock</td>

<td>Franz Waxman</td>

</tr>

<tr>

<td>2001: A Space Odyssey</td>

<td>Stanley Kubrick</td>

<td>Richard Strauss</td>

</tr>

<tr>

<td>Lawrence of Arabia</td>

<td>David Lean</td>

<td>Maurice Jarre</td>

</tr>

</table>

</body>

</html>

Figure 3: Output of XSL transformation

ments/attributes so the value returned is defined to be that of the first element/attribute that is
found. For example, if the source XML is that of Figure 1 then the XSL operation <value-of

select="filmlist/film/year"> denotes the value "1954" (represented by Text "1954"), corre-
sponding to the first film in the list that has a year element defined. Similarly, the XSL operation
<value-of select="filmlist/film/duration"> denotes the value "228" (represented by Text

"228"), corresponding to the first (and only) film in the list that has a duration element defined.
Of course, it may be that no elements/attributes are found by the XPath; in this case the result
is the empty string, "". A value-of element is not expected to have any text fields or child
elements. However, if it does then these are ignored when the XSL transformation is applied.

Referring back to Figure 3, note that the XSL transformation naturally introduces some addi-
tional whitespace. This is because the whitespace within the child elements of the for-each ele-
ment is faithfully reproduced when the transformation is applied. This does not affect the meaning
of the HTML. The output in Figure 3 can be found in a pre-prepared file called filmTable.html

in your Lexis directory. If you wish, you can render the result in a browser by typing firefox

filmTable.html & at the Linux prompt. The result is shown in Figure 4 (left).

11

Figure 4: Sample rendered HTML output

5 What to do

There are three parts to this exercise. You are strongly advised to complete Parts I and II before
attempting Part III. The template file contains various test data including the input strings s1,
s2 and s3 and their parsed equivalents, x1, x2 and x3. The following questions will variously refer
to these. Also, in addition to the casablanca example referred to earlier, the text string for the
XML of Figure 1, including the whitespace, is defined in the template as films and its parsed
version as filmsParsed.

A function showXML :: XML -> String for producing a printable representation of an XML

object is provided in the template and this may prove useful for testing. A generalisation of this,
showXMLs, does the same for a list of XML objects. Another function called printXML will print
out an XML object as it would appear in a text file. The function printXMLs does the same for a
list of XML objects. Some examples are given later on.

5.1 Part I: Utilities

1. Using the built-in function isSpace, define a function skipSpace :: String -> String

that will discard any leading whitespace in a given string. For example,

*Exam> skipSpace "\n \n\nsome \n \n text"

"some \n \n text"

[1 Mark]

2. Define a function getAttribute :: String -> XML -> String that will look up the value
of a given attribute in a given XML element. If the element has no attribute with that name
then the result should be "". For example,

*Exam> getAttribute "x" x2

"1"

*Exam> getAttribute "x" (Text "t")

""

[2 Marks]

12

3. Define a function getChildren :: String -> XML -> [XML] that will return those child
elements of a given XML element that have the specified name (String). For example,

*Exam> getChildren "b" x2

[Element "b" [] [Text "A"],Element "b" [] [Text "B"]]

*Exam> getChildren "c" x2

[]

[2 Marks]

4. Using getChildren, or otherwise, define a function getChild :: String -> XML -> XML

that will return the first child of a given XML element that has the specified name (String).
If no such child exists the result should be Text "". For example,

*Exam> getChild "b" x2

Element "b" [] [Text "A"]

*Exam> getChild "c" x2

Text ""

[2 Marks]

5. Define a function addChild :: XML -> XML -> XML that will add a new child to the ex-
isting children of a given XML element. The new child should be added at the rightmost end
of the existing list. For example,

*Exam> addChild (Text "B") (Element "a" [] [Text "A"])

Element "a" [] [Text "A",Text "B"]

A precondition is that the second argument will always be an Element, i.e. no rule is required
for the Text case.

[1 Mark]

6. Define a function getValue :: XML -> XML that will return the value of a given element.
This is defined to be the concatenation of all text fields within the given element, i.e. includ-
ing (recursively) the values of the text fields of its children. The resulting String should be
wrapped in a Text constructor. For example,

*Exam> getValue x1

Text "A"

*Exam> getValue x2

Text "AB"

[4 Marks]

5.2 Part II: Parsing functions

The following questions refer to the ‘sentinel’ element referred to in Section 3 which is defined in
the skeleton file thus:

sentinel :: XML

sentinel

= Element "" [] []

13

By construction, all XML objects on a stack are Elements, i.e. there will be no Text objects to
consider.

Importantly, all XML input is assumed to be well formed (see Section 3), so you do not need

to check for, or report, any parsing errors. You may assume that an element value is, verbatim,
the text appearing between consecutive ‘>’ and ‘<’ characters and that an attribute value is the
text appearing between matching double quotes (‘"’).

1. Using addChild, or otherwise, define a function addText :: String -> Stack -> Stack

that will add a new text field, whose value is the given String, to the children of the element
at the top of a given stack of elements. A precondition is that there is at least one element
on the stack.

[1 Mark]

2. Again using addChild, or otherwise, define a function popAndAdd :: Stack -> Stack

that will add the element at the top of a given stack to the children of the element that sits
below it on the same stack. A precondition is that there are at least two elements on the
stack. For example,

*Exam> popAndAdd [x1, Element "ab" [("a","1")] [], sentinel]

[Element "ab" [("a","1")] [Element "a" [] [Text "A"]],Element "" [] []]

[1 Mark]

3. Define a function parseAttributes :: String -> (Attributes, String) that will parse
a list of attributes, as described in Section 3.2. Because the XML input is assumed to be
well formed, the separating ‘=’ character and the double quote (‘"’) value delimiters will all
be present and in the right place, although there may be redundant whitespace around the
‘=’ and after the closing ‘"’. You should use your skipSpace function to remove this.

A function parseName :: String -> (String, String) has been defined in Part II of
the template file and you should use this to parse the name of an attribute. This returns
the name and the text that follows it as a pair of Strings.

Once you’ve skipped over the opening value delimiter (‘"’) the attribute’s value is all the
text up to, but not including, the closing ‘"’.

For example, noting that attribute lists always end with a ‘>’,

*Exam> parseAttributes "x=\"7\">rest of text"

([("x","7")],"rest of text")

*Exam> parseAttributes "a = \"0\" b = \"1\" >rest of text"

([("a","0"),("b","1")],"rest of text")

[3 Marks]

4. The parsing function, parse, has been defined for you in the template file in terms of a
helper function, parse’:

parse :: String -> XML

-- Pre: The XML string is well-formed

parse s

= parse’ (skipSpace s) [sentinel]

14

This uses your skipSpace function to remove any leading whitespace before the first ‘<’
character and primes the stack with the sentinel value. Your job is to define the helper
function parse’ :: String -> Stack -> XML using the parsing rules described in Sec-
tion 3.1 and the addText, popAndAdd and parseAttributes functions defined above. The
parseName function that you used in the previous question should be used to parse the name
of an element. Because element values are always terminated by a ‘<’ in well-formed XML,
the first character after the value read will always be a ‘<’8.

Because all XML input is assumed to be well formed, the first character in the given string
is guaranteed to be either a ‘<’ or the next character after a ‘>’.

For example, using the showXML and printXML functions defined in the template,

*Exam> parse s1

Element "a" [] [Text "A"]

*Exam> showXML (parse s2)

"AB"

*Exam> printXML (parse casablanca)

<film title="Casablanca">

<director>Michael Curtiz</director>

<year>1942</year>

</film>

*Exam> parse films == filmsParsed

True

[7 Marks]

5.3 Part III: XSL Transformations

Assuming the following type synonyms:

type Context = XML

type XSL = XML

the following function applies the transformations defined by a given XSL document to a given
source XML document by invoking a helper function, expandXSL’:

expandXSL :: XSL -> XML -> [XML]

expandXSL xsl source

= expandXSL’ root xsl

where

root = Element "/" [] [source]

Your job is to define the function expandXSL’ :: Context -> XSL -> [XML] that takes the
current context element and a parsed XSL document and returns a list of XML items that arise
from expanding the XSL with respect to the source document, as described in Section 4. You can
use your XML parser to parse an XSL document or use the pre-parsed test data provided (see
below). Initially the context refers to a ‘root’ node which is a supplementary element named "/"

whose only child is the original source element.

8The exception is if the text appears as whitespace after the last ‘>’ character in the input. The remaining text
in this case will be "".

15

The template file contains a number of XSL test strings xsl1–xsl9 and their parsed equiva-
lents, xsl1Parsed–xsl9Parsed. The first six can be used in part to test your implementation of
value-of:

*Exam> expandXSL xsl1Parsed x1

[Text ""]

*Exam> expandXSL xsl1Parsed x3

[Text "text1"]

*Exam> expandXSL xsl2Parsed x3

[Text "text1text2"]

*Exam> expandXSL xsl4Parsed x3

[Text "att1"]

*Exam> expandXSL xsl5Parsed x3

[Text "text1"]

*Exam> showXMLs (expandXSL xsl6Parsed x3)

"<t1><t2>Preamble</t2><t3>text1</t3></t1>"

The last three can be used in part to test your implementation of for-each:

*Exam> expandXSL xsl7Parsed x3

[Text "att1",Text "att2",Text "att3"]

*Exam> printXMLs (expandXSL xsl8Parsed x3)

<t>text1</t>

<t>text3</t>

*Exam> printXMLs (expandXSL xsl9Parsed x3)

<t1></t1>

<t1></t1>

A String corresponding to the XSL of Figure 2 is defined in the template as filmsXSL. An
additional XSL object called composersXSL is an XSL template for building an HTML unordered
list () of the composers of each film. These will also prove useful for testing.

You can write the output of your XSL transformation to a file using the output function
defined in Part III of the template. This invokes expandXSL on given parsed XSL and source
XML files and then uses showXMLs to generate a String that is written to a specified file. For
example:

*Exam> output "films.html" (parse filmsXSL) filmsParsed

*Exam> output "composers.html" (parse composersXSL) filmsParsed

The two files produced should be the same as the files filmTable.html and composerList.html

provided in your Lexis directory. When rendered using Firefox, they should look like those in
Figure 4. Note that these files are missing some HTML headers and tags that are normally
expected, e.g. <title>, <html> and <body>, but Firefox still renders them correctly.

Good luck!
[6 Marks]

16

