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Abstract
Verification of object-oriented programs relies on object invariants
which express consistency criteria of objects. The semantics of
object invariants is subtle, mainly because of call-backs, multi-
object invariants, and subclassing.

Several verification techniques for object invariants have been
proposed. These techniques are complex and differ in restrictions
on programs (e.g., which fields can be updated), restrictions on
invariants (what an invariant may refer to), use of advanced type
systems (such as Universe types or ownership), meaning of invari-
ants (in which execution states are invariants assumed to hold), and
proof obligations (when should an invariant be proven). As a re-
sult, it is difficult to understand whether/why these techniques are
sound and to compare their expressiveness. This general lack of
understanding also hampers the development of new approaches.

In this paper, we develop and formalise a unified framework
to describe verification techniques for object invariants. We distil
seven parameters, which characterise a verification technique, and
identify sufficient conditions on these parameters under which a
verification technique is sound. To illustrate the generality of our
framework, we instantiate it with six verification techniques from
the literature. We show how our framework facilitates the assess-
ment and comparison of the soundness and expressiveness of these
techniques.

1. Introduction
Object invariants play a crucial role in the verification of object-
oriented programs, and have been an integral part of all major
contract languages such as Eiffel [25], the Java Modeling Language
JML [17], and Spec# [2]. Object invariants express consistency
criteria for objects, which guarantee their correct working. These
criteria range from simple properties of single objects (for instance,
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class C {
int a, b;
invariant 0 <= a < b;

C() { a := 0; b := 3; }

void m() {
int k := 100 / (b − a);
a := a + 3;
n() ;
b := (k + 4) ∗ b;

}
void n() { m(); }

}

class Client {
C c;
invariant c.a <= 10;

/∗ methods omitted ∗/
}

class D extends C {
invariant a <= 10;

/∗ methods omitted ∗/
}

Figure 1. An example (adapted from [18]) illustrating the three
main challenges for the verification of object invariants.

that a field is non-null) to complex properties of whole object
structures (for instance, the sorting of a tree).

Most of the existing verification techniques expect object invari-
ants to hold in the pre-state and post-state of method executions,
often referred to as visible states [28]. Invariants may be violated
temporarily between visible states. This semantics is illustrated by
class C in Fig. 1. The invariant is established by the constructor.
It may be assumed in the pre-state of method m. Therefore, the
first statement in m’s body can be proven not to cause a division-
by-zero error. The invariant might temporarily be violated by the
subsequent assignment to a, but it is later re-established by m’s last
statement; thus, the invariant holds in m’s post-state.

While the basic idea of object invariants is simple, verification
techniques for practical OO-programs face challenges. These chal-
lenges are made more daunting by the common expectation that
classes should be verified without knowledge of their clients and
subclasses:

Call-backs: Methods that are called while the invariant of an ob-
ject o is temporarily broken might call back into o and find the
object in an inconsistent state. In our example (Fig. 1), during
execution of new C().m() the assignment to a violates the in-
variant, and the call-back via n() leads to a division by zero.

Multi-object invariants: When the invariant of an object p de-
pends on the state of another object o, modifications of o po-



tentially violate the invariant of p. In our example, a call o.m
might break the invariant of a Client object p where p .c = o.
Aliasing makes the proof of preservation of p’s invariant diffi-
cult. In particular, when verifying o, the invariant of p may not
be known and, if not, cannot be expected to be preserved.

Subclassing: When the invariant of a subclass D refers to fields
declared in the superclass C then methods of C potentially
violate D’s invariant by assigning to C’s fields. In particular,
when verifying a class, its subclass invariants are not known in
general, and so cannot be expected to be preserved.

A number of verification techniques have been suggested to address
some or all of these problems [1, 3, 14, 16, 18, 23, 26, 27, 28,
32]. These techniques share many commonalities, but differ in the
following important aspects:

1. Invariant semantics: What invariants are expected to hold in
which execution states? Some techniques require all invariants
to hold in all visible states, whereas others address the multi-
object invariant challenge by excluding certain invariants.

2. Proof obligations: What is required to be proven? Some tech-
niques require proofs for invariants relating to the current active
object whereas others require invariant proofs for all objects in
the heap.

3. Invariant restrictions: What objects may invariants depend on?
Some techniques use unrestricted invariants, whereas others
address the subclassing challenge by preventing invariants from
referring to inherited fields.

4. Program restrictions: What objects may be used as receivers
of field updates and method calls? Some techniques permit
arbitrary field updates, whereas others simplify verification by
allowing updates to fields of the current receiver only.

5. Type systems: What syntactic information is used for reasoning?
Some techniques are designed for arbitrary programs, whereas
others use ownership types to facilitate verification.

These differences, together with the fact that most verification
techniques are not formally specified, complicate the comparison of
verification techniques, and hinder the understanding of why these
techniques satisfy claimed properties such as soundness. For these
reasons, it is hard to decide which technique to adopt, or to develop
new sound techniques.

In this paper, we present a unified framework for verification
techniques for object invariants. This framework formalises veri-
fication techniques in terms of seven parameters, which abstract
away from differences pertaining to language features (type sys-
tem, specification language, and logics) and highlight characteris-
tics intrinsic to the techniques, thereby aiding comparisons. Subsets
of these parameters describe aspects applicable to all verification
techniques; for example, a generic definition of soundness is given
in terms of two framework parameters, expressivity is captured by
three other parameters.

We concentrate on techniques that require invariants to hold in
the pre-state and post-state of a method execution (often referred to
as visible states [28]) while temporary violations between visible
states are permitted. These techniques constitute the vast majority
of those described in the literature.

Contributions. The contributions of this paper are:

1. We present a unified formalism for object invariant verification
techniques.

2. We identify conditions on the framework that guarantee sound-
ness of a verification technique.

3. We separate type system concerns from verification strategy
concerns.

4. We show how our framework describes some advanced verifi-
cation techniques for visible state invariants.

5. We prove soundness for a number of techniques, and, guided by
our framework, discover an unsoundness in one technique.

Our framework allows the extraction of comparable data from tech-
niques that were presented using different concepts, terminology
and styles. Comparative value judgements concerning the tech-
niques are beyond the scope of our paper.

Outline. Sec. 2 gives an overview of our work, explaining the
important concepts. Sec. 3 formalises program and invariant se-
mantics. Sec. 4 describes our framework and defines soundness.
Sec. 6 instantiates our framework with existing verification tech-
niques. Sec. 5 presents sufficient conditions for a verification tech-
nique to be sound, and states a general soundness theorem. Sec. 7
discusses related work. Proofs and more details are in the compan-
ion report [8]. This paper follows our FOOL paper [7], but provides
more explanations and examples.

2. Example and Approach
Example. Consider a scenario, in which a Person holds an
Account, and has a salary . An Account has a balance, an
interestRate and an associated DebitCard. This example will be
used throughout the paper. We give the code in Fig. 2.

Account’s interestRate is required to be zero when the
balance is negative (I1). A further invariant (the two can be read
as conjuncts of the full invariant for the class) ensures that the
DebitCard associated with an account has a consistent reference
back to the account (I2). A SavingsAccount is a special kind of
Account, whose balance must be positive (I3). Person’s invariant
(I4) requires that the sum of salary and account’s balance is posi-
tive. Finally, DebitCard’s invariant (I5) requires dailyCharges not
to exceed the balance of the associated account. Thus, I2, I4, and
I5 are multi-object invariants.

To illustrate the challenges faced by verification techniques,
suppose that p is an object of class Person, which holds the
Account a with DebitCard d:

Call-backs: When p executes its method spend, this results in
a call of withdraw on a, which (via a call to sendReport)
eventually calls back notify on p; the call notify might reach
p in a state where I4 does not hold.

Multi-object invariants: When a executes its method withdraw
, it may temporarily break its invariant I1, since its balance
is debited before any corresponding change is made to its
interestRate . This violation is not important according to the
visible state semantics; the if statement immediately after-
wards ensures that the invariant is restored before the next vis-
ible state. However, by making an unrestricted reduction of the
account balance, the method potentially breaks the invariants
of other objects as well. In particular, p’s invariant I4, and d’s
invariant I5 may be broken.

Subclassing: Further to the previous point, if a is a SavingsAccount
, then calling the method withdraw may break the invariant I3,
which was not necessarily known during the verification of
class Account.

These points are addressed in the literature by striking various
trade-offs between the differing aspects listed in the introduction.

Approach. Our framework uses seven parameters to capture the
first four aspects in which verification techniques differ, i.e., invari-
ant semantics, invariant restrictions, proof obligations and program



class Account {
Person holder ;
DebitCard card;
int balance, interestRate ;

// invariant I1 : balance < 0 ==>
interestRate == 0;

// invariant I2 : card.acc == this;

void withdraw(int amount) {
balance −= amount;
if (balance < 0) {

interestRate = 0;
this .sendReport();

}
}

void sendReport()
{ holder . notify () ; }

}

class SavingsAccount
extends Account {

// invariant I3 : balance >= 0;
}

class Person {
Account account;
int salary ;

// invariant I4 :
// account.balance + salary > 0;

void spend(int amount)
{ account.withdraw(amount); }

void notify ()
{ ... }

}

class DebitCard {
Account acc;
int dailyCharges ;

// invariant I5 :
// dailyCharges <= acc.balance;

}

Figure 2. An account example illustrating the main challenges for
the verification of object invariants. We assume that fields hold non-
null values.

restrictions. To describe these parameters we use two abstract no-
tions, which we call regions and properties. A region (when inter-
preted semantically) describes a set of objects (e.g., those on which
a method may be called), while a property describes a set of in-
variants (e.g., the invariants that have to be proven before a method
call). We deal with the aspects identified in the previous section as
follows:

1. Invariant semantics: The property X describes the invariants
expected to hold in visible states. The property V describes the
invariants vulnerable to a given method, i.e., those which may
be broken while the method executes.

2. Invariant restrictions: The property D describes the invariants
that may depend on a given heap location. This also charac-
terises indirectly the locations an invariant may depend on.

3. Proof obligations: The properties B and E describe the invari-
ants that must be proven to hold before a method call and at the
end of a method body, respectively.

4. Program restrictions: The regions U and C describe the permit-
ted receivers for field updates and method calls, respectively.

5. Type systems: We parameterise our framework by the type sys-
tem. We state requirements on the type system, but leave ab-
stract its concrete definition. We require that types are formed
of a region-class pair so that we can handle types that express
heap topologies (such as ownership types).

6. Specification languages: Rather than describing invariants con-
cretely, we assume a judgement that expresses that an object
satisfies the invariant of a class in a heap.

7. Verification logics: We express proof obligations via a special
construct prvp, which throws an exception if the invariants in
propertyp cannot be proven, and has an empty effect otherwise.
We leave abstract how the actual proofs are constructed and
checked.

Fig. 3 illustrates the parameters of our framework by annotating
the body of the method withdraw. X may be assumed to hold in
the pre- and post-states of the method. Between these visible states,
some object invariants may be broken (so long as they fall within
V), but X \ V is known to hold throughout the method body. Field
updates and method calls are allowed if the receiver object (here,
this ) is in U and C, respectively. Before a method call, B must be
proven. At the end of the method body, E must be proven. Finally,
D (not shown in Fig. 3) constrains the effects of field updates on
invariants. Thus, assignments to balance and interestRate affect
at most D.

Developing our framework was challenging because different
verification techniques (1) use different type systems to restrict pro-
grams and invariants, and do not make a clear distinction between
the type system and the verification technique, (2) use different
specification languages to express invariants, and (3) use different
verification logics. To deal with this diversity within one unified
framework, we take the following approach:

1. We make a clear delineation between the framework and the
type system and instead of describing one particular type sys-
tem, we state requirements on the type systems used with our
framework.

2. We assume a judgment that describes that an object satisfies
the invariant of a class in a heap. We require that a field update
preserves the invariant if it does not fall within D.

3. We express proof obligations via a special construct prvp,
which throws an exception if the invariants in property p cannot
be proven, and has an empty effect otherwise.

The number of parameters reflects the variety of concepts used
by verification techniques, such as accessibility of fields, purity,
helper methods, ownership, and effect specifications. For instance,
Vwould be redundant if all methods were to re-establish the invari-
ants they break; in such a setting, a method could break invariants
only through field updates, and V could be derived from U and D.
However, in general, methods may break but not re-establish in-
variants.

The seven parameters capture concepts explicitly or implicitly
found in all verification techniques, defined either through words
[28, 14, 16, 32] or typing rules [23]. For example, V is implicit in
[28], but is crucial for their soundness argument. X and V are ex-
plicit in [23], while U and C are implicitly expressed as constraints
in their typing rules. Subsets of these seven parameters characterise



void withdraw(int amount) {

balance −= amount;

if (balance < 0) {

interestRate = 0;

this .sendReport();
}

}

assume X¾

check this in U¾

check this in U¾

check this in C¾
prove B

prove E¾
assume X¾

X \ V holds

?

6

Figure 3. Role of framework parameters for method withdraw from Fig. 2.

verification technique concepts e.g., soundness (through X and V),
expressiveness (D, X and V), proof obligations (B and E).

3. Invariant Semantics
We formalise invariant semantics through an operational semantics,
defining at which execution points invariants are required to hold.
In order to cater for the different techniques, the semantics is
parameterised by properties to express proof obligations and which
invariants are expected to hold. In this section, we focus on the main
ideas of our semantics and relegate the less interesting definitions
to App. ??. We assume sets of identifiers for class names CLS,
field names FLD, and method names MTHD, and use variables
c ∈ CLS, f ∈ FLD and m ∈ MTHD.

Runtime Structures. A runtime structure is a tuple consisting of a
set of heaps HP, a set of addresses ADR, and a set of values VAL =
ADR ∪ {null}, using variables h ∈ HP, ι ∈ ADR, and v ∈ VAL. A
runtime structure provides the following operations. The operation
dom(h) represents the domain of the heap. cls(h, ι) yields the
class of the object at address ι. The operation fld(h, ι, f) yields the
value of a field f of the object at address ι. Finally, upd(h, ι, f, v)
yields the new heap after a field update, and new(h, ι, t) yields the
heap and address resulting from the creation of a new object of
type t. We leave abstract how these operations work, but require
properties about their behaviour, for instance that upd only modifies
the corresponding field of the object at the given address, and leaves
the remaining heap unmodified. See Def. 27 in App. ?? for details.

A stack frame σ ∈ STK = ADR×ADR×MTHD×CLS is a tuple
of a receiver address, an argument address, a method identifier, and
a class. The latter two indicate the method currently being executed
and the class where it is defined.

Regions, Properties and Types. A region r ∈ R is a syntactic
representation for a set of objects; a property p ∈ P is a syntactic
representation for a set of assertions about particular objects. It
is crucial that our syntax is parametric with the specific regions
and properties; we use different regions and properties to model
different verification techniques.1

We define a type t ∈ TYP, as a pair of a region and a class. The
region allows us to cater for types that express the topology of the
heap, without being specific about the underlying type system.

Expressions. In Fig. 4, we define source expressions e ∈ EXPR.
In order to simplify our presentation (but without loss of general-
ity), we restrict methods to always have exactly one argument. Be-
sides the usual basic object-oriented constructs, we include proof
annotations e prvp. As we will see later, such a proof annotation

1 For example, in Universe types, rep and peer are regions, while in own-
ership types, ownership parameters such as X, and also this , are regions
(more in Sec. 6).

e ::= this (this) | x (variable)
| null (null) | new t (new object)
| e.f (access) | e.f := e (assignment)
| e.m(e) (method call) | e prvp (proof annotat.)

er ::= . . . (as source exprs.) | v (value)
| verfExc (verif exc.) | fatalExc (fatal exc.)
| σ ·er (nested call) | call er (launch)
| ret er (return)

Figure 4. Source and runtime expression syntax.

executes the expression e and then imposes a proof obligation for
the invariants characterised by the property p. To maintain gener-
ality, we avoid being precise about the actual syntax and checking
of proofs.

In Fig. 4, we also define runtime expressions er ∈ REXPR.
A runtime expression is a source expression, a value, a nested call
with its stack frame σ, an exception, or a decorated runtime expres-
sion. A verification exception verfExc indicates that a proof obli-
gation failed. A fatal exception fatalExc indicates that an expected
invariant does not hold. Runtime expressions can be decorated with
call er and ret er to mark the beginning and end of a method call,
respectively.

In Def. 29 (App. ??), we define evaluation contexts, E[·], which
describe contexts within one activation record and extend these to
runtime contexts, F [·], which also describe nested calls.

Programming Languages. We define a programming language
as a tuple consisting of a set PRG of programs, a runtime structure, a
set of regions, and a set of properties (see Def. 30 in App. ??). Each
P ∈ PRG comes equipped with the following operations. F (c, f)
yields the type of field f in class c as well as the class in which f is
declared (c or a superclass of c). M (c, m) yields the type signature
of method m in class c. B(c, m) yields the expression constituting
the body of method m in class c as well as the class in which m
is declared. Moreover, there are operators to denote subclasses and
subtypes (<:), inclusion of regions (v), and interpretation ([[·]]) of
regions and properties.

The interpretation of a region produces a set of objects. We char-
acterise each invariant by an object-class pair, with the intended
meaning that the invariant specified in the class holds for the ob-
ject.2 Therefore, the interpretation of a property produces a set of
object-class pairs, specifying all the invariants of interest. Regions
and properties are interpreted wrt. a heap, and from the viewpoint
of a “current object”; therefore, their definitions depend on heap
and address parameters: [[. . .]]h,ι.

2 An object may have different invariants for each of the classes it belongs
to [18].



(rVarThis)
σ = (ι, v, , )

σ ·this, h −→ σ ·ι, h
σ ·x, h −→ σ ·v, h

(rNew)
σ = (ι, , , )
h′, ι′ = new(h, ι, t)
σ ·new t, h −→ σ ·ι′, h′

(rDer)
v = fld(h, ι, f)

σ ·ι.f, h −→ σ ·v, h

(rAss)
h′ = upd(h, ι, f, v)

σ ·ι.f := v, h −→ σ ·v, h′

(rCall)
B(m, cls(h, ι)) = e, c σ′ = (ι, v, c, m)

σ ·ι.m(v), h −→ σ ·σ′ ·call e, h

(rCxtEval)
σ ·er, h −→ σ ·e′r, h′

σ ·E[er], h −→ σ ·E[e′r], h′

(rCxtFrame)
er, h −→ e′r, h′

σ ·er, h −→ σ ·e′r, h′

(rLaunch)
σ=(ι, , c, m)
h |=Xc,m, ι
σ ·call e, h −→ σ ·ret e, h

(rLaunchEx)
σ=(ι, , c, m)
h 6|=Xc,m, ι
σ ·call e, h −→ σ ·fatalExc, h

(rFrame)
σ=(ι, , c, m)
h |=Xc,m, ι
σ ·ret v, h −→ v, h

(rFrameEx)
σ=(ι, , c, m)
h 6|=Xc,m, ι
σ ·ret v, h −→ fatalExc, h

(rPrf)
σ = (ι, , , ) h |= p, ι
σ ·v prvp, h −→ σ ·v, h

(rPrfEx)
σ = (ι, , , ) h 6|= p, ι

σ ·v prvp, h −→ σ ·verfExc, h

Figure 5. Reduction rules of operational semantics.

Each program also comes with typing judgements Γ ` e : t and
h ` er : t for source and runtime expressions, respectively. An
environment Γ ∈ ENV is a tuple of the class containing the current
method, the method identifier, and the type of the sole argument.

Finally, the judgement h |= ι, c expresses that in heap h, the
object at address ι satisfies the invariant declared in class c. We
define that the judgement trivially holds if the object is not allocated
(ι 6∈ dom(h)) or is not an instance of c (cls(h, ι) 6<: c). We say that
the property p is valid in heap h wrt. address ι if all invariants in
[[p]]h,ι are satisfied. We denote validity of properties by h |= p, ι:

h |= p, ι ⇔ ∀(ι′, c) ∈ [[p]]h,ι. h |= ι′, c

Operational Semantics. The framework parameter X describes
which invariants are expected to hold at visible states. Given a
program P and a set of properties Xc,m, each characterising the
property that needs to hold at the beginning and end of a method m
of class c, the runtime semantics is the relation −→ ⊆ (REXPR×
HP)× (REXPR × HP) defined in Fig. 5.

The first eight rules are standard for object-oriented languages.
Note that in rNew, a new object is created using the function
new, which takes a type as parameter rather than a class, thereby
making the semantics parametric wrt. the type system: different
type systems may use different regions and definitions of new to
describe heap-topological information. Similarly, upd and fld do
not fix a particular heap representation. Rule rCall describes method
calls; it stores the class in which the method body is defined in
the new stack frame σ, and introduces the “marker” call er at the
beginning of the method body.

Our reduction rules abstract away from program verification and
describe only its effect. Thus, rLaunch, rLaunchExc, rFrame, and
rFrameExc check whether Xc,m is valid at the beginning and end of
any execution of a method m defined in class c, and generate a fatal
exception, fatalExc, if the check fails. This represents the visible
state semantics discussed in the introduction. Proof obligations
e prvp are verified once e reduces to a value (rPrf and rPrfExc);

if p is not found to be valid, a verification exception verfExc is
generated.

Verification using visible state semantics amounts to showing all
proof obligations in some program logic, based on the assumption
that expected invariants hold in visible states. Informally then, a
specific verification technique described in our framework is sound
if it guarantees that a fatalExc is never encountered. Verification
technique soundness does allow verfExc to be generated, but this
will never happen in a correctly verified program. We give a formal
definition of soundness at the end of the next section.

This semantics allows us to be parametric wrt. the syntax of
invariants and the logic of proofs. We also define properties that
permit us to be parametric wrt. a sound type system (cf. Def. 32
in App. ??). Thus, we can concentrate entirely on verification
concerns.

4. Verification Techniques
In this section, we formalise verification techniques and their con-
nection to programs. Moreover, we define what it means for a veri-
fication technique to be sound.

A verification technique is essentially a 7-tuple, where the com-
ponents of the tuple provide instantiations for the seven parameters
of our framework. These instantiations are expressed in terms of
the regions and properties provided by the programming language.
To allow the instantiations to refer to the program, for instance, to
look up field declarations, we define a verification technique as a
mapping from programs to 7-tuples.

Definition 1 (Verification Technique). A verification technique V
for a programming language is a mapping from programs into a
tuple:

V : PRG → EXP×VUL×DEP×PRE×END×CLL×ASS
where

EXP = CLS × MTHD → P
VUL = CLS × MTHD → P
DEP = CLS → P
PRE = CLS × MTHD ×R → P
END = CLS × MTHD → P
CLL = CLS × MTHD × CLS → R
ASS = CLS × MTHD × CLS × MTHD → R

To describe a verification technique applied to a program, we write
the application of the components to class, method names, etc., as
Xc,m, Vc,m, Dc, Bc,m,r, Ec,m, Uc,m,c′ , Cc,m,c′,m′ . The meaning
of these components is:

Xc,m: the property expected to be valid at the beginning and end
of the body of method m in class c. The parameters c and
m allow a verification technique to expect different invariants
in the visible states of different methods. For instance, JML’s
helper methods [16, 17] do not expect any invariants to hold.

Vc,m: the property vulnerable to method m of class c, that is, the
property whose validity may be broken while control is inside
m. Method m can break an invariant by updating a field or
by calling a method that breaks, but does not re-establish the
invariant (for instance, a helper method). The parameters c and
m allow a verification technique to require that invariants of
certain classes (for instance, c’s subclasses) are not vulnerable.

Dc: the property that depends on a field declared in class c. The
parameter c is used, for instance, to prevent invariants from
depending on fields declared in c’s superclasses [16, 28].

Bc,m,r: the property whose validity has to be proven before call-
ing a method on a receiver in region r from the execution of
a method m in class c. The parameters allow a verification



(vs-null)

Γ V̀ null

(vs-Var)

Γ V̀ x

(vs-this)

Γ V̀ this

(vs-new)

Γ V̀ new t

(vs-fld)
Γ V̀ e

Γ V̀ e.f

(vs-ass)
Γ ` e : r c′ F (c′, f) = , c r v UΓ,c Γ V̀ e Γ V̀ e′

Γ V̀ e.f := e′

(vs-call)
Γ ` e : r c′ B(c′, m) = , c r v CΓ,c,m Γ V̀ e Γ V̀ e′

Γ V̀ e.m(e′ prvBΓ,r)

(vs-class)

B(c, m) = e, c
M (c, m) = t, t′

ff
⇒
(

e = e′ prvEc,m

c, m, t V̀ e′

V̀ c

Figure 6. Well-Verified source expressions and classes.

technique to impose proof obligations depending on the calling
method and the ownership relation between caller and callee.

Ec,m: the property whose validity has to be proven at the end
of method m in class c. The parameters allow a verification
technique to require different proofs for different methods to
exclude subclass invariants or helper methods.

Uc,m,c′ : the region of allowed receivers for an update of a field in
class c′, within the body of method m in class c. The parameters
allow a verification technique, for instance, to prevent field
updates within pure methods.

Cc,m,c′,m′ : the region of allowed receivers for a call to method m′

of class c′, within the body of method m of class c. The parame-
ters allow a verification technique to permit calls depending on
attributes (such as purity or effect specifications) of the caller
and the callee.

Role of the Seven Components. The operational semantics uses
a verification technique to specify the invariants expected in visible
states, whereas the static analysis imposed by the verification tech-
nique describes program restrictions and proof obligations. More
precisely, the operational semantics uses X, to be checked at visible
states; soundness requires that X \V holds during a method activa-
tion. Static analysis describes proof obligations using B and E, and
ensures program restrictions, through U and C, are respected. Fi-
nally, D restricts invariants for well-verified programs (cf. Def. 2).
Sec. 5 gives five conditions on these components that guarantee
soundness.

It might be initially surprising that we need as many as seven
components. This number is justified by the variety of concepts
used by modern verification techniques, such as accessibility of
fields, purity, helper methods, ownership, and effect specifications.
Note for instance that V would be redundant if all methods were to
re-establish the invariants they break; in such a setting, a method
could break invariants only through field updates, and V could be
derived from U and D. However, in the presence of helper methods
and ownership, methods may break but not re-establish invariants.

The class and method identifiers used as parameters to our
components can be extracted from an environment Γ or a stack
frame σ in the obvious way. Thus, for Γ = (c, m, ) or for σ =
(ι, , c, m), we use XΓ and Xσ as shorthands for Xc,m; we also use
BΓ,r and Bσ,r as shorthands for Bc,m,r.

Well-Verified Programs. The judgement Γ V̀ e expresses that
expression e is well-verified according to verification technique V .
The rules for this well-verification judgement are shown in Fig. 6.

Figure 7. Open calls and valid invariants in a heap

The first five rules express that literals, variable lookup, object
creation, and field lookup do not require proofs. The receiver of a
field update must fall intoU (vs-ass). The receiver of a call must fall
into C (vs-call). Moreover, we require the proof of B before a call.
Finally, a class is well-verified if the body of each of its methods is
well-verified and ends with a proof obligation for E (vs-class). Note
that we use the type judgement Γ ` e : t without defining it; the
definition is given by the underlying programming language, not
by our framework.

Fig. 16 in App. ?? defines the judgement h V̀ er for verified
runtime expressions. The rules correspond to those from Fig. 6,
with the addition of rules for values and nested calls.

A program P is well-verified wrt. V , denoted as V̀ P, iff (1)
all classes are well-verified and (2) all class invariants respect the
dependency restrictions dictated by D. That is, the invariant of an
object ι′ declared in a class c′ will be preserved by an update of a
field of an object of class c if it is not within Dc.

Definition 2 (Well-Verified Programs).
V̀ P ⇔

(W1) ∀c ∈ P. V̀ c

(W2)
F (cls(h, ι), f) = , c
(ι′, c′) 6∈ [[Dc]]h,ι,
h |= ι′, c′

9
=
;⇒ upd(h, ι, f, v) |= ι′, c′

Valid States. The properties X and X \ V characterise the invari-
ants that are known to hold in the visible states and between visible
states of the current method execution, respectively. That is, they
reflect the local knowledge of the current method, but do not de-
scribe globally all the invariants that need to hold in a given state.

For any state with heap h and execution stack σ, the function
vi(σ, h) yields the set of valid invariants, that is, invariants that are
expected to hold :

vi(σ, h) =

(
∅ if σ = ε

(vi(σ1, h) ∪ [[Xσ]]h,σ)\[[Vσ ]]h,σ if σ = σ1 ·σ
The call stack is empty at the beginning of program execution, at

which point we expect the heap to be empty. For each additional
stack frame σ, the corresponding method m may assume Xσ at
the beginning of the call, therefore we add [[Xσ]]h,σ to the valid
invariants. The method may break Vσ during the call, and so we
remove [[Vσ]]h,σ from the valid invariants.

Fig. 7 depicts this mechanism of invariant violation and reestab-
lishing for the execution of two consecutive calls. The properties
X1,V1 denote the expected and vulnerable properties of the outer
call and X2,V2 are the expected and vulnerable properties of the
subcall. The first call violates V1 but X1 \ V1 hold throughout the
call (1). Before making the subcall, it establishes all of X2 (2). The



subcall violates V2 (3) but reestablishes all of X2 before returning
(4); similarly, after the first call resumes control (5), it re-establishes
X1 at the end of its execution (6).

A state with heap h and stack σ is valid iff:

(1) σ is a valid stack, denoted by h V̀ σ (Def. ?? in App. ??),
and meaning that the receivers of consecutive method calls are
within the respective C regions.

(2) The valid invariants vi(σ, h) hold.

(3) If execution is in a visible state with σ as the topmost frame of
σ, then the expected invariants Xσ hold additionally.

These properties are formalised in Def. 3. A state is determined by
a heap h and a runtime expression er; the stack is extracted from
er using function stack, given by Def. ?? in App. ??.

Definition 3. A state with heap h and runtime expression er is
valid for a verification technique V , er |=V h, iff:

(1) h V̀ stack(er) (2) h |= vi(stack(er), h)

(3) er =F [σ ·call e] or er =F [σ ·ret v] ⇒ h |= Xσ , σ

Soundness. A verification technique is sound if verified pro-
grams only produce valid states and do not throw fatal exceptions.
More precisely, a verification technique V is sound for a program-
ming language PL iff for all well-formed and verified programs
P ∈ PL, any well-typed and verified runtime expression er exe-
cuted in a valid state reduces to another verified expression e′r with
a resulting valid state. Note that a verified e′r contains no fatalExc
(see Fig. 16).

Well-formedness of program P is denoted by ẁf P (Def. 31,
App. ??). Well-typedness of runtime expression er is denoted
by h ` er : t and required as part of a sound type system
in Def. 30, App. ??. These requirement permits separation of
concerns, whereby we can formally define verification technique
soundness in isolation, assuming program well-formedness and a
sound type system.

Definition 4. A verification technique V for a programming lan-
guage is a mapping from programs into a tuple:

V : PRG → EXP×VUL×DEP×PRE×END×UPD×CLL
where
X ∈ EXP = CLS × MTHD → P
V ∈ VUL = CLS × MTHD → P
D ∈ DEP = CLS → P
B ∈ PRE = CLS × MTHD ×R → P
E ∈ END = CLS × MTHD → P
C ∈ CLL = CLS × MTHD × CLS → R
U ∈ UPD = CLS × MTHD × CLS × MTHD → R

5. Well-Structured Verification Techniques
In this section, we identify conditions on the components of a
verification technique that are sufficient for soundness.

Definition 5 (Well-Structured Verification Methodology). A veri-
fication technique is well-structured if, for all programs in the pro-
gramming language:

(S1) r v Cc,m,c′m′ ⇒ (r . Xc′,m′ ) \ (Xc,m \ Vc,m) ⊆ Bc,m,r
(S2) Vc,m ∩ Xc,m ⊆ Ec,m

(S3) Cc,m,c′,m′ . (Vc′,m′ \ Ec′,m′ ) ⊆ Vc,m

(S4) Uc,m,c′ . Dc′ ⊆ Vc,m

(S5) c′ <: c ⇒
(
Xc′,m ⊆ Xc,m,

Vc′,m\Ec′,m ⊆ Vc,m \ Ec,m

In the above, the set theoretic symbols have the obvious interpre-
tation in the domain of properties. For example (S2) is short for
∀h, ι : [[Vc,m]]h,ι ∩ ([[Xc]]h,ι ⊆ [[Ec,m]]h,ι. We use viewpoint
adaptation r . p, defined as:

(S1) (S2)

(S3) (S5)

Figure 8. Well Structured Conditions

[[r . p]]h,ι =
S

ι′∈[[r]]h,ι
[[p]]h,ι′

meaning that the interpretation of a viewpoint-adapted property
r.p wrt. an address ι is equal to the union of the interpretations of
p wrt. each object in the interpretation of r.

The first two conditions relate proof obligations with expected
invariants. (S1) ensures for a call within the permitted region that
the expected invariants of the callee (r . Xc′,m′ ) minus the in-
variants that hold throughout the calling method (Xc,m \ Vc,m)
are included in the proof obligation for the call (Bc,m,r). (S2) en-
sures that the invariants that were broken during the execution of
a method, but which are required to hold again at the end of the
method (Vc,m ∩ Xc,m) are included in the proof obligation at the
end of the method (Ec,m).

The third and fourth condition ensure that invariants that are
broken by a method m of class c are actually in its vulnerable
set. Condition (S3) deals with calls and therefore uses viewpoint
adaptation for call regions (Cc,m,c′,m′ . . . .). It restricts the in-
variants that may be broken by the callee method m′, but are not
re-established by the callee through E. These invariants must be
included in the vulnerable invariants of the caller. Condition (S4)
ensures for field updates within the permitted region that the in-
variants broken by updating a field of class c′ are included in the
vulnerable invariants of the enclosing method, m.

Finally, (S5) establishes conditions for subclasses. An overrid-
ing method m in a subclass c may expect fewer invariants than the
overridden m in superclass c′. Moreover, the subclass method must
leave less invariants broken than the superclass method.

To further motivate the well-structured requirements of Def. 5,
let us refer back to Fig. 7. (S1) ensures that by proving B before
making the subcall, we can safely make move (2) and reach a valid
visible state at the beginning of the subcall. (S2) ensures that by
proving E at the end of both method bodies we can make moves
(4) and (6) and reach a valid visible states at the end of both calls.
Constraint (S3) ensures that when the caller resumes control after
the subcall, we can make move (5) and reach a state where X1\V1
holds in the heap. (S4) guarantees thatX\V always hold for any call
by ensuring that V is an adequate upper limit for the effect of a call.
Finally, but crucially, (S5) permits static analysis of the relationship
between X and V in the presence of dynamic dispatch of subclass
methods because static property information of what is expected
to hold at the visible states and what are the residue vulnerable
invariants of the superclass imply the corresponding properties for
the same method in the subclass.



Note that the five soundness conditions presented here are
slightly weaker than those in the previous version of this work
[7]. 3

The five conditions from Def. 5 guarantee soundness, as stated
in Def. ??.

Theorem 6 (Soundness For Visible-State Verification Techniques).
A well-structured verification technique built on top of a PL with a
sound type system is sound.

This theorem is one of our main results. It reduces the complex
task of proving soundness of a verification technique to checking
five fairly simple conditions.

5.1 Proof of Soundness Theorem
The proof of Theorem 6 uses a number of lemmas we briefly
discuss here. For a start, we require to show the correspondence
between well-verified source expressions (Fig. 6) and well-verified
runtime expressions (Fig. 16).

Lemma 7 (Substitution/Instantiation).

Γ V̀ e, Γ ` h, σ ⇒ h V̀ σ ·e
Proof. By induction on the derivation of Γ V̀ e.

We also require the following lemma stating that the adaptation
operation is adequate and monotonic.

Lemma 8 (Adaptation Correspondence).

1. h ` σ ·ι : r, ⇒ [[p]]h,ι ⊆ [[r . p]]h,σ

2. r1 v r2 ⇒ r1 . p ⊆ r2 . p
3. p1 v p2 ⇒ r . p1 ⊆ r . p2

Proof. The first clause is straightforward from (T6) of Def. 32 and
(P5) of Def. 30. The second and third clauses are also immediate as
a result of (P5) of Def. 30.

We also require a number of lemmas dealing with the reduction
rules and heap validity. For instance, the following lemma states
that heaps can only grow as a result of a reduction.

Lemma 9. er, h −→ e′r, h′ ⇒ h ¹ h′

Proof. By induction on the derivation of er, h −→ e′r, h′ and
Definition 27.

The following lemma states that a well-verified runtime expres-
sion remains well-verified in an extended heap and also that well-
verified values are independent of any guarding stack frame. The
latter property is useful when we consider a return from a subcall
in the main proof.

Lemma 10.

1. h V̀ er, h ¹ h′ ⇒ h′ V̀ er

2. h V̀ σ ·v ⇒ h V̀ σ′ ·v
Heap validity depends solely on the stack frames of a runtime

expression, thus evaluation contexts are non-influential.

Lemma 11 (Valid States). If stack(er) = σ1 · . . . · σn then

1. σ′ ·er |=V h ⇔ σ′ ·E[er] |=V h

3 Namely, (S3) and (S5) are weaker, and thus less restrictive, here. In [7],
instead of (S3) we required the stronger version Cc,m,c′,m′ . (Vc′,m′ \
Xc′,m′ ) ⊆ Vc,m, and a similarly stronger version for (S5). However, the
two versions are equivalent when Ec,m is the minimal set allowed by (S2),
i.e., when Ec,m =Vc,m∩Xc,m for all c and m. In all techniques presented
here, Ec,m is minimal in the above sense.

2. σ′ ·er |=V h ⇔

8
><
>:

h |= Xσ′ \ Vσ′ \ Vσ1 \ . . . \ Vσn

h V̀ σ′ · σ1 · . . . · σn

er |=V h

Proof. Immediate from Definition 3.

In order to determine the effect of updates on valid invariants in
a heap we require the following lemma.

Lemma 12 (Invariant Satisfaction Effect).

V̀ P
h |= [[p]]h,ι′
cls(h, ι) <: c′

F (c′, f, =) , c
h′ = upd(h, ι, f, v)

9
>>>=
>>>;

⇒ h′ |= [[p]]h′,ι′\[[Dc]]h′,ι

Proof. Immediate from (W2) of Def. 2

Thus for a well structured verification technique, we are guar-
anteed that certain invariants are unaffected by reductions.

Lemma 13 (Computation effects). For arbitrary invariant set s =
{(ι1, c1), . . . , (ιn, cn)}, if V is well-structured then:

h |= s
er, h −→ e′r, h′

stack(e′r) = σ1 · . . . · σn

9
=
;⇒ h′ |= s \ Vσ1 \ . . . \ Vσn

Proof. By induction on the derivation of er, h −→ e′r, h′, Lemma 12
and (S4) of Definition 5.

Finally, we restate the soundness theorem, Theorem 6, in full
and prove the main cases.

Theorem 9 Soundness for Visible-State Verification Techniques
If V is well-structured, then:

ẁf P, h ` er : t,

V̀ P, er |=V h, h V̀ er,
er, h −→ e′r, h′

9
=
; ⇒ e′r |=V h′, h′ V̀ e′r

Proof. The proof is by induction on the derivation of er, h −→
e′r, h′. As a shorthand, we find it convenient to write h |= Xσ

and h |= r . Xσ instead of h |= [[Xσ]]h,σ and h |= [[r . Xσ]]h,σ

respectively, and similarly for the framework component Vσ . For
convenience we also enumerate the premises of the Theorem as

ẁf P, (1)
h ` er : t, (2)

V̀ P, (3)
er |=V h, (4)
h V̀ er, (5)

er, h −→ e′r, h′ (6)

We here focus on the main cases for the derivation of (6) and leave
the remaining simpler cases for the interested reader.

rAss: From the conclusion and the premises of the rule we know

er = σ ·ι.f := v (7)

e′r = σ ·v (8)

h′ = upd(h, ι, f, v) (9)



From (7) we know (5) could only have been derived using vd-
ass and from the premises of this rule we know

h ` σ ·ι : r c′ (10)

F (c′, f) = , c (11)
r v Uσ,c (12)
h V̀ σ ·ι (13)
h V̀ σ ·v (14)

From (9) and Def. 27 (H4) we know

h ' h′ which implies h ¹ h′ (15)

Thus by (14), (15) and Lemma 11.1 and then by (8) we derive
that the resultant configuration is still well-verified, i.e.,

h′ V̀ e′r
We still need to show that (6) reduces to a valid state. From (4)
and Def. 3 we know

h |= Xσ \ Vσ (16)

Also, from (10) and Def. 32(T4) we know

cls(h, ι) <: c′ (17)

By (3), (16), (17), (11) (9) and Lemma 12 we obtain

h′ |= Xσ \ Vσ \ [[Dc]]h,ι (18)

By (10) and Lemma 8.1 we get

[[Dc]]h,ι ⊆ [[r . Dc]]h,σ (19)

By (12) and Lemma 8.2 we get

[[r . Dc]]h,σ ⊆ [[Uσ,c . Dc]]h,σ (20)

Since we assume that our verification technique V is well-
structured, by 5(S4) we also get

[[Uσ,c . Dc]]h,σ ⊆ [[Vσ]]h,σ (21)

Thus, from (18), (19), (20), (21) and set inclusion transitivity
we obtain

h′ |= Xσ \ Vσ

which by (8) and Def. 3 means we get the valid state

e′r |=V h′

rCall: From the conclusion and the premises of the rule we know

er = σ ·ι.m(v) (22)

e′r = σ ·σ′ ·call eb (23)
B(cls(h, ι), m) = eb, c (24)

σ′ = (ι, v, c, m) (25)

h′ = h (26)

From (22) we know that (5) could only have been derived using
vd-call-2, and thus from the premises of this rule we get

h ` σ ·ι : r c′ (27)

B(c′, m) = , c′′ (28)
h |= Bσ,r, σ (29)
r v Cσ,c′′,m (30)
h V̀ σ ·ι (31)
h V̀ σ ·v (32)

From (3), Def. 2(W1) and vs-class we know

eb = e prvEc,m (33)
(c, m, ) V̀ e (34)

From (24) and Def. 30(P2) we know

cls(h, ι) <: c (35)

This allows us to deduce that h, σ′ is well-formed wrt. the
environment (c, m, ) since by (25), (35) and Def. 31 we get

(c, m, ) ẁf h, σ′ (36)

By (34), (36) and Lemma 7 we derive

h V̀ σ′ ·e (37)

Hence, by (37) and vd-start we get

h V̀ σ ·σ′ ·call e prvEσ′

and by (26), (23), (33) and (25) we obtain

h′ V̀ e′r

We still need to show that (6) reduces to a valid state, that is
e′r |=V h′. From (27), Def. 32(T4) we know

cls(h, ι) <: c′ (38)

and by (38), (28), (24), (1) and Def. 31(F4) we deduce

c <: c′′ (39)

Since V is well-structured, then by Def. 5(S5) and (39) we
obtain

Xc,m ⊆ Xc′′,m (40)

which, by Lemma 8.2 yields

r . Xc,m ⊆ r . Xc′′,m (41)

Moreover from Def. 5(S1) and (30) we get

(r . Xc′′,m) \ (Xσ \ Vσ) ⊆ Bσ,r (42)

From (41) and (42) we obtain

(r . Xc,m) \ (Xσ \ Vσ) ⊆ Bσ,r (43)

From (4) and Def. 3, and then from (29) we know

h |= Xσ \ Vσ ∪ Bσ,r (44)

and from (43) and (44) we obtain

h |= Xσ \ Vσ ∪ (r . Xc,m) (45)

From (25), (27) and Lemma 8.1 we know

[[Xσ′ ]]h,σ′ ⊆ [[r . Xc,m]]h,σ (46)

and by (45) and (46) we obtain Def. 3(V2) and (V3), i.e.,

h |= Xσ \ Vσ ∪ Xσ′ (47)

Also by (25), (27), (30), (39) and Def. ?? we deduce Def. 3(V1),
i.e.,

h V̀ σ ·σ′ (48)

and by (48), (47), Def. 3, and by (23) and (26) we get, as
required,

e′r |=V h′ (49)

rCxtFrame: From the conclusion and the premises of the rule we
know

er = σ ·e1
r (50)

e′r = σ ·e2
r (51)

e1
r, h −→ e2

r, h′ (52)



From (50) and (52)4 we know that (5) could have been derived
using either of the following three subcases:
1. vd-start: From the conclusion and premises of this rule we

know

e1
r = σ′ ·call e prvEσ′ (53)

h V̀ σ′ ·e (54)

As a result of (53), we know that (52) could have only
been derived using either rLaunch or rLaunchEx. Moreover,
because of (4), (50), (53), i.e., σ ·σ′ ·call e prvEσ′ |=V h,
and 3, we also know

h |= Xσ \ Vσ ∪ Xσ′ (55)

h V̀ σ ·σ′ (56)

Now (55), in particular h |= Xσ′ , rules out the use of
rLaunchEx to derive (52). Thus, if (52) was derived using
rLaunch, we know

e2
r = σ′ ·ret e prvEσ′ (where e′r = σ ·e2

r) (57)

h′ = h (58)

By (54), (57), (58) and vd-frame we deduce

h′ V̀ e′r
and by (55), (56), (57), (58) and the fact that V is well-
structured we deduce

e′r |=V h′

2. vd-frame: From the conclusion and premises of this rule we
know

e1
r = σ′ ·ret e3

r prvEσ′ (59)

h V̀ σ′ ·e3
r (60)

From (59), we know (52) could have been derived using
either of the following 3 subcases:
(a) rCxtEval with

E[·] = ret [·] prvEσ′ (61)

σ′ ·e3
r, h −→ σ′ ·e4

r, h′ (62)

e2
r = σ′ ·E[e4

r] (63)

From (4), (50), (59), (61) and Lemma 11.1 and then
Lemma 11.2 we obtain

σ′ ·e3
r |=V h (64)

h V̀ σ ·σ′ (65)
h |= Xσ \ Vσ \ Vσ′ \ Vstack(e3r) (66)

Also, from (2), (50), (59), (61) and 32(T6) we know

h ` σ′ ·e3
r : t (67)

Thus by (1), (67), (3), (64), (60), (62) and inductive
hypothesis we infer

h′ V̀ σ′ ·e4
r (68)

σ′ ·e4
r |=V h′ (69)

By (68), (61), (63), (51) and vd-frame we derive

h′ V̀ e′r
By (69), (61), (63) and Lemma 11.1 we deduce

e2
r |=V h′ (70)

4 The fact that e1r reduces means that e1r contains at least one more stack
frame, since all reduction rules in Fig. 5 are defined over runtime expres-
sions of the form σ ·er .

From (66), (62) and Lemma 13 we get

h′ |= Xσ \ Vσ \ Vσ′ \ Vstack(e4r) (71)

and by (69), (71), (63), (51) and Lemma 11.2 we obtain,
as required,

e′r |=V h′

(b) rCxtEval, rPrf with

E[·] = ret [·] and e3
r = v (72)

σ′ ·v prvEσ′ , h −→ σ′ ·v, h (73)

e2
r = σ′ ·v and h′ = h (74)

h |= Eσ′ , σ′ (75)

From (72), (74), (51), (60), (75) and vd-end we obtain

h′ V̀ e′r

Since e′r is a visible state, Def. 3 requires us to prove that
more invariants hold for the resultant state to be valid.
From V being well-structured, 5(S2) and (75) we deduce

h |= Xσ′ ∩ Vσ′ (76)

and by (74), (72), (50), (51), (59), (4) we know

h |= ((Xσ \ Vσ) ∪ Xσ′) \ Vσ′ (77)

And thus by (76), (77) and then Def. 3 we deduce e′r |=V
h′

(c) rCxtEval, rPrfEx with

E[·] = ret [·] and e3
r = v

σ′ ·v prvEσ′ , h −→ σ′ ·verfExc, h

e2
r = σ′ ·verfExc and h′ = h

h 6|= Eσ′ , σ′

This case is similar to the previous case and is left for
the interested reader.

3. vd-end: from the conclusion and the premises of the rule,
we obtain

e1
r = σ′ ·ret v (78)

h V̀ σ′ ·v (79)

h |= Eσ′ , σ′ (80)

From (78) we know (52) could only have been derived using
either rFrame or rFrameEx. However, from (4), (50) and (78)
we know that er is in a visible state at σ′ and thus

h |= Xσ′ (81)

which rules out the possibility of using rFrameEx. Thus by
rFrame we know

e2
r = v (82)

h′ = h (83)

By (51), (82), (83), (79) and Lemma 10.2 we obtain

h′ V̀ e′r
From (50), (78), (4) and Def. 3, Def. ?? and Def. ?? we
know

h |= ((Xσ \ Vσ) ∪ Xσ′) \ Vσ′ ∪ Xσ′ (84)

σ′ = (ι, , c′, m), h ` σ ·ι : r , c′ <: c, r v Cσ,c,m

(85)

We can rewrite (84) as

h |= (Xσ \ Vσ) \ (Vσ′ \ Xσ′) ∪ Xσ′ (86)



We can combine (86) with (80) to obtain

h |= (Xσ \ Vσ) \ (Vσ′ \ Xσ′) ∪ Eσ′ ∪ Xσ′ (87)

By standard properties of set theory, we observe that

(Xσ \ Vσ) \ (Vσ′ \ Eσ′)

= ((Xσ \ Vσ) \ (Vσ′)) ∪ ((Xσ \ Vσ) ∩ (Eσ′))

⊆ ((Xσ \ Vσ) \ (Vσ′)) ∪ Eσ′

⊆ ((Xσ \ Vσ) \ (Vσ′ \ Xσ′)) ∪ Eσ′

i.e., we have

(Xσ \ Vσ) \ (Vσ′ \ Eσ′) ⊆ (Xσ \ Vσ) \ (Vσ′ \ Xσ′) ∪ Eσ′
(88)

From (87) and (88), we can obtain

h |= (Xσ \ Vσ) \ (Vσ′ \ Eσ′) ∪ Xσ′ (89)

By (85) and Lemma 8.1 we have

[[Vσ′ \ Eσ′ ]]h,σ′ ⊆ [[r . (Vσ′ \ Eσ′)]]h,σ (90)

Also by (85) and Lemma 8.2 we have

r . (Vσ′ \ Eσ′) ⊆ Cσ,c,m . (Vσ′ \ Eσ′) (91)

Since we assume our verification technique V to be well-
structured, then by 5(S3) we know

Cσ,c,m . (Vc,m \ Ec,m) ⊆ Vσ (92)

and by (S5) and (85) we also know

(Vσ′ \ Eσ′) ⊆ (Vc,m \ Ec,m) (93)

and by (93) and Lemma 8.3 we get

Cσ,c,m . (Vσ′ \ Eσ′) ⊆ Cσ,c,m . (Vc,m \ Ec,m) (94)

By (90), (91), (94) and (92) we can rewrite (89) as

h |= (Xσ \ Vσ) ∪ Xσ′ (95)

and by (95), (83), (82) and (51) we obtain

e′r |=V h′

as required.

6. Instantiations
In this section, we instantiate our framework to describe six verifi-
cation techniques from the literature, and compare their expressive-
ness. We also prove their soundness using Def. 5 and Theorem 6
from Sec. 5.

An optimal verification technique would allow maximal expres-
sivity of the invariants (i.e., large D), impose as few program re-
strictions as possible (i.e., large U and C), and require as few proof
obligations as possible (i.e., small B and E). Obviously, these are
contradictory goals, and some trade-offs need to be struck.

The first three techniques use information about classes to im-
prove the tradeoff, whereas the latter three also use information
about the topology of the heap. We call them unstructured heap
and structured heap techniques, respectively.

6.1 Verification Techniques for Unstructured Heaps
Unstructured heap techniques make trade-offs by using information
about classes, visibility, and access paths used in definitions of
invariants. The instantiations are summarised in Fig. 9 whereby the
keyword all denotes the set of all object invariants.

Poetzsch-Heffter Huizing &
Kuiper

Leavens &
Müller

Xc any any any
Vc,m any vul〈c〉 any〈c〉
Dc any vul〈c〉 self〈c〉

Bc,m,r any vul〈c〉 any〈c〉
Ec,m,c′ any vul〈c〉 any〈c〉
Uc,m,c′ any self

any if visF(c′, c)
emp otherwise

Cc,m,c′,m′ any any any

Figure 9. Verification techniques for unstructured heaps.

6.1.1 Poetzsch-Heffter
Poetzsch-Heffter [32] devised the first verification technique that is
sound for call-backs and multi-object invariants. His technique nei-
ther restricts programs nor invariants. To deal with this generality,
it requires extremely strong proof obligations.

The absence of restrictions is reflected by the regions and prop-
erties needed to model Poetzsch-Heffter’s technique. We define a
singleton region set R = {any} and a singleton property set P =
{any} with interpretations [[any]]h,ι = dom(h) and [[any]]h,ι = all.
As shown in Fig. 9, this technique requires all invariants to hold
in visible states. It does not restrict invariants; D allows a field
update to affect any invariant. U and C permit arbitrary receivers
for field updates and method calls. Consequently, any invariant is
vulnerable to each method. This requires proof obligations for all
invariants before method calls (to handle call-backs) and at the end
of the method.

6.1.2 Huizing & Kuiper
Huizing and Kuiper’s technique [14] is almost as liberal as Poetzsch-
Heffter’s, but imposes fewer proof obligations. It achieves this by
determining syntactically for each field the set of invariants that are
potentially invalidated by updating the field. Proof obligations are
imposed only for those vulnerable invariants.

We define the region set R = {self, any}with the interpretation
[[self]]h,ι = {ι} and [[any]]h,ι = dom(h). The region self is
used to restrict the receivers of field updates to this (see Fig. 9).
The concept of vulnerability is captured by the property set P =
{vul〈c〉, any} with the following interpretation:

[[vul〈c〉]]h,ι = {(ι′, c′) | the invariant of c′ contains an expression
this .g1 . . . gn.f (n ≥ 0) where F (c, f) = , ∧
fld(h, fld(h, fld(h, ι′, g1), . . .), gn) = ι} ∪
{(ι, c′) | cls(h, ι) <: c′}

[[any]]h,ι = all

Given an address ι and a class c, the set of vulnerable invariants
contains the invariants of all client objects ι′ of ι that refer to a field
f of c via an access path g1 . . . gn, as well as all invariants of ι. The
interpretation shows that this technique inspects client invariants
syntactically to determine whether they are vulnerable or not.

As shown in Fig. 9, this technique requires all invariants to
hold in visible states. It does not restrict invariants; therefore, D
describes exactly the set of vulnerable invariants. These invariants
are vulnerable to each method and must be proven before method
calls and at the end of each method.

Formalizing Huizing and Kuiper’s technique in our framework
reveals that it is very similar to Poetzsch-Heffter’s. The main dif-
ference is that the former technique uses a syntactic analysis and
restricts field updates to reduce proof obligations.



6.1.3 Leavens & Müller
Leavens and Müller [16] studied information hiding in interface
specifications, based on the notion of visibility defined by access
control of the programming language. For instance in Java, private
field are visible only within their class. Their technique allows
classes to declare several invariants and to specify the visibility of
these invariants.

Since our formalization does not cover the visibility of fields
and assumes exactly one invariant per class, we model a special
case of Leavens and Müller’s technique. We assume that all fields
of a class have the same visibility. The predicate visF(c′, c) yields
whether the fields declared in class c′ are visible in class c. We
assume that each class declares exactly one invariant and specifies
its visibility. The predicate visI(c′, c) yields whether the invariant
declared in class c′ is visible in class c. A generalization is possible,
but does not provide any deeper insights.

We define the region set R = {emp, any} with the interpreta-
tion [[emp]]h,ι = ∅ and [[any]]h,ι = dom(h). This technique permits
field updates on arbitrary receivers as long as the field is visible in
the method performing the update (see Fig. 9). Method calls are not
restricted

The visibility of invariants is captured by the property set P =
{any, self〈c〉, any〈c〉} with the following interpretation:

[[any]]h,ι = all [[any〈c〉]]h,ι =
˘
(ι′, c′) | visI(c′, c)¯

[[self〈c〉]]h,ι =
˘
(ι, c) | ∀c′.visF(c, c′) ⇔ visI(c, c′)

¯

D allows invariants to depend on fields of the same object declared
in the same class, provided that the invariant is visible wherever the
field is. This requirement enforces that any method that potentially
breaks an invariant can see it and, thus, re-establish it. This require-
ment is very restrictive, as it disallows multi-object invariants and
prevents invariants from depending on inherited fields.

The technique guarantees that only visible invariants are vul-
nerable; therefore, only visible invariants need to be proven before
method calls and at the end of methods. It also supports helper
methods, which we omit here for brevity

6.1.4 Comparison
We compare invariant restrictions, program restrictions, and proof
obligations.

Invariant Restrictions (D). Poetzsch-Heffter allows invariants to
depend on arbitrary locations, in particular, his technique supports
multi-object invariants. Huizing and Kuiper require for multi-object
invariants the existence of an access path from the object containing
the invariant to the object it depends on. This excludes, for instance,
universal quantifications over objects. Leavens and Müller focus on
invariants of single objects, and address the subclass challenge by
disallowing dependencies on inherited fields.

Program Restrictions (U and C). All three techniques permit
arbitrary method calls. Huizing and Kuiper restrict field updates
to the receiver this . Leavens and Müller require the updated field
to be visible; a requirement enforced by the type system anyway,
thus they are not limiting expressiveness.

Proof Obligations (B and E). Both Poetzsch-Heffter and Huiz-
ing and Kuiper impose proof obligations for invariants of essen-
tially all classes of a program (even though Huizing and Kuiper
use a syntactic analysis to exclude invariants that are not vulnera-
ble). This makes both techniques highly non-modular. Leavens and
Müller’s technique requires proof obligations only for visible in-
variants, which makes this technique modular.

Lemma 14 (Well-Structuredness of Verification Techniques for
Unstructured Heaps). The Poetzsch-Heffter, Huizing and Kuiper
and Leavens and Müller are well-structured.

Proof. We here outline the proof for Poetzsch-Heffter and leave
the proof of the remaining two for the interested reader. Accord-
ing to Def. 5, the components of the Poetzsch-Heffter verification
technique, given earlier in Fig. 9, have to satisfy the following 5
criteria:

(S1): From (r . Xc′,m′) \ (Xc,m \ Vc,m) ⊆ Bc,m,r we get:

any . any \ (any \ any) ⊆ any

any . any \ ∅ ⊆ any

any ⊆ any

(S2): From Vc,m ∩ Xc,m ⊆ Ec,m we get:

any ∩ any ⊆ any

any ⊂ any

(S3): From Cc,m,c′,m′ . (Vc′,m′ \ Ec′,m′) ⊆ Vc,m we get:

any . (any \ any) ⊆ any

any . ∅ ⊆ any

∅ ⊆ any

(S4): From Uc,m,c′ . Dc′ ⊆ Vc,m we get:

any . any ⊆ any

any ⊆ any

(S5): For c′ <: c, from Xc′,m ⊆ Xc,m we get

any ⊆ any

and from Vc′,m \ Ec′,m ⊆ Vc,m \ Ec,m we get

any \ any ⊆ any \ any

6.2 Verification Techniques for Structured Heaps
We consider three techniques which strike a better trade-off by us-
ing the heap topology enforced by ownership types, and summarise
them in Fig. 10.

To sharpen our discussion wrt. structured heaps, we will be
adding annotations to the example from Fig. 2, to obtain a topology
where the Person p owns the Account a and the DebitCard d.

6.2.1 Müller et al.
Müller, Poetzsch-Heffter, and Leavens [28] present two techniques
for multi-object invariants, called ownership technique and visi-
bility technique (OT and VT for short). Both techniques utilise
the hierarchic heap topology enforced by Universe types [6, 27].
Universe types associate reference types with ownership modifiers,
which specify ownership relative to the current object. The modifier
rep expresses that an object is owned by the current object; peer
expresses that an object has the same owner as the current object;
any expresses that an object may have any owner.

class Account {
peer DebitCard card;
any Person holder ;
...

}

class Person {
rep Account account;
...

}

class DebitCard {
peer Account acc;
...

}
Figure 11. Universe modifiers for the Account example from
Fig. 2.



Müller et al. (OT ) Müller et al. (VT ) Lu et al.(Oval)
Xc,m own ; rep+ own ; rep+ I ; rep∗
Vc,m super〈c〉 t own+ peer〈c〉 t own+ E ; own∗

Dc self〈c〉 t own+ peer〈c〉 t own+ self ; own∗

Bc,m,r
super〈c〉 if intrsPeer(r)
emp otherwise

peer〈c〉 if intrsPeer(r)
emp otherwise emp

Ec,m super〈c〉 peer〈c〉 self if I=E
emp otherwise

Uc,m,c′ self peer
self if I=E
emp otherwise

Cc,m,c′,m′ rep〈c〉 t peer rep〈c〉 t peer
F
r, with SC(I,E,I′,E′,Or,c) r

Figure 10. Components of verification techniques. For Oval , Or,c is the owner of r; we use shorthands I = I(c, m), and E = E(c, m), and
I′ = r ; I(c′, m′), and E′ = r ;E(c′, m′).

Both OT and VT forbid fields f and g declared in different
classes cf and cg , of the same object o to reference the same
object. This subclass separation is formalised elegantly by using
an ownership model where each object is owned by an object-class
pair [18]. In this model, the object referenced from o.f is owned by
(o, cf ), whereas the object referenced from o.g is owned by (o, cg).
Since they have different owners, these objects must be different.

We assume a heap operation that yields the owner of an object
in a heap: ownr : HP × ADR → ADR × CLS . The set of areas is:

r ∈ R ::= emp | self | rep〈c〉 | peer | any | r t r
with the following interpretation:

[[self]]h,ι = {ι} [[any]]h,ι = dom(h) [[emp]]h,ι = ∅
[[rep〈c〉]]h,ι =

˘
ι′ | ownr(h, ι′) = ι c

¯

[[peer]]h,ι =
˘
ι′ | ownr(h, ι′) = ownr(h, ι)

¯

[[r1 t r2]]h,ι = [[r2]]h,ι ∪ [[r2]]h,ι

In our framework, Universe modifiers intuitively correspond to
regions, since they describe areas of the heap. For example, peer
describes all objects which share the owner (object-class pair) with
the current object. However, because of the subclass separation
described above, it is useful to employ richer regions of the form
rep〈c〉, describing all objects owned by the current object and class
c. For regions (and properties) we also include the “union” of two
regions (properties). The predicate intrsPeer(r) checks whether a
region intersects the peer region.

The two techniques require a rather rich set of properties to deal
with the various aspects of ownership and subclassing:
p ∈ P ::= emp | self〈c〉 | super〈c〉 | peer〈c〉 | rep | own | rep+| own+|p;p

with the following interpretations:
[[emp]]h,ι = ∅ [[self〈c〉]]h,ι = {(ι, c) | cls(h, ι) <: c}

[[super〈c〉]]h,ι =
˘
(ι, c′) | c <: c′

¯

[[peer〈c〉]]h,ι =
˘
(ι′, c′) | ownr(h, ι′) = ownr(h, ι) ∧ vis(c′, c)

¯

[[rep]]h,ι =
˘
(ι′, c′) | ownr(h, ι′)= ι

¯
[[own]]h,ι ={ownr(h, ι)}

[[p1;p2]]h,ι =
S

(ι′,c)∈[[p1]]h,ι
[[p2]]h,ι′

[[rep+]]h,ι = [[rep]]h,ι ∪ [[rep; rep+]]h,ι

[[own+]]h,ι = [[own]]h,ι ∪ [[own; own+]]h,ι

Here we exploit that owners and object invariants both are object-
class pairs. Therefore, we can use the owner (o, c) of an object to
denote the object invariant for object o declared in class c.

For properties, self〈c〉 represents the singleton set containing a
pair of the current object with the class c. The property super〈c〉
represents the set of pairs of the current object with all its classes
that are superclasses of c. The property peer〈c〉 represents all the
objects (paired with their classes) that share the owner with the
current object, provided their class is visible in c. There are also
properties to describe the invariants of an object’s owned objects,
its owner, its transitively owned objects, and its transitive owners.

A property of the form p1;p2 denotes a composition of properties,
which behaves similarly to function composition when interpreted.

Ownership Technique. As shown in Fig. 10, OT requires that in
visible states, all objects owned by the owner of this must satisfy
their invariants (X).

Invariants are allowed to depend on fields of the object itself (at
the current class), as in I1 in Fig. 2, and all its rep objects, as in I2.
Other client invariants such as I4 and I5) and subclass invariants
that depend on inherited fields (such as I3) are not permitted.
Therefore, a field update potentially affects the invariants of the
modified object and of all its (transitive) owners (D).

A method may update fields of this (U). Since an updated field
is declared in the enclosing class or a superclass, the invariants po-
tentially affected by the update are those of this (for the enclosing
class and its superclasses, which addresses the subclass challenge)
as well as the invariants of the (transitive) owners of this (V).

OT handles multi-object invariants by allowing invariants to de-
pend on fields of owned objects (D). Therefore, methods may break
the invariants of the transitive owners of this (V). For example, the
invariant I2 of Person (Fig. 2) is legal only because account is
a rep field (Fig. 11). Account’s method withdraw need not pre-
serve Person’s invariant. This is reflected by the definition of E:
only the invariants of this are proven at the end of the method,
while those of the transitive owners may remain broken; it is the
responsibility of the owners to re-establish them, which addresses
the multi-object challenge. As an example, the method spend has to
re-establish Person’s invariant after the call to account.withdraw.

Since the invariants of the owners of this might not hold, OT
disallows calls on references other than rep and peer references
(C). For instance, the call holder . notify () in method sendReport
is not permitted because holder is in an ancestor ownership context.

The proof obligations for method calls (B) must cover those
invariants expected by the callee that are vulnerable to the caller.
This intersection contains the invariant of the caller, if the caller
and the callee are peers because the callee might call back; it is
otherwise empty (reps cannot callback their owners).

Visibility Technique. VT relaxes the restrictions of OT in two
ways. First, it permits invariants of a class c to depend on fields
of peer objects, provided that these invariants are visible in c (D).
Thus, VT can handle multi-object structures that are not organised
hierarchically. For instance, in addition to the invariants permitted
by OT , VT permits invariants I4 and I5 in Fig. 2. Visibility is
transitive, thus, the invariant must also be visible wherever fields of
c are updated. Second, VT permits field updates on peers of this
(U).

These relaxations make more invariants vulnerable. Therefore,
V includes additionally the invariants of the peers of this . This
addition is also reflected in the proof obligations before peer calls
(B) and before the end of a method (E). For instance, method



withdraw must be proven to preserve the invariant of the associated
DebitCard, which does not in general succeed in our example.

Lemma 15. OT and VT are well-structured.

Proof. The proof assumes the following definition of region inclu-
sion for the universe type system, defined as the least relation char-
acterised by the rules below. It is not hard to see that this definition
satisfies constraint (P4) of Def. 30. Other definitions for universe
set inclusion are possible.

(u-emp)

emp v r

(u-any)

r v any

(u-self)

self v peer
(u-union)

r1 v r1 t r2
r2 v r1 t r2

(u-relf)

r v r

(u-trans)
r1 v r2
r2 v r3
r1 v r3

We start by showing that OT is well-structured from the compo-
nents given in Fig. 10.

(S1): There are a number of regions that satisfy r v Cc,m,c′m′ .
We here give the proof for the main two cases, i.e., peer and
rep〈c〉. For r = peer we have to show:

(peer . own ; rep+) \ (own ; rep+ \ super〈c〉 t own+)

⊆ super〈c〉
When we adapt own ; rep+, i.e., everything beneath the owner
of the current receiver, by peer, i.e., peer . own ; rep+, we still
get own ; rep+ since peers share the same owner. Thus we get

own ; rep+ \ (own ; rep+ \ super〈c〉 t own+) ⊆ super〈c〉
Using the set identity

A \ (B \ C) = (A ∩ C) ∪ (A \B) (96)

on the left hand of the inclusion we get:

(own ; rep+ ∩ super〈c〉 t own+) ∪ (own ; rep+\own ; rep+)

⊆ super〈c〉
and thus

(own ; rep+ ∩ super〈c〉 t own+) ∪ ∅ ⊆ super〈c〉 (97)

From the interpretations given, we can show that

own ; rep+ ∩ super〈c〉 t own+ = super〈c〉
and as a result, from (97) we obtain

super〈c〉 ⊆ super〈c〉
For the second case, i.e., r = rep〈c〉 we have

(rep〈c〉 . own ; rep+) \ (own ; rep+ \ super〈c〉 t own+)

⊆ emp

When we adapt own ; rep+ by rep〈c〉 we get all objects transi-
tively owned by the current receiver, namely rep+ and thus we
get

rep+ \ (own ; rep+ \ super〈c〉 t own+) ⊆ emp

At this point we apply the set identity (96) from the previous
case and get

(rep+ ∩ super〈c〉 t own+) ∪ (rep+ \ own ; rep+) ⊆ emp

Since rep+ does not include the current receiver, we know
rep+ ∩ super〈c〉 t own+ = ∅. Also since rep+ ⊆ own ; rep+,
we also know rep+ \ own ; rep+ = ∅ and hence we get

∅ ∪ ∅ ⊆ emp

(S2): We require

super〈c〉 t own+ ∩ own ; rep+ ⊆ super〈c〉 (98)

From the interpretations, it is not hard to show directly that

super〈c〉 ∩ own ; rep+ = super〈c〉 (99)

own+ ∩ own ; rep+ = ∅ (100)

from which (98) follows.
(S3): Instantiating the components of Fig. 10 we need to show

rep〈c′〉 t peer . ((super〈c〉 t own+)\super〈c〉)
⊆ super〈c′〉 t own+

We highlight the different roles played by the classes c and c′

in the above statement. It is easy to show that

own+ ∩ super〈c〉 = ∅ (101)

from which we obtain

(super〈c〉 t own+) \ super〈c〉 = own+ (102)

Therefore, it suffices to show

rep〈c′〉 t peer . (own+) ⊆ super〈c′〉 t own+

From the interpretations we derive the identities:

rep〈c′〉 . own+ = self〈c′〉 t own+ (103)

peer . own+ = own+ (104)

and thus, from the direct interpretation of t we obtain

self〈c′〉 ∪ own+ ⊆ super〈c′〉 ∪ own+

which is immediately true since, from the interpretations we
know self〈c′〉 ⊆ super〈c′〉

(S4): Once again we have two cases.
• For pure methods we have

emp . self〈c〉 t own+ ⊆ super〈c〉 t own+

Since the interpretation of emp is ∅, anything adapted by the
viewpoint emp given emp and thus

emp ⊆ super〈c〉 t own+

which is trivially true.
• For non-pure methods we have

self . self〈c〉 t own+ ⊆ super〈c〉 t own+

Any adaptation by self acts as the identity and thus we
obtain

self〈c〉 t own+ ⊆ super〈c〉 t own+

which is true by the same reasons we gave for case (S3)
above.

(S5): For c <: c′ we have to show

1. own ; rep+ ⊆ own ; rep+

2.

„
super〈c〉 t own+\
super〈c〉

«
⊆
„

super〈c′〉 t own+\
super〈c〉

«

The first statement is trivially true whereas the second statement
is true because (102) is true for any c, so substituting the right
hand side of (102) gives us own+ on both sides.

The proof of well-structuredness of the VT is similar to that of the
OT :



(S1): As before, the two cases for r we consider are peer and
rep〈c〉. For peer we have the proof

peer . own ; rep+ \
„

own ; rep+\
peer〈c〉 t own+

«
⊆ peer〈c〉

own ; rep+ \
„

own ; rep+\
peer〈c〉 t own+

«
⊆ peer〈c〉

„
own ; rep+∩
peer〈c〉 t own+

«
∪
„

own ; rep+\
own ; rep+

«
⊆ peer〈c〉

„
own ; rep+∩
peer〈c〉 t own+

«
∪ ∅ ⊆ peer〈c〉

Here we use the property

own ; rep+ ∩ peer〈c〉 t own+ = peer〈c〉 (105)

derived directly from the interpretations and get

peer〈c〉 ∪ ∅ ⊆ peer〈c〉
For the case of rep〈c〉 we have the proof:

rep〈c〉 . own ; rep+ \
„

own ; rep+\
peerc t own+

«
⊆ emp

rep+ \
„

own ; rep+\
peerc t own+

«
⊆ emp

(rep+ ∩ peer〈c〉 t own+) ∪ (rep+ \ own ; rep+) ⊆ emp

∅ ∪ ∅ ⊆ emp

(S2): There are two cases.
• For pure methods we have

emp ∩ own ; rep+ v emp

emp v emp

• For non-pure methods we have

peer〈c〉 t own+ ∩ own ; rep+ v peer〈c〉
which is true from (105) earlier.

(S3): There are four cases to consider here, depending on the purity
of the two methods. We here give the proof for two cases.
• If m is pure and m′ is non-pure we have

emp . (peer〈c′〉 t own+ \ peer〈c′〉) v emp

emp v emp

• When both m and m′ are non-pure, then since we can
directly show

own+ ∩ peer = ∅. (106)

we have

rep〈c〉 t peer .

„
peer〈c′〉 t own+

\peer〈c′〉
«

v peer〈c〉 t own+

rep〈c〉 t peer . own+ v peer〈c〉 t own+

At this point we use the identities (103), (104) derived
earlier to obtain

self〈c〉 t own+ v peer〈c〉 t own+

which is true because we can show self〈c〉 v peer〈c〉.
(S4): We have two cases.

• If Uc,m,c′ = emp we have two of cases and here we
consider the case where m is not pure (the other case is

similar).

emp . peer〈c′〉 t own+ v peer〈c〉 t own+

emp v peer〈c〉 t own+

• If Uc,m,c′ = peer then we know that m is not pure and that
c is visible from c′, i.e., vis(c′, c). We therefore obtain the
proof

peer . peer〈c′〉 t own+ v peer〈c〉 t own+

peer〈c′〉 t own+ v peer〈c〉 t own+

and by the symmetric property of vis(c′, c) and the interpre-
tation of peer〈c〉 we derive the identity peer〈c〉 = peer〈c′〉
which make the above true.

(S5): This is similar to (S5) for OT .

6.2.2 Lu et al.
Lu, Potter, and Xue [23] define Oval , a verification technique based
on ownership types, which support owner parameters for classes
[5], thus permitting a more precise description of the heap topol-
ogy. The distinctive features of Oval are: (1) Expected and vulner-
able invariants are specific to every method in every class through
the notion of contracts. (2) Invariant restrictions do not take sub-
classing into account. (3) Proof obligations are only imposed at the
end of calls. (4) To address the call-back challenge, calls are subject
to “subcontracting”, a requirement that guarantees that the expected
and vulnerable invariants of the callee are within those of the caller.

Here we describe Oval’, an adaptation of Oval, where i ) we omit
non-rep fields, a refinement whereby the invariant of the current
object cannot depend on such fields (but its owners can), and ii ) we
drop the existential class parameter ”*” annotation - both features
enhance programming expressivity of Oval, but are deemed as non-
central to our analysis. Oval’ also used different restrictions for
method overriding, because the original restrictions defined in Oval
lead to unsoundness [22], as we discuss later on. In [23] description
of the Oval verification technique is intertwined with that of the
ownership type system it is based on. However, for the presentation
of Oval’, we strive to disentangle the two.

Oval’ classes have owner parameters, indicated by X, Y , and
the subclass relationship is described through a judgment c〈X〉C
c′〈X ′〉 defined as:

class c〈X〉 extends c〈X〉 . . .
c〈X〉Cc〈X〉
c〈X〉Cc′〈X ′〉

c〈X〉Cc′〈X ′〉
c′〈Y 〉Cc′′〈Y ′〉

c〈X〉Cc′′〈{X′/Ȳ }Ȳ ′〉
where X are the disjoint formal class parameters of c in the pro-
gram.

For simplicity we require that the formal class parameters are
disjoint for every class. This assumption is very powerful, as, in
contrast to usual systems, it allows the C relationship to be context
independent. An Oval program also defines an ”inside” partial
order relation, ¹ for parameters of the same class.

Fig. 12 shows our example in Oval using ownership parameters
[5] to describe heap topologies. The ownership parameter o denotes
the owner of the current object; p denotes the owner of o and
specifies the position of holder in the hierarchy, more precisely
than the any modifier in Universe types.Method Contracts. Ownership parameters are also used to de-
scribe expected and vulnerable invariants, which are specific to
each method. Every Oval program extends method signatures with
a contract 〈I, E〉: the expected invariants at visible states (X) are the
invariants of the object characterised by I and all objects transitively
owned by this object; the vulnerable invariants (V) are the object at



class Account[o,p] {
DebitCard〈o〉 card;
Person〈p〉 holder;
...
void withdraw(int amount)〈this,this〉
{ ... }

void sendReport()〈bot,p〉
{ ... }

}

class Person[o] {
Account〈this〉 account;
...
void spend(int amount)〈this,this〉
{ account.withdraw(amount); }

void notify ()〈bot,top〉
{ ... }

}Figure 12. Ownership parameters and method contracts in Oval .

E and its transitive owners. These properties are syntactically char-
acterised by Ls in the code (and Ks in typing rules), where:

L ::= top | bot | this |X K ::= L |K ; rep

and where X stands for the class’ owner parameters. “Contexts” L,
obtained from [23], are syntactic descriptions of the standard and
vulnerable properties. As in [23], the type system extends L to K
to described context abstraction[23], i.e., objects owned by class
parameters, and generalises the partial ordering ¹ to K as a lattice
bounded by top and bot, using rules from [23]. As in [23], the type
system defines the judgement

c〈K〉 <: c〈K〉 ⇔ c〈X〉Cc′〈X ′〉, ∀i.K′i = {K/X̄}X̄ ′

As in [23], the type system also requires all classes c and
methods m to satisfy

I(c, m) ¹ E(c, m) I(c, m) = E(c, m) ⇒ I(c, m) = this
(107)

which guarantees that the expected and the vulnerable invariants of
every method can intersect at most at the current object. Central to
Oval is subcontracting, which we adopt for Oval’(modulo renam-
ing).

In class Account (Fig. 12), withdraw() expects the current
object and the objects it transitively owns to be valid (I=this ) and,
during execution, this method may invalidate the current object and
its transitive owners (E=this ). The contract of sendReport() does
not expect any objects to be valid at visible states (I=bot) but may
violate object p and its transitive owners (E=p).

Subcontracting. Call-backs are handled via subcontracting, which
is defined using the order L ¹ L′.To interpret Oval ’s subcontract-
ing in our framework, we use SC(I, E, I′, E′, K), which holds iff:
I ≺ E ⇒ I′ ¹ I I = E ⇒ I′ ≺ I I′ ≺ E′ ⇒ E ¹ E′ I′ = E′ ⇒ E ¹ K

where I, E characterise the caller, I′, E′ characterise the callee, and
K stands for the callee’s owner. The first two requirements ensure
that the caller guarantees the invariant expected by the callee. The
other two conditions ensure that the invariants vulnerable to the
callee are also vulnerable to the caller. For instance, the call holder
. notify () in method sendReport satisfies subcontracting because
caller and callee do not expect any invariants, and the callee has
no vulnerable invariants. In particular, the receiver of a call may be
owned by any of the owners of the current receiver, provided that
subcontracting is respected (C).

Given that I ¹ E for all well-formed methods, and that
Bc,m,r =emp, the first two requirements of subcontracting exactly
give (S1) , while the latter two exactly give (S3) from Def. 5.

emp v r
c〈X〉C c〈X ′〉

c〈K〉 v c〈{K/X}X ′〉 r v r t r′

K v K ; rep∗ K v K ; own∗

K ¹ K′

K ; rep∗ v K′ ; rep∗
K ¹ K′

K′ ; own∗ v K ; own∗

Figure 13. The v relation for Oval’

The heap model defines an additional operation typ which gives
the runtime type of each object, c〈ι〉 where:

typ(h, ι) = c〈ι〉 ⇒ cls(h, ι) = c, c〈X〉Cc′〈X ′〉, |ι| = |X|
The owner of ι above is ι1. We define address runtime typing and
address ownership as:

h ` ι : c〈ι〉 ⇔
(

typ(h, ι) = c′〈ι′〉, c′〈X ′〉Cc〈X〉,
∀i.ιi = {ι′/X′}Xi

h ` ι′ ¹ ι ⇔ typ(h, ι′) = c〈ι, ι〉
h ` ι′ ¹∗ ι ⇔ ι′ = ι ∨ ∃ι′′.h ` ι′ ¹ ι′′, h ` ι′′ ¹∗ ι

Regions and Properties. To express Oval in our framework, we
define regions and properties as follows (see App. ?? for their
interpretations):
r ∈ R ::= emp | self | c〈K〉 | r t r p ∈ P ::= emp | self | K | K ; rep∗ | K ; own∗

Remark 16. Note, that our definition of regions introduces some
redundancy, because a type t = r c would have the shape,
e.g.,C<rep,o2> C. This redundancy is harmless.

The interpretation for regions and properties is based on the
interpretation of extended contexts:

[{top}]h,ι = [{bot}]h,ι = ∅ [{this}]h,ι = {ι}
[{X}]h,ι =

˘
ι′i | h ` ι : c〈ι〉, c〈X〉C , X = Xi

¯

[{K ; rep}]h,ι =
˘
ι′ | ι′′ ∈ [{oEffK}]h,ι, h ` ι′ ¹ ι′′

¯

The interpretation of regions is:

[[emp]]h,ι =∅ [[this]]h,ι ={ι} [[r t r′]]h,ι =[[r]]h,ι ∪ [[r′]]h,ι

[[c〈K〉]]h,ι =
˘
ι′ | h ` ι′ : c〈ι〉,∀i. ιi ∈ [{Ki}]h,ι

¯

The interpretation for properties is as follows:

[[emp]]h,ι = [[top]]h,ι = [[bot]]h,ι = ∅
[[K]]h,ι =

˘
(ι′, c) | ι′ ∈ [{K}]h.ι, cls(h, ι′) <: c

¯

[[K;p]]h,ι =

(
all K= top,p= rep∗ ∨ K=bot,p=own∗S

(ι′,c)∈[[K]]h,ι
[[p]]h,ι′ p ∈ {rep∗, own∗}

[[rep∗]]h,ι =
˘
ι′ | h ` ι′ ¹∗ ι

¯
[[own∗]]h,ι =

˘
ι′ | h ` ι ¹∗ ι′

¯

Based on the ordering ¹, we define the reflexive and transi-
tive judgment v for regions and properties in Fig. 13. Based on
the viewpoint type adaptation of the Oval type system[23] we de-
fine the “adaptation” operation ; between regions and contexts L,
returning extended contexts K :

r ; L =

8
>>><
>>>:

L if r = this;

Ki if r = c〈K〉, L = Xi;

K1 ; rep if r = c〈K〉, L = this

⊥ otherwise.



from which we define the viewpoint adaptation operation

r . p =

8
>>>>>>><
>>>>>>>:

emp r = emp ∨ p = emp

p r = this

p1 t p2 r = r1 t r2, pi = ri . p
K1; rep r = c〈K〉, p = this

Ki r = c〈K〉, p = Xi

(r; K);p′ r = c〈K〉, p = K;p′, p′ ∈ {rep, rep∗, own∗}
As already stated, expected and vulnerable properties depend

on the contract of the method and express X as I ; rep∗ and V as
E ; own∗ (see Fig. 10). Similarly to OT , invariant dependencies
are restricted to an object and the objects it transitively owns (D).
Therefore, I1 and I4 are legal, as well as I3, which depends on an
inherited field. Oval imposes a restriction on contracts that the ex-
pected and vulnerable invariants of every method intersect at most
at this. Consequently, at the end of a method, one has to prove the
invariant of the current receiver, if I = E = this, and nothing oth-
erwise (E). In the former case, the method is allowed to update
fields of its receiver; no updates are allowed otherwise (U). There-
fore, spend and withdraw are the only methods in our example
that are allowed to make field updates. Oval does not impose proof
obligations on method calls (B is empty), but addresses the call-
back challenge through subcontracting. Therefore, call-backs are
safe because the callee cannot expect invariants that are temporar-
ily broken. With the existing contracts in Fig. 12, subcontracting
permits spend to call account.withdraw(), and withdraw to call
this .sendReport(), and also sendReport to call holder . notify ()
. The last two subcalls may potentially lead to callbacks, but are
safe because the contracts of sendReport and notify do not expect
the receiver to be in a valid state (I=bot).

Subclassing and Subcontracting. Oval also requires subcon-
tracting between a superclass method and an overriding subclass
method. As we discuss later, this does not guarantee soundness
[22], and we found a counterexample (cf. Sec. 5). Therefore, we
require that a subclass expects no more than the superclass, and
vice versa for vulnerable invariants, and that if an expected invari-
ant in the superclass is vulnerable in the subclass, then it must also
be expected in the subclass:5

I′ ¹ I ¹ E ¹ E′ I = E′ ⇒ I′ = E′

where I, E, I′, E′ characterise the superclass, resp. subclass, method.
This requirement gives exactly (S5) from Def. 5. It allows I′= I=
E = E′ which is forbidden in Oval. We use the above requirement
for Oval′.

Results.

Lemma 17. Oval’ is a programming language in the sense of
definition 30. Also, Oval’ has a sound type system in the sense of
definition 32.

Remark 18. Note also, that usually in ownership type systems,
and indeed in most systems with parameterized classes, the field
and method lookup functions, F , M and B are defined on types,
rather than classes. For instance, one would expect to have
F(c〈o1, o2〉, f) rather than F(c, f) as in our framework. In con-
trast, in our framework, these functions are defined on classes.
Namely, as we have requested the owner parameters to be disjoint
across different classes, the meaning of. e.g.,, F(c, f) is, implic-
itly that of F(c〈c1, c2〉, f) where c1, c2 are the formal ownership
parameters of class c.

Furthermore, in contrast to usual practice in ownership types,
and parameterized classes, the type of an inherited field (or
method) remains the same (as required in Def. 30, part F2 and

5 Note, that we had erroneously omitted the latter requirement in [7].

F3 of Def. 31. Again, because the owner parameters are disjoint
across classes, we can make this simplification. For example, for

class C<c1>{ A<c1> f; }
class D<d1> extends C<c1> { }

we would have that F(C, f)=F(D, f)=A<c1> A.
Our framework does not require the underlying type system of

the programming language to be expressed in terms of the func-
tions F and M. Nevertheless, the underlying type system could be
expressed in terms of these functions. For example, for field access,
we would have the underlying type system rule:

Γ ` e : r c F(c, f) = r′ c′
Γ ` e.f : (r . r′) c′

where we define R, the owner parameter extraction function so
that it extracts all owner parameters out of a context sequence, i.e.,
R(top) = R(bot) = R(this) = ε, R(X) = X , R(K ; rep) =
R(K), and where R(K, K) = R(K),R(K), and where the formal
parameters of a class are defined through OP (c)=X iff class c
has formal owner parameters X , and where we define the region
adaptation operator . as follows:

c〈K〉.c′〈K′〉 =

8
>><
>>:

c′〈K′〉 if R(K′) = ε

c′〈[K/X ′′]K′〉 if c〈X〉C c′′〈X ′′〉
and R(K′) ⊆ OP (c′′)

⊥ otherwise.
For example D<o3> . A<c1> = A<o3>.

We define owner extraction function O as follows

Or,c =

8
><
>:

K1, if r = c〈K〉
X1, if r = this, c〈X〉C
⊥ otherwise

These functions are used to describe the Oval’ verification tech-
nique, as shown in Fig. 10.

Lemma 19. Oval’ is well-structured.

Proof. We use the shorthand I = I(c, m), E = E(c, m), I′ =
I(c′, m′) and E′ = E(c′, m′) where we recall that they all come
from the domain of L. We also use the following Lemmas:

Lemma 20. K ≺ K′ ⇒

8
><
>:

K ; rep∗ ⊆ K′ ; rep∗

K′ ; own∗ ⊆ K ; own∗

K ; rep∗ ∩ K′ ; own∗ = ∅
Lemma 21. If r; L 6= ⊥ then r; L = r . L

Lemma 22. this ; rep∗ ∩ this ; own∗ = this

Lemma 23. K ≺ this ⇒ K ; rep∗ ⊆ (this ; rep∗ \ this)

(S1): We need to show

r . I′ ; rep∗ \ (I ; rep∗ \ E ; own∗) ⊆ emp (108)

If r v Cc,m,c′,m′ then by Fig. 10 we know

SC(I, E, r ; I′, r ; E′,Or,c) (109)

and from (109) and Def. ?? we obtain two subcases
I ≺ E: From this subcase’s clause, i.e., I ≺ E, and Def. ?? we

also know
r; I′ ¹ I (110)

and thus, since the ordering ¹ is not defined for ⊥ values,
we conclude

r; I′ 6= ⊥ (111)
From the subcase clause, I ≺ E, and Lemma 20 we obtain

I ; rep∗ \ E ; own∗ = I ; rep∗



and thus from (108) we get

r . I′ ; rep∗ \ I ; rep∗ ⊆ emp (112)

From (111) and Lemma 21 we can rewrite (110) as r. I′ ¹ I
and by Lemma 20 we obtain

r . I′ ; rep∗ ⊆ I ; rep∗

and thus r . I′ ; rep∗ \ I ; rep∗ = emp satisfying (112).
I = E = this: Similar to the case before, from I = E, Def. ??

and Lemma 21 we get

r . I′ ≺ this (113)

From the subcase clause, I = E = this, and Lemma 22 we
can derive

this ; rep∗ \ this ; own∗ = this ; rep∗ \ this

and thus by (108) we obtain

r . I′ ; rep∗ \ (this ; rep∗ \ this) ⊆ emp

Finally, from (113) and Lemma 23 we derive that

r . I′ ; rep∗ \ (this ; rep∗ \ this) = emp

which satisfies the above.
(S2): Immediate from (107), Lemma 20 and Lemma 22.
(S3): We recall that

Cc,m,c′,m′ = tri such that SC(I, E, ri ; I′, ri ; E′,Ori,c)

We here prove that for every such ri

ri . (Vc′,m′ \ Ec′,m′) ⊆ Vc,m

From which (S3) follows from the monotonicity of .. For this
proof we find it convenient to distribute the adaptation in (S3)
and show

ri . Vc′,m′ \ ri . Ec′,m′ ⊆ Vc,m (114)

From the subcontract definition, we have two subcases:
ri ; I′ ≺ ri ;E′: From the subcase clause ri ; I′ ≺ ri ;E′,

Lemma 21 and Lemma 20 we deduce

ri . Vc′,m′ \ ri . Ec′,m′

= ri . Vc′,m′\ ri . emp

= ri . E′ ; own∗ \ emp

= ri . E′ ; own∗

and thus by (114) it suffices to prove

ri . E′ ; own∗ ⊂ E ; own∗ (115)

From the subcase and Def. ?? we also know E ¹ ri ;E′,
thus by Lemma 21 we have E ¹ ri . E′ and hence by
Lemma 20 we obtain (115) as required.

ri ; I′ = ri ;E′ = this: From Lemma 22, Lemma 21 and (114)
we obtain

ri . E′ ; own∗ \ this ⊆ E ; own∗ (116)

From the subcase and Def. ?? we also know E ¹ Ori,c

which proves (116) as required.
(S4): By (107) we have two subcases to consider:

I ≺ E: From 10 we know Uc,m,c′ = emp thus we have the
proof

emp . (this ; own∗) ⊆ E ; own∗

emp ⊆ E ; own∗

Figure 14. Heap h0, with objects at addresses 1–6 belonging to
indicated classes. Objects atop a box own those inside it. Assume
that A’ is a subclass of A and analogously for the other classes.

I = E = this: From 10 we know Uc,m,c′ = this thus we have
the proof

this . (this ; own∗) ⊆ this ; own∗

this ; own∗ ⊆ this ; own∗

(S5): Suppose c′ ≤ c. Recall that our amended requirements for
method overriding are as follows:

I′ ¹ I ¹ E ¹ E′ I = E′ ⇒ I′ = E′

Therefore, it is immediate from Lemma 20 that:

Xc′,m ⊆ Xc,m (117)

holds (i.e., the first part of (S5)), and also that

Vc′,m ⊆ Vc,m (118)

It remains to show that

Vc′,m\Ec′,m ⊆ Vc,m \ Ec,m (119)

We first eliminate various cases. Firstly, if I 6= E, then Ec,m =
emp, and so (119) follows immediately from (118). Therefore,
we consider the remaining case I = E = this, for which we
know Ec,m = this, and so

Vc,m \ Ec,m = Vc,m \ this (120)

Next, if E ≺ E′, then (119) follows easily from (120). Therefore
we consider the remaining case E = E′. Then, by our second
requirement on overriding, we conclude I′ = I = E = E′ =
this. Therefore, in this case it follows that Vc,m = Vc′,m and
Ec,m = Ec′,m, and (119) is trivially satisfied.

6.2.3 Comparisons
We first illustrate differences between the techniques for structured
heaps using the heap h0 in Fig. 14. Fig. 15 shows the values of the
components of the three techniques for class C and object 3.

OT and VT require knowledge of the class at which on object
is owned; this information is shown in the last row of Fig. 15. For
Oval, the methods have I and E as given in the last row.

Invariant Restrictions (D). Both OT and Oval support multi-
object invariants by permitting the invariant of an object o to de-
pend on fields of o and of objects (transitively) owned by o. How-
ever, OT requires that fields of o are declared in the same class as
the invariant to address the subclass challenge. For instance, D for
OT does not include (3,C’), whereas D for Oval does.

In addition, VT allows dependencies on peers (therefore, D
includes (4,D)) and thus can handle multi-object structures that are
not organised hierarchically.

Program Restrictions (U and C). In OT and Oval, an object may
only modify its own fields, whereas VT also allows modifications
of peers; thus, object 4 is part of U for VT . In Oval, an object may



Müller et al. (OT ) Müller et al. (VT ) Lu et al.

1. [[XC,m]]h0,3
{ (4, D) , (4, D’) , (3, C),

(3, C’), (5, E), (5, E’) }
{ (4, D) , (4, D’) , (3, C),

(3, C’), (5, E), (5, E’) }
{ (3, C), (3, C’),
(5, E), (5, E’) }

2. [[VC,m]]h0,3 { (3, C), (2, B), (1, A’) } { (3, C), (2, B), (1, A’), (4, D) } { (2, B), (2, B’) , (1, A) , (1, A’) }

3. [[DC]]h0,3 { (3, C), (2, B), (1, A’) } { (3, C), (2, B), (1, A’), (4, D) } { (3, C), (3, C’) , (2, B), (2, B’) ,

(1, A) , (1, A’) }

4. [[BC,m,r]]h0,3
∅ if r = rep〈C〉
{ (3, C) } if r = peer

∅ if r = rep〈C〉
{ (3, C), (4, D) } if r = peer

∅

5a. [[EC,m]]h0,3 { (3, C) } { (3, C), (4, D) } ∅
5b. [[EC,m1]]h0,3 { (3, C) } { (3, C), (4, D) } { (3, C), (3,C’) }
6a. [[UC,m,Objct]]h0,3 { 3 } { 3, 4 } ∅
6b. [[UC,m1,Objct]]h0,3 { 3 } { 3, 4 } { 3 }
7. [[CC,m,Objct,m2]]h0,3 { 3, 4, 5 } { 3, 4, 5 } { 1 , 2 , 3, 4, 5, 6 }

assuming that

C::m not pure
ownr(h0, 5) = 3, C’,
ownr(h0, 3) = 2, B,
ownr(h0, 4) = 2, B’,
ownr(h0, 2) = 1, A

C::m not pure
ownr(h0, 5) = 3, C’,
ownr(h0, 3) = 2, B,
ownr(h0, 4) = 2, B’,
ownr(h0, 2) = 1, A
vis(C, D),¬vis(C, D’)

I(C, m) = this
E(C, m) = X, and X maps to 2
I(C, m1) = E(C, m1) = this
I(Obj, m2) = bot
E(Obj, m2) = top

Figure 15. Comparison of techniques for structured heaps; differences are highlighted in grey.

only modify its own fields if the I, E annotations are this; this is
why U is empty for m but contains 3 for m1.

Method calls in OT and VT are restricted to the peers and reps
of an object; thus, a call on a rep object o cannot call back into one
of o’s (transitive) owners, whose invariants might not hold.

In Oval, the receiver of a method call may be anywhere within
the owners of the current receiver, provided that the I and E an-
notations of the called method satisfy the subcontract requirement.
Therefore, C for Oval includes for instance object 2, which is not
permitted in OT and VT .

Proof Obligations (B and E). Since OT uses rather restricted
invariants, it has a small vulnerable set V and, thus, few proof
obligations. The dependencies on peers permitted by VT lead to
a larger vulnerable set and more proof obligations. For instance,
(4,D) is part of the vulnerable set V (because executions on 3 might
break 4’s D-invariant ). Hence, of the proof obligations B and E.

Oval imposes end-of-body proof obligation only when I and E
are the same (i.e. m1). Since Oval permits invariants to depend on
inherited fields, it requires proof obligations for subclass invariants.
For instance, (3,C’) is part of E for m1. OT and VT disallow such
dependencies and their proof obligations do not include (3,C’).
This restriction is important for modularity.6 Oval never impose
proof obligations before method calls (B is empty), and prevents
potentially dangerous call-backs through the subcontract require-
ment.

Implications for our example As an alternative comparison, we
consider the application of the three techniques to our running
example (Fig. 2).
1. Invariant semantics: In OT and VT , the invariants expected at

the beginning of withdraw are I1, I2, and I3 for the receiver, as
well as I5 for the associated DebitCard (which is a peer). For
withdraw in Oval , I=this, therefore the expected invariants are
I1, I2, and I3 for the receiver.

2. Invariant restrictions: Invariants I2 and I5 are illegal in OT and
Oval , while they are legal in VT (which allows invariants to
depend on the fields of peers). Conversely, I3 is illegal in OT

6 The Oval developers plan to solve this modularity problem by requiring
that any inherited method has to be re-verified in the subclass [22].

and VT (it mentions a field from a superclass), while it is legal
in Oval .

3. Proof obligations: In OT , before the call to this .sendReport()
and at the end of the body of withdraw, we have to establish I1
and I2 for the receiver. In addition to these, in VT we have to es-
tablish I5 for the debit card. In Oval , the same invariants as for
OT have to be proven, but only at the end of the method because
call-backs are handled through subcontracting. In addition, I3
is required.7 In all three techniques, withdraw is permitted to
leave the invariant I4 of the owning Person object broken. It
has to be re-established by the calling Person method.

4. Program restrictions: OT and VT forbid the call holder .
notify () (reps cannot call their owners), while Oval allows
it. On the other hand, if method sendReport required an in-
variant of its receiver (for instance, to ensure that holder is
non-null), then Oval would prevent method withdraw from
calling it, even though the invariants of the receiver might hold
at the time of the call. The proof obligations before calls in OT
and VT would make such a call legal.

6.3 Soundness of Verification Techniques
Instead of proving soundness for every single verification technique
discussed in this section, Theorem 6 reduces this complex task to
merely checking that the seven components of every instantiations
satisfy the five (fairly simple) well-structured conditions of Def. 5.
Assuming that the underlying type system is sound, once we show
well-structuredness for a technique, verification technique sound-
ness (Def. ??) follows.

Lemma 24 (Type System Soundness for Universes). The Uni-
verses Type System satisfies Def. 32.

Proof. The typing rules together with the soundness proof for the
Universes type system has already been given in [?] bar the rules
for the (novel) construct e prvp and the exceptions verfExc and
fatalExc. The typing of the proof annotation construct however

7 This means that verification of a class requires knowledge of a subclass.
The Oval developers plan to solve this modularity problem by requiring
that any inherited method has to be re-verified in the subclass [22].



depends exclusively on the typing of the subexpression e; typically
this construct would be typechecked using a rule such as the one
shown below. Also, the type system should typecheck exceptions
related to the verification technique as shown below.

Γ ` e : t
Γ ` e prvp : t

Γ ` verfExc : t
Γ ` fatalExc : t

With these additions, it is not hard to check that the type system
satisfies the requirements set out by Def. 32.

Lemma 25 (Type System Soundness for Oval’). The Oval’ Type
System satisfies Def. 32.

Proof. From [23].

Corollary 26. The verification techniques by Poetzsch-Heffter, by
Huizing & Kuiper, by Leavens & Müller, by Müller et al. (OT), by
Müller et al. (VT), and Oval’ are sound.

Proof. Immediate from Theorem 6, Lemmas 24 and 25, and Lem-
mas 14, 15, 19.

These proofs confirm soundness claims from the literature.
We found that the semi-formal arguments supporting the origi-
nal soundness claims at times missed crucial steps. For instance,
the soundness proofs for OT and VT [28] do not mention any con-
dition relating to (S3) of Def. 5; in our formal proof, (S3) was vital
to determine what invariants still hold after a method returns.

Unsoundness of Oval. The original Oval proposal [23] is un-
sound because it requires subcontracting for method overriding.
As we said in the previous section, subcontracting corresponds to
our (S1) and (S3). This gives, for c′ <: c, the requirements that
Xc′,m′ ⊆ Xc,m\Vc,m, and Vc′,m′\Ec′,m′ ⊆ Vc,m, which do not
imply (S5). We were alerted by this discrepancy, and using only the
X, E and V components (no type system properties, nor any other
component), we constructed the following counterexample.

class D[o] {
C1<this> c = new C2<this>();
void m() <this,o> { c.mm() }

}

class C1[o]{
void mm() <this,this> {...}

}

class C2[o] extends C1<o> {
void mm() <bot,this> {...}

}
The call c.mm() is checked using the contract of C1::mm; it ex-
pects the callee to re-establish the invariant of the receiver (c), and
is type correct. However, the body of C2::mm may break the re-
ceiver’s invariants, but has no proof obligations (EC2,mm = emp).
Thus, the call c.mm() might break the invariants of c, thus break-
ing the contract of m. The reason for this problem is, that the—
initially appealing—parallel between subcontracting and method
overriding does not hold. The authors confirmed our findings [22].

7. Related Work
Object invariants trace back to Hoare’s implementation invariants
[12] and monitor invariants [13]. They were popularised in object-
oriented programming by Meyer [24]. Their work, as well as other
early work on object invariants [20, 21] did not address the three
challenges described in the introduction. Since they were not for-
malised, it is difficult to understand the exact requirements and

soundness arguments (see [28] for a discussion). However, once
the requirements are clear, a formalisation within our framework
seems straightforward.

The idea of regions and properties is inspired from type and
effects systems [34], which have been extremely widely applied,
e.g., to support race-free programs and atomicity [10].

The verification techniques based on the Boogie methodology
[1, 3, 18, 19] do not use a visible state semantics. Instead, each
method specifies in its precondition which invariants it requires.
Extending our framework to Spec# requires two changes. First,
even though Spec# permits methods to specify explicitly which
invariants they require, the default is to require the invariants of
its arguments and all their peer objects. These defaults can be
modelled in our framework by allowing method-specific properties
X. Second, Spec# checks invariants at the end of expose blocks
instead of the end of method bodies. Expose blocks can easily be
added to our formalism.

In separation logic [15, 33], object invariants are generally not
as important as in other verification techniques. Instead, predicates
specifying consistency criteria can be assumed/proven at any point
in a program [29]. Abstract predicate families [30] allow one to do
so without violating abstraction and information hiding. Parkinson
and Bierman [31] show how to address the subclass challenge
with abstract predicates. Their work as well as Chin et al.’s [4]
allow programmers to specify which invariants a method expects
and preserves, and do not require subclasses to maintain inherited
invariants. The general predicates of separation logic provide more
flexibility than can be expressed by our framework.

We know of only one technique based on visible states that
cannot be directly expressed in our framework: Middelkoop et al.
[26] use proof obligations that refer to the heap of the pre-state
of a method execution. To formalise this technique, we have to
generalise our proof obligations to take two properties; one for the
pre-state heap and one for the post-state heap. Since this generality
is not needed for any of the other techniques, we omitted a formal
treatment in this paper.

Some verification techniques exclude the pre- and post-states
of so-called helper methods from the visible states [16, 17]. Helper
methods can easily be expressed in our framework by choosing dif-
ferent parameters for helper and non-helper methods. For instance
in JML, X, B, and E are empty for helper methods, because they
neither assume nor have to preserve any invariants.

Once established, strong invariants [11] hold throughout pro-
gram execution. They are especially useful to reason about con-
currency and security properties. Our framework can model strong
invariants, essentially by preventing them from occurring in V.

Existing techniques for visible state invariants have only limited
support for object initialisation. Constructors are prevented from
calling methods because the callee method in general requires all
invariants to hold, but the invariant of the new object is not yet
established. Fähndrich and Xia developed delayed types [9] to
control call-backs into objects that are being initialised. Delayed
types support strong invariants. Modelling these in our framework
is future work.

8. Conclusions
We presented a framework that describes verification techniques for
object invariants in terms of seven parameters and separates veri-
fication concerns from those of the underlying type system. Our
formalism is parametric wrt. the type system of the programming
language and the language used to describe and to prove assump-
tions. We illustrated the generality of our framework by instantiat-
ing it to describe three existing verification techniques. We identi-
fied sufficient conditions on the framework parameters that guaran-



tee soundness, and we proved a universal soundness theorem. Our
unified framework offers the following important advantages:

1. It allows a simpler understanding and separation of verification
concerns. In particular, most of the aspects in which verification
techniques differ are distilled in terms of subsets of the param-
eters of our framework.

2. It facilitates comparisons since relationships between parame-
ters can be expressed at an abstract level (e.g., criteria for well-
structuredness in Def. 5), and the interpretations of regions and
properties as sets allow formal comparisons of techniques in
terms of set operations.

3. It expedites the soundness analysis of verification techniques,
since checking the soundness conditions of Def. 5 is signifi-
cantly simpler than developing soundness proofs from scratch.

4. It captures the design space of sound visible states based verifi-
cation techniques.

We are currently using our framework in developing verification
techniques for static methods, and plan to use it to develop further,
more flexible, techniques.
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A. Appendix
A.1 Language Definitions
Definition 27. A runtime structure is a tuple

RSTRUCT = (HP, ADR,',¹, dom, cls, fld, upd, new)

where HP, and ADR are sets, and where



' ⊆ HP × HP ¹ ⊆ HP × HP
dom : HP → P(ADR)
cls : HP × ADR ⇀ CLS
fld : HP × ADR × FLD ⇀ VAL
upd : HP × ADR × FLD × VAL → HP
new : HP × ADR × TYP → HP × ADR

where VAL = ADR ∪ {null} for some element null 6∈ ADR. For all
h ∈ HP, ι, ι′ ∈ ADR, v ∈ VAL, we require:

(H1) ι ∈ dom(h) ⇒ ∃c.cls(h, ι) = c

(H2) h ' h′ ⇒
(

dom(h) = dom(h′),
cls(h, ι) = cls(h′, ι)

(H3) h ¹ h′ ⇒

8
><
>:

dom(h) ⊆ dom(h′),
∀ι ∈ dom(h).

cls(h, ι) = cls(h′, ι)

(H4) upd(h, ι, f, v) = h′ ⇒

8
>>><
>>>:

h ' h′

fld(h′, ι, f) = v

ι 6= ι′ or f 6= f ′ ⇒
fld(h′, ι′, f ′) = fld(h, ι′, f ′)

(H5) new(h, ι, t) = h′, ι′ ⇒
(

h ¹ h′

ι′ ∈ dom(h′)\dom(h)

Definition 28. An region/region structure is a tuple
ASTRUCT = (R,P, .)

where R and P are sets, and . is an operation with signature:
. : R×P → P

Definition 29. E[·] and F [·] are defined as follows:
E[·] ::= [·] | E[·].f | E[·].f := e | ι.f := E[·] | E[·].m(e)

| ι.m(E[·]) | E[·] prvp | ret E[·]
F [·] ::= [·] | F [·].f | F [·].f := e | ι.f := F [·] | F [·].m(e)

| ι.m(F [·]) | F [·] prvp | σ ·F [·] | call F [·] | ret F [·]
Definition 30. A programming language is a tuple

PL = (PRG, RSTRUCT, ASTRUCT)

where PRG is a set where every P ∈ PRG is a tuple

P =

0
@

F , M , B, <: (class definitions)
v, [[·]] (inclusion and projections)
|=,` (invariant and type satisfaction)

1
A

with signatures:
F : CLS × FLD ⇀ TYP × CLS
M : CLS × MTHD ⇀ TYP × TYP
B : CLS × MTHD ⇀ EXPR × CLS
<: ⊆ CLS × CLS ∪ TYP × TYP
v ⊆ R×R
[[·]] : R× HP × ADR → P(ADR)
[[·]] : P× HP × ADR → P(ADR × CLS)
|= ⊆ HP × ADR × CLS
` ⊆ (ENV × EXPR ∪ HP × STK × REXPR)× TYP

where every P ∈ PRG must satisfy the constraints:
(P1) F (c, f) = t, c′ ⇒ c <: c′
(P2) B(c, m) = e, c′ ⇒ c <: c′
(P3) F (cls(h, ι), f) = t, ⇒ ∃v.fld(h, ι, f) = v
(P4) r1 v r2 ⇒ [[r1]]h,ι ⊆ [[r2]]h,ι

(P5) [[r . p]]h,ι =
S

ι′∈[[r]]h,ι
[[p]]h,ι′

(P6) [[r]]h,ι ⊆ dom(h)
(P7) h ¹ h′ ⇒ [[p]]h,ι ⊆ [[p]]h′,ι
(P8) r c <: r′ c′ ⇒ r v r′, c <: c′

Definition 31. For every program, the judgement:
ẁf : (HP × STK × STK ×R) ∪ (ENV × HP × STK) ∪ PRG

is defined as:

• h, σ ẁf σ′ : r ⇔ σ′ = (ι, , , ), h, σ ` ι : r

• Γ ẁf h, σ ⇔
8
<
:

∃c, m, t, ι, v.
Γ = c, m, t, σ = (ι, v, c, m),
cls(h, ι) <: c, h, σ r̀ v : t

(vd-null)

h V̀ σ ·null

(vd-addr)
ι ∈ dom(h)
h V̀ σ ·ι

(vd-new)

h V̀ σ ·new t

(vd-Var)

h V̀ σ ·x
(vd-this)

h V̀ σ ·this

(vd-verEx)

h V̀ F [verfExc]

(vd-ass)
h ` σ ·er : r c′
F (c′, f) = , c
r v Uσ,c

h V̀ σ ·er

h V̀ σ ·e′r
h V̀ σ ·er.f := e′r

(vd-fld)
h V̀ σ ·er

h V̀ σ ·er.f

(vd-end)
h V̀ σ′ ·v h |= Eσ′ , σ′

h V̀ σ ·σ′ ·ret v

(vd-call)
h ` σ ·er : r c′
B(c′, m) = , c
r v Cσ,c,m

h V̀ σ ·er

h V̀ σ ·e′r
h V̀ σ ·er.m(e′r prvBσ,r)

(vd-call-2)
h ` σ ·v : r c′
B(c′, m) = , c
h |= Bσ,r, σ
r v Cσ,c,m

h V̀ σ ·v
h V̀ σ ·v′
h V̀ σ ·v.m(v′)

(vd-start)
h V̀ σ′ ·e

h V̀ σ ·σ′ ·call e prvEσ′

(vd-frame)
h V̀ σ′ ·er

h V̀ σ ·σ′ ·ret er prvEσ′

Figure 16. Well-annotated runtime expressions.

• ẁf P ⇔

8
>>>>>>>>>><
>>>>>>>>>>:

(F1) M (c, m) = t, t′ ⇒
∃e. B(c, m) = e, , c, m, t ` e : t′

(F2) c <: c′, F (c′, f) = t, c′′ ⇒
F (c, f) = t′, c′′, t′ = t

(F3) c <: c′, M (c, m) = t, t′,
M (c′, m) = t′′, t′′′ ⇒

t = t′′, t′ = t′′′′
(F4) c <: c′, B(c′, m) = e′, c′′ ⇒

∃c′′′. B(c, m) = e, c′′′, c′′′ <: c′′

The judgement h, σ ẁf σ′ : r expresses that the receiver of
σ′ is within r as seen from the point of view of σ. Γ ẁf h, σ
expresses that h, σ respect the typing environment Γ. ẁf P defines
well-formed programs as those where method bodies respect their
signatures (F1), fields are not overridden (F2), overridden methods
preserve typing (F3), and do not “skip superclasses” (F4).

Definition 32. A programming language PL has a sound type
system if all programs P ∈ PL satisfy the constraints:

(T1) Γ ` e : t, t <: t′ ⇒ Γ ` e : t′

(T2) h ` er : t, t <: t′ ⇒ h ` er : t′

(T3) h ` er : t, h ¹ h′ ⇒ h′ ` er : t

(T4) h ` σ ·ι : c ⇒ cls(h, ι) <: c

(T5) h ` σ ·ι.m(v) : t ⇒

8
><
>:

h ` σ ·ι : r c

M (c, m) = t′, t
h ` σ ·v : t′

(T6) h ` σ ·σ′ ·ret er prvp : t ⇒ h ` σ′ ·er : t

(T7) σ = (ι, , , ), h ` σ ·ι′ : r ⇒ ι′ ∈ [[r]]h,ι

(T8) Γ ` e : r c, Γ ` h, σ ⇒ h, σ ` e : r c

(T9) ∀X.
` P, h ` er : t
er, h −→ e′r, h′

ff
⇒ h′ ` e′r : t

(T1) and (T2) express subsumption. (T3) states that runtime ex-
pression typing does not depend on the field values assigned in the
heap. (T4) states that addresses are typed according to their class
in the heap. (T5) and (T6) are a technical constraint stating that



method call typing implies that the parameter type and return type
set by M for that method are respected and that proof obligations
do not interfere with typing. (T7) states that the region compo-
nent of a type assigned to an address respects the projection given
for that region with respect to the same viewpoint of the typing.
The most important constraints are (T8) and (T9) : (T8) states the
correspondence between typing source expressions and runtime ex-
pressions for heaps and stack frames that respect the typing envi-
ronment; (T9) states that for all well-formed programs, reduction
preserves typing.


