A Trustworthy Mobile Agent Infrastructure for
Network Management

Alexandros Koliousis
Department of Computing Science
University of Glasgow
17 Lilybank Gardens, Glasgow G12 8RZ
Email: koliousa@dcs.gla.ac.uk

Abstract—Despite several advantages inherent in mobile-agent-
based approaches to network management as compared to
traditional SNMP-based approaches, industry is reluctant to
adopt the mobile agent paradigm as a replacement for the existing
manager-agent model; the management community requires an
evolutionary, rather than a revolutionary, use of mobile agents.
Furthermore, security for distributed management is a major
concern; agent-based management systems inherit the security
risks of mobile agents. We have developed a Java-based mobile
agent infrastructure for network management that enables the
safe integration of mobile agents with the SNMP protocol. The
security of the system has been evaluated under agent to agent-
platform and agent to agent attacks and has proved trustworthy
in the performance of network management tasks.

I. INTRODUCTION

Mobile agents, software processes that can migrate be-
tween hosts for execution, have been extensively suggested
in the literature as a solution enabling decentralized, flexible,
and scalable distributed applications [1]. The mobile agent
paradigm enables the migration of code, state, and data of an
agent from one host to another for execution. The migration
process of an agent is constrained by its itinerary path. It
is extremely difficult to evaluate the trustworthiness of agent
code execution [2]. Thus, additional mechanisms are required
to ensure trust in an agent-based system.

Network management systems are an example of large,
distributed applications. Currently, most management sys-
tems for IP networks are centralized, based on the client-
server paradigm. The Simple Network Management Protocol
(SNMP) is the dominant protocol for the interactions between
the client, the management station, and the servers, SNMP
agents that reside on the network elements; each SNMP agent
serves as a proxy between the manager and the Management
Information Base (MIB) of the device. The third version of
the protocol attempts to address the security weakness of
its predecessors. Nonetheless, the efficacy of SNMP is con-
trasted with the requirements of modern management environ-
ments [3]. In order to overcome issues of response implosion,
scalability, flexibility, heterogeneity, and robustness in these
centralized management systems, the network management
community has primarily focused on distributed management
architectures[4].

Although code mobility has always been a candidate to

1-4244-0799-0/07/$25.00 ©2007 IEEE

Joseph Sventek
Department of Computing Science
University of Glasgow
17 Lilybank Gardens, Glasgow G12 8RZ
Email: joe@dcs.gla.ac.uk

address such requirements [5], the industry is still reluctant
to adopt the mobile agent paradigm as a replacement to the
existing client-server model, when applicable. Independent
of any market considerations, it must be possible to estab-
lish the trustworthiness of mobile code in order to assure
the correct workings of the system. Otherwise, the manager
essentially delegates management responsibility to a virus.
Furthermore, the sheer number of SNMP devices mandates
that new distributed services must comply with the existing
structure. Since most network managers think about their
management tasks in terms of SNMP MIBs, a trustworthy
mobile agent system should concentrate upon enabling mobile
access to such data as an evolutionary step [6]; this is to be
contrasted with the paradigm shift that is demanded by most
mobile-agent-based management systems'. To address these
requirements we have developed a Java-based mobile agent
architecture that safely integrates mobile agents and SNMP
agents. The Ajanta mobile agent framework [8] has been used
as the underlying agent-platform; the VMC concept [6] has
been used for the requisite integration with SNMP agents.

We investigate the behavior of malicious mobile code in
network management scenarios to gain an overall understand-
ing of the security issues raised by the use of mobile agents in
distributed applications. We show that the resulting network
management system can assure the trustworthiness of mobile
agents while it can provide the necessary infrastructure to
support network management functions, as defined in the
OSI management model. The proposed scheme complements
existing work on agent-based management systems and is
applicable to other mobile code paradigms, viz. Remote
Evaluation (REV), Code on Demand (CoD), and constrained
mobility [9]. The existing technologies provide an acceptable
level of trust, and thus, the proposed system addresses the two
issues described above that prevent the adoption of mobile
agents for network management systems.

II. SECURITY IN AGENT-BASED MANAGEMENT SYSTEMS
Network management systems provide security mechanisms
to enforce the safety requirements of an application. In order

IFor example, the agent-based management system in [7] requires that each
node visited by a mobile agent must present management data and services
using tuple spaces.

383

to achieve this functionality, the system must ensure that man-
agement is performed in a secure way. It must guarantee the
identity, authority, confidentiality, and integrity of management
information traversing the network to an acceptable level of
trust.

An agent-based management system conceals information
within an agent. A management agent «; can be described by
the quadruple «; = {code;, data;, itinerary;, credentials;},
where credentials; is the set of credentials for the authenti-
cation and authorization of the agent. The credentials contain
information about the agent’s name, its creator, and its owner.
Upon successful authentication and authorization, agent code,
including its state, is executed within an agent-platform, which
provides an interface to an SNMP agent. Mobile code for
network management has introduced new security threats that
fall into four categories: agent to agent-platform attacks, agent
to agent attacks, agent-platform to agent attacks, and external
to agent-platform attacks.

Authentication and authorization mechanisms based on
cryptographic keys are the two basic components of a secure
distributed application. They can be used to prevent disclosure,
modification, or unauthorized access to sensitive management
information by malicious users; they can also prevent repudia-
tion threats. However, these mechanisms are inadequate to en-
sure the trustworthiness of agent-based management systems;
migrated agent code may not reflect the initial intentions of the
owner. Furthermore, there is no reliable way to ensure that the
agent-platform will run the agent to completion. The system
is also susceptible to Denial of Service (DoS) attacks.

An agent to agent-platform attack can be launched against
the CPU and memory resources of the hosting system. For
example, an agent consuming CPU cycles will result in
resource starvation; the system becomes livelocked because
other agents are unable to run to completion. Besides physical
resources, attacks could target application-specific resources,
i.e. the SNMP agent, the execution environment itself, e.g. the
Java Virtual Machine (JVM), or other management agents. The
system can become unpredictable, or even terminate, because
of the malicious behavior of the agent. Finally, a malicious
agent can create multiple copies of itself, its migratory nature
allowing the agent to behave as a “worm” program. A com-
promised platform is a perfect vehicle for a malicious agent
to infect the entire network, even in the case of constrained
mobility.

The agent execution environment must prevent such abuse
of system resources. Resource restrictions can be enforced
upon mobile agents either globally, at agent creation, or
locally, at execution by the receiving agent-platform [10].
Global restrictions are included in the agent’s credentials and
propagated to the agent-platform. They can be expressed in the
form of a contract, or a formally verified proof [11]; in the
latter case, a proof of compliance with the rules, as imposed by
the hosting platform, is generated off-line. Although off-line
verification is theoretically sound, it lacks completeness; re-
source restrictions are usually estimates of the actual resource
consumption. Furthermore, it is impossible to determine if

the program will terminate, due to the unsolvability of the
Halting Problem. An alternative to off-line verification is on-
line monitoring of an agent during its execution phase.

Agent attacks can be oriented towards other agents of the
system. A malicious agent may disrupt the normal execution of
another agent by repeatedly sending it messages. Furthermore,
a malicious agent can gain unauthorized access to sensitive
data carried by other agents. This may result in unauthorized
disclosure of information, but it can also affect the reliability
of the system by altering sensitive information. The inter-
agent communication model between two management agents
implies that one agent plays the role of the server, providing
management information, and thus must be protected by
similar mechanisms as agent-platforms.

In a reverse of roles, mobile agents are susceptible to attacks
launched by malicious agent-platforms. Peer authentication
mechanisms can verify the identity of the agent-platform;
however, additional security mechanisms are required to en-
sure agent safety in a foreign execution environment. Upon
acceptance, an agent exposes its code, state, and data to the
agent-platform, and thus any information about the network
and its vulnerabilities. A malicious platform can ignore re-
quests, introduce new tasks or unacceptable delays for tasks,
or even deny agent execution. It can falsify management infor-
mation or even tamper with the agent’s code. Cryptographic
mechanisms exist [2] to detect tampering of mobile agents by
malicious platforms, a posteriori.

The mobile agent paradigm entails the migration of code,
state, and data of an agent to another hosting platform for
execution. The attacks discussed so far are mounted after the
completion of the migration process. However, agents, agent-
platforms, and the hosting network device can be accessed
remotely; external to agent-platform attacks refer to attacks
launched by entities external to the mobile agent system. An
agent system is an exemplar case of a distributed application
and thus it must be protected against remote attacks, such as
eavesdropping, unauthorized access, and denial of network re-
sources. By design, management platforms must be protected
from malicious network users.

III. RELATED WORK

The SNMPv3 set of RFCs provides a framework for in-
corporating security enhancements into the existing SNMP
functionality [12]. It defines two models, the user security
model and the view-based access control model, for the
authentication and authorization of principals in a distributed
management system. The SNMP security model can be com-
plementary to mobile code security. However, it cannot sat-
isfy the safety requirements of an agent-based management
application. Additional mechanisms are required to prevent
code mobility threats. For example, the IETF Script MIB, an
SNMP extension to enable constrained mobility in SNMP-
based network management systems, has been extended [13]
to enforce resource restrictions to management scripts.

A hybrid management system, integrating Aglets with the
SNMP protocol, has been proposed in [14]. The Aglets Work-

384

bench security [15] is based on an authorization language.
Besides defining identification information, such as the name,
owner, or creator of an agent, the Aglets model can assign roles
and role hierarchies to agents for access control. Estimated
resource limitations can be enforced at creation time as global
restrictions, and are included in the credentials of the agent.
The security model has been extended to include cryptographic
functions to protect agents from malicious platforms. The
system is still susceptible to certain agent to agent-platform at-
tacks. Furthermore, by allowing aglets to directly issue SNMP
commands, the system cannot guarantee the safe integration
of mobile agents with the SNMP protocol.

A secure agent-based network management system has been
proposed in the TINMAN architecture [16]. Resource safety
is enforced by introducing resource utilization certificates. A
prediction of the resource utilization of an agent is calculated
off-line, capturing the resource usage behavior of the agent.
Upon migration, the hosting platform verifies if the certificate
complies with the local security policies. Assertions that fail
off-line verification are monitored on-line by raising run-time
exceptions. Currently, only memory and timing constraints are
imposed by the system. Agents in the TINMAN architecture
directly access the MIB data of the device; the underlying
resource is protected only by the SNMP security model, and
thus, it is susceptible to DoS attacks.

Resource utilization is monitored on-line in the Secure and
Open Mobile Agents (SOMA) programming framework [17].
The SOMA architecture introduces a monitoring component
that maintains information about the resource utilization of
the operating system, e.g. CPU and memory usage, disk
space, number of open files, number of TCP connections,
total number of UDP/IP packets etc. Information about the
resources of the host are collected using the Java Native
Interface (JNI), the Java Virtual Machine Profiler Interface
(JVMPI), or the SNMP agent of the running host.

Although our JVMPI-based memory monitoring mechanism
has some resemblance to the SOMA monitoring component,
there are key differences with our management paradigm.
First, integration of SOMA mobile agents with system re-
sources, e.g. the SNMP agent, is based on weak mobility,
via CORBA objects. Secondly, our monitoring mechanism is
based strictly on the JVM profiler; by design, our security
model is contained within the agent-platform environment
rather than relying on external resources.

IV. THE SYSTEM ARCHITECTURE

We have developed a Java-based mobile agent architecture
for SNMP-based network management. The architecture con-
sists of three components, a mobile agent system, an SNMP
agent, and an interface for the safe integration of mobile agents
with SNMP. Figure 1 illustrates the system architecture.

Java has been widely accepted as a language for program-
ming mobile agents, primarily because it can address issues
of interoperability and heterogeneity of network devices. It
provides a serialization mechanism to support agent migration.
An agent class must implement the Serializable interface.

Java Virtual Mahine Net-SNMP agent

Ajanta Server

- set
> get MiB

Agent hn o~
netsnmpj interface

Proxy object

Fig. 1. The system architecture.

An agent object is represented as a series of bytes; upon
acceptance, a new object is created with the same state as
the original agent object. Java security is based on the sandbox
execution model. The Java security model [18] is customizable
and enables the creation of security policies and protection
domains for agents according to the requirements of the
application. It consists of three components, a class loader,
a bytecode verifier, and an access controller.

The class loader mechanism creates different name spaces
for each class that is executed. Protection is enforced by
checking if the code has appropriate privileges to access a
particular class that resides locally, or on a remote code base.
The bytecode verifier ensures that a class is safely typed. For
example, it proves that no illegal casting occurs, or that final
classes are not overridden. The bytecode verifier operates on
data types, not on data values; the verification process cannot
prevent misuse or abuse of the system resources by type-safe
malicious code. Upon receipt of the code for an agent, the
access controller creates a protection domain for that code.
A protection domain groups all permissions that apply to the
owner of the code.

The Ajanta mobile agent system [8] has been chosen to
serve as the core of our system architecture because it provides
an overall security model, based on Javas sandbox execution
model, to address the security issues raised by agent to agent-
platform and agent to agent attacks. The Ajanta security
model provides three cryptographic mechanisms based on
selective encryption of agent components, append-only data,
and selective state exposure to detect tampering of an agents
code or data by malicious platforms; unfortunately, these are
insufficient to fully address agent-platform to agent attacks.
This work focuses on prevention, as this is the most important
issue preventing the adoption of MA technology in network
management applications. Therefore, the proposed manage-
ment framework has been developed under the assumption
that agent-platforms are trusted entities of the system. As such,
agent-platform to agent attacks are beyond the scope of this
paper; we revisit this assumption in Section VI. Note that this
assumption enables us to include our on-line resource monitor-
ing mechanism in the architecture and conceal the agent-based
management system from malicious external entities.

A. Security in the Ajanta system

The Ajanta system [8] is a Java-based framework for
building mobile agent applications. Ajanta provides a reliable
transfer protocol for agent migration. Agent migration is

385

based on a Publish-Discovery-Bind model. Agent-platforms
advertise (publish) themselves to a Name Registry service.
Given the name of the destination agent-platform, the Name
Registry returns its physical location (the discovery process).
The Agent Transfer Protocol is invoked between the current
and the destination platform (the bind process) when an agent
requests to migrate to the destination host. The agent transfer
can be authenticated or encrypted, optionally, to protect the
agent while in transit over an insecure channel.

Ajanta implements a Public Key Infrastructure (PKI) for
agent authentication. The Name Registry server acts as the
public key distribution service. The authentication procedure
can be one-way or mutual. It is based on a challenge-response
mechanism using digitally signed nonces to prevent replay
attacks and support single sign-on authentication along the
agent’s itinerary path. Upon request for migration, the current
platform is challenged by the destination platform with a nonce
to prove its claimed identity. The nonce is digitally signed and
returned to the destination platform for verification. The two
entities can remain in agreement for the next signed challenge
value to maintain authentication in the session.

Protection of agent-platforms from malicious agents is
provided by using a low-level agent isolation model based
on Java protection domains. Each agent is constrained in a
unique thread group. An agent can access or modify threads
only within its thread group. Thus, an agent cannot directly
manipulate other agent threads on the machine. A separate
class loader is assigned to each agent. By assigning a separate
class loader instance to each agent, the system prevents a
malicious agent from altering object classes of co-located
agents. Furthermore, upon request for a class, the class loader
first checks the local classpath, before downloading it from
a remote code base, enforcing this way the integrity of the
underlying Java Virtual Machine.

Ajanta implements a proxy-based mechanism to protect
application-specific resources of the system. Instead of pro-
viding direct access to resources, Ajanta creates a proxy
object with a reference to the actual resource implementation.
Resources are advertised in a Resource Registry. Given the
name of a resource, a distinct proxy object is created for every
agent that requires access to that resource. Operation visibility
in the proxy is dependant upon the credentials of the agent;
methods are enabled or disabled based on an simple Access
Control List (ACL) lookup. The proxy object is declared as
private and transient, to prevent illegal access to methods
and serialization of resource object respectively. Furthermore,
the proxy class cannot be cloned by a malicious agent.

B. Integration of mobile agents with the SNMP protocol

The Virtual Managed Component [6] (VMC) is an interface
that enables communication between mobile agents and SNMP
agents. An agent has the ability to access the management
information of the device through that interface. The notion
of VMC has been previously proposed for the integration of
mobile agents with the SNMP protocol [5]. This enables the
development of lightweight mobile agents without carrying

any SNMP capabilities, such as BER encoding and decoding,
but only higher level tasks. One approach is to have mobile
agents directly issue requests to the SNMP agent [14], [16].
However, enabling direct communication with the SNMP
agent implies a security risk. The latter would be protected
only by the authentication and authorization mechanisms of
the SNMPv3 security model.

We have developed a Java class that implements methods
for reading (the get command) or modifying (the set com-
mand) objects from the MIB of the device. Access to the
class is granted via Ajanta’s proxy mechanism. Two types of
agents have been defined in our system architecture, read-only
and read-write agents. Read-only agents are mobile agents
that can only monitor management objects; read-write agents
are able to alter MIB data. Upon successful authentication
and authorization, the Ajanta system returns a reference to
the proxy class with the get and set methods enabled or
disabled based on the agent’s credentials. We have extended
Ajanta’s authorization mechanism by introducing role hierar-
chies, based on agent owners, creation platforms, and agent
names, in an attempt to enable delegation of authority via
hierarchical access control lists. For example, an agent can
access a proxy method only if its creator has such privilege.
An additional level of authorization can also be enforced by
the SNMP agent itself, based on the SNMPv3 user security
and view-based access control model; if activated, the agent
credentials must be enriched with the security information
required by the SNMP agent and passed as parameters during
a method invocation.

V. EVALUATING THE EFFICACY OF THE SCHEME

The efficacy of the system has been evaluated under agent
to agent-platform and agent to agent attacks. In particular,
we study the behavior of the system after a malicious agent
has passed the authentication and authorization mechanisms,
in an attempt to evaluate the trustworthiness of mobile code
execution. An agent that has gained unauthorized access to
the system can launch attacks against the system resources,
or alter sensitive information of the management system.
Our testbed environment consists of five Linux machines,
each running an Ajanta server. Attacks are mounted by one
agent-platform hosting one or more malicious agents. Network
devices can be remotely accessed by other agent platforms
only via migrated code; external entities are concealed from
our system implementation.

A. A CPU-bound agent

A malicious agent can compromise an agent-platform by
consuming large amounts of CPU cycles. A malicious agent
running a CPU-bound operation at the highest priority prevents
other mobile agents from running to completion. The agent-
platform becomes livelocked.

A CPU DoS attack has been launched in our testbed
environment. In Ajanta, there is an 1-to-1 correspondence
between agents and Java threads. Threads are executed by
the JVM based on a fixed-priority scheduling algorithm. The

386

Ajanta system does not enforce any restrictions on thread
priorities. A malicious agent increases its priority level and
begins a CPU-intensive computation in an infinite loop. A
CPU-friendly agent is accepted by the system. It is expected
that the latter agent will be starved of CPU resources. Java
enforces priority restrictions via the modifyThread runtime
permission. However, even if agents are restricted to run with
default priorities, the malicious agent can still run infinitely,
when all other agents have finished execution. A policy is
required to enforce an upper-bound restriction on CPU cycles.

A control mechanism has been developed that enforces
limitations on agent execution time. The mechanism is im-
plemented as a periodic task, running at regular intervals. If
an agent’s execution time is found to exceed a predefined
threshold T3, esho1d, the agent server terminates the agent. We
compute Tipreshola as follows: if Ty, 4 is the average execution
time of a mobile agent, and N the number of currently active
agents on the agent-platform, then an agent should run to
completion by Tipreshotd = (IN + 1)T4yg. The threshold is a
dynamic variable updated each time an agent execution begins
or, respectively, ends.

The execution time of an agent is proportional to the
number of agents currently hosted on the device. In our system
implementation, there is an 1-to-1 correspondence between a
Java thread and a Linux thread. Linux implements a time-
sharing scheduling algorithm; Java priorities are ignored. Each
agent thread is assigned an equal time quantum for the CPU;
once the quantum expires, the next ready-to-run thread is
executed. However, even if the system implemented a different
scheduler, our mechanism would again prevent malicious
agents from consuming all CPU cycles. It must be noted
that the CPU-friendly agent manages to run to completion,
without activating our control mechanism. The attack can
also be prevented by the underlying operating system, at
the expense that agent priorities are ignored. However, this
particular mapping may be inappropriate, or infeasible in
another system implementation. Also note that if one relies
upon the operating system in this way, the malicious agent
would continue to consume CPU cycles after all CPU-friendly
agents have terminated.

B. A memory-bound agent

A DosS attack can be launched against the memory resources
of the receiving agent-platform. A malicious agent can con-
sume the available memory of the system by aggressively
allocating objects in heap memory. The agent-platform will
then be left with insufficient resources to serve subsequent
memory requests from friendly agents.

We have developed a memory management mechanism to
enforce restrictions on memory consumption. Control policies
are primarily based on agent memory allocation rates. An
agent allocation rate is defined as the increase of an agent’s
memory usage during the time between two successive alloca-
tion requests. Memory requests are aperiodic events, and thus
we observe large fluctuations in the allocation rate. We use
a weighted, exponentially smoothed average allocation rate to

1 |—x— Malicious agent|

500

250

500

: —+— Friendly agent

250 -

Weighted moving average (bytes/msec)

" i i g
T T T
100 200 300 400
Time (msec)

Fig. 2. A malicious agent is terminated once its average allocation rate
exceeds a predefined threshold. The memory-friendly agent, although it
consumes the same amount of memory as the malicious one, is not penalized
by the memory management system.

reduce these fluctuations and avoid penalizing non-malicious
agents that simply want to instantiate an array for storing and
processing MIB variables. Indeed, the moving average only
punishes “aggressive” agents (Figure 2).

Two additional policies are enforced, a memory usage
upper-bound restriction for agents, and a maximum object size
restriction for a single allocation request. Mobile agents that
violate any of the three policies are considered malicious and
are terminated by the agent-platform. There is no guarantee
that the system will preserve sufficient memory for a mobile
agent to run to completion. However, the system reserves
sufficient memory to instantiate new agents on the agent-
platform. Memory exceptions can then be handled by the agent
itself.

Our memory management mechanism, similar to the CPU
monitoring mechanism, exploits on-line monitoring to control
resources in the management system; they enforce the trust-
worthiness on mobile code execution, rather than abide by
the resource usage specification provided by the the agent’s
creator. The latter, although usually an estimate of the required
resources, can be complementary to our approach.

C. Cloning an agent

Mobile agents may exhibit similar behavior to “worm”
programs. A malicious agent can create multiple copies of
itself and saturate the resources of the hosting system, or
launch a replay attack by self-propagating to other hosts of
the network management system. Agent cloning functionality
is inherent in mobile agent systems that support the Master-
Slave migration pattern. We define legal clones as children,
derived from agents implementing the Master-Slave migration
pattern. We wish to restrict malicious agents from creating
illegal clones in the system.

A malicious agent can generate a replica by invoking the
Object.clone () method, inherited by default by every class

387

of the system. Taking advantage of Java’s serialization mech-
anism, upon which agent migration is based in Ajanta, the
malicious agent can create a deep copy of itself. A deep copy,
in contrast to a shallow copy, contains a copy of all the objects
referenced by the agent. The notClonableAgent class has
been introduced to the system to prevent malicious agents
from cloning. The class overrides and, eventually, finalizes the
clone () method. Agents derived from this class cannot create
replicas of themselves. The mechanism is also sufficient to
prevent malicious agents from cloning other agents that reside
on the same platform.

Whilst our mechanism prevents illegal replicas, legal clones
still pose a security threat. Yet, the system is sufficiently secure
to prevent malicious actions by legal clones. Ajanta assigns a
unique name, in ascending numerical order, to each newly cre-
ated child in order to distinguish it from its parent. The system
can impose a restriction on the number of clones an agent can
create. Furthermore, the security mechanisms of the system
can prevent the saturation of the agent-platform by imposing
restrictions on the resource usage. Finally, replay attacks can
be successfully prevented by the authentication mechanism of
the Ajanta system; the use of randomly generated nonces in
the challenge-response exchange guarantees the uniqueness of
the migration process. Replay attacks can also be prevented by
timing constraints [14]. However, we do not wish to impose
time restrictions on our application.

D. Protection of the management application resources

An agent-based management system must ensure the safe
integration of mobile agents with the SNMP interface to the
underlying management agent. A first level of security in our
system is enforced by the Java language semantics. Ajanta’s
proxy mechanism utilizes the Java security model to prevent
misuse of the underlying resources, in this case the SNMP
interface. By declaring the reference in the resource class
as private, a malicious agent cannot access the interface
methods directly. Also, the proxy class is directly derived
from the Object class; any attempt to typecast (other than
downcasting) the resource object will raise an exception. The
reference to the SNMP interface is also declared transient
to prevent malicious agents from serializing, cloning, and
finally creating an illegal copy, exposing the resource to an
intruder in this way. Furthermore, the class loading mechanism
prevents malicious agents from installing their own resource
proxy class. Finally, the access controller prevents agents from
creating and installing their own class loader.

We consider two additional attacks in our evaluation. First,
a malicious agent can launch a DoS attack against the SNMP
agent by repeatedly requesting MIB variables, in an attempt
to saturate the resource. Second, a malicious agent can com-
pletely bypass the proxy mechanism and access the SNMP
agent directly. In the first scenario, the malicious agent is
restricted by the CPU monitoring mechanism of the system
and is eventually preempted. Furthermore, resource-friendly
agents are able to perform network management tasks, even
if a malicious one tries to monopolize the resource. The

Ajanta system can impose a time restriction on the lifetime
of the proxy object, as an additional security mechanism.
In the second scenario, we have launched a malicious agent
with embedded SNMP functionality. By enforcing the rule
that mobile agents are not allowed to directly open sessions
with the SNMP agent such attacks fail because agents that
attempt to bypass the proxy-based mechanism simply cannot
communicate with the SNMP agent.

An agent to agent-platform attack can target system-wide
resources, such as user files, system logs, or even the agent
execution environment, i.e. the Java Virtual Machine (JVM).
We believe that a mobile management agent does not require
access to a particular system file to perform a SNMP network
management task. Nevertheless, if such access is mandated,
it should be granted via a resource interface, similar to the
VMC concept for accessing SNMP agents. Agents must be
isolated and constrained to perform only their designated
tasks. As a representative example, in our attack scenario a
malicious agent attempts to replace a class of the current
Java installation with a malicious one. By tampering with
the bytecode of the available classes, a malicious agent can
compromise the receiving host. Illegal access is prevented
by Ajanta’s proxy mechanism, Java security policies, and the
underlying operating system.

E. Agent to agent attacks

A malicious mobile agent can launch attacks against other
agents of the system. An agent to agent attack can target agents
co-located in the agent-platform, or other remote agents. In
either case, a malicious agent can disrupt, or even terminate
the execution of an agent.

A malicious agent may attempt to disrupt the execution of
other co-located agents by manipulating the currently running
threads of the agent-platform. In our attack scenario, the
malicious agent was instructed to terminate every agent co-
located on the agent-platform. The Ajanta system assigns a
unique thread group to each mobile agent. Agent threads
are protected by Ajanta’s security manager and class loading
mechanisms. Given a thread group, the security manager
checks if the calling program has permissions to manipulate
the thread group. Access control is invoked when a program
requests permission to create, interrupt, or terminate a thread
group; otherwise, a security exception is raised.

In the mobile agent paradigm, the role of the client and
server is interchangeable between two communicating agents.
For example, in a network management scenario a stationary
agent can serve as an access point for a management agent to
monitor or control a network element. Inter-agent communi-
cation in Ajanta is based on the proxy mechanism. An agent
presents an interface to the system containing the methods
that other agents are allowed to invoke. Upon request, the
system returns a proxy object containing a reference to the
actual agent object. The same security policies that have been
enforced to protect the management application resources, i.e.
the SNMP interface, can also used to prevent a malicious agent

388

TABLE I
AGENT TO AGENT-PLATFORM RESULTS

TYPE OF ATTACK

PREVENTION MECHANISM

CPU Denial of Service

CPU control mechanism

Memory Denial of Service

Memory control mechanism

Agent cloning

The notClonableAgent class

Unauthorized SNMP method invocation

Resource is referenced as private

Typecasting the SNMP resource

Resource is derived from the Object class

Cloning the SNMP resource

Resource is referenced as transient

A Denial of Service against the SNMP agent

CPU control mechanism

Bypass the VMC interface

Restricted communication with the SNMP agent

Manipulate the execution environment (e.g. JVM)

proxy mechanism; Java security; OS security

TABLE II
AGENT TO AGENT RESULTS

TYPE OF ATTACK

PREVENTION MECHANISM

Terminate (or manipulate) co-located agents

Java protection domains; class loader mechanism

Unauthorized method invocation of remote agents

Proxy mechanism; access control

Terminate (or manipulate) remote agents

Authentication and authorization control

from accessing sensitive information, tampering with the code,
or launching a DoS attack against the remote agent.

F. Summary

Table I and Table II summarize our results from evaluat-
ing the trustworthiness of the proposed scheme under agent
to agent-platform and agent to agent attacks, respectively.
In particular, the system prevents Denial of Service attacks
against the CPU, memory, and SNMP resource of the system
by enforcing upper-bound restrictions on their utilization. It
utilizes the Java security model to prevent typecasting, cloning,
or overriding the VMC interface and directly access the
underlying SNMP agent. Furthermore, an agent cannot attack
its execution environment, i.e. the Java Virtual Machine, or the
underlying operating system. Finally, malicious agent attacks
on other co-located or remote agents of the system are also
prevented.

VI. CONCLUSIONS AND FUTURE WORK

Mobile agents have introduced a powerful software
paradigm, able to perform complex management tasks while
addressing issues of scalability and flexibility in distributed
network management system. However, proposed solutions
often disregard the wide acceptance of legacy protocols; there
has been a substantial investment in SNMP-based systems
and thus, transition to agent-based management should be
evolutionary, rather than revolutionary.

Mobile agent systems have introduced several security
threats that must be taken into account when designing an
agent-based distributed system. We have enumerated the pos-
sible security attacks and proposed a number of mechanisms
for their prevention, in the context of a network and system
management application. Our work draws from previous work
in two different disciplines, mobile agent security and mobile
agents for network management. The security mechanisms
discussed in this paper can be generalized and applied to
other agent-based distributed applications. For example, the
proxy mechanism in Ajanta has been designed to protect any
type of resource and was not designated for SNMP-based
management systems. We have applied these mechanisms to
network management systems and emphasize the importance
of security for agent-based network management.

The discussion in Section V has shown that the implemented
management infrastructure prevents agent to agent-platform
and agent to agent attacks (see Tables I and II). This has been
experimentally demonstrated by securely integrating a mobile
agent platform with an SNMP agent; we can guarantee the
trustworthiness of the mobile agent infrastructure as well as
provide an evolutionary path for network management systems
to begin to take advantage of the benefits of mobile agent
technology.

As indicated in Section IV, this work assumed that agent-
platform to agent attacks could be ignored. While there has
been some research into detection of tampering a posteriori,
there is a need to investigate methods by which an agent can

389

determine during execution that it is experiencing malicious
modification of its state [19].

[1]

[2]

[3]

[4]

[5]
(6]

(7]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

REFERENCES

A. Fuggetta, G. P. Picco, and G. Vigna, “Understanding code mobility,”
IEEE Transactions on Software Engineering, vol. 24, no. 5, pp. 342-361,
1998.

W. Jansen and T. Karygiannis, “Mobile agent security,” National Institute
of Standards and Technology, Computer Security Division, Gaithersburg,
MD 20899, NIST Special Publication 800-19, 1999.

J. Schonwalder, A. Pras, and J.-P. Martin-Flatin, “On the future of
internet management technologies,” Communications Magazine, IEEE,
vol. 41, no. 10, pp. 90-97, October 2003.

G. Goldszmidt and Y. Yemini, “Distributed management by delegation,”
in ICDCS ’95: Proceedings of the 15th International Conference on Dis-
tributed Computing Systems. Washington, DC, USA: IEEE Computer
Society, 1995, p. 333.

A. Bieszczad, T. White, and B. Pagurek, “Mobile agents for network
management,” [EEE Communications Surveys, vol. 1, no. 1, 1998.

B. Pagurek, Y. Wang, and T. White, “Integration of mobile agents with
SNMP: Why and how,” in NOMS 2000: IEEE/IFIP Network Operations
and Management Symposium, Honolulu, Hawaii, April 2000, pp. 609—
622.

G. Cabri, L. Leonardi, and F. Zambonelli, “Mobile agent coordination
for distributed network management,” Journal of Network and Systems
Management, vol. 9, no. 4, pp. 435-456, 2001.

N. M. Karnik and A. R. Tripathi, “Security in the ajanta mobile agent
system,” Software — Practice and Experience, vol. 31, no. 4, pp. 301-
329, 2001.

C. Bahoris, A. Liotta, and G. Pavlou, “Evaluation of constrained mobility
for programmability in network management,” in DSOM ’00: Pro-
ceedings of the 11th IFIP/IEEE International Workshop on Distributed
Systems: Operations and Management. London, UK: Springer-Verlag,
2000, pp. 243-257.

J. Tardo and L. Valente, “Mobile agent security and Telescript,” in [EEE
Compcon’96. ‘Technologies for the Information Superhighway’ Digest
of Papers, February 1996, pp. 58-63.

G. C. Necula, “Proof-carrying code,” in POPL’97: 24th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Langauges, Paris,
January 1997, pp. 106-119.

D. Harrington, R. Presuhn, and B. Wijnen, “An architecture for de-
scribing simple network management protocol (SNMP) management
frameworks,” Network Working Group, Request for Comments, RFC
3411, 2002.

A. da Rocha, C. A. da Rocha, and J. N. de Souza, “Script MIB extension
for resource limitation in SNMP distributed management environments,”
in Telecommunications and Networking - ICT 2004, 11th International
Conference on Telecommunications, Fortaleza, Brazil, 2004, pp. 835—
840.

A. Pashalidis and M. Fleury, “Secure network management within an
open-source mobile agent framework,” Journal of Network and Systems
Management, vol. 12, no. 1, pp. 9-31, March 2004.

G. Karjoth, D. B. Lange, and M. Oshima, “A security model for aglets,”
IEEE Internet Computing, vol. 1, no. 4, pp. 68-77, 1997.

W. Yu and A. K. Mok, “Enforcing resource bound safety for mobile
SNMP agents,” in ACSAC’02: 18th Annual Computer Security Applica-
tions Conference, Las Vegas, Nevada, December 2002, pp. 69-77.

P. Bellavista, A. Corradi, and C. Stefanelli, “How to monitor and control
resource usage in mobile agent systems,” in 3rd IEEE International
Symposium on Distributed Objects and Applications, Italy, September
2001.

S. Oaks, Java Security, 2™® Edition. Sebastopol, CA: O’ Reilly and
Assosiates, Inc., 2001, pp. 18-130.

T. Sander and C. F. Tschudin, “Protecting mobile agents against mali-
cious hosts,” in Mobile Agents and Security. London, UK: Springer-
Verlag, 1998, pp. 44-60.

390

	Select a link below
	Return to Main Menu
	Return to Previous View

