
HETMR: Hybrid Deployment of MapReduce Jobs
on Heterogeneous Hardware

Alexandros Koliousis,† Paolo Costa,†‡ Peter Pietzuch† and Alexander Wolf†

†Imperial College London ‡Microsoft Research Cambridge

Abstract
Cloud providers offer access to hardware accelerators,
such as FPGAs and GPUs, according to a pay-per-use
model. Data-parallel processing frameworks, such as
MapReduce, make it easy for users to express parallel
jobs, but an open challenge remains how such jobs can
exploit accelerators in a cloud setting. While dedicated
MapReduce frameworks for specific accelerators exist,
users lack decision support on when accelerators can de-
liver substantial benefit for their jobs.

We observe that the performance improvement at-
tained by accelerators, if any, is dependent on both the
data and the phase (map or reduce) of the MapReduce
job. Based on a generalised model of shared-memory
MapReduce, we describe HETMR, a MapReduce frame-
work that can execute jobs in a hybrid fashion across
CPUs and accelerators. While previous attempts at a hy-
brid solution simply allocate portions of job data to full
MapReduce implementations residing on the CPU and
accelerator, HETMR instead assigns a phase to each de-
vice and provides a means to move the data between the
two. To avoid unnecessary accelerator costs and deter-
mine the best phase assignment, HETMR first profiles
the MapReduce job on the CPU, yielding a measure of
potential speedup. Depending on the outcome, it then
deploys the job in either a CPU-only or hybrid fashion
by drawing on a library of designs. Our experimental
evaluation shows that HETMR’s hybrid execution model
improves job completion by up to 6 times with an FPGA.

1 Introduction
The difficulty of scaling to ever higher clock frequen-
cies means that recently proposed computer architectures
are increasingly heterogeneous, incorporating general-
purpose graphics processing units (GPGPUs) and field-
programmable gate arrays (FPGAs) besides general-
purpose multi-core CPUs. To stay competitive, cloud
providers have begun to offer tenants access to spe-
cialised hardware accelerators such sa GPGPUs and FP-

GAs. For example, Amazon provides access to cluster
GPU instances as part of its EC2 compute cloud [1];
Maxeler enables tenants to share expensive FPGA-based
dataflow engines through their MaxCloud [2].

When cloud offerings include hardware accelerators,
tenants are typically charged according to a per-pay use
model. Due to their higher cost, tenants pay a pre-
mium for hardware accelerators: while Amazon only
charges a slightly higher cost for virtual machine (VM)
instances that include commodity GPGPUs, more spe-
cialised accelerators such as FPGAs command a substan-
tially higher price [2]. This raises the challenge for cloud
tenants to decide when and how to employ more expen-
sive accelerators for their cloud-based compute jobs.

Data-parallel processing frameworks such as MapRe-
duce [12] and Spark [31] have made it easy to ex-
press parallelism for compute-intensive jobs. A devel-
oper only needs to provide map and reduce functions,
while the framework transparently manages data paral-
lelism, data movement and failure recovery. As a re-
sult, they have been adopted as programming models for
shared-memory deployments of compute-intensive jobs
on multi-core CPUs [29, 27], FPGAs [23] and GPG-
PUs [16, 15].

We observe, supported by empirical evidence in Sec-
tion 5, that not all MapReduce jobs benefit from execu-
tion on hardware accelerators. This means that tenants
of a heterogeneous cloud with accelerators have to make
a trade off between the higher cost of using accelerators
and the reduction in job completion time that this may
incur. In addition, we show that some MapReduce job
achieve the fastest completion time when executing in a
hybrid fashion across a CPU and an accelerator: e.g. by
executing the map function on an FPGA and a the re-
duce function on the CPU, it is possible to leverage their
respective strengths.

We describe HETMR, a system that executes MapRe-
duce job in a hybrid fashion, utilising the resources of
a multicore CPU and an FPGA accelerator. Based on



an online profiling step, HETMR decides if a MapRe-
duce job has the potential to benefit from FPGA accel-
erating by considering the cost of data movement across
the PCIe bus. Based on the specific bottleneck that the
MapReduce job has, HETMR selects either an acceler-
ated map or reduce kernel from a library of FPGA de-
signs. It then executes the MapReduce job in a hybrid
fashion, managing the data movement between the CPU
and the FPGA in order to avoid performance degrading
pipeline stalls.

Our library of FPGA kernel for MapReduce appli-
cations leverages a range of implementation techniques
that increase the performance of data movement between
the CPU and FPGA. In addition, our FPGA designs
avoid memory conflicts and exploit an implementation
for data-parallel combiners on the FPGA.

We evaluate the benefit of hybrid MapReduce execu-
tion across a CPU and FPGA using a prototype imple-
mentation of HETMR. Our results shows that a range of
MapReduce jobs can benefit from hybrid execution, thus
reducing the costs to tenants when deploying jobs in het-
erogeneous clouds.

The remainder of this paper is organised as follows.
Section 2 gives background on accelerators in data cen-
tres, MapReduce implementations on different platforms
and sample applications. In Section 3, we discuss the
challenges when making decisions about the hybrid ex-
ecution of MapReduce jobs, and propose a simple de-
ployment strategy for such application in heterogeneous
environments. Section 4 describes the architecture and
implementation of our HETMR system. We present ex-
perimental evaluation results in Section 5. The paper fin-
ishes with a discussion of related work (Section 6 and
conclusions (Section 7).

2 Background
Although co-processors are intended to speed up expen-
sive computations otherwise carried out on the host CPU
(which is why they are often referred to as accelera-
tors), programmers typically find new ways to leverage
them beyond their initial purpose. The most recent ex-
ample is the GPU, which began as a floating-point co-
processor and has evolved into a general-purpose, par-
allel thread-processing engine. With the development
of CUDA and related technologies, the GPU is now a
convenient programming platform for a wide variety of
tasks. The FPGA, which began as a platform for exper-
imenting with new processor designs, has evolved into a
legitimate co-processor platform in its own right. For in-
stance, the investment company JP Morgan uses FPGAs
to accelerate the execution of complex financial models,
attaining a reported 30-fold performance increase at 6%
reduced power consumption per node [28].

The use of GPUs and FPGAs is growing at the same

time as the CPU itself is evolving to include increas-
ing numbers of cores. Rather than competing, however,
these trends are complementary. A multi-core CPU can
provide improved performance across a set of coarse-
grained tasks (typically whole applications) by running
those tasks in parallel, one on each core, rather than in-
terleaved or sequentially. At the level of an individual
task, the CPU core uses mechanisms such as out-of-order
execution, speculation, and branch prediction to mask
latency and improve single-thread performance. How-
ever, provision of these mechanisms reduces the silicon
area available for data-parallel computations. The GPU
and FPGA, on the other hand, are platforms designed to
improve throughput by exploiting high degrees of data
parallelism. They do so, however, by sacrificing the la-
tency of any given thread. For example, the clock speed
of an FPGA is orders of magnitude slower than that
of a CPU, yet can deliver higher throughput for certain
jobs. This distinction between latency- and throughput-
oriented compute platforms is subtle and can lead pro-
grammers to make inappropriate design choices [14].

Accelerators in data centres. In the context of a cloud
data centre, GPUs and FPGAs provide a throughput-
oriented alternative to the standard latency-oriented CPU
compute resource. Consider that with CPUs, the only
way to increase the throughput of a data-parallel job
is to allocate more cores, typically spanning multiple
CPUs; this is the standard practice for today’s large-
scale MapReduce jobs. With a throughput-oriented plat-
form, the possibility exists to attain not only increased
throughput, but also with fewer resources. Recognising
this, Amazon was famously an early adopter of hosted
GPUs,1 but is now being joined by companies such as
Nimbix,2 Peer1,3 Penguin4 and CASS.5 FPGAs are also
beginning to migrate into cloud data centres, with Max-
eler’s MaxCloud6 a prime example.

Outfitting a data centre with CPUs, GPUs and FPGAs
presents challenges to both operators and users. One
is cost: The commodity GPUs that are sold with com-
modity CPUs (e.g. for game acceleration) are insuffi-
cient as general-purpose hosting platforms in a data cen-
tre. NVIDIA and AMD are responding by offering a
new generation of high-end, and therefore more costly,
GPU co-processors specifically targeting the cloud data
centre (the Tesla and FirePro series, respectively). FP-
GAs are even more expensive in absolute terms. These
increased vendor costs are, of course, passed on to the
client through higher usage charges as compared to stan-

1http://aws.amazon.com/hpc-applications
2http://www.nimbix.net/
3http://www.peer1.com
4http://www.penguincomputing.com/
5http://www.cass-hpc.com/solutions/hoopoe
6http://www.maxeler.com/products/maxcloud/
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dalone CPUs.
A second challenge is heterogeneity: The presence of

radically different compute platforms leads to complex-
ity in the deployment and management of applications.
In particular, not all jobs can be accelerated by an accel-
erator and, indeed, may exhibit degraded performance if
deployed on the wrong platform. Given the higher cost
structures of using an accelerator in a data centre, the
client would like to know up front which platform will
give them the best performance. They can then combine
this with a cost analysis to make a good decision.
MapReduce on different platforms. As our focus here
is on MapReduce applications, we need to understand the
impact of the different compute platforms on the perfor-
mance of MapReduce jobs. In this paper we are not par-
ticularly concerned with how best to program a MapRe-
duce application on a CPU, GPU or FPGA, which is it-
self an important area of study. Rather, we want to un-
derstand how best to make a deployment decision assum-
ing good implementations are available for the alterna-
tive platforms.

Classical MapReduce is structured as a map phase and
a reduce phase. In the map phase, input data are di-
vided into multiple pieces, called shards, that are pro-
cessed by mappers. A mapper usually consumes more
than one shard and emits one of more key/value pairs.
In the reduce phase the data are also processed in multi-
ple pieces, but on a per key basis. Between the map and
reduce phases, the shuffle phase groups and sorts the in-
termediate data emitted by the mappers and then presents
those data to the reducers. As an optimisation, combin-
ers can in some cases be attached to mappers to perform
localised data reduction, in particular when the reduc-
tion function is associative and commutative. This serves
to reduce the volume of intermediate data that must be
moved during the shuffle phase.

We make two critical observations (Section 3). First,
assuming the input data reside on the host CPU DRAM,
the effective throughput of an accelerator tasked with
running a MapReduce job is limited by the speed of
the PCI express (PCIe) bus that connects it to the host
CPU. (The situation is similar for Infiniband or Ether-
net connections to an accelerator.) For example, data are
streamed to the NVIDIA GPU via a 6GB/s PCIe bus and
to the Virtex FPGA via a 2GB/s PCIe bus. Therefore,
the speed of the PCIe bus not only dictates the computa-
tional throughput of the accelerator, but also the potential
speed up attained over a CPU. Second, the throughput
of a MapReduce application can be bottlenecked by ei-
ther the map or the reduce computation. Therefore, one
phase might turn out to be a significantly better candidate
for acceleration than the other. Both data movement and
computational load turn out to be important factors in the
deployment decision (Section 3.3).
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Figure 1: Shared-memory MapReduce

Shared-memory MapReduce. In classical MapReduce,
input data are first moved to the mappers, then interme-
diate data moved between the mappers and the reduc-
ers, and finally the result data moved back toward the
client. These data movements in a typical implementa-
tion of MapReduce involve expensive file system reads
and writes.

A significant performance improvement can be at-
tained by instead taking advantage of large main mem-
ories to hold the intermediate data of the shuffle phase.
In fact, the shuffle phase becomes nearly trivial in such
a shared-memory MapReduce, where a hash table can be
used to store intermediate results by key, thereby avoid-
ing the need to sort the data (Figure 1). Of course, this
assumes that the intermediate data fit within the available
memory. Again, combiners can be used to help reduce
those data.

Phoenix++ [27], which targets symmetric, multi-
threaded CPUs, is the latest in a series of shared-memory
MapReduce systems [21, 29]. Compared to its pre-
decessors, Phoenix++ improves mainly on cache mem-
ory locality during the shuffle phase. The CPU-based
Phoenix++ system has been closely tracked by corre-
sponding implementations on GPUs. MapCG-shared [8]
is one of the latest systems attempting to place a gen-
eral MapReduce framework inside a GPU. In line with
Phoenix++, this system advocates the use of combiners
and dedicates a large part of shared memory to their use.
Although it yields better performance in comparison to
its GPU predecessors [15, 16], it has poor performance in
comparison to CPU-based Phoenix++. For example, the
Histogram application is 150 times slower on MapCG-
shared than on Phoenix++. The reason is simple: al-
though the GPU provides fast access to cache memory,
the threads compete for that access, negatively impacting
data parallelism.

Example applications. Our work is informed and eval-
uated by looking at several example applications and a
range of jobs (datasets) for those applications. The dif-
ferent datasets are created by varying some important pa-
rameter controlling the nature of the dataset. Abstractly,
the applications fall into two classes: machine learning
and correlation. For machine learning we use logistic re-
gression (LR), while for correlation we use string match
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(StM) and similarity (Sim). The correlation applications
are further specialised into whether they use the Leven-
shtein (-Lev) or the Smith-Waterman (-SW) distance al-
gorithms. This yields five concrete applications.

The datasets for the two classes of applications are
quite different. For machine learning, the input is N d-
dimensional points, where we vary d from 22 to 226. In
order to keep the datasets of the same size we also vary
N from 226 to 22. Thus, the product of N × d is con-
sistently 228. A point size of 4 bytes then results in a
fixed input size of 1GB. The dataset for correlation is
drawn from a Wikipedia repository. In the case of StM,
the specific application is to correlate the Wikipedia ar-
ticle titles with a given set of words, while in the case
of Sim, it is to find a correlation in the article titles writ-
ten by each author (i.e., a distance between the titles).
The data-dependent variable for both StM and Sim is
the distribution of article title lengths (binned into 10
percentiles). In StM we make the simplifying assump-
tion that the application programmer “knows” the set of
words that will need to be matched so that we can re-
strict the data-dependent variable to the Wikipedia arti-
cles themselves.

3 CPU-only vs. Hybrid Deployments
As pointed out in the previous section, it is critical to
consider which phase of a shared-memory MapReduce
job might most benefit from acceleration, since the bot-
tleneck will appear either in the map or in the reduce.
Moreover, the throughput of the PCIe bus between the
CPU and the accelerator can counter any advantage that
the accelerator might provide in executing a phase, since
it acts as a cap on throughput. Overall, using an acceler-
ator does not necessarily lead to an improvement in the
performance of a MapReduce job. Therefore, one must
be careful in choosing the most appropriate deployment.

In this section we first substantiate our observations
about MapReduce phase bottlenecks and cost of data
movement across the PCIe bus. From that, we then delin-
eate a simple procedure for deciding how best to deploy
a particular job, either CPU-only or hybrid. We evaluate
this procedure in Section 5.

3.1 Bottlenecks in MapReduce
The execution time of any given MapReduce job is usu-
ally dominated by a particular phase, thereby acting as
a throughput bottleneck. A common assumption is that
the bottleneck phase is consistently the map. However,
this is not the case. In particular, the presence or absence
of combiners—essentially a design decision made by the
programmer of a MapReduce application—turns out to
strongly determine the bottleneck phase. Consider that
when a job uses combiners, all key values have already
been reduced by the second stage of data movement, thus

essentially rendering the reduce function to a noop. In
contrast, the absence of combiners leaves intact lists of
intermediate values per key and, therefore, requires the
reducers to expend greater computational effort.

More specifically, the presence of combiners shifts the
computational cost of jobs to mappers relative to reduc-
ers because the number of partitions (data parallelism
cardinality) of jobs with combiners equals the number
of input chunks. In other words, the parallelism strategy
is established before the map phase: the input data set is
partitioned into chunks, chunks are processed in parallel
and then the results of each computation are aggregated.
A large number of machine learning applications follow
this pattern, including k-means clustering, linear and lo-
gistic regression, neural networks and principal compo-
nent analysis [10]. The same property holds for arith-
metic applications such as fast multiplication [26].

On the other hand, the absence of combiners shifts
the computational cost of jobs to reducers relative to
mappers, because the data parallelism cardinality of jobs
without combiners is determined by partitioning inter-
mediate key/value pairs based on some relation of the
input data. In other words, the parallelism strategy is
established after the map phase. The role of mappers
is simply to ensure that intermediate key/value pairs are
grouped accordingly. For example, graph algorithms
are parallelised, in the map phase, by splitting the in-
put graph into subgraphs to be processed in the reduce
phase [18, 25]. Similarly, in database joins, mappers
group together pairs of values for reducers [3]. Such re-
duce functions typically have computations that are ex-
ceedingly difficult to parallelise.

To summarise, we recognise two broad classes: map-
intensive applications, consisting of a computationally
expensive map function, an associative and commuta-
tive combiner function, and a trivial (noop) reducer; and
reduce-intensive applications, consisting of a computa-
tionally inexpensive map function whose main purpose
is to balance the load among reducers (usually by means
of some universal hash function), a buffer combiner, and
a computational expensive reducer (typically polynomial
in time complexity).

Figure 2 illustrates the bottleneck effect by showing
the relative amount of time spent in the map and reduce
phases for each of the five example MapReduce appli-
cations. Each data point represents a job. The size of
the point is related to the total amount of time. We can
see that StM in both its variants is highly map-intensive,
since their mappers were designed to include combin-
ers that render the reducer irrelevant. Both Sim jobs,
on the other hand, do not have combiners, which means
relatively more computation takes place in the reducers.
Furthermore, we can see that as the jobs become more
complex (i.e., their run times increase), they also become
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Figure 2: Bifurcation of Map/Reduce applications: map-intensive or reduce-intensive

more reduce-intensive. Finally, LR is shown to be a map-
intensive application.

3.2 Data movement cost
When deploying MapReduce jobs in a hybrid fashion
across a CPU and an FPGA, it is important to account
for the data movement costs beween the CPU and the
accelerator. Typically, this is limited by the maximum
throughput supported by the PCIe bus, which intercon-
nects the CPU memory with the FPGA on-board DRAM
memory. The PCIe bus bottleneck means that a MapRe-
duce job deployed in a hybrid fashion theoretically can-
not achieve a throughput that is higher than 1.3 GB/s.

In practice, as we show as part of our experimental
evaluation in Section 5, the maximum achievable data
movement rate between the CPU and FPGA is lower
than the PCIe throughput limit due to data transforma-
tion cost: when data is exchanged after the map phase
ran on the CPU, the data sent over the PCIe bus must be
transformed and laid out in a way that is compatible with
the data ingestion pipelines of the FPGA reduce kernel
(see Section 4.3). This transformation incurs a computa-
tional cost, and it may also increase the amount of inter-
mediate data to be transferred over the PCIe bus.

3.3 Deployment procedure
Next we describe a deployment procedure that, by pro-
filing the data movement requirements of a MapReduce
job, can make a decision about the potential reduction
in job completion time that a given MapReduce job may
experience as part of a hybrid deployment.

The essence of the procedure involves two steps: pro-
filing a sample and selecting an implementation based
on the profile. We assume a scenario in which CPU-only
and hybrid implementations of an application are placed
into a library managed by a cloud data centre platform.
A customer comes to the data centre with a particular job
to be run, which amounts to presenting the platform with
a dataset. The customer wishes to maximise end-to-end
throughput, but minimise their costs, so the hybrid im-
plementation and its associated higher costs should be
used only if there is an acceleration benefit to be gained.
Step 1: Profiling on a sample. We use an instrumented
version of the CPU-only shared-memory implementation
of the application to predict which implementation will
provide the given job with a higher end-to-end through-

put. The instrumentation measures the throughput at-
tained by the CPU-only implementation at each data
movement point: insertion into the map phase, extraction
from the map phase, insertion into the reduce phase and
extraction from the reduce phase. Critical to the utility
of this prediction is that we can obtain sufficient infor-
mation by running the profile on only a relatively small
sample of the input dataset. The sample must, of course,
be representative of the dataset. We make the assump-
tion that the customer is able to provide such a sample.
In our evaluation in Section 5 we use the trivial sampling
technique of taking a small prefix of the input dataset.

Step 2: Selecting an implementation. The metrics col-
lected in Step 1 will tell us whether and where the job
would cause the PCIe throughput cap to be exceeded.
The hybrid implementation will induce a particular need
for the PCIe to move data into and out of the bottleneck
phase. Taking the metrics together with the implementa-
tion requirements, we can determine if the hybrid imple-
mentation would respect the PCIe cap for that job. If it
does not, then we choose the CPU-only implementation.
Notice that if both map-intensive and reduce-intensive
hybrid implementations are available, we are given more
freedom in making a selection.

4 HetMR Design
In this section we describe the design of the HETMR sys-
tem, which executes a MapReduce job across a CPU and
an FPGA based on the outcome of the decision proce-
dure (Section 4.1). We give an overview of the architec-
ture of the HETMR system (Section 4.2). After that, we
describe some of the implementation details of map and
reduce phases on an FPGA for different classes of jobs,
which permit HETMR to achieve superior performance
across a range of applications.

4.1 Overview
The HETMR system implements a hybrid shared-
memory MapReduce model that can execute (i) both the
map and reduce phases on a multi-core CPU; (ii) execute
the map phase on the CPU and the reduce phase on an
FPGA; or (iii) execute the map phase on the FGPA and
the reduce phase on the CPU.

As part of its architecture, HETMR must manage the
execution of map and reduce phases and the data move-
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Figure 3: Overview of the HETMR architecture

ment between them:

Execution environment. HETMR must offer an execu-
tion environment for map and reduce functions both on
the CPU and the FPGA. While this is trivial to achieve
for a CPU, which can execute functions implemented in
a general-purpose programming language according to
a shared-memory MapReduce model, it is challenging
for an FPGA, which is not programmable in a general-
purpose fashion. Instead, designs for FPGA kernel im-
plementations for the map and reduce phases of different
applications must be prepared ahead of job deployment
time.

Therefore, we adopt an approach in which HETMR
has access to a library of FPGA designs for different
MapReduce applications, which can be executed on de-
mand. The FPGA designs focus on either the map or
reduce phase for a given application based on the bottle-
necks specific to that application (Section 3.1).

Data movement. Under hybrid execution of a MapRe-
duce job, the HETMR system must manage the move-
ment of data between the map and reduce phases. It
therefore includes run-time functionality that moves data
from the CPU memory to the FPGA memory, and back.
It also manages the data movement from the FPGA mem-
ory to the FPGA on-chip memory, and back.

The challenge is to intercept the MapReduce data flow
at the right stage of the computation in order to avoid
stalling either the CPU or FPGA resources. In addition,
the moved data must be laid out within a contiguous
memory region and aligned in a way that enables data
parallelism across multiple FPGA pipelines. When data
is moved from the FPGA back to CPU memory, it should
be laid out in such a way that the CPU can resume pro-
cessing using its multiple threads.

4.2 Architecture
As shown in Figure 3, the HETMR design includes five
main components: (i) the deployment manager makes a

decision about how to execute a given job; (ii) the CPU
executor runs map and reduce tasks on a multi-core CPU;
(iii) the FPGA executor can initiate the execution of job-
specific map or reduce kernels, which are selected from
(iv) the FPGA job library; and (v) the CPU-FPGA data
mover manages the movement of data between the CPU
memory and the FPGA memory over a PCIe bus.
4.2.1 Deployment manager
The deployment manager implements the decision pro-
cedure (Section 3.3) to determine how a given job can
benefit from FPGA acceleration by deciding to deploy
a given phase on the FPGA. As described in Section 3,
the particular phase deployed to the FPGA is determined
by: (i) which phase exhibits the job’s throughput bottle-
neck and (ii) whether the required data movement can be
achieved within the throughput limit of the CPU/FPGA
bus.

The deployment manager receives a MapReduce job
specification and, based on its decision, passes the in-
dividual map and reduce tasks to the CPU and FPGA
executors for execution.
4.2.2 CPU executor
The CPU executor provides an execution environment
for map and reduce tasks according to a shared-memory
MapReduce model (Section 2):
Threads. It manages a set of execution threads, which
are permanently assigned to individual CPU cores. Each
thread processes a queue of map or reduce tasks that
is populated after the input data have been partitioned.
Threads process either map or reduce tasks until their
task queue becomes empty, and there are no tasks to steal
from other threads.
Dataflow. Similar to previous shared-memory MapRe-
duce frameworks such as Phoenix++, the CPU executor
uses a two-stage data movement that groups intermedi-
ate key/value pairs in memory. There are two main data
structures that hold intermediate key/value pairs: local
state and shared state. Local state is replicated n times,
each populated by one of the n threads that execute map
tasks. Shared state is accessible by all threads.

In the first stage of data movement, map tasks accu-
mulate intermediate key/value pairs as part of their lo-
cal state. After they have finished, they copy the data
into a shared memory space. The executor maintains
pre-allocated memory slots per key and per thread so
that synchronisation overheads between threads are min-
imised. In the second stage of data movement, threads
execute reduce tasks that merge together the results of
each map task according to the key.
Map. During the map phase, each thread executing a
map task maintains a key-indexed dictionary and either
(a) accumulates key/value pairs by means of a combiner
function or (b) buffers key/value pairs by means of con-

6



catenating intermediate values. The first data movement
above occurs when there are no more input partitions to
process, at which point map tasks copy their private state
into shared state.
Reduce. After all map tasks have finished, the reduce
phase begins. Each reduce task collects all values asso-
ciated with a given key, and copies them to a list—the
input to the reduce function. During this data movement,
it is also possible to accumulate values with combiner
functions. The shared state is large enough to hold the
output of all map tasks. Reduce tasks do not compete to
access shared state because it is accessed per key.
4.2.3 FPGA executor
The FPGA executor is responsible to executing the map
or reduce phase of an application on the FPGA. It obtains
appropriate designs for job-specific map and reduce task
implementations from the FPGA job library. Once it has
received a given task design, it loads the design into the
FPGA. It then invokes the CPU-FPGA data mover to ini-
tiate the transfer of data into the deployed FPGA kernel.

After data movement, the input data reside in FPGA
memory. The FPGA executor sets the number of cycles
execute on the FPGA based on the input size and the de-
gree of parallelism on-chip. It also sets any static job-
specific parameters, such as the number of dimensions in
the input data, in registers or block RAM (BRAM). The
executor interfaces with the FPGA kernel through two
memory controllers for input and output, respectively. It
initialises the memory controllers to the start address so
that the deployed FPGA kernel can read or write data. Fi-
nally it signals the kernel to start synchronous data trans-
fer, and it awaits an interrupt that signals that the last
output byte has been written to memory by the FPGA
kernel.
4.2.4 FPGA job library
The FGPA job library contains a set of FPGA for
application-specific FPGA kernel designs for map and
reduce tasks that can be accelerated. Internally, each
computation kernel is complemented by two memory
kernels that handle the data movement from DRAM to
the kernel and back. These memory kernels are the same
across designs; different designs simply configure them
with different parameters.

A kernel can have more than one input and output
stream. With typical FPGA hardware, there is a limited
number of streams available between the memory and
the computation kernel (e.g. up to 16 streams in total).
4.2.5 CPU-FPGA data mover
The CPU-FPGA data mover manages the data transfer
from the CPU memory to the FPGA memory and vice
versa. It handles the transcoding of data into correct data
formats, the memory layout of the data, and initiates data
transfers to ensure that FPGA kernels that execute map

or reduce tasks have required input data.
The data mover supports data represented in a range

of data structures, including lists, arrays and vectors, that
can be used to represent input or intermediate key/value
pairs as used by the CPU executor. In addition, it also
manages the contiguous CPU memory region in which
data can reside. When it is passed a pointer by the CPU
or FPGA executors, it can transfer a specific number of
bytes between memory types. It assumes that the data
in the FPGA memory have already been aligned and laid
out appropriately by the FPGA executor.

4.3 FPGA implementation
Next we provide details on some of the FPGA imple-
mentation challenges when implementing map or reduce
phases on the FPGA in order to interface them with CPU
execution without a performance penalty.

First, we describe our solution to provide fast read
memory access through an optimised data layout, which
leverages the knowledge of the application semantics to
deal with potential memory conflicts arising during write
operations (Section 4.3.1). After that, we discuss our im-
plementation of data-parallel combiner functions on the
FGPA (Section 4.3.2).
4.3.1 Memory access
The key challenge related to the FPGA kernel designs
of map and reduce tasks is to ensure that the hardware
pipelines are not stalled on memory accesses (both for
reads and writes). Due to the low clock frequency of
the FPGA, pipeline stalls drastically reduce performance,
possibly outweighing the benefits of running a map or
reduce phase on the FPGA in the first place.
Optimised data layout for memory reads. Depend-
ing on the nature of the phase being executed on the
FPGA, data can be read either from the main CPU mem-
ory, through the PCIe bus, or directly from the on-board
FPGA memory through the DRAM bus. Efficient mem-
ory access crucially determines performance. For exam-
ple, many machine-learning jobs require multiple itera-
tions during the map phase and so intermediate data are
stored inn the on-board memory; some applications, such
as word count, only require a single pass and, hence, data
are only read through the PCIe bus.

The PCIe bus offers a much lower throughput com-
pared to the DRAM bus. On our hardware set up (Sec-
tion 5), it exhibits a peak performance of 16 bytes per cy-
cle, corresponding to 1.49 GB/s; in contrast, the DRAM
bus has a peak throughput of 38.4 Gbps (i.e. 384 bytes/-
cycle).

This difference in memory access throughput intro-
duces a challenge: an unoptimised data layout can
severely reduce the rate at which data can be read.
For example, consider a reduce phase implementing an
edit distance function (e.g. the Levenshtein or Smith-
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Figure 4: String distance calculator as a systolic array of
processors P1 . . .Pn where n is a function of the string
length (strlen). Each processor in the pipeline reads and
writes 2 bytes per cycle, one from left and one from right.
The pipeline can be replicated 96 times.

Waterman distance), in which two text strings are com-
pared character-by-character. A natural way to imple-
ment this comparison would be to use a systolic architec-
ture [19] such as the one depicted in Figure 4. However,
this constrains the read throughput to only 2 bytes/cycle
(i.e. 0.19 GB/s) because of the loop dependencies: the
second character of a string is valuable to the computa-
tion only after the first has been processed.

Based on our experience implementing many MapRe-
duce applications, we identify two main recurring pat-
terns to optimise the data layout and overcome the above
problem:

Circular memory access. Machine-learning applica-
tions in MapReduce are typically written in an iterative
fashion where data are read from the on-board memory
at the beginning of each iteration. To efficiently support
this, we have built a memory controller optimised for cir-
cular memory access. This memory controller has an ex-
tra counter that resets the read address to the start address
of the section of the data that has to be iterated.

Systolic array. To solve the issue of loop dependen-
cies when dealing with a systolic array implementation,
we utilise the following layout: rather then storing the
strings sequentially, we rearrange them in memory so
that the first 192 bytes correspond to the first character
of 96 string pairs, the next 192 bytes to the second char-
acter, and so on. This allows the FPGA executor to feed
96 arrays in parallel with 2 bytes/cycle each, thus achiev-
ing the maximum throughput available.
Avoiding memory write conflicts. Another potential
cause of low FPGA processing throughput is the occur-
rence of memory access conflicts between concurrent
pipelines on the FPGA. This event typically predomi-
nates during the map phase when intermediate key/value
pairs are written into an array structure, realised through
registers or with on-chip BRAM. If data cannot be writ-
ten immediately, the FPGA pipeline stalls and through-
put decreases.

We implement two different approaches to address this
issue, thus reducing the impact of memory conflicts. The
first is application-specific and exploits the knowledge of
the application semantics: if all FPGA pipelines generate
the same key set—which would generate a large number
of conflicts in a naive design—we extend the map ker-

Address B

Enable B

Address A

Data B

Data A

(k2,v2)

(k2,v2)

(k2,v2)
next

c1

previous
(k2,v2)

Arrives at cycle t

Read at cycle t

Write at cycle t+1

BRAM

Figure 5: A k2 combiner object using a dual-port BRAM.
Port A is READ ONLY and port B is WRITE ONLY.

nel to also include a data-parallel combiner function that
aggregates all keys. This removes the need to store each
individual key/value pair in memory, thus avoiding the
occurrence of write conflicts.

In general, however, it is hard to predict memory
access usage. In this case, we adopt an application-
agnostic approach that dedicates a separate DRAM write
stream to each pipeline. This approach, however, is lim-
ited by the hardware to 16 streams and excess use of re-
sources for buffering between them.

4.3.2 Data-parallel combiners

When a given MapReduce application supports com-
biner functions, the job performance can be improved
using a data-parallel design of combiner functions on the
FPGA. In addition, such a class of applications is also
more likely to result in a design that fits in its entirety on
the FPGA.

In its simplest form, an FPGA pipeline for a combiner
lags behind a map pipeline by only a few cycles, assum-
ing that all keys fit in cache memory. Given a newly
emitted key/value pair (k2,v2), a combiner requires at
least one cycle to read the previous value associated with
key k2 and increment it with v2, and at least one cycle
to write the accumulated value back to the same physi-
cal memory location. Figure 5 shows one such combiner
implemented with a dual-port BRAM.

We assume that all keys can be read in parallel in the
same cycle because they fit in cache memory. Similarly,
in the next cycle, all values can also be updated in par-
allel. However, when multiple FPGA pipelines request
access to the same physical memory address in the same
cycle, we are required to multiplex both the address bus
(Address A, Figure 5) and the data bus (Data B).

If this multiplexing is known in advance (e.g. if all
FPGA pipelines generate the same key set), it is straight-
forward to attach one such data-parallel combiner to the
map kernel, thus fitting the entire job on-chip. Other-
wise, we must deal with memory access conflicts by par-
titioning the key space of intermediate data.
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Figure 6: CPU throughput against sample data size for different MapReduce jobs

Application Abbrv. Size (GB)

Logistic regression LR 1
Similarity (Levenstein) Sim-Lev 1.3
Similarity (Smith-Waterman) Sim-SW 1.3
String match (Levenstein) StM-Lev 1.3
String match (Smith-Waterman) StM-SW 1.3

Table 1: Datasets

5 Evaluation
Our evaluation consist of two parts. First, we want to un-
derstand the impact of the sample when profiling a job.
Next, we want to verify that our deployment manager
correctly selects the fastest deployment option. Our re-
sult show that when the sample is representative of the
full data set, our deployment manager always makes the
right decision. Further, they indicate that if the job ex-
ecution time is dominated by the map, the sample size
is largely irrelevant, while it becomes critical for reduce-
intensive job.

These result confirm the feasibility and effectiveness
of our approach but, at the same time, it stresses the im-
portance for the user to properly select the sample.

5.1 Experimental setup
We performed all the CPU runs (including profiling) of
our experiments using Phoenix++ on a Maxeler’s 1U
MPC-C series node [2]. This comprises two Intel Xeon
5650 chips, with six hyper-threaded cores and 12 MB L3
cache per chip; totalling 24 execution threads. The CPU
is connected to a Xilinx Virtex-6 FPGA board via the
PCIe bus.

In our experiments, we consider a set of representative
MapReduce jobs, detailed in Table 6(a). Logistic Regres-
sion and String match represent map-intensive jobs; the
Similarity application represents reduce-intensive jobs.
Logistic regression is an ML job which is strongly struc-
tured in terms of both inputs and outputs, while String
match and Similarity have only structured outputs. As in-
put data for the latter two, we use a snapshot of 1.274 GB
of Wikipedia articles. For logistic regression, instead, we
randomly generate the numbers using a uniform distribu-
tion

We run each experiment 10 times and we plot the aver-
age of the results. We do not show error bars in the chart
as the standard deviation across run was always below
5%.

.

5.2 On stability and sample size
Figure 6 shows the impact of the sample data size on
the CPU throughput. For jobs in Figure 6(a)- 6(c),
the throughput obtained is largely independent from the
sample size. This is important because it means that
small samples can be used, which drastically reduces the
profiling time. Based on our results, a small sample size
of 100 MB seems sufficient to obtain a good estimation
of the expected CPU throughput when running the en-
tire job. Even assuming a conservative throughput of
100 Mbps, this would lead to a profiling time shorter than
10 s. We consider this overhead negligible in practice.

Sim-Lev (Figure 6(d)) and Sim-SW (Figure 6(e)), in-
stead, show a different behaviour as throughput sharply
decreases with larger sample size. The reason is that the
first three jobs are map-intensive while these other two
are reduce-intensive. For the first category, the size of
the data to move to the FPGA is identical to the input
data of the job. Conversely, for the reduce phase, the size
of the data moved to the FPGA depends on the output
of the map phase. This explains why we observe such
variability.

5.3 HETMR decisions
Next, we want to assess the correctness of the decision
taken by the deployment manager. In Figure 7, we show
the throughput achieved by our map-intensive jobs when
running with the sample data set size fixed; but, to model
different input data, on the x axis we vary a job-specific
(data-dependent) parameter. For example, for Logistic
Regression we vary both the number of dimensions per
point and number of points simultaneously, keeping the
input size fixed at 1GB. For the Wikipedia data set, we
sample from the distribution of title lengths (based on
percentiles).

The goal of these charts is twofold. First, they confirm
that while size is not a critical parameter of the input size,
the type of data has a direct impact on the throughput
achieved by the job. This is why HETMR cannot use
static information but it has to rely on the profiling stage
to derive the expected throughput.

The second important results shown in the charts is
that our deployment manager always makes the correct
decision. Interestingly, just looking at the PCIe through-
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put would have not given the correct results in some
cases, e.g., in the StM-Lev

The reason is that, as explained in §4.3.1, in order
for the job to efficiently run on the accelerator, the in-
put data must be pre-processed to change the data layout
in memory. In this specific case, it turns out that this pre-
processing stage was actually dominating the execution
time, thus outweighing the expected benefits.

This is clearly visible in Figure 8 in which we show the
breakdown of the execution time. When the input data
size increases, the cost of changing the data layout be-
comes more prominent and for large input this becomes
the main bottleneck.

6 Related Work
In this section, we discuss prior related work to the
HETMR approach.
Heterogenous MapReduce. As CPU heterogeneity
emerged in today’s computing environments, so did per-
formance imbalances in data-parallel processing frame-
works. In this context, one of the most widely stud-
ied frameworks in the literature is MapReduce [12]—not
only in shared-nothing clusters, but also within the con-
fines of a single shared-memory machine. In both these
environments, the proposed solutions to tackle perfor-
mance imbalances are similar: faster processors “steal”
tasks from slower ones, albeit their associated limita-
tions manifest at different architecture levels (e.g. data
movement overheads shift from network and disk I/O
to slow memory inter-connects and access conflicts in
cache memory).

Tarazu [4] and its extension, Pikachu [13], are two re-
cent MapReduce schedulers that aim to balance the load
between “slow” and “fast” processors in a cluster. This
loose distinction between processors is realised as a ratio
of the rate at which each processor type consumes data
chunks (termed progress rate; see LATE [30]). This ratio
is estimated at run-time, after a job phase starts on both
processor types. It is then used to partition (reshuffle) the
input and intermediate data accordingly. These systems
are agnostic of any differences in the micro-architecture
between slow and fast processors and operate solely on
two performance indicators: their progress rate and CPU

utilisation.
HETMR is complementary to this line of work in two

ways: it pinpoints the loose terms “slow” and “fast” on
specific hardware architectures on a per job basis; and,
by doing so, it makes data movement overheads, those
incurred during reshuffle, explicit.

Mate-CG [17] works under the same assumption as
Tarazu and Pikachu—that faster nodes should process a
larger fraction of the data than slower nodes—but it con-
siders a cluster of GPGPU-enhanced nodes. The system
further assumes that accelerators are throughput-oriented
processors. As such, they should operate on large chunks
of data to be effective. Therefore, their data partition-
ing policy is biased towards accelerators. Mate-CG deals
only with iterative MapReduce jobs so that it can reshuf-
fle data chunks at every iteration. Furthermore, it as-
sumes that GPGPU implementations do not suffer from
performance penalties inherent to that architecture (e.g.
code branching or memory access conflicts).

A recent study [6] suggests that many, if not all,
MapReduce jobs fit well within the confines of a sin-
gle shared-memory machine: there is enough thread
parallelism and memory to support today’s workloads.
Earlier on, a series of MapReduce systems (led by
Phoenix [21, 29, 27]) studied how intermediate key/value
pairs should be laid out in cache memory in symmetric
multi-core systems. In parallel, Mars [15], MapCG [16],
MapCG-shared [8, 9] have also attempted to wall in
MapReduce within a GPGPU. The problem with those
GPGPU-only solutions is that the higher they move in
the memory hierarchy, the more severe the performance
penalties become, mainly due to memory access conflicts
and synchronisation between shared and main memory.
Our proposed alternative is a hybrid execution model.

Closely related to our notion of hybrid execution is
MapCG-shared [9]. It proposes a map-dividing scheme
(data partitioning) and a pipelining scheme when dif-
ferent phases run on different architectures. The lat-
ter is essentially the streaming model that CUDA pro-
poses. However, their model is confined only to jobs with
combiners—ignoring jobs without combiners. They also
do not decide when to use either a hybrid or CPU solu-
tion. One of the main feature of our hybrid approach is
that it allows for different hardware architecture designs
to be combined within MapReduce.

FPMR [23] is a MapReduce framework specifically
designed for FPGAs. It does not consider a hybrid so-
lution but demonstrates that jobs can actually fit in the
FPGA. One of the main features of FPMR is a com-
mon data path to share read-only job parameters between
pipelines. This is indeed complementary to our work in
some cases, because shared state has to be replicated and
wired independently to each pipeline. There is also the
case, however, that one of the streams can be dedicated
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Figure 7: CPU throughput against FPGA throughput. The PCI line identifies the PCIe throughput while DM is the
data movement upper bound (see § 3.2)

to input parameters, as we do with the logistic regression
application.
Beyond MapReduce models. GPGPU- or FPGA-based
frameworks have attempted to maintain the simplicity of
the MapReduce programming model, but they have not
made explicit the performance penalty due to memory
management. HETMR provides mechanisms to move
data between the CPU and its accelerators and, for some
cases, move data within an accelerator.

Dandelion [22], LINQits [11], Accelerator [24], Liq-
uid Metal [7], and PetaBricks [20, 5] promise increased
performance and reduced energy consumption in main-
stream heterogeneous computing. Part of this promise
can be attributed to code generation and compiler opti-
misation techniques that deal with the intricacies of dif-
ferent hardware architectures internally. Orthogonal to
this line of our work on HETMR for FPGAs because it
imposes structure on how to handle key/value pairs both
on- and off-chip.

7 Conclusions
This paper has delved into the nature of map and re-
duce computations and has demonstrated that care must
be taken when deciding if it is appropriate to use an ac-
celerator to improve performance. We have presented a
system for supporting the decision process and deploy-
ing MapReduce jobs in a hybrid fashion involving both a
CPU and an accelerator.

The decision procedure can be improved in various
ways to account for more specifics of applications and
accelerators. One direction is to account more precisely
for the computational load of map and reduce func-
tions. Another is to consider a third possible deployment,
which we refer to as packed, wherein both the map and
reduce are placed on the accelerator when the cost of do-
ing so is low.
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