
Verification of multiagent systems via unbounded model checking ∗

Magdalena Kacprzak
Białystok University

of Technology
mdkacprzak@wp.pl

Alessio Lomuscio
King’s College London
alessio@dcs.kcl.ac.uk

Wojciech Penczek
ICS PAS and Podlasie Academy

penczek@ipipan.waw.pl

Abstract

We present an approach to the problem of verification
of epistemic properties of multi-agent systems by means of
symbolic model checking. In particular, it is shown how to
extend the technique of unbounded model checking from a
purely temporal setting to a temporal-epistemic one. In or-
der to achieve this, we base our discussion on interpreted
systems semantics, a popular semantics used in multi-agent
systems literature. We give details of the technique and show
how it can be applied to the well-known train, gate and con-
troller problem.

1. Introduction

Verification of reactive systems by means of model-
checking techniques [3] is now a well-established area of re-
search. In this paradigm one typically models a systemS in
terms of automata (or by a similar transition-based formal-
ism), builds an implementationPS of the system by means
of a model-checker friendly language such as the input for
SMV or PROMELA, and finally uses a model-checker such
as SMV or SPIN to verify some temporal propertyφ the
system:MP |= φ, whereMP is a temporal model repre-
senting the executions ofPS . As it is well known, there
are intrinsic difficulties with the naı̈ve approach of perform-
ing this operation on an explicit representation of the states,
and refinements of symbolic techniques (based on OBDD’s,
and SAT [1] translations) are being investigated to over-
come these hurdles. Formal results and corresponding ap-
plications now allow for the verification of complex sys-
tems that generate more than1020 states.

The field of multi-agent systems (MAS) has also recently
become interested in the problem of verifying complex sys-

∗ The authors acknowledge support from the Naval Research Interna-
tional (grant N00014-04-1-4080), the Polish National Committee for
Scientific Research (grant No 7T11C 00620 and a special grantsup-
porting ALFEBIITE), the Nuffield Foundation (grant NAL/00690/G),
and EPSRC (GR/S49353/01).

tems. In MAS the emphasis is on the autonomy, and ra-
tionality of the components, or agents [21]. In this area,
modal logics representing concepts such as knowledge, be-
liefs, intentions, norms, and the temporal evolution of these
are used to specify high level properties of the agents. Since
these modalities are given interpretations that are different
from the ones of the standard temporal operators, it is not
straightforward to apply existing model checking tools de-
veloped for standard LTL (or CTL) temporal logic to the
specification of MAS. One further problem is the fact that
the modalities that are of interest are often not given a pre-
cise interpretation in terms of the computational states ofthe
system, but simply interpreted on classes of Kripke models
that guarantee (via frame-correspondence) that some intu-
itive properties of the system are preserved1. This makes
it hard to use the semantics to model any actual computa-
tion performed by the system [20]. For the case of knowl-
edge, the semantics of interpreted systems [7], popularised
by Halpern and colleagues in the 90’s, can be used to give
an interpretation to the modalities that maintains the tradi-
tional S5 properties, while, at the same time, is appropriate
for model checking [8]. Indeed, a considerable amount of
literature now exists on the application of interpreted sys-
tems and epistemic logic to the application areas of secu-
rity, modelling of synchronous, asynchronous systems, dig-
ital rights, etc. It is fair to say that this area constitutesthe
most thoroughly explored, and technically advanced sub-
discipline among the formal studies of multi-agent systems
available at the moment.

1.1. State of the art and related literature

The recent developments in the area of model check-
ing MAS can broadly be divided into streams: in the first
category standard predicates are used to interpret the vari-

1 For example, in epistemic logic it is customary to use equivalence
models to interpret a knowledge modality K so that it inherits the prop-
erties of the logical systems S5 [2]; in particular axioms T,4, and 5
(which are considered to be intuitively correct for knowledge) result
valid.

ous intensional notions and these are paired with standard
model checking techniques based on temporal logic. Fol-
lowing this line is for example [22] and related papers. In
the other category we can place techniques that make a gen-
uine attempt at extending the model checking techniques
by adding other operators. Works along these lines include
[9, 10, 15, 18]. In [9] local propositions are used to translate
knowledge modalities on LTL structures. Once this process
is done, the result can be fed into a SPIN model checker.
In this approach local propositions need to be computed by
the user. In [18] a compiler is given to translate an inter-
preted system specification into SMV code that is then used
to generate the whole state space on which epistemic for-
mulas can be evaluated. The process allows for testing of
static epistemic formulas only.

These works were preceded by [15], where van der Mey-
den and Shilov presented theoretical properties of the model
checking problems for epistemic linear temporal logics for
interpreted systems with perfect recall. In particular, itwas
shown that the problem of checking a language that includes
“until” and “common knowledge” on perfect recall systems
is undecidable, and decidable fragments were identified.

The authors of this paper have also contributed to this
line. In [16, 17, 12] presented at AAMAS2003, an exten-
sion of the method of bounded model checking (one of the
main SAT-based techniques) to CTLK a language compris-
ing bothCTL and knowledge operators, was defined, im-
plemented, and evaluated. While preliminary results appear
largely positive, any bounded model checking algorithm is
mostly of use when the task is either to check whether a
universal CTLK formula is actually false on a model, or to
check that an existential CTLK formula is valid. This is a se-
vere limitation in MAS as it turns out that many of the most
interesting properties one is interested in checking actually
involve universal formulas. For example, in a security set-
ting one may want to check whether it is true that forever
in the future a particular secret, perhaps a key, is mutually
known by two participants.

1.2. Aim of this paper

The aim of this paper is to contribute to the line of SAT-
based techniques, by overcoming the intrinsic limitation
of any bounded model checking algorithm, and provide a
method for model checking the full language of CTLK. The
SAT-based method we introduce and discuss here is an ex-
tension to knowledge and time of a technique introduced by
McMillan [14] called unbounded model checking (UMC).
A byproduct of the work presented here is the definition of
a fixed point semantics for the logicCTLpK, an extension
of CTLK by means of past operators.

Like any SAT-based method, UMC consists in translat-
ing the model checking problem of what is in this case

a CTLpK formula into the problem of satisfiability of a
propositional formula. UMC exploits the characterizationof
the basic modalities in terms of Quantified Boolean Formu-
las (QBF), and the algorithms that translate QBF and fixed
point equations over QBF into propositional formulas. In
order to adapt UMC for checkingCTLpK, we use three
algorithms. The first one, implemented by the procedure
forall (based on the Davis-Putnam-Logemann-Loveland
approach [4]) eliminates the universal quantifier from a
QBF formula representing aCTLpK formula, and returns
the result in conjunctive normal form (CNF). The remain-
ing algorithms, implemented by the proceduresgfp andlfp
calculate the greatest and the least fixed points for the modal
formulas in use here. Ultimately, the technique allows for a
CTLpK formulaα to be translated into a propositional for-
mula [α](w) in CNF, which characterizes all the states of
the model, whereα holds.

For the case ofCTL it was shown by McMillan [14]
that model checking via UMC can be exponentially more
efficient than approaches based on BDD’s in two situations:
whenever the resulting fixed-points have compact represen-
tations inCNF, but not via BDD’s; or whenever the SAT-
based image computation step proves to be faster than the
BDD-based one. Although we do not investigate these re-
sults here, similar beneficial effects may occur in the tem-
poral epistemic case discussed here.

The rest of the paper is structured in the following man-
ner. Section 2 introduces interpreted systems semantics, the
semantics on which we ground our investigation on. The
logicCTLpK is defined in Section 3. Section 4 summarises
the basic definitions that we need for CNF and QBF for-
mulas, and fixes the notation we use throughout the pa-
per. A fixed-point characterization ofCTLpK formulas is
presented in Section 5. The main idea of symbolic model
checkingCTLpK is described in Section 6, where the algo-
rithms for computing CNF formulas equivalent toCTLpK
formulas are also given. A simple example of using the al-
gorithms for verifying epistemic properties of a train, gate,
and controller system is given in Section 7.

2. Interpreted systems semantics

Any transition-based semantics allows for the represen-
tation of temporal flows of time by means of a successor
relation. For example, CTL is interpreted on plain Kripke
models. To work with a temporal epistemic language, we
need to consider a semantics that also allows for the au-
tomatic representation of the epistemic relations between
computational states [20]. The mainstream semantics that
allows one to do so is the one of interpreted systems [7].

Interpreted systems can be succinctly defined as fol-
lows (we refer to [7] for more details). Assume a set of
agentsA = {1, . . . , n}, a set of local statesLi and pos-

sible actionsActi for each agenti ∈ A, and a setLe and
Acte of local states and actions for the environment. The
set of possible global states for the system is defined as
G = L1×. . .×Ln×Le, where each element(l1, . . . , ln, le)
of G represents a computational state for the whole system
(note that, as it will be clear below, some states inG may
actually be never reached by any computation of the sys-
tem). Further assume a set of protocolsPi : Li → 2Acti,
for i = 1, . . . , n, representing the functioning behaviour of
every agent, and a functionPe : Le → 2Acte for the envi-
ronment. We can model the computation taking place in the
system by means of a transition functiont : G×Act→ G,
whereAct ⊆ Act1 × . . . × Actn × Acte is the set of joint
actions. Intuitively, given an initial stateι, the sets of pro-
tocols, and the transition function, we can build a (possi-
bly infinite) structure that represents all the possible com-
putations of the system. Many representations can be given
to this structure; since in this paper we are only concerned
with temporal epistemic properties, we shall find the fol-
lowing to be a useful one.

Definition 1 (Models) Given a set of agentsA =
{1, . . . , n}, a temporal epistemicmodel(or simply amodel)
is a pair M = (K,V) with K = (G, W, T,∼1, . . . ,∼n, ι),
whereG is the set of theglobal statesfor the system (hence-
forth called simplystates); T ⊆ G × G is a total bi-
nary (successor) relation onG; W is a set of reach-
able global statesfrom ι, i.e.,W = {s ∈ G | (ι, s) ∈ T ∗}2,
∼i ⊆ G × G (i ∈ A) is an epistemic accessibility re-
lation for each agenti ∈ A defined bys ∼i s′ iff
li(s

′) = li(s), where the functionli : G → Li re-
turns the local state of agenti from a global states;
obviously∼i is an equivalence relation;ι ∈ W is the ini-
tial state; V : G −→ 2PVK is a valuation functionfor a
set of propositional variablesPVK such thattrue ∈ V(s)
for all s ∈ G. V assigns to each state a set of propo-
sitional variables that are assumed to be true at that
state.

Note that in the definition above we include both all pos-
sible states and the subset of reachable states. The reason
for this follows from having past modalities in the language
(see the next section), which are defined over any possi-
ble global states so that a simple fixed point semantics for
them can be given. Still, note that, if required, it is possi-
ble to restrict the range of the past modalities to reachable
states only, by insisting that the target state is itself reach-
able from the initial state.

Epistemic relations.Let Γ ⊆ A. Given the epistemic rela-
tions for the agents inΓ, the union ofΓ’s accessibility re-
lations defines the epistemic relation corresponding to the
modality of everybody knows:∼E

Γ =
⋃

i∈Γ ∼i.∼C
Γ denotes

2 T
∗ denotes the reflexive and transitive closure ofT .

the transitive closure of∼E
Γ , and corresponds to the relation

used to interpret the modality of common knowledge. The
intersection ofΓ’s accessibility relations defines the epis-
temic relation corresponding to the modality of distributed
knowledge:∼D

Γ =
⋂

i∈Γ ∼i. We refer to [7] for an introduc-
tion to these concepts.

Computations.A computation in M is a possibly in-
finite sequence of statesπ = (s0, s1, . . .) such that
(si, si+1) ∈ T for each i ∈ IN. Specifically, we as-
sume that(si, si+1) ∈ T iff si+1 = t(si, acti), i.e., si+1

is the result of applying the transition functiont to the
global statesi, and a joint actionacti. All the compo-
nents ofacti are prescribed by the corresponding proto-
cols Pj for the agents atsi. In the following we abstract
from the transition function, the actions, and the proto-
cols, and simply useT , but it should be clear that this is
uniquely determined by the interpreted system under con-
sideration. Indeed, these are given explicitly in the example
in the last section of this paper. In interpreted systems ter-
minology a computation is a part of arun; note that we
do not requires0 to be an initial state. For a computation
π = (s0, s1, . . .), let π(k) = sk, andπk = (s0, . . . , sk),
for eachk ∈ IN. By Π(s) we denote the set of all the infi-
nite computations starting ats in M.

3. Computation Tree Logic of Knowledge
with Past (CTLpK)

Interpreted systems are traditionally used to give a se-
mantics to an epistemic language enriched with temporal
connectives based on linear time [7]. Here we useCTL by
Emerson and Clarke [6] as our basic temporal language and
add an epistemic and past component to it. We call the re-
sulting logic Computation Tree Logic of Knowledge with
Past (CTLpK).

Definition 2 (Syntax ofCTLpK) Let PVK be a set of
propositional variables containing the symboltrue, and
A a set of agents. The set ofCTLpK formulasFORM
is defined inductively by using the following BNF syn-
tax: φ ::= p ∈ PVK | ¬φ | φ ∧ φ | AXφ | AGφ |
A(φUφ) | AYφ | AHφ | Kiφ, i ∈ A | EΓφ, Γ ⊆ A |
CΓφ, Γ ⊆ A | DΓφ, Γ ⊆ A.

Additional Boolean connectives are defined in the usual
manner. Moreover,false

def
= ¬true. We omit the subscript

Γ for the epistemic modalities ifΓ = A, i.e., Γ is the set
of all the agents. As customaryX andG stand for respec-
tively “at the next step”, and “forever in the future”. The
operatorsY andH are their past counterparts “at the previ-
ous step”, and “forever in the past”.U is theUntil operator:
αUβ expresses thatβ occurs eventually andα holds con-
tinuously at least until the first occurrence ofβ.

Definition 3 (Interpretation of CTLpK) Let M be a
model,s ∈ G a state,π a computation, andα, β formu-
las of CTLpK. M, s |= α denotes thatα is true at the
states in the modelM. M is omitted if it is implicitly un-
derstood. The relation|= is defined inductively as follows
(we omit the definition of the basic propositional connec-
tives):

s |= p iff p ∈ V(s),
s |= AXα iff ∀π ∈ Π(s) π(1) |= α,
s |= AGα iff ∀π ∈ Π(s) ∀m≥0 π(m) |= α,,
s |= A(αUβ) iff ∀π ∈ Π(s) (∃m≥0 [π(m) |= β and
∀j<m π(j) |= α]),

s |= AYα iff ∀s′ ∈ G (if (s′, s) ∈ T, thens′ |= α),
s |= AHα iff ∀s′ ∈ G (if (s′, s) ∈ T ∗, thens′ |= α),
s |= Kiα iff ∀s′ ∈ W (if s ∼i s′, thens′ |= α),
s |= DΓα iff ∀s′ ∈W (if s ∼D

Γ s′, thens′ |= α),
s |= EΓα iff ∀s′ ∈W (if s ∼E

Γ s′, thens′ |= α),
s |= CΓα iff ∀s′ ∈W (if s ∼C

Γ s′, thens′ |= α).

Definition 4 (Validity) A CTLpK formulaϕ is valid in
M (denotedM |= ϕ) iff M, ι |= ϕ, i.e.,ϕ is true at the ini-
tial state of the modelM .

Notice that the past component ofCTLpK does not con-
tain the modalitySince, which is the past counterpart of the
modalityUntil denoted byU. Extending the logic bySince
is possible, but complicates the semantics, so this is not dis-
cussed in this paper. The reason for interpreting the past op-
erators over the states ofG rather than ofW is strictly tech-
nical. In this way, we can easily compute the validity of
the past formulas using fixed point equations over the re-
lation T−1. Moreover, the reachable states can be charac-
terized by the formula¬AH¬init, whereinit is a proposi-
tion holding in the initial state only. So, past properties over
reachable states can be specified as well.

4. Formulas in Conjunctive Normal Form
and Quantified Boolean Formulas

The method presented in the next section relies on ma-
nipulation of formulas in conjunctive normal form (CNF),
and in quantified boolean form (QBF), and related algo-
rithms and techniques for verifying their satisfiability (con-
flict clauses, block clauses, implication graphs, etc). We are
forced to assume familiarity with these concepts and can
only report brief definitions to fix the notation. We refer to
[11] for more details.

Let PV be a finite set of propositional variables. Alit-
eral is a propositional variablep ∈ PV or the negation of
one:¬p, p ∈ PV. A clauseis a disjunction of a set of zero
or more literalsl[1] ∨ . . . ∨ l[n]. A disjunction of zero lit-
erals is taken to mean the constantfalse. A formula is in a
conjunctive normal form(CNF) if it is a conjunction of a
set of zero or more clausesc[1] ∧ . . . ∧ c[n].

The BNF syntax of a QBF formula is given by:α ::= p |
¬α | α ∧ α | ∃p.α | ∀p.α. The semantics of the quantifiers
is defined as follows:

• ∃p.α iff α(p← true) ∨ α(p← false),

• ∀p.α iff α(p← true) ∧ α(p← false),

whereα ∈ QBF, p ∈ PV andα(p ← q) denotes substi-
tution with the variableq of every occurrence of the vari-
ablep in formulaα. We will use the notation∀v.α, where
v = (v[1], . . . , v[m]) is a vector of propositional variables,
to denote∀v[1].∀v[2] . . .∀v[m].α. For a given QBF formula
∀v.α, we can construct aCNF formula equivalent to it by
using the algorithmforall [14].

procedure forall(v, α), where v = (v[1], ..., v[m])
and α is a propositional formula
let φ = CNF(α) ∧ ¬lα, χ = true, and A = ∅
repeat

if φ contains false, return χ

else if some c in φ is in conflict
add clause deduce(c, A, φ) to φ

remove some literals from A

else if Aφ is total
choose a blocking clause c′

remove literals of form v[i] or
¬v[i] from c′

add c′ to φ and χ

else
choose a literal l such that l 6∈ A

and ¬l 6∈ A

add l to A

The procedurededuce (not explicitly given here) is
a generic conflict-based learning procedure that takes
an assignmentA, a CNF formula α, and a conflict-
ing clausec and produces a conflict clause by repeat-
edly applying resolution steps. The procedureforall
works as follows. Initially it assumes an empty assign-
mentA, a formulaχ to betrue andφ to be a CNF formula
CNF(α) ∧ ¬lα. The algorithm aims at building a satis-
fying assignment for the formulaφ, i.e., an assignment
that falsifies α. The search for an appropriate assign-
ment is based on the Davis-Putnam-Logemann-Loveland
approach, and it is rather complex. We refer to [11] for de-
tails. On termination, whenφ becomes unsatisfiable,χ is a
conjunction of the blocking clauses and precisely charac-
terizes∀v.α.

Theorem 1 Let α be a propositional formula andv =
(v[1], . . . , v[m]) be a vector of propositions, then the QBF
formula ∀v.α is logically equivalent to the CNF formula
forall(v, α).

The proof of the above theorem follows from the correct-
ness offorall algorithm (see [14]).

5. Fixed-point characterization ofCTLpK

In this section we show how the set of states satisfying
anyCTLpK formula can be characterized by a fixed point
of an appropriate function. To this aim, we follow and adapt
definitions given in [19, 3].

Let M = ((G, W, T,∼1, . . . ,∼n, ι),V) be a model. No-
tice that the set2G of all subsets ofG forms a lattice un-
der the set inclusion ordering. Each elementG′ of the lat-
tice can also be thought of as apredicateon G, where
the predicate is viewed as being true for exactly the states
in G′. The least element in the lattice is the empty set,
which corresponds to the predicatefalse, and the greatest
element in the lattice is the setG, which corresponds to
true. A function τ mapping2G to 2G is called a predi-
cate transformer. A setG′ ⊆ G is afixed pointof a function
τ : 2G → 2G if τ(G′) = G′. Wheneverτ is monotonic (i.e.,
whenP ⊆ Q implies τ(P) ⊆ τ(Q)), τ has a least fixed
point denoted byµZ.τ(Z), and a greatest fixed point, de-
noted byνZ.τ(Z). Whenτ is monotonic and

⋃

-continuous
(i.e., whenP1 ⊆ P2 ⊆ . . . impliesτ(

⋃

i Pi) =
⋃

i τ(Pi)),
then µZ.τ(Z) =

⋃

i≥0 τ i(false). When τ is monotonic
and

⋂

-continuous (i.e., whenP1 ⊇ P2 ⊇ . . . implies
τ(

⋂

i Pi) =
⋂

i τ(Pi)), thenνZ.τ(Z) =
⋂

i≥0 τ i(true).
In order to obtain fixed-point characterizations of the modal
operators, we identify eachCTLpK formulaα with the set
〈α〉M of states inM at which this formula is true, formally
〈α〉M = {s ∈ G | M, s |= α}. If M is clear from the con-
text we omit the subscriptM. Furthermore, we define func-
tionsAX, AY, Ki, EΓ, DΓ from 2G to 2G as follows:

• AX(Z) = {s ∈ G | for every s′ ∈ G if (s, s′) ∈
T, then s′ ∈ Z},

• AY(Z) = {s ∈ G | for every s′ ∈ G if (s′, s) ∈
T, then s′ ∈ Z},

• Ki(Z) = {s ∈ G | for every s′ ∈ G if (ι, s′) ∈
T ∗ and s ∼i s′, then s′ ∈ Z},

• EΓ(Z) = {s ∈ G | for every s′ ∈ G if (ι, s′) ∈
T ∗ and s ∼E

Γ s′, then s′ ∈ Z},

• DΓ(Z) = {s ∈ G | for every s′ ∈ G if (ι, s′) ∈
T ∗ and s ∼D

Γ s′, then s′ ∈ Z}.

Observe that 〈Oα〉 = O(〈α〉), for O ∈
{AX, AY, Ki, EΓ, DΓ}. Then, the following tempo-
ral and epistemic operators may be characterized as the
least or the greatest fixed point of an appropriate mono-
tonic (

⋂

-continuous or
⋃

-continuous) predicate trans-
former.

• 〈AGα〉 = νZ.〈α〉 ∩AX(Z),

• 〈A(αUβ)〉 = µZ.〈β〉 ∪ (〈α〉 ∩AX(Z)),

• 〈AHα〉 = νZ.〈α〉 ∩AY(Z),

• 〈CΓα〉 = νZ.EΓ(〈α〉 ∩ Z).

The first three equations are standard (see [5], [3]), whereas
the fourth one is defined analogously taking account that
∼C

Γ is the transitive closure of∼E
Γ .

6. Symbolic model checking onCTLpK

Let M = (K,V) with K = (G, W, T,∼1, ...,∼n, ι). Re-
call that the set of global statesG = ×n

i=1Li is the Carte-
sian product of the set of local states (without loss of gener-
ality we treat the environment as one of the agents).

We assumeLi ⊆ {0, 1}ni, whereni = dlog2(|Li|)e
and letn1 + . . . + nn = m. Moreover, letDi be a set of
the indexes of the bits of the local states of each agenti of
the global states, i.e.,D1 = {1, . . . , n1}, . . . , Dn = {m −
nn + 1, . . . , m}. So, each global states = (l1, . . . , ln) ∈
G can be represented by aglobal state variablew =
(w[1], . . . , w[m]), where eachw[i] for i = 1, . . . , m is a
propositional variable inPV . Note that in this way each lo-
cal state is represented by a tuple of propositional variables.

Let FPV be the set of propositional formulas overPV ,
and letlit : {0, 1}×PV → FPV be a function defined as fol-
lows: lit(0, p) = ¬p andlit(1, p) = p. Furthermore, letw, v

be global state variables. We define the following proposi-
tional formulas:

• Is(w) :=
∧m

i=1 lit(si, w[i]).
This formula encodes the states = (s1, . . . , sm) of

the model, i.e.,si = 1 is encoded byw[i], andsi = 0
is encoded by¬w[i].

• Hi(w, v) :=
∧

j∈Di
w[j]⇔ v[j].

This formula represents logical equivalence be-
tween local state encodings for agenti of two global
states encoded by the variablesw and v, represent-
ing the fact that they represent the samei-local
state.

• T (w, v) is a formula, which is true for a valuation
(s1, . . . , sm) of (w[1], . . . , w[m]) and
a valuation(s′1, . . . , s

′
m) of (v[1], . . . , v[m])

iff ((s1, . . . , sm), (s′1, . . . , s
′
m)) ∈ T .

Our aim is to translateCTLpK formulas into proposi-
tional formulas. Specifically, for a givenCTLpK formulaβ

we compute a corresponding propositional formula[β](w)
which encodes those states of the system that satisfy the
formula. Operationally, we work outwards from the most
nested subformulas, i.e., the atoms. In other words, to com-
pute [Oα](w), whereO is a modality, we work under the
assumption of already having computed[α](w). To calcu-
late the actual translations we use either the fixed-point or
the QBF characterization ofCTLpK formulas. For exam-
ple, the formula[AXα](w) is equivalent to the QBF for-
mula ∀v.(T (w, v) ⇒ [α](v)). We can use similar equiv-
alences for formulasAYα, Kiα, DΓα, EΓα. More specifi-
cally, we use three basic algorithms. The first one, imple-

mented by the procedureforall, is used for formulasOα

such thatO ∈ {AX, AY, Ki, DΓ, EΓ}. This procedure
eliminates the universal quantifier from a QBF formula rep-
resenting aCTLpK formula, and returns the result in con-
junctive normal form. The second algorithm, implemented
by the proceduregfpO, is applied to formulasOα such that
O ∈ {AG, AH, CΓ}. This procedure computes the great-
est fixed point. For formulas of the formA(αUβ) we use
a third procedure, calledlfpAU , which computes the least
fixed point. In so doing, given a formulaβ we obtain a
propositional formula[β](w) such thatβ is valid in the
modelM iff the propositional formula[β](w) ∧ Iι(w) is
satisfiable, i.e.,ι ∈ 〈β〉. Below, we formalise the above dis-
cussion.

Definition 5 (Translation for UMC) Given aCTLpK for-
mulaφ, the propositional translation[φ](w) is inductively
defined as follows:

• [p](w) :=
∨

s∈〈p〉 Is(w), for p ∈ PVK,

• [¬α](w) := ¬[α](w), [α ∧ β](w) := [α](w) ∧ [β](w),
[α ∨ β](w) := [α](w) ∨ [β](w),

• [AXα](w) := forall
(

v, (T (w, v)⇒ [α](v))
)

,

• [AYα](w) := forall
(

v, (T (v, w)⇒ [α](v))
)

,

• [Kiα](w) := forall
(

v, ((Hi(w, v)∧¬gfpAH(¬Iι(v)))

⇒ [α](v))
)

,

• [DΓα](w) := forall
(

v, ((
∧

i∈Γ Hi(w, v) ∧

¬gfpAH(¬Iι(v)))⇒ [α](v))
)

,

• [EΓα](w) := forall
(

v, ((
∨

i∈Γ Hi(w, v) ∧

¬gfpAH(¬Iι(v)))⇒ [α](v))
)

,

• [AGα](w) :=gfpAG([α](w)),

• [A(αUβ)](w) :=lfpAU ([α](w), [β](w)),

• [AHα](w) :=gfpAH([α](w)),

• [CΓα](w) :=gfpCΓ
([α](w)).

The algorithmsgfpandlfp are based on the standard pro-
cedures computing fixed points.

procedure gfpAG([α](w)), where α is an CTLpK
formula
let Q(w) = [true](w), Z(w) = [α](w)
while ¬(Q(w)⇒ Z(w)) is satisfiable

let Q(w) = Z(w),
let Z(w) =forall(v, (T (w, v)⇒ Z(v))) ∧ [α](w)

return Q(w)

The proceduregfpAH is obtained by replacing in the
aboveZ(w) = forall(v, (T (w, v) ⇒ Z(v))) ∧ [α](w)
with Z(w) = forall(v, (T (v, w) ⇒ Z(v))) ∧ [α](w).
Similarly, the proceduregfpCΓ

is obtained by replacing
Z(w) = [α](w) with Z(w) = forall

(

v, ((
∨

i∈Γ Hi(w, v)∧

¬gfpAH(¬Iι(v))) ⇒ [α](v))
)

and Z(w) = forall(v,

(T (w, v) ⇒ Z(v)))∧ [α](w) with Z(w) = forall(v,

((
∨

i∈Γ Hi(w, v)∧¬gfpAH (¬Iι(v)))⇒ (Z(v)∧[α](v)))).

procedure lfpAU ([α](w), [β](w)),
where α, β are CTLpK formulas
let Q(w) = [false](w), Z(w) = [β](w)
while ¬(Z(w)⇒ Q(w)) is satisfiable

let Q(w) = Q(w) ∨ Z(w),
let Z(w) =forall(v, (T (w, v)⇒ Q(v))) ∧ [α](w)

return Q(w)

We now have all the ingredients in place to state the main
result of this paper: modal satisfaction of aCTLpK formula
can be rephrased as propositional satisfaction of an appro-
priate conjunction. Note that the translation is sound and
complete as we state below. We refer to [11] for a proof.

Theorem 2 (UMC for CTLpK) Let M be a model andϕ
be aCTLpK formula. Then,M |= ϕ iff [ϕ](w)∧ Iι(w) is
satisfiable.

7. Example of Train, Gate and Controller

In this section we exemplify the procedure above by dis-
cussing the scenario of the train controller system (adapted
from [10]). The system consists of three agents: two trains
(agents 1 and 3), and a controller (agent 2). The trains, one
Eastbound, the other Westbound, occupy a circular track.
At one point, both tracks need to pass through a narrow tun-
nel. There is no room for both trains to be in the tunnel at
the same time, therefore the trains must avoid this to hap-
pen. Traffic lights are placed on both sides of the tunnel,
which can be either red or green. Both trains are equipped
with a signaller, that they use to send a signal when they ap-
proach the tunnel. The controller can receive signals from
both trains, and controls the colour of the traffic lights. The
task of the controller is to ensure that the trains are never
both in the tunnel at the same time. The trains follow the
traffic lights signals diligently, i.e., they stop on red.

We can model the example above with an interpreted
system as follows. The local states for the agents are:

• Ltrain1
= {away1, wait1, tunnel1},

• Lcontroller = {red, green},

• Ltrain2
= {away2, wait2, tunnel2}.

The set of global states is defined asG = Ltrain1
×

Lcontroller × Ltrain2
. Let ι = (away1, green, away2) be

the initial state. We assume that the local states are num-
bered in the following way:away1 := 1, wait1 := 2,
tunnel1 := 3, red; = 4, green := 5, away2 := 6,
wait2 := 7, tunnel2 := 8 and the agents are numbered

a5

WAIT2

TUNNEL1 TUNNEL2

AWAY1 AWAY2

RED

GREENWAIT1

TRAIN1 TRAIN2CONTROLLER

a1 a4

a2

a3 a6

Figure 1. The local transition structures for
the two trains and the controller

as follows:train1 := 1, controller := 2, train2 := 3.
Thus we assume a set of agentsA to be the set{1, 2, 3}.

Let Act = {a1, ..., a6} be a set of joint actions. For
a∈Act we define the preconditionspre(a), postconditions
post(a), and the setsagent(a) containing the numbers of
the agents that may change local states executinga.

• pre(a1) = {1}, post(a1) = {2}, agent(a1) = {1},

• pre(a2) = {2, 5}, post(a2) = {3, 4}, agent(a2) =
{1, 2},

• pre(a3) = {3, 4}, post(a3) = {1, 5}, agent(a3) =
{1, 2},

• pre(a4) = {6}, post(a4) = {7}, agent(a4) = {3},

• pre(a5) = {5, 7}, post(a5) = {4, 8}, agent(a5) =
{2, 3},

• pre(a6) = {4, 8}, post(a6) = {5, 6}, agent(a6) =
{2, 3}.

In our formulas we use the following two proposi-
tional variables in−tunnel1 and in−tunnel2 such
that in−tunnel1 ∈ V(s) iff ltrain1

(s) = tunnel1,
in−tunnel2 ∈ V(s) iff ltrain2

(s) = tunnel2, for s ∈ G.
We now encode the local states in binary form in or-

der to use them in the model checking technique. Given
that agenttrain1 can be in 3 different local states we shall
need 2 bits to encode its state; in particular we shall take:
(0, 0) = away1, (1, 0) = wait1, (0, 1) = tunnel1. Simi-
larly for the agenttrain2: (0, 0) = away2, (1, 0) = wait2,
(0, 1) = tunnel2. The modelling of the local states of the
controller requires only one bit:(0) = green, (1) = red.
In view of this a global state is modelled by 5 bits. For in-
stance the initial stateι = (away1, green, away2) is repre-
sented as a tuple of five 0’s. Notice that the first two bits of a
global state encode the local state of agent 1, the third bit en-
codes the local state of agent 2, and two remaining bits en-
code the local state of agent 3. We represent this by taking:
D1 = {1, 2}, D2 = {3}, D3 = {4, 5}.

Let w = (w[1], ..., w[5]), v = (v[1], ..., v[5]) be two
global state variables. We define the following propositional
formulas overw andv:

• Iι(w) :=
∧

j∈D1∪D2∪D3
¬w[j],

this formula encodes the initial state,

• Hi(w, v) :=
∧

j∈Di
w[j]⇔ v[j], for i ∈ {1, 2, 3},

• p1(w) := ¬w[1] ∧ ¬w[2], p2(w) := w[1] ∧ ¬w[2],
p3(w) := ¬w[1] ∧ w[2], p4(w) := w[3], p5(w) :=
¬w[3], p6(w) := ¬w[4] ∧ ¬w[5], p7(w) := w[4] ∧
¬w[5], p8(w) := ¬w[4] ∧ w[5],

the formulapj(w) for j = 1, . . . , 8 is a local propo-
sition encoding a particular local state for an agent.

For a ∈ Act, let Ba :=
⋃

i∈A\agent(a) Di be the set of the
labels of the bits that are not changed by the actiona, then

• T (w, v) :=
∨

a∈Act

(
∧

j∈pre(a) pj(w) ∧
∧

j∈post(a) pj(v) ∧
∧

j∈Ba
(w[j] ⇔ v[j])

)

∨

(
∧

a∈Act

∨

j∈pre(a) (¬pj(w))∧
∧

j∈D1∪D2∪D3
(w[j]⇔

v[j])).
Intuitively, T (w, v) encodes the set of all couples of

global statess ands′ represented by variablesw andv

respectively, such thats′ is reachable froms, i.e., ei-
ther there exists a joint action which is available ats

ands′ is the result of executiona at s or there is not
such action ands′ equalss. Notice that the above for-
mula is composed of two parts. The first one encodes
the transition relation of the system whereas the sec-
ond one adds self-loops to all the states without suc-
cessors. This is necessary in order to satisfy the as-
sumption thatT is total.

Consider now the following formulas:

• α0 = ¬AX(¬in−tunnel1),

• α1 = AG(in−tunnel1 ⇒ Ktrain1
(¬in−tunnel2)),

• α2 = AG(¬in−tunnel1 ⇒ (¬Ktrain1
in−tunnel2 ∧

¬Ktrain1
(¬in−tunnel2))),

where in−tunnel1 (respectivelyin−tunnel2) is a local
proposition true whenever the local state oftrain1 is equal
to tunnel1 (respectivelytrain2 in statetunnel2).

The first formula states that agenttrain1 may at the next
step be in the tunnel. The second formula expresses that
when the agenttrain1 is in the tunnel, it knows that agent
train2 is not in the tunnel. The third formula expresses
that when agenttrain1 is away from the tunnel, it does not
know whether or not agenttrain2 is in the tunnel.

As discussed above, the translation of propositions
in−tunnel1 andin−tunnel2 is as follows:

• [in−tunnel1](w) = ¬w[1] ∧ w[2],

• [in−tunnel2](w) = ¬w[4] ∧ w[5].

Now we show how to translate the formulaα0: [α0](w) =
[¬AX (¬in−tunnel1)](w) = ¬[AX (¬in−tunnel1)](w).
The formula[AX(¬in−tunnel1)](w) is computed as fol-
lows: [AX(¬in−tunnel1)](w) = forall(v, T (w, v) ⇒
[¬in−tunnel1](v)) = forall(v, T (w, v) ⇒ (¬(¬v[1] ∧
v[2]))).

Consequently[α0](w) = ¬forall(v, T (w, v)⇒ (v[1]∨
¬v[2])) and [α0](w) ∧ Iι(w) = ¬forall(v, T (w, v) ⇒
(v[1] ∨ ¬v[2])) ∧ Iι(w) = false. Thereforeα0 is not valid
in the model. But, both the formulasα1 andα2 are valid
in the model since[α1](w) ∧ Iι(w)=Iι(w) and [α2](w) ∧
Iι(w)=Iι(w).

This corresponds to our intuition about the scenario.

8. Conclusions

Verification of multiagent systems is quickly becoming
an active area of research. In the case of model check-
ing, plain temporal verification is not sufficient because of
the variety of modalities that are commonly used to spec-
ify multiagent systems. In this paper we have extended the
state-of-the-art of the area by providing a model checking
theory to perform unbounded model checking on a tempo-
ral epistemic language interpreted on interpreted systems.
This surpasses the possibilities available already with other
SAT-based approaches, namely bounded model checking,
in that it is possible to check the full CTLK language, not
just its existential fragment.

A description of the implementation of the algorithm
presented in this paper and some experimental results are
already available [13].

References
[1] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model

checking without BDDs. InProc. of TACAS’99, volume
1579 ofLNCS, pages 193–207. Springer-Verlag, 1999.

[2] P. Blackburn, M. de Rijke, and Y. Venema.Modal Logic, vol-
ume 53 ofCambridge Tracts in Theoretical Computer Sci-
ence. Cambridge University Press, 2001.

[3] E. M. Clarke, O. Grumberg, and D. A. Peled.Model Check-
ing. The MIT Press, Cambridge, Massachusetts, 1999.

[4] M. Davis, G. Logemann, and D. Loveland. A machine pro-
gram for theorem proving.Journal of the ACM, 5(7):394–
397, 1962.

[5] E. A. Emerson and E. M. Clarke. Characterizing correct-
ness properties of parallel programs using fixpoints. InProc.
of the 7th Int. Colloquium on Automata, Languages and Pro-
gramming (ICALP’80), volume 85 ofLNCS, pages 169–181.
Springer-Verlag, 1980.

[6] E. A. Emerson and E. M. Clarke. Using branching-time tem-
poral logic to synthesize synchronization skeletons.Science
of Computer Programming, 2(3):241–266, 1982.

[7] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi.Reason-
ing about Knowledge. MIT Press, Cambridge, 1995.

[8] J. Halpern and M. Vardi.Model checking vs. theorem prov-
ing: a manifesto, pages 151–176. Artificial Intelligence and
Mathematical Theory of Computation. Academic Press, Inc,
1991.

[9] W. van der Hoek and M. Wooldridge. Model checking
knowledge and time. InProc. of the 9th Int. SPIN Workshop
(SPIN’02), volume 2318 ofLNCS, pages 95–111. Springer-
Verlag, 2002.

[10] W. van der Hoek and M. Wooldridge. Tractable multiagent
planning for epistemic goals. InProc. of the 1st Int. Conf. on
Autonomous Agents and Multi-Agent Systems (AAMAS’02),
volume III, pages 1167–1174. ACM, July 2002.

[11] M. Kacprzak, A. Lomuscio, and W. Penczek. Unbounded
model checking for knowledge and time. Technical Re-
port 966, ICS PAS, Ordona 21, 01-237 Warsaw, Decem-
ber 2003. Also available at http://www.ipipan.waw.pl/
∼penczek/WPenczek/2003.html.

[12] A. Lomuscio, T. Łasica, and W. Penczek. Bounded model
checking for interpreted systems: Preliminary experimental
results. InProc. of the 2nd NASA Workshop on Formal Ap-
proaches to Agent-Based Systems (FAABS’02), volume 2699
of LNAI, pages 115–125. Springer-Verlag, 2003.

[13] T. Łasica, W. Penczek, and M. Szreter. Model checking
multi-agent systems with VerICS. In Proc. of the 3rd NASA
Workshop on Formal Approaches to Agent-Based Systems
(FAABS III), LNCS. Springer-Verlag, 2004. To appear.

[14] K. L. McMillan. Applying SAT methods in unbounded sym-
bolic model checking. InProc. of the 14th Int. Conf. on Com-
puter Aided Verification (CAV’02), volume 2404 ofLNCS,
pages 250–264. Springer-Verlag, 2002.

[15] R. van der Meyden and H. Shilov. Model checking knowl-
edge and time in systems with perfect recall. InProceed-
ings of Proc. of FST&TCS, volume 1738 ofLecture Notes in
Computer Science, pages 432–445, Hyderabad, India, 1999.

[16] W. Penczek and A. Lomuscio. Verifying epistemic properties
of multi-agent systems via bounded model checking.Fun-
damenta Informaticae, 55(2):167–185, 2003.

[17] W. Penczek and A. Lomuscio. Verifying epistemic prop-
erties of multi-agent systems via bounded model check-
ing. In T. Sandholm, editor,Proc. of the 2nd Int. Conf. on
Autonomous Agents and Multi-Agent Systems (AAMAS’03),
pages 209–216. ACM, July 2003.

[18] F. Raimondi and A. Lomuscio. A tool for specification and
verification of epistemic and temporal properties of multi-
agent system.Electronic Lecture Notes in Theoretical Com-
puter Science, 2003. To appear.

[19] A. Tarski. A lattice-theoretical fixpoint theorem and its ap-
plications.Pacific Journal of Mathematics, 5:285–309, 1955.

[20] M. Wooldridge. Computationally grounded theories of
agency. In E. Durfee, editor,Proceedings of ICMAS, Interna-
tional Conference of Multi-Agent Systems. IEEE Press, 2000.

[21] M. Wooldridge.An introduction to multi-agent systems. John
Wiley, England, 2002.

[22] M. Wooldridge, M. Fisher, M. Huget, and S. Parsons. Model
checking multiagent systems with mable. InProceedings
of the First International Conference on Autonomous Agents
and Multiagent Systems (AAMAS-02), Bologna, Italy, July
2002.

