
Automatic verification of deontic interpreted systems by
model checking viaOBDD’s

Franco Raimondi1 and Alessio Lomuscio1

Abstract. We present an algorithm for the verification of multiagent
systems specified by means of a modal logic that includes a temporal,
an epistemic, and a deontic operator. Verification is performed by
model checking onOBDD’s. We present an implementation of the
algorithm and report on experimental results for the bit transmission
problem with faults.

1 Introduction

In the last two decades, the paradigm of multiagent systems (MAS)
has been employed successfully in several fields, including, for ex-
ample, philosophy, economics, and software engineering. One of the
reasons for the use of MAS formalism in such different fields is the
usefulness of ascribing autonomous and social behaviour tothe com-
ponents of a system of agents. This allows us toabstract from the
details of the components, and to focus on theinteractionamong the
various agents.

Besidesabstractingand specifyingthe behaviour of a complex
system by means of MAS formalisms based on logic, recently re-
searchers have been concerned with the problem ofverifyingMAS.
Namely, if we abstract a real system by means of the formalismof
MAS, how can weverify formally that the system complies with
certain desired properties? Formal verification has been investigated
successfully in the field of software engineering. Typically, in soft-
ware engineering we want to verify whether or not a system behaves
as it is supposed to. One of the most successful formal approaches
to verification ismodel checking. In this approach, the systemS to
be verified is represented by means of a logical modelMS repre-
senting the computational traces of the system, and the property P
to be checked is expressed via a logical formulaϕP . Verification via
model checking is defined as the problem of establishing whether or
not MS |= ϕP . Various tools have been built to perform this task
automatically, and many real-life scenarios have been tested.

Unfortunately, extending model checking techniques for the verifi-
cation of MAS does not seem trivial. This is because model checking
tools are tailored to standard reactive systems, and do not allow for
the representation of the social interaction and the autonomous be-
haviour of the agents. Specifically, traditional model checking tools
assume thatM is “simply” a temporalmodel, while MAS need more
complex formalisms. Typically, in MAS we want to reason about
epistemic, intentional, and doxastic properties of agents, and their
temporal evolution. Hence, the logical models required arericher
than the temporal model used in traditional model checking.

Various ideas have been put forward to verify MAS. In [18], M.

1 Department of Computer Science, King’s College London London, UK
email:{franco,alessio}@dcs.kcl.ac.uk. This research was partly supported
by EPSRC (grant GR/S49353/01) and the Nuffield Foundation (grant
NAL/00690/G).

Wooldridge et al. present the MABLE language for the specifica-
tion of MAS. In this work, non-temporal modalities are translated
into nested data structures (in the spirit of [1]). Bordini et al. [2] use
a modified version of the AgentSpeak(L) language [17] to specify
agents and to exploit existing model checkers. Both the works of M.
Wooldridge et al. and of Bordini et al. translate the specification into
a SPIN specification on which the verification step is performed by
means of existing tools. Effectively, the attitudes for theagents are
reduced to predicates, and the verification involves only the temporal
verification of those. In [8] a methodology is provided to translate
a deontic interpreted system into SMV code, but the verification is
limited to static deontic and epistemic properties, i.e. the temporal
dimension is not present, and the approach is not fully symbolic. The
works of van der Meyden and Shilov [12], and van der Meyden and
Su [13], are concerned with verification of interpreted systems. They
consider the verification of a particular class of interpreted systems,
namely the class of synchronous distributed systems with perfect re-
call. An algorithm for model checking is introduced in the first paper
using automata, and [13] suggests the use ofOBDD’s for this ap-
proach, but no algorithm or implementation is provided.

In this paper, instead of relying on existing model checkers, we
build upon the algorithm presented in [16] to verify properties of
MAS by means of model checking viaOBDD’s. In particular, in this
work we investigate the verification of epistemic properties of MAS,
and of the “correct” behaviour of agents. Verification of epistemic
properties was presented in [16] and motivated by the long-standing
need to represent epistemic and informational states of theagents.
But in complex systems, reasoning about the “correct” behaviour
(as opposed to behaviours that may be described as “faulty” or “un-
wanted”) is also crucial. As an example, consider a client-server in-
teraction in which a server fails to respond as quickly as it is sup-
posed to to client’s requests. This is an unwanted behaviourthat may,
in certain circumstances, crash the client. In MAS it is unfeasible to
impose hard-wired constraints in the agents’ behaviours toavoid all
possible unwanted situations: more promising seems to be toallow
for some non-critical faulty behaviour to happen and to verify what
properties hold if this does or not does happen. The purpose of this
paper is to present a technique and its implementation that allows for
the automatic verification of properties expressing the correctness of
behaviours of agents as well as their epistemic states.

The rest of the paper is organised as follows. In Section 2 we re-
view the framework of deontic interpreted systems and modelcheck-
ing via OBDD’s. In Section 3 we introduce an algorithm for the ver-
ification of deontic interpreted systems. An implementation of the
algorithm is then discussed in Section 4. In Section 5 we testour im-
plementation by means of an example: the bit transmission problem
with faults. We conclude in Section 6.

2 Preliminaries

In this section we briefly summarise the formalism of interpreted sys-
tems as presented in [5] to model a MAS, and its extension to reason
about correct behaviour as presented in [9]. After this, we briefly
summarise the approach to model checking viaOBDD’s.

An interpreted system[5] is a semantic structure representing a
system of agents. Each agenti (i ∈ {1, . . . , n}) is characterised by
a set of finitelocal statesLi and by a set of actionsActi that may
be performed. Actions are performed in compliance with a protocol
Pi : Li → 2Acti . A tupleg = (l1, . . . , ln) ∈ L1 × . . . , Ln, where
li ∈ Li for eachi, is called aglobal stateand gives a description at
a particular instance of time of the system. Given a setI of initial
global states, the evolution of the system is described byn evolution
functionsti (this definition is equivalent to the definition of a single
evolution functiont as in [5]):ti : L1 × . . . × Ln × Act1 × . . . ×
Actn → Li. In this formalism, the environment in which agents
“live” is usually modelled by means of a special agentE; we refer to
[5] for more details. The setI , the functionsti and the protocolsPi

generate a set ofcomputations(also calledruns). Formally, a com-
putationπ is a sequence of global statesπ = (g0, g1, . . .) such that
for each pair(gj , gj+1) ∈ π, there exists a set of actionsa enabled
by the protocols such thatt(gj, a) = gj+1. G ⊆ (L1 × . . . × Ln)
denotes the set ofreachableglobal states in the MAS.

In [9] the notion ofcorrect behaviourof the agents is incorporated
in this formalism. This is done by dividing the set of local states into
two sets, a non-empty setGi of allowed (or “green”) states, and a set
Ri of disallowed (or faulty, or “red”) states, such thatLi = Gi ∪Ri,
andGi ∩Ri = ∅. Given a set of agentsA = {1, . . . , n} with corre-
sponding local states, protocols, and transition functions, a countable
set of propositional variablesP = {p, q, . . .}, and a valuation func-
tion for the atomsV : P → 2G, a deontic interpreted systems is a
tupleDIS = (G, I,Π, RO

1 , . . . , R
O
n , R

K
1 , . . . , R

K
n ,V). In the above

G is the finite set of reachable global states for the system,I ⊆ G

is the set of initial states, andΠ is the set of possible computations
in the system.RO

i , i ∈ A, is a relation between global states defined
by gRO

i g
′ iff li(g′) ∈ Gi, i.e. if the local state ofi in g′ is a “green”

state.RK
i , i ∈ A, is defined bygRK

i g
′ iff li(g) = li(g

′), i.e. if the
local state of agenti is the same ing and ing′. Some issues are re-
lated to the generation of the reachable states in the systemgiven a
set of protocols and transition relations; since they do notinfluence
this paper we do not report them here.

Deontic interpreted systems can be used to evaluate formulae in-
volving various modal operators. Besides the standard boolean con-
nectives, the language considered in [9] includes:

• A deontic operatorOiϕ [9], denoting the fact thatunder all the
correct alternatives for agenti, ϕ holds.

• An epistemic operatorKiϕ [5], whose meaning isagenti knows
ϕ.

• A particular form of knowledge is also expressed via the operator
K̂

j
i [9]: this is the knowledge that an agenti hason the assumption

that agentj is functioning correctly.

We extend this language by introducing the following temporal op-
erators:EX(ϕ), EG(ϕ), E(ϕUψ). Formally, the language we use
is defined as follows:
ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | EXϕ | EGϕ | E(ϕUϕ) |

Kiϕ | Oiϕ | K̂
j
i ϕ

We now define the semantics for this language. Given a deontic
interpreted systemDIS , a global stateg, and a formulaϕ, satisfac-
tion is defined as follows:

DIS, g |= p iff g ∈ V(p),
DIS, g |= ¬ϕ iff g 6|= ϕ,
DIS, g |= ϕ1 ∨ ϕ2 iff g |= ϕ1 or g |= ϕ2,
DIS, g |= EXϕ iff there exists a computationπ ∈ Π such

thatπ0 = g andπ1 |= ϕ,
DIS, g |= EGϕ iff there exists a computationπ ∈ Π such

thatπ0 = g andπi |= ϕ ∀i ≥ 0,
DIS, g |= E(ϕUψ) iff there exists a computationπ ∈ Π such

thatπ0 = g and ak ≥ 0 such
thatπk |= ψ andπi |= ϕ
for all 0 ≤ i < k,

DIS, g |= Kiϕ iff ∀g′ ∈ G, gRK
i g

′ impliesg′ |= ϕ

DIS, g |= Oiϕ iff ∀g′ ∈ G, gRO
i g

′ impliesg′ |= ϕ

DIS, g |= K̂
j
i ϕ iff ∀g′ ∈ G, gRK

i g
′ andgRO

j g
′

impliesg′ |= ϕ
In the definition above,πj denotes the global state at placej in
computationπ. Other temporal modalities can be derived, namely
AX,EF,AF,AG,AU . We refer to [5, 9, 14] for more details.

The problem ofmodel checkingcan be defined as establishing
whether or not a modelM satisfies a formulaϕ (M |= ϕ). Though
M could be a model for any logic, traditionally the problem of build-
ing tools to perform model checking automatically has been investi-
gated almost only fortemporallogics [4, 7]. The modelM is usually
represented by means of a dedicated programming language, such
as PROMELA[6] or SMV [11]. The verification step avoids building
the modelM explicitly from the program; instead, various tech-
niques have been investigated to perform asymbolic representa-
tion of the model and the parameters needed by verification algo-
rithms. Such techniques are based on automata [6], ordered binary
decision diagrams (orOBDD’s [3]), or other algebraic structures.
These approaches are often referred to assymbolic model checking
techniques. The key idea of model checking temporal logics using
OBDD’s is to represent the modelM and all the parameters needed by
the algorithms by means of boolean functions. These booleanfunc-
tions can then be encoded asOBDD’s, and the verification step can
operate directly on these. The verification is performed using fix-
point characterisation of the temporal logics operators. We assume
some familiarity withOBDD-based symbolic model checking, and
we refer to [3, 11] for more details. Using this technique, systems
with a state space in the region of1040 have been verified.

3 Model checking deontic interpreted systems

In this section we present an algorithm for the verification of deon-
tic, epistemic, and temporal modalities for MAS, extendingthe work
that appeared in [16]. Our approach is similar, in spirit, tothe tra-
ditional model checking techniques for the logic CTL. Indeed, we
start by representing the various parameters of the system by means
of boolean formulae. Then, we provide and algorithm based onthis
representation for the verification step. The whole technique uses de-
ontic interpreted systems as its underlying semantics.

As boolean formulae are built using boolean variables, we be-
gin by computing the required number of boolean variables. To en-
code local states of an agent, the number of boolean variables re-
quired isnv(i) = dlog2|Li|e. To encode actions, the number of
variables required isna(i) = dlog2|Acti|e. Hence, a global state
g = (v1, . . . , vN) can be encoded by means ofN =

∑
i

nv(i)

boolean variables, and a joint actiona = (a1, . . . , aM) can be en-
coded by means ofM =

∑
i

na(i) boolean variables. Having en-

coded local states, global states, and actions by means of boolean
variables, all the remaining parameters can be expressed asboolean

functions as follows. The protocols relate local states to set of ac-
tions, and can be expressed as boolean formulae. The evolution func-
tions can be translated into boolean formulae, too. Indeed,the defini-
tion of ti can be seen as specifying a list ofconditionsci,1, . . . , ci,k
under which agenti changes the value of its local state. Eachci,j re-
lates conditions on global state and actions with the value of “next”
local state fori. The evaluation functionV associates a set of global
states to each propositional atom, and so it can be translated into a
boolean function.

In addition to these parameters, the algorithm presented below re-
quires the definition of a boolean functionRt(g, g

′) representing a
temporal relation betweeng andg′. Rt(g, g

′) can be obtained from
the evolution functionsti by quantifying over actions. The quan-
tification over actions above can be translated into a propositional
formula using a disjunction (see [11, 4] for a similar approach to
boolean quantification):

Rt(g, g
′) =

∨

a∈Act

[(t(g, a, g′) ∧ P (g, a)]

whereP (g, a) is a boolean formula imposing that the joint action
a must be consistent with the agents’ protocols in global state g
andt(g, a, g′) is a “global” transition condition obtained from as a
boolean function of the conditionsti. Rt gives the desired boolean
relation between global states.

We now present the algorithmSAT to compute the set of global
states in which a formulaϕ holds. The following are input parameters
of the algorithm:

• the boolean variables(v1, . . . , vN) and(a1, . . . , aM) to encode
global states and joint actions;

• the boolean functionsPi(v1, . . . , vN , a1, . . . , aM) to encode the
protocols of the agents;

• the functionV(p) returning the set of global states in which the
atomic propositionp holds. We assume that the global states are
returned encoded as a boolean function of(v1, . . . , vN);

• the set of initial statesI , encoded as a boolean function;
• the set of reachable statesG. This can be computed as the fix-point

of the operatorτ = (I(g) ∨ ∃g′(Rt(g
′, g) ∧ Q(g′)) whereI(g)

is true if g is an initial state andQ denotes a set of global states.
The fix-point ofτ can be computed by iteratingτ (∅) by standard
procedure (see [11]);

• the boolean functionRt to encode the temporal transition;
• n boolean functions to encode the accessibility relationsRK

i

(these functions are defined using equivalence on local states of
G);

• n boolean functions to encode the accessibility relationsRO
i .

The algorithm is as follows:

SAT (ϕ) {
ϕ is an atomic formula: returnV(ϕ);
ϕ is¬ϕ1: returnG \ SAT (ϕ1);
ϕ isϕ1 ∧ ϕ2: returnSAT (ϕ1) ∩ SAT (ϕ2);
ϕ isEXϕ1: returnSATEX(ϕ1);
ϕ isE(ϕ1Uϕ2): returnSATEU (ϕ1, ϕ2);
ϕ isEGϕ1: returnSATEG(ϕ1);
ϕ isKiϕ1: returnSATK(ϕ1, i);
ϕ isOiϕ1: returnSATO(ϕ1, i);
ϕ is K̂j

i ϕ1: returnSATKH(ϕ1, i, j);
}

In the algorithm above,SATEX , SATEG, SATEU are the
standard procedures for CTL model checking [7], in which the

temporal relation isRt and, instead of temporal states, global
states are considered. The proceduresSATK(ϕ, i), SATO(ϕ, i) and
SATKH(ϕ, i, j) are defined using the appropriate accessibility rela-
tion and are presented below.

SATK(ϕ, i) {
X = SAT (¬ϕ);
Y = {g ∈ G|Ki(g, g

′) andg′ ∈ X}
return¬Y;
}

SATO(ϕ, i) {
X = SAT (¬ϕ);
Y = {g ∈ G|RO

i (g, g′) andg′ ∈ X}
return¬Y;
}

SATKH(ϕ,Γ) {
X = SAT (¬ϕ);
Y = {g ∈ G|Ri(g, g

′) andRO
j (g, g′) andg′ ∈ X}

return¬Y;
}

Notice that all the parameters can be encoded asOBDD’s. Moreover,
all the operations inside the algorithms can be performed onOBDD’s.

The algorithm presented here computes the set of states in which
a formula holds, but we are usually interested in checking whether or
not a formula holds in the whole model.SAT can be used to verify
whether or not a formulaϕ holds in a model by comparing two set
of states: the setSAT (ϕ) and the set of reachable statesG. As sets
of states are expressed asOBDD’s, verification in a model is reduced
to the comparison of the twoOBDD’s for SAT (ϕ) and forG.

4 Implementation

In this section we introduce an implementation of the algorithm pre-
sented in Section 3. This extends to deontic states the tool presented
in [16]. The implementation is available for download [15].

To define a deontic interpreted system we need to represent, for
each agent:

• a list of local states, and a list of “green” local states;
• a list of actions;
• a protocol for the agent;
• an evolution function for the agent.

To complete the specification of a deontic interpreted system, it is
also necessary to define the following parameters:

• an evaluation function;
• a set of initial states (expressed as a boolean condition);
• optionally, a set of groups for group modalities

In our implementation, the parameters listed above are provided via a
text file. Due to space limitations we refer to the files available online
for a full example of specification of an interpreted system.

5 An example: the bit transmission problem with
faults

The bit-transmission problem involves two agents, asenderS, and
a receiverR, communicating over a faulty communication channel.

The channel may drop messages but will not flip the value of a bit
being sent.S wants to communicate some information (the value of
a bit) toR. One protocol for achieving this is as follows.S imme-
diately starts sending the bit toR, and continues to do so until it re-
ceives an acknowledgement fromR.R does nothing until it receives
the bit; from then on it sends acknowledgements of receipt toS. S
stops sending the bit toR when it receives an acknowledgement.

This scenario is extended in [10] to deal with failures. In particular,
here we assume thatR may fail or not behave as intended. There are
different kind of faults that we can consider forR. Following [10],
we discuss two examples; in the first,R may fail to send acknowl-
edgements when it receives a message. In the second,R may send
acknowledgements even if it has not received any message.

5.1 Deontic interpreted systems for the bit
transmission problem

It is possible to represent the scenario described above by means of
the formalism of deontic interpreted systems, as presentedin [10, 8].
To this end, a third agent agent calledE (environment) is intro-
duced, to model the unreliable communication channel. The local
states of the environment record the possible combinationsof mes-
sages that have been sent in a round, either byS or R. Hence,
four possible local statesLE are taken for the environment:LE =
{(., .), (sendbit, .), (., sendack), (sendbit, sendack)}, where ‘.’
represents configurations in which no message has been sent by the
corresponding agent. The actionsActE for the environment corre-
spond to the transmission of messages betweenS andR on the unre-
liable communication channel. It is assumed that the communication
channel can transmit messages in both directions simultaneously, and
that a message travelling in one direction can get through while a
message travelling in the opposite direction is lost. The set of ac-
tionsActE for the environment is:ActE = {S−R, S→, ←R, −}.
“S−R” represents the action in which the channel transmits any
message successfully in both directions, “S→” that it transmits suc-
cessfully fromS toR but loses any message fromR toS, “←R” that
it transmits successfully fromR to S but loses any message fromS
toR, and “−” that it loses any messages sent in either direction. We
assume the following constant function for the protocol of the envi-
ronment,PE :

PE(lE) = ActE = {S−R, S→, ←R, −}, for all lE ∈ LE .

The evolution function forE records the actions of Sender and Re-
ceiver.

We model senderS by considering four possible local states.
They represent the value of the bitS is attempting to transmit,
and whether or notS has received an acknowledgement fromR:
LS = {0, 1, (0, ack), (1, ack)}. The set of actionsActS for S is:
ActS = {sendbit(0), sendbit(1), λ}. The protocol forS is defined
as follows:

PS(0) = sendbit(0), PS(1) = sendbit(1),

PS((0, ack)) = PS((1, ack)) = λ.

The transition conditions forS are listed in Table 1.
We now consider two possible faulty behaviours forR, that we

model below.
Faulty receiver – 1: In this case we assume thatRmay fail to send

acknowledgements when it is supposed to. To this end, we introduce
the following local states forR: L′

R = {0, 1, ε, (0, f), (1, f)}. The
state “ε” is used to denote the fact thatR did not receive any message

Final state Transition condition
(0, ack) LS = 0 andActR = sendack andActE = S−R or

LS = 0 andActR = sendack andActE =←R

(1, ack) LS = 1 andActR = sendack andActE = S−R or
LS = 1 andActR = sendack andActE =←R

Table 1. Transition conditions forS.

from S; “0” and “1” denote the value of the received bit. The states
“(i, f)” (i = {0, 1}) are faulty or red states denoting that, at some
point in the past,R received a bit but failed to send an acknowledge-
ment. The set of allowed actions forR is: ActR = {sendack , λ}.
The protocol forR is the following:

P ′

R(ε) = λ, P ′

R(0) = P ′

R(1) = {sendack, λ},
P ′

R((0, f)) = P ′

R((1, f)) = {sendack, λ}.

The transition conditions forR are listed in Table 2.

Final state Transition condition
0 ActS = sendbit(0) andLR = ε andActE = S−R or

ActS = sendbit(0) andLR = ε andActE = S→
1 ActS = sendbit(1) andLR = ε andActE = S−R or

ActS = sendbit(1) andLR = ε andActE = S→
(0, f) LR = 0 andActR = ε

(1, f) LR = 1 andActR = ε

Table 2. Transition conditions forR.

Faulty receiver – 2: In this second case we assume thatRmay send
acknowledgements without having received a bit first. We model this
scenario with the following set of local statesL′′

R for R:

L
′′

R = {0, 1, ε, (0, f), (1, f), (ε, f)}.

The local states′′ε′′, “0′′, “1′′, “(0, f)′′ and ′′(1, f)′′ are as above;
′′(ε, f)′′ is a furtherfaulty state corresponding to the fact that, at
some point in the past,R sent an acknowledgement without having
received a bit. The actions allowed are the same as in the previous
example. The protocol is defined as follows:

P ′′

R(ε) = λ,

P ′′

R(0) = P ′′

R(1) = sendack ,

P ′′

R((0, f)) = P ′′

R((1, f)) = P ′′

R((ε, f)) = {sendack , λ}.

The evolution function is a simple extension of Table 2.
For both examples, we introduce the following evaluation func-

tion:

V(bit = 0) = {g ∈ G|lS(g) = 0 or lS(g) = (0, ack)}
V(bit = 1) = {g ∈ G|lS(g) = 1 or lS(g) = (1, ack)}
V(recbit) = {g ∈ G|lR(g) = 1 or lR(g) = 0}
V(recack) = {g ∈ G|lS(g) = (1, ack) or lS(g) = (0, ack)}

The evaluation functionV and the parameters above generate two
deontic interpreted systems, one for each faulty behaviourof R; we
refer to these deontic interpreted systems asDIS1 andDIS2. In these
systems we can evaluate various properties, for example:

AG(recack→ (KS

(
KR (bit = 0) ∨KR (bit = 1)

)
)) (1)

AG(recack→ (K̂R
S

(
KR (bit = 0) ∨KR (bit = 1)

)
)) (2)

Formula 1 above captures the fact that globally, upon receipt of
an acknowledgement,S knows thatR knows the value of the bit.
Formula 2 expresses the same idea but using knowledge under the
assumption of correct behaviour. In the next section we willverify
in an automatic way that Formula 1 holds inDIS1 but not inDIS2.
This means that the faulty behaviour ofR in DIS1 does not affect the
key property of the system. On the contrary, Formula 2 holds in both
DIS1 andDIS2; hence, a particular form of knowledge is retained
irrespective of the fault.

5.2 Experimental results

We have encoded the deontic interpreted system and the formulae
introduced in the previous section by means of a text file. Themodel
checker here presented correctly reportedDIS1 as satisfying both
formulae andDIS2 not satisfying Formula (1) while satisfying For-
mula (2).

To evaluate the performance of the tool, we first analyse the space
requirements. Following the standard conventions, we define the size
of a deontic interpreted system as|DIS | = |S|+|R|, where|S| is the
size of the state space and|R| is the size of the relations. In our case,
we define|S| as the number all the possible combinations of local
states and actions. In the example above, there are 4 local states and
3 actions forS, 5 (or 6) local states and 2 actions forR, and 4 local
states and 4 actions forE. In total, |S| ≈ 2 · 103. To define|R| we
must take into account that, in addition to the temporal relation, there
are also the epistemic and deontic relations. Hence, we define |R| as
the sum of the sizes of temporal, epistemic, and deontic relations. We
approximate|R| as|S|2, hence|M | = |S|+ |R| ≈ |S|2 ≈ 4 · 106.

To quantify the memory requirements we consider the maximum
number of nodes allocated forOBDD’s. Notice that this figure over-
estimates the number of nodes required to encode the state space and
the relations. Further, we report the total memory used by the tool (in
MBytes). The formulae of both examples required a similar amount
of memory and nodes. The average experimental results are reported
in Table 3.

|M | OBDD’s nodes Memory (MBytes)
≈ 4 · 106 ≈ 103 ≈ 4.5

Table 3. Memory requirements.

In addition to space requirements, we carried out some test on time
requirements. The running time is the sum of the time required for
building all theOBDD’s for the parameters and the actual running
time for the verification. We ran the tool on a 1.2 GHz AMD Athlon
with 256 MBytes of RAM, running Debian Linux with kernel 2.4.20.
The average results are listed in Table 4.

Model construction Verification Total
0.045sec <0.01sec 0.05sec

Table 4. Running time (for one formula).

We see these as encouraging results. We have been able to check
formulae with nested temporal, epistemic and deontic modalities in
less than 0.1 seconds on a standard PC, for a non-trivial model. Also,
the number ofOBDD’s nodes is orders of magnitude smaller than the
size of the model.

6 Conclusion

In this paper we have extended a major verification techniquefor re-
active systems — symbolic model checking viaOBDD’s — to verify
non-temporal properties of multiagent systems. We provided an al-
gorithm and its implementation, and we tested our implementation
by means of an example: the bit transmission problem with faults.
The results obtained are encouraging, and we estimate that our tool
could be used in larger examples.

REFERENCES
[1] M. Benerecetti, F. Giunchiglia, and L. Serafini, ‘Model checking mul-

tiagent systems’,Journal of Logic and Computation, 8(3), 401–423,
(June 1998).

[2] R. H. Bordini, M. Fisher, C. Pardavila, and M. Wooldridge, ‘Model
checking AgentSpeak’, inProceedings of the Second International
Joint Conference on Autonomous Agents and Multiagent Systems (AA-
MAS’03), (July 2003).

[3] R. E. Bryant, ‘Graph-based algorithms for boolean function manipula-
tion’, IEEE Transaction on Computers, 677–691, (August 1986).

[4] E. M. Clarke, O. Grumberg, and D. A. Peled,Model Checking, The
MIT Press, Cambridge, Massachusetts, 1999.

[5] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi,Reasoning about
Knowledge, The MIT Press, Cambridge, Massachusetts, 1995.

[6] G. J. Holzmann, ‘The model checker spin’,IEEE transaction on soft-
ware engineering, 23(5), (May 1997).

[7] M. R. A. Huth and M. D. Ryan,Logic in Computer Science: Mod-
elling and Reasoning about Systems, Cambridge University Press,
Cambridge, England, 2000.

[8] A. Lomuscio, F. Raimondi, and M. Sergot, ‘Towards model checking
interpreted systems’, inProceedings of MoChArt, Lyon, France, (Au-
gust 2002).

[9] A. Lomuscio and M. Sergot, ‘On multi-agent systems specification via
deontic logic’, inProceedings of ATAL 2001, ed., J.-J Meyer. Springer
Verlag, (July 2001). To Appear.

[10] A. Lomuscio and M. Sergot, ‘Violation, error recovery,and enforce-
ment in the bit transmission problem’, inProceedings of DEON’02,
London, (May 2002).

[11] K. L. McMillan, Symbolic model checking: An approach to the state
explosion problem, Kluwer Academic Publishers, 1993.

[12] R. van der Meyden and N. V. Shilov, ‘Model checking knowledge and
time in systems with perfect recall’,FSTTCS: Foundations of Software
Technology and Theoretical Computer Science, 19, (1999).

[13] R. van der Meyden and K. Su. Symbolic model checking the knowledge
of the dining cryptographers. Submitted, 2002.

[14] W. Penczek and A. Lomuscio, ‘Verifying epistemic properties of multi-
agent systems via model checking’,Fundamenta Informaticae, 55(2),
167–185, (2003).

[15] F. Raimondi and A. Lomuscio. A tool for verification of deontic inter-
preted systems. http://www.dcs.kcl.ac.uk/pg/franco/mcdis-0.1.tar.gz.

[16] F. Raimondi and A. Lomuscio, ‘Verification of multiagent systems via
ordered binary decision diagrams: an algorithm and its implementa-
tion’, in Proceedings of the Third International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS’04), (July 2004).

[17] A. S. Rao, ‘AgentSpeak(L): BDI agents speak out in a logical com-
putable language’,Lecture Notes in Computer Science, 1038, 42–52,
(1996).

[18] M. Wooldridge, M. Fisher, M.P. Huget, and S. Parsons, ‘Model check-
ing multi-agent systems with MABLE’, inProceedings of the First In-
ternational Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS’02), eds., M. Gini, T. Ishida, C. Castelfranchi, and
W. Lewis Johnson, pp. 952–959. ACM Press, (July 2002).

