Fundamenta Informaticae XX (2007) 1-14
I0S Press

Verification of the TESLA protocol in MCMAS-X

Alessio Lomuscio

Department of Computing, Imperial College London
180 Queen’s Gate, London SW7 2AZ, UK

email: A.Lomuscio@imperial.ac.uk

Franco Raimondi*

Department of Computer Science, University College London
Gower Street, London WC1E 6BT, UK

email: f.raimondi@cs.ucl.ac.uk

Bozena Wazna'

Institute of Mathematics and Computer Science, Jan Diublogzersity
Al. Armii Krajowej 13/15, 42-200 Czestochowa, Poland

email: b.wozna@ajd.czest.pl

Abstract. We use McMAS-X to verify authentication properties in theeSLA secure stream pro-
tocol. McmMmAs-xis an extension to explicit and deductive knowledge of trEp©-based model
checker McMAS a verification tool for multi-agent systems.

1. Introduction

Model checking has traditionally been used for the verificaiof reactive systems whose properties
are specified in one of the many variants of temporal logict &uonomous and open systems, such
as multi-agent systems [27] are best described and reastd by richer formalisms whose study
is often pursued in frameworks studied in Artificial Intgiince (Al). One of the richer logics used
in Al for this task is epistemic logic, or logic for knowledd®], often combined with temporal logic
[18, 10, 19, 16]. Epistemic logic has been shown useful inrttuelelling of a variety of scenarios
from robotics, communication, etc., all sharing the needefaresent formally the knowledge of the
agents. Also of great interest is the use of temporal-apistdormalisms to represent and analyse
formally security protocols. While the original BAN logi&] lacked computational grounding, more
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recent attempts [11, 17] provide a full trace-based sermstdiinterpret the epistemic modalities as well
as standard temporal modalities. Key to these approactike isse of not only a modality for implicit
knowledge, representing the knowledge that can be asddleegrincipal from an external point of view,
but also one for explicit knowledge [8, 23, 15], represemtimowledge the agent has immediate access
to (for instance facts present in the agent’s internal degah

While model checkers for standard temporal (implicit) khesge have recently been made avail-
able [9, 21, 13], they currently do not support explicit knedge and derivable notions and so their
applicability to an “epistemically-oriented” verificatimf authentication protocols has not been pursued
yett.

The aim of this research note is twofold: first we present aeholecker that supports modalities
for explicit and deductive knowledge; second we report anubke of these techniques to validate the
correctness of ESLA [22], a protocol for secure real-time streaming.

The work presented here builds upon our earlier analysisssiLA[17] and our engineering of &

MAS [13], a symbolic model checker for multi-agent systems. Téwt of the paper is organised as
follows. In Section 2 we present syntax and semantics ofdbie formalism used throughout the paper.
In Section 3 we briefly present &®As-x. In Section 4 we introduce theEELA protocol and in Sec-
tion 5 we model check some of its key properties. We concladgection 6 by discussing experimental
results.

2. A Temporal Epistemic Logic

We shortly present the syntax and semantics of TDL [17], aimubdal temporal epistemic logic with
security-specialised primitives; we assume familiaritytwihe intuitive meaning of basic cryptographic
primitives like keys nonces pseudo-random functiongnd MAC functions This section summarises
material in [17].

Syntax. We begin with the definition ahessagesvhich constitute a base for the security-specialised
part of TDL.

Assume the following disjoint sets: a d&t= {k;, ko, ...} of symmetric and asymmetric keys, a
setN of nonces, a sel' = {t1,t,...} of plain-texts, and a sét of commitments to keys defined by
{f(k) | k € Kwheref : K — {0,1,...} is a pseudo-random functipnthe commitment to a key is
an integer value that is computed by applying a pseudo-ranfdaction f to key k. It is assumed that
f~! cannot be computed frorf, so the keyk cannot be computed from the commitmentitoThe set
of messagedl is defined by the following grammar:

m:=t|k|n|f(k)|m-m|{m}y|MAC(k,m)

wheret € T, k € K, n € N, f(k) € F, m is a generic message, aMdC : K x M — {0,1,...} is
amessage authentication cofienction. Again, we assume that the inverse1a€ cannot be computed
(so the keyk cannot be inferred from theAC value).

We write m - m/ for the concatenation of: andm’, {m} for the encryption ofn with the keyk,
andMAC(k, m) for the message authentication coderoédndk. We assume that the dgtis closed under
inverses, i.e., for a given kely € K there is an inverse key ! € K such that{{m};},-1 = m. If

! Anonymity protocols (such as the dining cryptographers) saccessfully be analysed by using implicit knowledge only
[9, 26, 12].



the cryptosystem uses symmetric keys, thea k~'; in a public cryptosystent andk~! are different.
We also define dubmessagbinary relationC on M as the smallest reflexive and transitive relation
satisfying the following conditions: (I T m - m/, (2)m T m'-m, (3)m C {m}.

Let PV be a set of propositional variabledG a finite set of agenty; € PV, i € AG, andm € M.
The seWF(TDL) of well-formed TDL formulae is defined by the following granam

¢ :=p | has;(m) | sent;(m) | received;(m) | faked;(m) | dropped;(m) |
e e Ve | EXe | E(plp) [ Alple) [ Kip [ Xip | Aip

The termshas;(m), sent;(m), received;(m), dropped;(m), and faked;(m) are security-specialised
propositional variables, which, as one would expect, aae Bs ‘agenti has message:”, “ agenti sent
messagen”, “ agenti received message”, “agenti dropped message:, and ‘agenti faked message
m”, respectively. The propositiothas;(m) means that agentis in explicit possession of message
m. The meaning of “explicit possession” depends on the agipdio, the capabilities of the principals,
and the protocol the principals are running. The interpiataof temporal and epistemic operators is
standard. We use the short@ta to represenk(IC;aUX;«). The formulaD;« is read as dgenti may
deducex (by some computational processlror more details we refer to [17, 15]. The other temporal
modalitiesAG, EG, AF, EF' can be defined as abbreviations of the ones above as standard.

Interpreted Systems. In this section we briefly summarise the multi-agent frameéw8], over
which a semantics for TDL will be given. In particular, we Wibcus on a specific class of multi-agent
systems appropriate to modelling security protocols. €r@e message-passing systems in which one
or more of the agents is an adversary controlling the comaoatioin channel.

A multi-agent system (MAS) consists of an environment andgents, each of which is in some
particular local state at a given point in time. We assumedhaagent’s local state encapsulates all the
information the agent has access to, and the local staté® @frivironment describe information that is
relevant to the system but that is not included in any locah#g state; the environment can be viewed
as just another agent, as we will do here.

Given the security setting, we assume that the local stagnagent is a sequence of events of
the form (eo, ..., en), Whereeg is the initial event, and fof € {1,...,m}, e; is a term of the form
sent(i, m) or recv(m), wherem is a message andis an agent. The terment (i, m) stands for the
agent has sent messageto agent;. Similarly the termrecv(m) represents that the agent has received
messagen. Note that inrecv(m) the sender is not specified. This is because the receivenatilin
general be able to determine the sender of a message he bagdec

A multi-agent system is not a static entity. Its computati@ane usually defined by means of runs
[8]. Thus, in these settings, anterpreted systenfor a multi-agent system is defined as a set of all
possible runs together with a valuation function for thepmsitional variables of the language under
consideration. We interpret TDL on an extension of intetgulesystems augmented to include awareness
sets; for more details we refer to [8, 17].

Definition 2.1. (Interpreted system)

Let AG be a finite set o, agents, and let each agent AG be associated with a set of local states
L;, and the environment be associated with a set of local sfatesAn interpreted systens a tuple
M = (5,T,~1,...,~n,V,A1,...,A,) such thatS C []", L; x L. is a set of global state§, C .S x S

is a serial (temporal) relation ofi, for each agent € AG, ~,C S x S is an equivalence (epistemic)
relation defined bys ~; s"iff [;(s’) = l;(s), wherel; : S — L; is a function that returns the local state



of agenti from a global state) : S — 27V is a valuation function, and; : L; — 2"V (TPL) js an
awareness function assigning a set of formulae to each &hateachi € AG.

Awareness sets represent facts (expressed as TDL fornara@ent is aware of at a given state; we
refer to [8, 17] for more details.

Satisfaction. A pathin M is an infinite sequence = (s, s1, - . .) of global states such thét;, s;11) €
T for eachi € IN. For a pathr = (s, s1,...), we taker (k) = si. By II(s) we denote the set of all the
paths starting at € S.

Definition 2.2. (Satisfaction)

Let M be an interpreted systema state, and,, 3 TDL formulae. The satisfaction relatiga, indicating
truth of a formula in M at state, is defined inductively as follows:

(M,s)Ep  ifpeV(s),

E-a if (M,s) }~ «a,

,8) E A if a € A;(1;(s)),
,8) E Kiaif (Vs' € S) (s ~; s implies(M, s') = ).

(M, s)

(M,s) EaVvgif (M,s) Eaor(M,s) =S,

(M, 5) = EXa if (3r € T1(s)) (M, 7(1) = o,

(M, s) = E(aUp) if (3m € TI(s ))(3m 2 0)[(M,x(m)) |= B and(Vj <m)(M,7(j)) = al,
(M, 5) = A(Up) if (v € TI(s))(3m > 0)[(M m(m)) |= B and(Vj < m)(M,n(j)) = o,
(M, s) E X« if (M,s) = Kiaand(M,s) E Ai(a),

(M, s)

(M, s)

Note that sincé;« is a shortcut folE(C;aUX;«), as defined on page 3, we have théf, s) = D;« iff
(M, s) = E(K;oUX;a).

Henceforth, we will only consider models with a fixed intext@tion for the security-specialised
propositional variablesent;(m) andreceived;(m); in particular, we takg= to be defined for these
propositions as follows:

(M, s) E sent;(m) if  (3m' € M)(3j € AG) such thatn C m’ andsent(j,m’) € l;(s),
(M, s) = received;(m) if  recv(m) € l;(s).

We leave the definitions of the other security-specialisegh@sitions open; their interpretation will
depend on the protocol under consideration. They are natatefor the analysis of HSLA presented
below.

Let M be an interpreted system. We say that a TDL formulia valid on M or M is a model forp
(written M |= o), if M, s |= ¢ for all statess € S.

3. The model checkersMcmMAS and MCMAS-X

3.1. Overview ofMCMAS

McMAS is a symbolic model checker developed for the automatidigation of multi-agent systems.
In particular, McMAS permits the verification of specifications involving timeydwledge, correct be-
haviour, and strategies of agentscMAs employs the formalism of interpreted systems and its eitans
[8, 26] as the underlying semantics for all these operators.

McMAS reduces the problem of model checking a formula on a moddiggtoblem of compar-
ing two Ordered Binary Decision Diagrams ODs, see [5] for more details) representing appropriate



Agent SampleAgent

Lstate = {s0,s1}; -- the local states
Lgreen = {s0,s1}; -- the "correct" local states
Action = {al,a2}; -- actions
Protocol:
s0: {al}; -- the actions permitted in a local state
s1: {al, a2};
end Protocol
Ev:

-- the evolution function lists (on the right) the conditions
-- causing a transition to the local state on the left.
sl if (Lstate=sO and Action=al and AnotherAgent.Action=a7);
s0 if (Lstate=sl1 and Action=al);

end Ev

end Agent

Figure 1. An agent’s definition using ISPL.

Boolean formulae. The idea behindBOD-based model checking is to represent the set of sfatks
satisfyingy as a Boolean formula built recursively on the structurerofThe Boolean formula repre-
senting[y] is encoded as an&bD and this is compared to theBDD representing the Boolean formula
encoding the set of reachable states\of If these are equal, then it is the case thahbolds in M.
OBDDs are used because they offer an efficient and compact repmésa for most Boolean formu-
lae. MCMAS supports not only temporal logic but also epistemic logic /&L [1], and modalities for
correctness/violation [14].

An input to McMAS is a program written in ISPL (Interpreted Systems Prograngmianguage)
representing all possible evolution of the system undetyaisa ISPL is an SMV-like programming
language for the description of interpreted systems. ArLIfi®gram contains a list of agents, each of
which is declared by reserved keywords:

Agent <AgentID> <AgBody> end Agent

where<AgentID> is any string uniquely identifying an agent, atwlsBody> contains the declarations of
the local states, the actions, the protocols, and the ésnlfunction for the agent. Following the agents’
declaration, an ISPL file includes sections to declare thefaitial states, the evaluation function,
and the set of formulae to be verified. Figure 1 reports thendiefin of a simple agent; we refer to the
documentation available [25] for more details about thell&Rguage.

McMAS is available under the terms of the GNU General Public Lieef3PL) and it has been
compiled on a number of platforms. ®&1As is run either from the command line, a graphical interface
or a web interface, and it accepts various input parametdrspect and fine-tune its performance.

3.2. McMAS-X: an extensions ofMCMAS

McMAS-X extends MEMAS to support the verification of the operatats, A;, andD; (see Section 2).The
verification of the additional operators is performed by lgipyy the same methodologies used for epis-
temic operators. Specifically, given an interpreted systémet [¢] denote the set of global states/af



Agent SampleAgent
Lstate {s0,s1,s2,s53};
Lgreen = {s0,s1,s2};
Action = {al,a2,a3};
Protocol:

[...]

end Protocol

Ev:
[...]
end Ev
—- This is the new additional section for Awareness
Aware:
sO : {p1,p2}; -- SampleAgent is aware of pl and p2 in sO
sl : {p2}; -- ... and of p2 in sl
end Aware
end Agent

Figure 2. An agent’s definition using ISPL in®MAS-X.

is which¢ holds. By the definition of satisfiability given in Sectionvge have:

[Ai()] = {5 € Slp € Ai(li(s))}-

Using standard procedures (e.g., see [7, 26]) the definitfdod; ()] can be re-casted in terms of
OBDDS, and this definition can be inserted in the recursive pnaeegdresented in [26] to compute the
set[¢] for any TDL formulay. The sets of statdst;(¢)] and[D; ()] can similarly be expressed using
OBDDs.

We have implemented software procedures to perform the atatipn of these sets automatically in
a tool called McMAS-x (Model Checking eXplicit knowledge), available for dowatb[24].

McMAS-X extends MEMAS's syntax in two ways: first, it supports the verification dftak formulae
introduced in Section 2; second, it augments the descnigti@n agent with the definition of the function
A;. This latter step is achieved by introducing the new keyword

Aware: <definitions> end Aware

as exemplified in Figure 2. In this example, the aginipleAgent is aware of propositiong1 andp2
in local states0, and of propositiorp2 in local states1 (notice that, following the definitions of Section 2
no consistency checks are made when defining awareness sets)

4. TheTESLA protocol

In this section we introduce thémed efficient stream loss-tolerant authenticati@resLA) protocol
[22]. TESLA provides secure authentication of the source of each patketilticast or broadcast data
streams. Five schemes of the protocol exist; each assunmgl@ sender$) broadcasting a continuous
stream of packets to receiveR)(acting independently of one another; below we will desetite first
variant of the 'ESLA protocol, and we will take into consideration one receivellyo



In order to provide security, in @SLA it is assumed that: (1) the sender and the receiver must be
loosely time-synchronised; this can be done via a simplenwssage exchange using, for example,
the NTP protocol [20]; (2) the protocol must be bootstrapffedugh a regular data authentication sys-
tem; this can be done using any secure session initiatiotogol (3) the protocol uses cryptographic
primitives includingMAC values and pseudo-random functions (PRHM&}; is computed by anessage
authentication codéunction that takes as input a message and a secret key, aghieRF providesom-
mitmentdo keys. It is assumed th&andR know the PRF as well as the message authentication code
function to be used in the session.

Following [2, 4], we now outline a ESLA scheme assuming that the protocol uses one pseudo-
random function only, the participants are initially synmhised,R knows the disclosure schedule of the
keys, andS sends packets at regular intervals that are agreedRvithiring the synchronisation process.
More details are in [22].

Assuming thatS has a digital signature key pair, with private klegl and public keykg known to
R, and thatR chooses a random and unpredictable nonce, the initiéps, forn > 1, of the protocol
for one sender and one receiver are the following:

(-1) R—S:ngr

©) S—R: {f(k),nm} 0
(1) S—R:P- MAC(kZl,Pl), for P, =t - f(kg)
(2) S—R:P- MAC(]{}Q,PQ), for Py = tq - f(k‘3) - k1

(n) S— R: P, -MAC(ky, Pp), for P, =t - f(kns1) - kn—1

As one can see from the above, with the exception of the twi@lirpackets, which are used to
bootstrap the broadcasting process, and the third packiatdntains only the messatyeto be delivered,
acommitmentf (k) to the key to be used to encode e of the next packet, and th&\C(k;, P;) of
the first packet, each packet contains: (1) the messagebe delivered; (2) @ommitmentf (k;;1) to
the key to be used to encode theC of the next packets; (3) the key_; that was used to encode the
MAC of the previous sent packet; (4) tMeC(k;, P;) of the current packet.

TESLA guarantees, among others, the following security propettige receiver does not accept
any message unless it was actually sent by the séndlée verify this and other properties by means
of McMAS-X in the next section. We have checked other variants of theLA protocol in a similar
fashion but, given the procedure is similar, we only reperiehon the one above.

5. TheTESLA protocol and MCMAS-X

In the section we model check th&3LA protocol by means of MMAs-x. To do this we define and en-
code an interpreted systetd = (S, T, ~s, ~r, ~1, V, Asg, AR, A1) representing ESLA’S executions.
Given our state space needs be finite we set a lintit the number of packets that can be broadcast
during one session; obviously this assumption does nottaffie analysis as no attack depends on the
number of broadcasted packets.

As defined in Section 4, theeEBLA protocol involves two participants: a send&) é@nd a receiver
(R), communicating through an unreliable channel that is ucdenplete control of an intrudet) In
the interpreted system framework it is convenient to segtimeipals as agents, and the intruder as the



environment. While specifying the agents (i.e., definingteos local states, a set of actions, a protocol,
and an evolution function), we assume tBdtas all the information he needs to compose a packet, i.e.,
he has a complete set of messadés C M. We also assume thdts constitutesS's initial database
that remains accessible to him throughout the run. Moreaverassume thdthas all the information
needed to compose well-formed packets, with C M such thatMy N Mg = (, and we assume that
M7y can grow during the run. We work with a Dolev-Yao intruder ontrol of the channel and able to
encrypt and decrypt messages if he has the appropriate kewasgme the intruder sends (resends and
fakes) well-formed packets only, i.e., any packet contaimaessage body, a key commitment, a key,
and an appropriatAC value. Finally, we assume th8f R, andl use a shared PRF and a shared MAC
function, R andl know the public key ofS, S andl begin with disjoint sets of keys, and tHatknows
the precise schedule of packets, and that this informasianciorporated into the first pack&}, which
cannot be dropped or faked.

We introduce the following sets of local states §R andl, respectively:

Lg = {[], [recv(nr)], [sent(R, Py)]} U {[sent(R, P;_1), sent(R, P;)] | 0 < i < n}
U{[sent(R, P,_1), sent(R, P;), sent(R, Pi41)] | 0 < i < n}.

Ly = {[], [sent(S,nRr)], [stop], [recv(Py)]} U {[recv(FPy), recv(Py)] }U
{[recv(P;),recv(Pit1)] | 0 <i < n} U{[recv(Fy), recv(P]),recv(Ps)]}U
{[recv(P;_1), recv(F;),recv(Piy1)] | 0 < i < n}U
{[recv(P;_1),recv(P;),recv(Pit2)] | 0 < i < n}U
{[recv(P;), recv(Piy1),recv(Py, )] | 0 < i < n}jU
{[recv(Py),recv(P])]} U {[recv(Py), recv(Py), recv(Py)]}.

Ly = {[], [recv(nr)], [recv(Py)]} U {[recv(P;), recv(Pi41)] | 0 < i < n}u
{[recv(P;—1), recv(P;),recv(Pi+1)] | 0 < i < n}U
{[recv(Py),recv(Py), send(R, Py)|}U
{[recv(Py),recv(Py), send(R, P]), recv(Py)]}U
{[recv(Py),recv(Py), send(R, Py),recv(Ps), send(R, Py)|}U
{[recv(P;_1),recv(P;), recv(Piy1), send(R, P/ ;)] | 0 <i < n}.

i
and the following sets of actions, performed in compliandt he description in Section 4:
o Acts = {\} U{sendP;, acceptP; | 0 <i <n},
o Actr = {\, nonce, stop} U{acceptP; | 0 <i < n},
o Acty = {\} U{dropP;, fakeP;,acceptP; | 0 <1i < n}.

The intuitive meaning of's local states is the followingi-] representsSss initial state in the pro-
tocol; [recv(ngr)] represents the message senfoin order to establish communicatiofsent (R, Fy)]
represents the fact th&thas just sent packél to R; [sent(R, P;_1), sent(R, P;)] and[sent(R, P,_1),
sent(R, P;), sent(R, P;11)] represent the fact th&has sent packeiB;, wherej < i+1and0 < i < n.
With regards toS's actions, action\ is the null-action,sendP; stands forS sending packef;, and
accept P; represents thed recognises packe®; as accepted by the receiver.

R’s local states above stand for the following:] representsR’s initial state in the protocol;
[sent(S,nr)| represents the fact th& has just sent the nonceg to S and is waiting for packets;



[stop] represents the fact th& has just stopped collecting packetsccv(Fy)], [recv(Fy), recv(Ps)],
[recv(F;), recv(Pit1)], [recv(Pi—1),recv(F;), recv(Pito)] and [recv(Pi—1), recv(P;), recv(Piy1)]
represent the packef® has received fronS; [recv(Fy), recv(P])], [recv(Fy), recv(P]), recv(Py)],
[recv(Ry), recv(P]), reco(Py)], and[recv(P;), recv(Piy 1), recv( Py, 5)] represent the faked packeRs
has received. As regards R's actions,accept P; represent®R accepting packeP; as authentic; the
other action names have intuitive correspondences.

For what concerns, [-] represents’s initial state in the protocoljrecv(ng )| stands foll’s state fol-
lowing the interception oR’s initial message t&; [recv(Fy)], [recv(P;), recv(P;41)] and[recv(P;_1),
recv(P;),recv(P;11)] represent the packets intercepted hy [recv(Py),recv(Py), send(R, Py)],
[recv(Py), reco(Py), send(R, Py), reco(Py)], [recv(Py),recv(Py), send(R, P{),recv(Ps), send(R,
Py)], and[recv(P;-1), recv(F;), recv(Piy1), send(R, Py, ;)] represent the packets intercepted land
their faked versions. The actiafrcept P; denotes the fact that intruder is not able to fake or drop the
packetP;; dropP; (respectivelyfakeP;) encodes the action dfdropping (respectively faking) packet
FB;.

We have now defined the set of states and set of actions for tie-agent system representing
TESLA, so we can describe how the protocol evolves. In the mulhgg) settings this is defined by
means of an evolution functioh: S x Act — 2Ls*LrxL1 \where Act C Actg x Actr x Acty and
S C (Ls x Lr x Ly). The functiont gives the transition relatioff’; namely, for all thes, s’ € S,
(s,s") € T if there exists amct € Act such that (s, act) = s’. We do not report here the full evolution
function for TESLA, this can be found in [17].

To finalise the description of the interpreted systémfor TESLA, we have to define a valuation
functionV : S — 27V and the awareness functions; : Lx — 27 (T'PL) for X € {S,R,I}. We
first introduce the following sePV of propositional variables:

PY = {hasgr(m), sentg(m), receivedgr (m), droppedy(m), fakedy(m) | m € M}.

We defineV : S — 27V as follows:

e hasr(t;) € V(s) if there exist packet;_,, P, and P;;, such thatf(k;) C P4, t; C P,
ki C Py, recv(Pi—1) € Ir(s), recv(P;) € lr(s) andrecv(Piy1) € Ir(s),

e sentg(m) € V(s) if there exists packeP; such thatn C P, andsent(R, ;) € Ig(s), for any
m € Mg,

o receivedr(m) € V(s) if recv(m) € Ir(s), foranym € Mg U My,

e droppedi(m) € V(s) if recv(m) & Ilr(s) andrecv(m) € ly(s), foranym € Mg,

o fakedi(m) € V(s) if there exist packet$’; such thain T P; andsend(R, P;) € li(s), for any
m € Mg U Mj.

For R we take the following awareness functidr : Lr, — 2"V7(TPL), Let! € Ly anda be a

TDL formula. Thena € Ag(l) if:
e a = receivedgr(m) andrecv(m) € [ andm € Mg U My,

a = fakedr(m) andl = [stop] andm € Mg U My,

a = droppedy(m) andl = [stop] andm € Msg,

a = hasg(m) and gecv(m) € l or Im’ such thatn C m’ andrecv(m’) € I) andm € MgU M.



For X € {S,I}, the awareness functiohx : Lx — 2"V (TPL) is the following: for anyl € Ly,
Ax (1) = 0.

To generate automatically the above interpreted systemesepting ESLA we developed a program
in C++ that for an input: of packets used generates the corresponding ISPL code i(agre B) to be
used with McmAs-X. In this way we can automatically produce not just one butralmr of instances
of the protocol. This helps us evaluate the performance ofs-X.

Agent Receiver

Lstate={empty,send_s_nr,stop,recv_pO,recv_pO_recv_pl,recv_pO_recv_p2,...};
Action = {nothing,nonce,stop,accept_pl,accept_p2}; Protocol:

empty : {nonce}; recv_pO : {nothing};

send_s_nr : {nothing}; stop : {stop};

recv_pO_recv_p2 : {stopl}; recv_pO_recv_pl : {nothing};
end

Protocol Ev:
stop if ((Lstate=stop and Action=stop and Sender.Action=nothing and
Intruder.Action=nothing) or (Lstate=recv_pO_recv_p2 and Action=stop
and Sender.Action=nothing and Intruder.Action=nothing) or ...);

end Ev Aware:

recv_p0 : {received_r_pO,has_r_pO};

recv_pO_recv_pl : {received_r_pO,received_r_pl,has_r_pO,has_r_pl};
recv_pO_recv_p2 : {received_r_pO,has_r_pO,received_r_p2,has_r_p2};

end Aware
end Agent

Figure 3. A fragment oR’s definition in the ISPL format fon = 2.

Given the interpreted systefi of TESLA as defined above, we now set out to check by means of
McmAs-X all the properties examined in [17]. First we would like tdadsish whether or not #SLA
satisfies the desired security propertthe receiver does not accept any message unless it waslbctua
sent by the sendey’l.e., whether or noi/ is a model for the following TDL formula: foranyy < i < n,

hasr(t;) = (sentg(P;—1) A sents(P;) A sentg(Py1)). 1)

Next we would like to check whether or noESLA satisfies the stronger propefiye receiver does
not accept any message unless he knows that it was actuatiypgehe sender” This is expressed by
the following TDL formula: for anyd < i < n,

hasr(t;) = Kr(sents(P;,—1) A sents(P;) A sentg(P;y1)). 2

Further, we would like to check whethelESLA meets the following properties: (3it is always
the case that the receiver does not accept any message telés®ows that it was actually sent by the
sender”. (4) “the principals know about the presence of the intrude(5) the receiver is able to check
the source of messages, i.8f,a packet is faked, then the receiver would deduce thigt) “if the



receiver receives some packéts ;, P;, and P,; with a message; C— P;, and he does not accefp
then he knows that at least one of the packets was not seng liptémded sender”In other words, if a
packet was indeed faked, the receiver is able to deduceaittis (f7)“if the intruder drops a packet, the
receiver will deduce this fact”.

The properties above can be expressed in a temporal-efiskemguage by means of the formulae
below.

AG(hasr(ti) = Kr(sents(Pi—1) A sents(P;) A sents(Fiy1))) 3)
KsEF (sentg(P;) N\ —receivedr (P;)) 4)

fakedy(P;) = Dg(fakedi(P;)) ©)

(receivedr (Pi—1) A receivedg (P;) A receivedr (Pi41) A —hasr(t)) = ©)

(Kr(—sents(Pi—1) V —sentg(P;) V —sentg(Pi11))A

(Dr(faker(Pi—1)) V Dr(faker(P;)) V Dr(faker(Pit1))))
AG (droppedy(P;) = Dr(droppedy(F;)) @)

All formulae above were successfully verified bydMAs-x thereby demonstrating the correctness
of the protocol.

6. Experimental results and conclusions

We have employed the ISPL generator defined in the previotigoeeo create a number of instances
of the TESLA protocol, from 5 to 320 steps. We have verified all formulaevafor all steps analysed,
demonstrating the correctness aSLA with respect to the specifications above. While process-alge
bras [4] and Lynch-Vaandrager automata [2] have previobsign used to analyseESLA, our results
specifically demonstrate its correctness with respectdademporal epistemic specifications above.
McMAS-X uses BDDSs to verify the properties. Consequently most of the contjmrtal time spent
by the model checker is used to construct a symbolic reptasen of the model for the system. Ta-
ble 1 reports some experimental results obtained using &Bbtaic Pro equipped with a 2.1GHz Intel
processor, 2GBytes of RAM, running Mac OS X 10.4.6. The figdtion reports the number of packets,
the second column contains the time required for the vetifinawhile the third and the fourth column
provide information about space requirements. In paricudolumn three lists the number of variables
required to encode the example: from this value the sizeehtbdel can be deducted. The size of the
model can also be estimated by evaluating the number of &d&tds and actions required (see Section 4),
as follows:

e The number of local states f&is 3 4+ 2n, and the number of actions is+ 2n (wheren is the
number of steps of the protocol.

e The number of local states f& is 8 + 4n, and the number of actions 3s+ n.

e The number of local states foiis 4 + 4n, and the number of actions Is+ 3n.



Therefore, the size of the model is in the ordendt, obtained by multiplying the number of local states
(with an additional power of two for “next” variable), by tmeimber of actions. The number of Boolean
variables required to encode this model is the logarithmasebtwo of the size of model as computed
above. For instance, 85 Boolean variables are required wher200, corresponding to a model of size

285 ~ 4. 10%°.

N. of packets | Time (sec) | N. of BDD variables | Memory (bytes)

5 2 40 4612376

10 3 48 4737832

20 8 55 5644888

50 25 67 6562280
100 38 76 9572968
150 77 82 9191848
200 92 85 10674616
250 110 91 11481224
320 190 91 15703560

Table 1. Experimental results.
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Figure 4. Experimental results.

Figure 4 depicts all the experimental results for time andnmigy requirements. The oscillating
behaviour of the memory requirements shown in the figure isegded by the heuristic techniques
employed in the construction of EDDs (a similar behaviour was observed for a different exammple i
[12]). Nevertheless, an increasing trend is evident, aafpgdor time requirements (dotted line).



Another factor which may impact the results is the kind of istics employed by MMAs-X for

variable reordering. Currently, we adopt the default reorty methods provided by [13], which is
triggered only when the OBDDs reach a certain size. Moreavedo not partition the transition relation
but we treat it as a monolithic OBDD. We leave the issue ofifpiaming, variable grouping, and variable
reordering open for future investigation.

Given that no other model checker is available to verify Expknowledge we cannot offer a direct

comparison of the results above. Note though that on their ey do seem entirely adequate. Obvi-
ously, other specialised model checkers exist to verifypral only properties (or simply reachability)
for security protocols, notably AVISPA [3], but given theffdrent emphasis in the two approaches it
would not seem appropriate to compare experimental results
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