
Fundamenta Informaticae 85 (2008) 1–17 1

IOS Press

LDYIS: a Framework for Model Checking Security Protocols

Alessio Lomuscio

Department of Computing

Imperial College London, UK

A.Lomuscio@doc.ic.ac.uk

Wojciech Penczek∗

Institute of Computer Science, PAS, and

University of Podlasie, Poland

penczek@ipipan.waw.pl

Abstract. We present a formalism for the automatic verification of security protocols based on
multi-agent systems semantics. We give the syntax and semantics of a temporal-epistemic security-
specialised logic and provide a lazy-intruder model for theprotocol rules that we argue to be partic-
ularly suitable for verification purposes. We exemplify thetechnique by finding a (known) bug in
the traditional NSPK protocol.

1. Introduction

In protocol analysis it is significantly important to be ableto capture the concepts of what information a
participanthasthroughout an exchange, what a participant can and cannotdeduce, and whether or not
particular sequences of moves exist resulting in the systemreachinga particular state. Indeed, in some
specialised areas of security (such as all the ones rooted inthe BAN proposal [3]), knowledge of the
participants is explicitly and symbolically represented.Of course, the area of Artificial Intelligence has
a long and successful tradition in the development of formaltools for the representation of knowledge,
including the formalisation of the temporal evolution of agents’ epistemic states [8] as well as further
refinements for security [10, 9]. Crucially, recent developments in the verification of some of these logics
by means of symbolic model checking techniques [20, 18, 13],as well as the implementation of these
tools in prototype systems [16, 6, 13] have provided the areawith a set of tools to attempt the analysis of
security protocols by means of efficient and automatic techniques.

∗Address for correspondence: Institute of Computer Science, PAS ul. Ordona 21, 01-237 Warsaw, Poland

2 A. Lomuscio and W. Penczek / LDYIS: a Framework for Model Checking security protocols

In our own work in this area we have successfully verified by means of our own specialised model
checkers [14, 15] the correctness of the dining cryptographer protocol [5] and the TESLA protocol [15]
in terms of appropriate specifications expressed as temporal/epistemic formulas. However in doing so
we have also found that our analysis cannot be extended to deal with many complex security protocols.
In particular if we were to consider a protocol in which the intruder is allowed to operate in line with the
full Dolev-Yao model [7] we would quickly have to consider a number of states/transitions higher than
what any model checker could ever handle. For example, at anystep of any security protocol a principal
could theoretically compose and send an unbounded number ofmessages to all other principals, thereby
causing the state space to diverge.

This limitation is not related to the knowledge-based approach we pursued but applies just as well
to more traditional model checking approaches. Indeed, while model checking approaches in security
are typically concerned with checking reachability properties only [11, 12] (and not temporal/epistemic
specifications) the same considerations apply here too. Oneof the most promising approaches to tackle
this problem is the lazy intruder model developed by Basin, Mödersheim and Viganó in [4] and (to the
best of our understanding) used together with a planning model checker [2] as a part of the IST Project
AVISPA [1].

Here, in the representation of the runs that may take place inthe system, messages may be routed to
the channelonly whenboth the sender and the receiver are in a state in which the protocol permits this
message to be sent and received. In this way the model checkerimplementing this semantics does not
have to consider transitions clearly not leading to protocol termination. Furthermore, in the construction
of a run many details are abstracted and left to the model checker’s unifying mechanisms to instantiate.

In this paper we set out to define a semantics for temporal and epistemic logic based on ideas similar
to the ones cited above. We aim to introduce a lazy intruder model, integrate it with a temporal/epistemic
logic and pair this with a highly-efficient bounded model checking algorithm. While our approach is
directly inspired by the lazy-intruder work cited above, there are also considerable differences result-
ing from our objective to work on a fully-fledged specification language involving temporal/epistemic
operators as opposed to simply checking reachability of states.

The scheme of the rest of the paper is as follows: in Section 2 and 3 we give a semantics to our
approach. In Section 4 we define the logic and satisfaction for the language. Section 5 covers the basic
bounded model checking set up in the present case. In Section6 we exemplify the analysis in the case of
a particular authentication protocol (NSPK). In Section 7 we show how our formalisation would produce
an attack to NSPK.

2. Semantics

Since our intention is to bring together model checking withprotocol analysis to check explicitly what
epistemic properties participants have (i.e., what information they possess) we work on an extension of
the framework of interpreted systems [8]. Interpreted systems are a transition-based semantics where
(global) states represent explicitly a snapshot of all components (oragents) in the system. Transitions
between states represent the result of global joint actionsperformed simultaneously (in a locked seman-
tics) by all agents at a given global states. The agents select actions to perform following a given local
protocol mapping sets of actions for each given local state.In our adaptation of the formalism, the agents
and the intruder are the principals in the protocol, their actions are simply communication actions of send

A. Lomuscio and W. Penczek / LDYIS: a Framework for Model Checking security protocols 3

and receive (of a given message) and the protocols are explicit representations of the steps of the security
protocol under analysis1.

As discussed in the previous section the key idea of this approach is to employ a symbolic, trace-
based semantics for the analysis of security protocols. We use the term “symbolic” to mean a compact,
variable-based representation; for instance, a symbolic computational trace is a sequence in which some
elements are variables or terms, and therefore represent a set of traces. In contrast to this we employ the
term “constant trace” to refer simply to a ground instance ofa symbolic trace, i.e., a sequence of concrete
computational states. Given the importance in this approach of unification during model checking, the
distinction between variables and ground terms is one that we employ throughout the paper for a variety
of concepts. More details on this are offered below.

We begin by assuming a finite set of agents, orprincipals, Ag including a special agent called the
intruderι ∈ Ag. Note that the principals aregroundelements anduniquelycorrespond to real entities,
not to be confused with the roles they play; so, for instance,if an intruder is impersonating a principal
we only need to use one principal, the intruder, in our model.To each principali ∈ Ag we associate
a number of security specialised concepts: an ordered set offresh noncesN f

i and old (in the sense
of “used” or “seen”) set of noncesN o

i , a set of keysKi known to the agent, an indexidi indicating
how many parallel sessionsi are running, and an address@i (in the sense of origin/destination for the
messages). Of key importance in the following is that in denoting an element of any of these sets we
may use constant or variable terms denoting respectively a particular element of the set or a variable
representingany element of the set. For clarity we use a lowercase letters to denote constant terms
and uppercase letters to denote variable terms. For instance, na represents a constant nonce related to
the constant principala, nA represents a constant nonce related to a variable agentA, Na represents a
variable nonce related to a constant agenta, and,NA represents a variable nonce related to a variable
agentA. Similarly for keys,ka is a constant key for a constant principala, Ka is a variable key for
the constant principala, andKA is a variable key for the variable agentA. Ultimately we build traces
of global states in which each global state is a tuple of localstates for the principals. The local states
contain all the information the principals have been exposed to, i.e., the messages they have witnessed
and sent; in epistemic logic terminology we say we assume perfect recall.

Each message is represented by a tuple specifying origin, destination, and content. We formally
proceed as follows.

Definition 2.1. (Messages)
A messagemsg is defined by the following grammar:

msg ::= i | I | n | N | k | K | (msg)k | (msg)K | msg ·msg,

wherei ∈ Ag (I ∈ Ag) is a constant (respectively, variable) principal,n ∈ N f ∪N o (N ∈ N f ∪N o) is
a constant (respectively, variable) nonce, andk ∈ K (K ∈ K) is a constant (respectively, variable) key.
The symbol· denotes the concatenation between messages.

Messages represent thecontentthat is being exchanged. We useletters to represent the content, the
sender, and the receiver of a message. Due to possible impersonations by Intruder we use theaddress of
a participant not the participant himselfin the fields of sender/receiver.

1Note the different use of the term “protocol” in interpretedsystems semantics and as in “security protocol”.

4 A. Lomuscio and W. Penczek / LDYIS: a Framework for Model Checking security protocols

Definition 2.2. (Letters)
A letter is a tuplelt = ((@s,@r),msg) where@s is the sender’s address,@r is the receiver’s address,
andmsg is the content of the letterlt. We call(@s,@r) theheaderof lt = ((@s,@r),msg).

The above defines a constant letter. Like for any other component in the framework we may need to
use variable letters as well. To do this and retain the structure of the letter we simply use variables
appropriately in any of letter’s terms. For instance((@A,@b), nA) represents a (variable) letter referring
to a message from a variable senderA to a constant principalb in which the content is a variable nonce
that depends on the value of the sender.

We are now ready to give definitions for the global states of a system. The global states are tuples of
local states, which represent the states of a computation principals may be in.

Definition 2.3. (Local states)
A local state for an agenti∈Ag is a 6-tupleli = (Agi,N

o
i ,N

f
i ,Ki, idi, lti) where

• Agi ⊆ Ag is a set of agents known toi,

• N o
i is an ordered set of nonces that have been seen by agenti,

• N f
i is an ordered set of fresh nonces available to agenti,

• Ki is a set of keys known to agenti,

• idi is the number of sessions either completed or currently running in whichi has participated,

• lti ⊂ (lt, id)+ is a sequence of pairs of letters and sessions identifiers forthe protocols sessions
the agent has actively participated in. Each nonce inN o

i is present inlti.

We will useLi to denote a set of the possible local states for agenti, andG ⊆ Πn
i=1Li for the set of

all possible global states. We will also exploit the operator First such thatFirst (N) returns the first
element of a non-empty ordered setN and modifiesN by removing this element.

Definition 2.4. A global stateg = (l1, . . . , ln) is a n-tuple of local states for all agents under consid-
eration. An initial global state is a tupleg0 = (l1, . . . , ln), whereli = (Agi, ∅,N

f
i ,Ki, 0, ǫ), for all

i = 1, . . . n with the assumption that
⋂n

i=1 N
f
i = ∅ (i.e., the sets of fresh nonces are disjoint).

We assume each agenti performs send/receive actionsActi according to aprotocol, i.e., a function
Li → 2Acti from local states to actionsActi (ǫ ∈ Acti is the empty action). We assume all agents
perform their actions synchronously at a given global state; so we have transitions of the formT ⊆
G×Act1 × · · ·×Actn ×G, where we assume agents non-deterministically choose an action at any step
from the set of actions offered to them by the protocol. We write (g, g′) ∈ T if (g, (a1, . . . , an), g′) ∈ T

for some(a1, . . . , an). The states, the actions, and the transitions as above definea branching time
semantics. Apathπ = (g0, g1, . . . , gj) is a sequence of global states such that(gi, gi+1) ∈ T for each
0 ≤ i < j. For a pathπ = (g0, g1, . . .), we takeπ(k) = gk. By Π(g) we denote the set of all the paths
starting atg ∈ G. A global stateg is calledreachablefrom g0 if there is a pathπ = (g0, g1, . . .) such
thatg0 = g0 andgi = g for somei ≥ 0.

A. Lomuscio and W. Penczek / LDYIS: a Framework for Model Checking security protocols 5

3. Lazy D-Y Interpreted Systems

The previous section is quite liberal in terms of what traceswe allow in a system. In this section we
introduce constraints in the executions to model a particular set of assumptions known as Dolev-Yao
(D-Y, for short) [7] assumptions. Specifically we assume allparticipants have perfect recall and that the
intruder has complete control of the channel, i.e., it can block/resend/route messages on the communica-
tion channel. We also assume that encryption is perfect, i.e., encrypted messages may only be decrypted
with the correct key and encryption/decryption of messagesis instantaneous.

We now formalise the assumptions above by restricting the possible transitions, thereby defining
Lazy Dolev-Yao Interpreted Systems (LDYIS for short). While LDYIS model the whole class of D-Y
protocols, each particular security protocol will define specific rules specifying the sequence of messages
to be sent/received. We use the term “lazy” in the sense of [4](see below).

To specify any protocol we givestate transformer rules. These are rules that specify preconditions
and postconditions on global states for a particular step inthe protocol. For efficiency reasons (further
discussed in the next section), a state transformer rule is given in a compact form specifyingsetsof
possible transitions in a protocol. Given this, variables specifying particular components in the local
states will generally appear in these rules. Following the “lazy” approach in LDYIS for any rule to be
triggered we need both the sender and the receiver to be in theappropriate local state corresponding to a
particular protocol step. In this way a considerable numberof irrelevant transitions (i.e., messages that
would be discarded by the receiver) is saved thereby increasing the efficiency of the model checking
method applied. More precisely our state transformer rulesare defined as follows.

Definition 3.1. (State transformer rules)
For each stept of a protocol under analysis, we consider state transformerrulesG

t
→ G′ of the form

(pre(t), post(t)), whereG,G′ are sets of global states,pre(t) are preconditions onG, andpost(t) are
postconditions onG′.

The preconditions are constraints that must be satisfied forthe transition to be enabled; the postconditions
specify updates to the local states occurring as a result of the triggering of the transition. Given that we
use a lazy semanticspre(t) always specifiesmatched moves between Sender and Receiver, i.e., the sender
only sends messages to receivers who are ready to execute thecorresponding step in the protocol.

In the preconditions we often writec ∈ LA to denote that the componentc is an element of each of
the local states for the variable agentA. Similarly, in the postconditions we writeL′

A = LA ◦ c to denote
the update of the set of local states for the variable agentA by means of a componentc. Typically c is a
letter, a nonce, a key, or a session identifier and the test or the update is intended to be carried out on the
relevant subcomponent of the local states; we do not write this explicitly to simplify the reading of the
rules.

We further assume that after every move (send/receive), theinstantaneous decoding of all messages
sent is executed (provided a key is in possession of the intruder and/or principals). Clearly, it is pos-
sible to generate state transformer rules in an automatic way, but this requires a syntactical analysis of
the protocol steps. We describe here the main idea of the algorithm and present a detailed case study
analysis of NSPK, based on this algorithm, in Section 6. For each protocol the state transformer rules
can be generated automatically according to the following principles. An “honest send” rule represents a
message being sent fromA toB. A “fake send” rule corresponds to a message sent by the intruder toB.
An ”ι-forward” rule corresponds to the forwarding by the intruder of a message, previously intercepted,

6 A. Lomuscio and W. Penczek / LDYIS: a Framework for Model Checking security protocols

to another principal. For the above, bearing in mind the semantics chosen assumes synchronous moves,
we obtain the following transitions. We give further details of this in Section 6.

• Honest-send-i-A −→ B

– Preconditions:

If i = 1, thenA has not yet sent a message of step 1 toB.

If i ≥ 2, thenA has received a message fromB of stepi−1 and has not yet replied toB.

– Postconditions:

The local states ofA andι (B if A = ι) are updated according to the message sent byA. If
B = ι, thenidB := idB + 1. If i = 1, thenidA := idA + 1.

• Fake-send-i-ι(A) −→ B

– Preconditions:

A message of stepi is composable byι and acceptable byB, i.e.,B has sent a message of
stepi−1 (if i ≥ 2) to ι and has not received a reply.

– Postconditions:

The local states ofι andB are updated according to the message sent byι. If i = 1, then
idB := idB + 1.

• ι-forward (stepi: A −→ B)

– Preconditions:

A message of stepi sent byA was intercepted byι and not yet received byB.

– Postconditions:

The local state ofB is updated according to the message intercepted byι.

The rules given in Section 7 can be produced automatically bya compiler. However in the example
discussed in Section 7 the specific rules are computed by handsimply from the D-Y assumptions and the
protocol description.

Definition 3.2. (Lazy D-Y Interpreted Systems)
Given a security protocolP and a set of propositional variablesPV . An LDYIS MP for P , or simply a
model (forP), is a(n+ 4)-tupleMP = (G, g0,P,∼1, . . . ,∼n, V), where:

• g0 ∈ Πn
i=1Li is the initial global state of the system,

• G is the set of global states reachable fromg0,

• P =
⋃

g∈G P(g), whereP(g) ⊂ Π(g) is the set of all paths starting atg compliant with the Lazy
D-Y conditions above,

• ∼i ⊆ G × G is an epistemic relation for agenti defined byg ∼i g
′ iff li(g) = li(g

′), where
li : G→ Li returns the local state of agenti given a global state,

• V : G× PV → {true, false} is an interpretation for the propositional variablesPV .

A. Lomuscio and W. Penczek / LDYIS: a Framework for Model Checking security protocols 7

The structure above satisfies also the following conditions:

• Agents have perfect recall: following receipt of a message agents add the message to their local
state by pairing it with an appropriate session identifier.

• Every message sent by a principal is intercepted by the intruder, who records it in its local state.

• Upon receipt of messages all principals and intruders immediately decode all messages and sub-
messages providing they have the key to do so.

We do not give the conditions above formally as they are rather intuitive and will be presented in the
example below. It is clear that giving the conditions is not technically difficult although it is rather
cumbersome.

Intuitively MP will be used to interpret a logic defined in the next section. Also note the relations
∼i are epistemic accessibility relations between states to beused to interpret an epistemic language as
defined in the next section.

4. Temporal Logic of Knowledge

In this section we introduce a logical language to be interpreted on the semantics of the previous section.
The language we use is a standard combination of epistemic logic and branching time temporal logic.
Extensions are possible and worth considering but not pursued here.

Definition 4.1. (Logical Language)
The logical languageL is defined by the following BNF expression:

φ ::= sendsi(msg) |receivesi(msg) |hasi(k) |hasi(n) |¬φ |φ ∧ φ |Kiφ |EXφ |E(φUφ) | EGφ,

wheresendsi(msg), receivesi(msg), hasi(k), hasi(n) ∈ PV , msg is a message,k ∈ Ki is a key,
n ∈ N o

i is a nonce,i ∈ {1, . . . , n}, andPV a set of propositional variables.

The language above includes specialised propositional letters of the obvious meaning, negation, conjunc-
tion, branching time operators (EX,EU,EG) and epistemic operators (Ki). Kiφ = ¬Ki¬φ whereKiφ

is read as “Agenti knows thatφ”. We use the dualKi as the model checking technique presented below
is based on bounded model checking. We interpretL on LDYISs as follows.

Definition 4.2. (Satisfaction)
LetM be a model,g = (l1, . . . , ln) a global state, andφ,ψ formulas inL. The satisfaction relation|=,
denoting truth of a formula in the modelM2 at the global stateg, is defined inductively as follows:

• g |= sendsi(msg) iff (((@i,@j),msg), id) is an element of the sequencelti in the local stateli
in g, for some address@j and session numberid,

• g |= receivesi(msg) iff (((@j ,@i),msg), id) is an element of the sequencelti in the local state
li in g, for some address@j and session numberid,

2M is omitted when understood.

8 A. Lomuscio and W. Penczek / LDYIS: a Framework for Model Checking security protocols

• g |= hasi(n) iff n ∈ N o
i , g |= hasi(k) iff k ∈ Ki,

• g |= ¬φ iff not g |= φ, g |= φ ∧ ψ iff g |= φ andg |= ψ,

• g |= Kiφ iff (∃g′ ∈ G) g ∼i g
′ andg′ |= φ, g |= EXφ iff (∃π ∈ P(g)) s.t.π(1) |= φ,

• g |= EGφ iff (∃π ∈ P(g)) s.t. (∀k ≥ 0) π(k) |= φ,

• g |= E(φUψ) iff (∃π ∈ P(g)) (∃k ≥ 0) s.t.π(k) |= ψ and(∀0 ≤ j < k) π(j) |= φ.

Note that the special propositions are interpreted according to their intuitive meaning on their respective
logical states and temporal and epistemic operators are as standard.

5. Bounded Model Checking forL

In this section we adapt an algorithm for bounded model checking (BMC) for L. BMC works by trans-
lating both the model and the formula to be checked into propositional formulas. The satisfaction of their
conjunction is then checked by an efficient SAT-solver. BMC is particularly efficient when the analysis
involves looking for faults in protocols whose runs are finite and key properties are expressed as formulas
in the existential form.

BMC was originally introduced for verification of the existential fragment of the logicCTL [19],
and then extended to ECTLK [18]. BMC is based on the observation that some properties of a system
can be checked over a part of its model only. We present the main definitions of BMC forL, but refer
the reader to the literature cited above for more details. Inorder to restrict the semantics to a part of the
model we definek-models, where the paths ofP are replaced by their prefixes of lengthk.

Model checking over models can be reduced to model checking over k-models. The main idea of
BMC for L is that we can checkϕ overMk by checking the satisfiability of the propositional formula
[M,ϕ]k := [Mϕ,g0

]k ∧ [ϕ]Mk
, where the first conjunct represents (a part of) the model under considera-

tion and the second a number of constraints that must be satisfied onMk for ϕ to be satisfied. Once this
translation is defined, checking satisfiability of anL formula can be done by means of a SAT-checker.

We provide here some details of the translation. We begin with the encoding of the transitions in
the system under consideration. We assumeLi ⊆ {0, 1}ki , whereki = ⌈log2(|Li|)⌉ and we take
k1 + . . . + kn = m. Moreover, letIxi be an<-ordered set of the indices of the bits of the local states
of each participanti of the global states, i.e.,Ix1 = {1, . . . , k1}, . . . , Ixn = {m − kn + 1, . . . ,m}.
Then, each global stateg = (l1, . . . , ln) can be represented byw = (w[1], . . . , w[m]) (which we shall
call aglobal state variable), where eachw[i] for i = 1, . . . ,m is a propositional variable. A sequence
w0,j, . . . , wk,j of global state variables is called thej-th symbolick-path. The propositional formula
[Mϕ,g0

]k, representing thek-paths in thek-model, is defined as follows:

[Mϕ,g0

]k := Ig0(w0,0) ∧

fk(ϕ)
∧

j=1

k−1
∧

i=0

T (wi,j, wi+1,j),

wherew0,0 andwi,j for 0 ≤ i ≤ k and1 ≤ j ≤ fk(ϕ) are global state variables, andT (wi,j, wi+1,j) is a
formula encoding the transition relationT . [Mϕ,g0

]k encodes the initial stateg0 by w0,0 and constrains
thefk(ϕ)3 symbolick-paths to be validk-paths inMk.
3The functionfk determines the number ofk-paths sufficient for checking anL formula, see [18] for more details.

A. Lomuscio and W. Penczek / LDYIS: a Framework for Model Checking security protocols 9

The next step of the algorithm consists in encodingϕ by a propositional formula. Letw, v be global
state variables. We use the following propositional formulas:p(w) encodes a propositionp of L,H(w, v)
represents logical equivalence between global state encodings (i.e., representing the same global state),
HKi(w, v) represents logical equivalence betweeni-local state encodings (i.e., representing the same
i-local state),Lk,j(l) encodes a backward loop connecting thek-th state to thel-th state in thej-th
symbolick−pathj, for 0 ≤ l ≤ k. The translation ofϕ at statewm,n into the propositional formula

[ϕ]
[m,n]
k is as follows:

[p]
[m,n]
k := p(wm,n), for p ∈ PV ,

[Klα]
[m,n]
k :=

∨fk(ϕ)
i=1

(

Ig0(w0,i) ∧
∨k

j=0

(

[α]
[j,i]
k ∧ HKl(wm,n, wj,i)

)

)

,

[EXα]
[m,n]
k :=

∨fk(ϕ)
i=1

(

H(wm,n, w0,i) ∧ [α]
[1,i]
k

)

,

[EGα]
[m,n]
k :=

∨fk(ϕ)
i=1

(

H(wm,n, w0,i) ∧ (
∨k

l=0 Lk,i(l)) ∧
∧k

j=0[α]
[j,i]
k

)

,

[E(αUβ)]
[m,n]
k :=

∨fk(ϕ)
i=1

(

H(wm,n, w0,i) ∧
∨k

j=0

(

[β]
[j,i]
k ∧

∧j−1
t=0 [α]

[t,i]
k

)

)

.

Given the translations above, we can now checkϕ overMk by checking the satisfiability of the propo-
sitional formula[Mϕ,g0

]k ∧ [ϕ]Mk
, where[ϕ]Mk

= [ϕ]
[0,0]
k . The translation above is shown in [18]

to be correct and complete. Given thatL is a propositional temporal epistemic language in which the
propositions’ interpretation depends on the global statesonly these results apply toL as well.

6. Needham Schroeder Public-Key Protocol (NSPK)

The approach above is general and provides an abstract framework for the analysis of protocols. We now
instantiate the framework by a case study analysis of NSPK [3] by introducing specific NSPK rules. The
NSPK protocol is defined by the following three steps:

1 A −→ B: {A,NA}KB

2 B −→ A: {NA, NB}KA

3 A −→ B: {NB}KB

In the first stepA (Initiator) sends toB (Responder) his identityA and a fresh nonceNA, both encrypted
with B’s public keyKB. B responds toA with the nonceNA and a fresh nonceNB, both encrypted
with A’s public keyKA. In the third step,A sends back toB the nonceNB encrypted withB’s public
keyKB .

Recall that we assume Intruderι to have full control of the channel. It can stop all messages,and
can route messages on the network with any header and with anycontent that it is able to produce by
composing, decrypting, and encrypting messages with keys known to it.

Session identifiers are local to the participants. When starting a new session (or receiving the first
message of a new session) each participant increases his session identifier by one and records the message
sent together with the header and the new session number. When a participant sends (or receives) another
message, we record it in its local state together with the header and the corresponding session number.
When Intruder intercepts a message sent in the first step of the protocol, this is recorded with the original
session identifier. At any other step the intruder checks hishistory to use the correct session identifier.

We start by describing the transition rules representingA sending a message toB, as in step1 of the
protocol. We define two rules for each step plus one rule, which is applied to all the steps. For step1 we

10 A. Lomuscio and W. Penczek / LDYIS: a Framework for Model Checking security protocols

have: one rule for an honest send fromA toB, one rule for a fake send fromι(A) toB (impersonation
of A by the intruder), and one rule for anι-forward toB (forward message from the intruder to B).

By NA = First
(

N f
A

)

we mean that for each principalp ∈ {a, b} playing the role ofA we have

Np = First
(

N f
p

)

. In all the rules below we assume thatA 6= B.

Definition 6.1. (RuleT1: honest-send-1-(A −→ B))
Preconditions:(((@A,@B), (A,NA)kB

), IdA) 6∈ LA,
Postconditions: IfA 6= ι, thenL′

A = LA ◦ (((@A,@B), (A,NA)kB
), IdA+1) ◦ {NA} ◦ {IdA+1},

L′

ι = Lι ◦ (((@A,@B), (A,NA)kB
), IdA + 1) if B 6= ι, and

L′

ι = Lι ◦ (((@A,@B), (A,NA)kB
), Idι + 1) ◦ {NA} ◦ {Idι + 1} if B = ι, whereNA = First

(

N f
A

)

.

If A = ι, thenL′

A = LA ◦ (((@A,@B), (A,NA)kB
), IdA+1) ◦ {NA} ◦ {IdA+1},

L′

B = LB ◦ (((@A,@B), (A,NA)kB
), IdB+1) ◦ {NA} ◦ {IdB+1}, whereNA ∈ {First

(

N f
ι

)

}∪N o
ι .

By LA ◦ c we denote the update ofLA defined byc. The result of the update consists in the following
change of the local state ofA: (((@A,@B), (A,NA)kB

), IdA + 1) is added to the sequenceltA in the
local state ofA, the nonce{NA} is added to the set of old nonces ofA (i.e., toN o

A), and the session
number ofA is increased by1 for c = IdA + 1. Similar considerations apply toLι ◦ c. Since this is a
symbolic rule, in order for it to be executed it requires unification of all the variables present. Notice that
LB does not change because the letter sent byA is intercepted by the intruder (soLι changes) and only
later possibly forwarded toB (this is later described by the ruleι-forwards in Definition 6.7).

Note also the rule above covers several cases includinga, ι sending tob, as well asb, ι sending toa,
anda, b sending toι. Notice that ifB 6= ι, the session number ofι does not change because it represents
only the number of sessions initiated or participated in by it (not intercepting messages).

The next rule encodes a fake send fromι(A) toB in step1.

Definition 6.2. (RuleT2: fake-send-1-(ι(A) −→ B))
Preconditions:(((@ι,@B), (A,Nι)kB

), IdB) 6∈ LB ,
Postconditions:L′

B = LB ◦ (((@ι,@B), (A,NA)kB
), IdB +1) ◦ {NA} ◦ {IdB +1},

L′

ι = Lι ◦ (((@ι,@B), (A,Nι)kB
), Idι +1) ◦ {Nι} ◦ {Idι +1}, whereNι ∈ {First

(

N f
ι

)

} ∪ N o
ι ,

NA = Nι, andA 6= ι.

The above models a situation in which Intruder, impersonating A, sends a message toB. In doing so
it uses any nonceNι, either freshly generated or old. The message is directly delivered toB, thereby
updating B’s local state. Notice that the intruderι is initiating the session withB, so the session number
changes for him as well as forB. The next rule is for an honest send fromB toA in step2.

Definition 6.3. (RuleT3: honest-send-2-(B −→ A))
Preconditions: IfB 6= ι, then(((@A,@B), (A′, NA)kB

), IdB) ∈ LB ,
(((@B ,@A), (NA, NB)k

A′
), IdB) 6∈ LB.

If B = ι, then(((@A,@B), (A,NA)kB
), IdB) ∈ LB , (((@B ,@A), (NA, NB)kA

), IdB) 6∈ LB.
Postconditions: IfB 6= ι, thenL′

B = LB ◦ (((@B ,@A), (NA, NB)k
A′

), IdB) ◦ {NB},

L′

ι = Lι ◦ (((@B ,@A), (NA, NB)k
A′

), IdA), whereNB = First
(

N f
B

)

.

A. Lomuscio and W. Penczek / LDYIS: a Framework for Model Checking security protocols 11

If B = ι, thenL′

B = LB ◦ (((@B ,@A), (NA, NB)kA
), IdB) ◦ {NB},

L′

A = LA ◦ (((@B ,@A), (NA, NB)kA
), IdA) ◦ {NB}, whereNB ∈ {First

(

N f
B

)

} ∪ N o
B or

{NA, NB}kA
∈ LB, andL′

B = LB ◦ {NB} if NB = First
(

N f
B

)

.

This rule is split into two parts, each governing whether or notB represents Intruder. WhenB 6= ι the
rule describes two possibilities, i.e.,B replying to an honest send fromA or to a fake send fromι(A).
In both cases onlyLB andLι change as the message is intercepted by Intruder and only later possibly
forwarded toA. If B replies to an honest send, thenA′ = A, otherwiseA = ι andA′ could be the name
of any participant Intruder is impersonating. The conditions (((@A,@B), (A′, NA)kB

), IdB) ∈ LB and
(((@B ,@A), (NA, NB)k

A′
), IdB) 6∈ LB guarantee thatB has received the message fromA according

to the first step of the protocol and has not yet sent a reply toA. WhenB = ι the rule describes the case
whereB is replying to an honest send fromA. The next rule is for a fake send fromι(B) toA in step2.

Definition 6.4. (RuleT4: fake-send-2-(ι(B) −→ A))
Preconditions:(((@A,@ι), (A,NA)kB

), Idι) ∈ Lι, (((@A,@ι), (A,NA)kB
), IdA) ∈ LA,

(((@ι,@A), (NA, Nι)kA
), Idι) 6∈ Lι, and(((@ι,@A), (NA, Nι)kA

), IdA) 6∈ LA,
Postconditions:L′

A = LA ◦ (((@ι,@A), (NA, NB)kA
), IdA) ◦ {NB},

L′

ι = Lι ◦ (((@ι,@A), (NA, Nι)kA
), Idι) ◦ {Nι},

whereNB = Nι, (Nι ∈ {First
(

N f
ι

)

} ∪ N o
ι andNA ∈ N o

ι) or {NA, Nι}kA
∈ Lι.

The above rule codes the situation where Intruder, impersonatingB, sends a message toA. To do so
it replays the nonceNA generated before byA and any nonceNι. Alternatively, ι can send any other
message{NA, Nι}kA

known to him (without knowing the encrypted nonces). The next rule is for an
honest send fromA toB in step3.

Definition 6.5. (RuleT5: honest-send-3-(A −→ B))
Preconditions: IfA 6= ι, then(((@B ,@A), (NA, NB)kA

), IdA) ∈ LA,
(((@A,@B), (NB)k

B′
), IdA) 6∈ LA.

If A = ι, then(((@B ,@A), (NA, NB)kA
), IdA) ∈ LA, (((@A,@B), (NB)kB

), IdA) 6∈ LA,
(((@B ,@A), (NA, NB)kA

), IdB) ∈ LB .
Postconditions: IfA 6= ι, thenL′

A = LA ◦ (((@A,@B), (NB)k
B′

), IdA),
L′

ι = Lι ◦ (((@A,@B), (NB)k
B′

), IdA). If A = ι, thenL′

A = LA ◦ (((@A,@B), (NB)kB
), IdA),

L′

B = LB ◦ (((@A,@B), (NB)kB
), IdB), whereNB ∈ N o

A.

Similarly to Definition 6.1 (but note that the correspondingpre-/post-conditions and messages are differ-
ent) this rule is split into two parts, depending on whetherA 6= ι orA = ι. In the first case, two possibil-
ities are covered: in the first,A is replying to an honest send fromB, in the second to a fake send from
ι(B). Then, onlyLA andLι are changed as the message is intercepted by Intruder and only later possi-
bly forwarded toB. If A replies to an honest send, thenB′ = B, otherwiseB = ι andB′ could be the
name of any participant Intruder impersonates. The conditions(((@B ,@A), (NA, NB)kA

), IdA) ∈ LA,
(((@A,@B), (NB)kB

), IdA) 6∈ LA guarantee thatA has received the message fromB according to
step2 and has not yet sent a reply toB. WhenA = ι the rule describes the case whereA is replying
to an honest send fromB. The last condition in the preconditions says thatB has sent the message
(NA, NB)kA

in step 2.

12 A. Lomuscio and W. Penczek / LDYIS: a Framework for Model Checking security protocols

The next rule is for a fake send fromι(A) toB in step3.

Definition 6.6. (RuleT6: fake-send-3-(ι(A) −→ B))
Preconditions:(((@B ,@ι), (NA, NB)kA

), Idι) ∈ Lι, (((@B ,@ι), (NA, NB)kA
), IdB) ∈ LB,

(((@ι,@B), (NB)kB
), IdB) 6∈ LB, and(((@ι,@B), (NB)kB

), Idι) 6∈ Lι.
Postconditions:L′

B = LB ◦ (((@ι,@B), (NB)kB
), IdB), L′

ι = Lι ◦ (((@ι,@B), (NB)kB
), Idι).

In the above rule the intruder impersonatingA sends a message toB consisting of a nonceNB en-
crypted with the keykB . This message must be composable by Intruder, i.e.,NB has to be in the set

{First
(

N f
ι

)

} ∪ N o
ι . Moreover, the message(NB)kB

must be acceptable byB; soNB must have pre-

viously been sent fromB toA and the reply has not yet been received byB. The above is represented by
the following condition:(((@B ,@ι), (NA, NB)kA

), IdB) ∈ LB. To avoid to represent repeated sending
of the same messages by Intruder, the last condition is also imposed.

Definition 6.7. (ι-forwards (steps 1-3))
Step 1: Preconditions:((@A,@B), (A,NA)KB

, Id1) ∈ Lι, ((@A,@B), (A,NA)KB
, Id2) 6∈ LB,

Postconditions:L′

B = LB ◦ ((@A,@B), (A,NA)KB
, IdB + 1) ◦ {IdB + 1} ◦ {NA}

Step 2: Preconditions:((@A,@B), (A,NA)KB
, Id1) ∈ LA; ((@B ,@A), (NA, NB)KA

, Id1) 6∈ LA;
((@B ,@A), (NA, NB)KA

, Id2) ∈ Lι.
Postconditions:L′

A = LA ◦ ((@B ,@A), (NA, NB)KA
, Id1) ◦ {NB}.

Step 3: Preconditions:((@B ,@A), (NA, NB)KA
, Id1) ∈ LA; ((@A,@B), (NB)KB

, Id1) 6∈ LB ;
((@A,@B), (NB)KB

, Id2) ∈ Lι.
Postconditions:L′

B = LB ◦ ((@A,@B), (NB)KB
, Id1).

To conclude the encoding of the D-Y intruder we use the aboveι-forward rules to represent Intruder
forwarding messages it has previously intercepted. At eachstep, the precondition specifies the local
states of Sender and Intruder at which a forward can take place. Notice that in the above rules, nonces
do not need to have the indexes that unify, i.e.,NA = na andA = b is a valid unification.

7. An Attack on NSPK found with BMC

We now use the rules of the previous section to show how a previously known attack on NSPK may
efficiently be found when the system runs are explored by means of the BMC method of Section 5. We
consider3 agents (2 participantsa andb communicating in the presence of an intruderι). We begin our
run at an initial global stateg0 = (l0a, l

0
b , l

0
ι), wherel0j = ({a, b, ι}, ∅,N f

j , {ka, kb, kι, k
−1
j }, 0, ǫ), for

j ∈ {a, b, ι}. We assume to begin the run witha initiating an NSPK exchange withι believingι is an
honest participant.

1.1honest−send−1−a −→ ι. Definition 6.1 applies, whereA = a,B = ι, andNA = na. The result-
ing updates are computed:l′a = la◦((@a,@ι), (a, na)kι

, 1)◦{na}◦{1}, l′ι = lι◦((@a,@ι), (a, na)kι
, 1)◦

{na} ◦ {1}, wherena ∈ N ′s
a , na = First

(

N f
a

)

. ι performs the corresponding decoding moves, it ex-

tracts the nonces, it decomposes the messages, etc. (as in every turn below).ι can now use the message
it has received to start a (fresh) second parallel session with b (this is called “impersonatinga” by some
authors) .

A. Lomuscio and W. Penczek / LDYIS: a Framework for Model Checking security protocols 13

2.1fake − send − 1 − ι(a) −→ b. Definition 6.2 applies, whereA = a, B = b, andNι = na. As a
result,b thinksa’s address is@ι. The following updates are computed:
l′b = lb ◦ ((@ι,@b), (a, na)kb

, 1) ◦ {na} ◦ {1},
l′ι = lι ◦ ((@ι,@b), (a, na)kb

, 2) ◦ {2}.
As a result of this messageb responds toι.

2.2honest− send− 2− b −→ ι(a) - by means of Definition 6.3 applies, whereA= ι,B=b,NA =na,
NB =nb, IdB =1, andA′=a. l′b = lb◦((@b,@ι), (na, nb)ka

, 1)◦{nb}, l′ι = lι◦((@b,@ι), (na, nb)ka
, 2),

wherenb = First
(

N f
b

)

.

The intruder can now simply replay the message received fromb to show his credentials toa.

1.2honest − send − 2 − ι −→ a - Definition 6.4 applies, whereB = ι, A = a, Na = na, Nb = nb,
IdB = 1, andA′ = a. l′a = la ◦ ((@ι,@a), (na, nb)ka

, 1) ◦ {nb}, l′ι = lι ◦ ((@ι,@a), (na, nb)ka
, 2).

ι has successfully impersonatedb in its run witha.
Then,a concludes the exchange by:

1.3honest − send − 3 − a −→ ι - Definition 6.5 applies, whereA = a, B = ι, NB = nb, B′ = ι,
A′ = a, andIdA = 1. l′a = la ◦ ((@a,@ι), (nb)kι

, 1), l′ι = lι ◦ ((@a,@ι), (nb)kι
, 1).

Intruderι is now in the position to authenticate himself tob by replaying the message.

2.3 fake − send − 3 − ι(a) −→ b - Definition 6.6 applies, whereB = b andNB = nb. l′b =
lb ◦ ((@ι,@b), (nb)kb

, 1), l′ι = lι ◦ ((@ι,@b), (nb)kb
, 2),

The above two interleaved sessions define the following execution: g0
1.1
−→ g1

2.1
−→ g2

2.2
−→ g3

1.2
−→

g4
1.3
−→ g5

2.3
−→ g6.

We now aim to show that the run above does not satisfy an intuitive specification in the logicL. We can
represent one of the correctness criteria in the authentication protocol by using the following condition:
if b completes an execution started bya using noncenb, thenb anda know thatnb is a secret shared by
a andb only. In particularnb is unknown to the intruderι; note that, by Dolev-Yao assumptions,a, b
are aware an intruder is operating on the channel. This condition can be expressed by the formulaϕ =
AG((hasa(nb)∧hasb(na)∧sendsa((nb)kb

)∧receivesb((nb)kb
) ⇒ (Kb(¬hasι(nb))∧Ka(¬hasι(nb))).

Clearly the specification above is not satisfied in the model.In fact it is easy to see that the run we
have produced before satisfies the negation of the formula above:
EF (hasa(nb) ∧ hasb(na) ∧ sendsa((nb)kb

) ∧ receivesb((nb)kb
) ∧ (Kb(hasι(nb)) ∨ Ka(hasι(nb))).

7.1. A translation for BMC

In this section we exemplify how a bounded model checker implementing the lazy approach above would
have found the counterexample. We model executions for the following parameters:M - the number of
sessions,N - the number of participants including the intruderι (notice that1, . . . , N−1 are the constant
principals whileN denotesι). We show a general encoding of global states, the initial state, and the
rule T1 only. Next, forM = 2 andN = 3, we show the encoding ofϕ and some of its constituents
propositional variables. To begin with we represent a localstate of a participanti by the following vector
of vectors of propositional variableswi = (wi

1, w
i
2, w

i
3, w

i
4, w

i
5, w

i
6), in which the components are the

encodings of the following parameters:

• wi
1 encodes the agents known toi (of lengthN⌈log2(N)⌉),

14 A. Lomuscio and W. Penczek / LDYIS: a Framework for Model Checking security protocols

• wi
2 encodes the nonces seen byi (of length2M⌈log2(2MN)⌉),

• wi
3 encodes the fresh nonces ofi (of lengthM⌈log2(NM)⌉),

• wi
4 encodes the keys known toi (of length2N⌈log2(2N)⌉),

• wi
5 encodes the number of sessions run byi (of length⌈log2(M)⌉),

• wi
6 encodes the sequence of(lt, id) (of length3M×LD), whereLD = 2⌈log2(N)⌉+⌈log2(2MN+

N)⌉ + ⌈log2(2MN)⌉ + ⌈log2(2N)⌉ + ⌈log2(M)⌉.
In the following we assume that for each agenti, address@i, nonceni, keyki, and session numberidi

we have a corresponding Boolean representation (encoding)[i], [@i], [ni], [ki], and[idi]. This is totally
unproblematic and can be done in similar fashion by means of Boolean variables.

Letw = (w1,0, . . . , wN,0) be a global state variable, wherewi,0 = (wi,0
1 , . . . , w

i,0
6) represents a local

state for agenti. For a vector of propositional variablesw = (w1, . . . , wn) by (i1, . . . , im)(w), where
m ≤ n andij ∈ {0, 1}, we mean the formula

∧m
j=1 b(ij , wj) ∧

∧n
j=m+1 ¬wj with b(1, wj) = wj and

b(0, wj) = ¬wj. The initial state stateg0 = (l01, . . . , l
0
N) is encoded byIg0(w) =

∧N
i=1 Il0

i

(wi,0), where

Il0
i

(wi,0) = [1] · . . . · [N](wi,0
1)∧ (0)wi,0

2 ∧ [n1
1] · . . . · [n

2M
i](wi,0

3))∧ [k1] · . . . [kN] · [k−1
i](wi,0

4)∧ (0)wi,0
5 ∧

(0)wi,0
6 . By [x] · [y] we mean the concatenation of the binary encodings ofx andy.

The encoding ofT (w,w′) is equal to
∨6

i=1[Ti(w,w
′)], where[Ti(w,w

′)] is the propositional encod-
ing of the ruleTi.

To generate the Boolean translation representing all the moves in an execution we need to encode into
propositional logic each ruleTi from the previous section. The propositional encoding is cumbersome,
although, of course, the aim of the method is for these to be computed automatically. This is in line
with intermediate representations for SAT-based model checking inputs (often in the tens of thousands
of variables).

We report below an encoding of the postconditions ofT1 for the case whereA 6= ι (the rest can be
worked out similarly) simply to show that this can be obtained even by hand, albeit laboriously. The
postcondition forT1 is equal to:
∨N−1

i=1

(

∨

j 6∈{i,N}

(

(w′i
6 = wi

6 ◦ [((@i,@j), (i, (dec(First
(

wi
3

)

)kj
), dec(wi

5) + 1)])∧ (w′i
2 =wi

2◦ First
(

wi
3)

)

∧

(w′i
5 = [dec(wi

5) + 1]) ∧
∧

l∈{1,4}(w
′i
l ≡ wi

l)
)

∧ (w′N
6 = wN

6 ◦ [((@i,@j), (i, (dec(First
(

wi
3

)

)kj
), dec(wi

5) +

1)])) ∧
∧

l∈{1,2,4,5}(w
′N
l ≡ wN

l) ∧
∧

l 6∈{i,N}(w
′l ≡ wl)

)

)

∨
(

w′i
6 = wi

6 ◦ [((@i,@N), (i, (dec(First
(

wi
3

)

)kN
),

dec(wi
5) + 1)]) ∧ (w′i

2 = wi
2 ◦ First

(

wi
3

)

) ∧ (w′i
5 = dec(wi

5) + 1) ∧
∧

l∈{1,4}(w
′i
l ≡ wi

l)
)

∧ (w′N
6 = wN

6 ◦

[((@i,@N), (i, (dec(First
(

wi
3

)

)kN
), dec(wN

5) + 1)]) ∧ (w′N
2 = wN

2 ◦ First
(

wi
3

)

) ∧ (w′N
5 = dec(wN

5) + 1)) ∧
∧

l∈{1,4}(w
′N
l ≡ wN

l) ∧
∧

l 6∈{i,N}(w
′l ≡ wl)

)

,

wherewi
6 ◦ [(lt, id)] denoteswi

6 extended with the encoding of(lt, id), i.e.,[lt], [id]; dec(wi
j) denotes the

value encoded bywi
j, w

i
2 ◦ First

(

wi
3

)

denoteswi
2 extended with the encoding of the first nonce ofwi

3

and at the same time removing that nonce from the encodingwi
3, andw′ ≡ w encodes the equivalence

of the corresponding propositions ofw andw′.
Encoding for agents ids, nonces and keys can be easily obtained. In fact assume that forN = 3

(a = 1, b = 2, ι = 3), andM = 2, we consider the following:[a] = [@a] = (0, 1), [b] = [@b] = (1, 0),
[ι] = [@ι] = (1, 1), [na] = (0, 0, 1), [n′a] = (0, 1, 0), [nb] = (0, 1, 1), [n′b] = (1, 0, 0), [nι] = (1, 1, 0),
[n′ι] = (1, 1, 1), [ka] = (0, 0, 1), [k−1

a] = (1, 1, 0), [kb] = (0, 1, 0), [k−1
b] = (1, 0, 1), [kι] = (1, 0, 0),

[k−1
ι] = (0, 1, 1), asidi is a number, we take simply its binary encoding.

A. Lomuscio and W. Penczek / LDYIS: a Framework for Model Checking security protocols 15

With the above we can encode k-models exactly in the same way any bounded model checker would
do.
To encode the formulas to be checked, letw = (wa, wb, wι) be a global state variable. The encoding of
the propositional variableshasa(nb), hasb(na), andhasι(nb) is as follows:

hasa(nb)(w) = (¬wa
2,1 ∧ w

a
2,2 ∧ w

a
2,3) ∨ (¬wa

2,4 ∧ w
a
2,5 ∧ w

a
2,6),

hasb(na)(w) = (¬wb
2,1 ∧ ¬wb

2,2 ∧ w
b
2,3) ∨ (¬wa

2,4 ∧ ¬wa
2,5 ∧ w

a
2,6),

hasι(nb)(w) = (¬wι
2,1 ∧ w

ι
2,2 ∧ w

ι
2,3) ∨ (¬wι

2,4 ∧ w
ι
2,5 ∧ w

ι
2,6).

The encoding ofsendsa((nb)kb
) andreceivesb((nb)kb

) is similar.
To encode the formula¬ϕ = EF ((hasa(nb)∧ hasb(na))∧ (Kb(hasι(nb))∨Ka(hasι(nb))) we need3
symbolic paths asf6(ϕ) = 3. Letw1,w2,w3 be three symbolic paths.

[EF (hasa(nb)∧hasb(na))∧sendsa((nb)kb
)∧receivesb((nb)kb

)∧(Kb(hasι(nb))∨Ka(hasι(nb)))]
0,0
6 :=

∨3
i=1

(

H(w0,0, w0,i) ∧
∨6

j=0(hasa(nb)(wj,i) ∧ hasb(na)(wj,i) ∧ sendsa((nb)kb
)(wj,i)∧

receivesb((nb)kb
)(wj,i) ∧

∨3
m=1

(

Ig0(w0,m) ∧
∨6

n=0

(

hasι(nb)(wn,m) ∧HKb(wj,i, wn,m)
)

)

∨
∨3

m=1

(

Ig0(w0,m) ∧
∨6

n=0

(

hasι(nb)(wn,m) ∧HKa(wj,i, wn,m)
)

))

The translations exemplified above could be fed to a SAT-solver thereby returning satisfaction for the
conjunction of the specification formula considered on the sub-run shown.

8. Conclusions

In this paper we have made three contributions. Firstly, we have taken inspiration from the ideas of the
lazy-intruder model [4] to define LDYIS, a MAS based semantics for security protocols. Secondly, we
have formalised a general approach to transition rules thatgenerate LDYIS runs on which a temporal-
epistemic logic can be interpreted. Thirdly, we have proposed a semantics (LDYIS) that is immediately
ready to be model checked by means of any SAT-based methods such as bounded model checking. The
formalism presented in this paper differs from the one pursued in the Avispa project in that it uses MAS
inspired semantics and a fully-fledged temporal/epistemiclanguage to check protocol specifications (as
opposed to reachability only). Technically, the approaches hardly resemble each another as the seman-
tics is rather different. We find the expressive power of temporal/epistemic specifications appropriate
for security protocols, particularly to express anonymity. The approach presented in this paper can also
be seen as an attempt to limit the state explosion in the verification of security protocols. We are cur-
rently working on an implementation of this technique to evaluate it experimentally; however, formal
considerations point to efficiency savings over non-lazy approaches such as [17].

Acknowledgements: The authors are grateful to Ioana Boureanu, Jonathan Ezekiel, and Maciej Szreter
for several suggestions on an earlier version of this paper.Work on this project was supported by an
International joint project award to both authors from the Royal society. The first author acknowledges
additional support from EPSRC (EP/E035655/1). The second author acknowledges additional support
from the Ministry of Science and Higher Education (3 T11C 01128).

16 A. Lomuscio and W. Penczek / LDYIS: a Framework for Model Checking security protocols

References

[1] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuellar, P. Hankes Drielsma, P.C. Heám,
O. Kouchnarenko, J. Mantovani, S. Mödersheim, D. von Oheimb, M. Rusinowitch, J. Santiago, M. Turuani,
L. Viganó, and L. Vigneron. The AVISPA tool for the automated validation of internet security protocols and
applications. InProcof CAV’05, LNCS3576: 281–285, 2005.

[2] A. Armando and L. Compagna. An optimized intruder model for SAT-based model-checking of security
protocols.ENTCS, 125(1):91–108, 2005.

[3] M. Burrows, M. Abadi, R. Needham. A Logic of Authentication, ACM Trans. Comput. Syst. 8(1): 18–36,
1990.

[4] D. A. Basin, S. Mödersheim, and Luca Viganò. OFMC: A symbolic model checker for security protocols.
International Journal of Information Security, 4(3):181–208, 2005.

[5] D. Chaum. The dining cryptographers problem: Unconditional sender and recipient untraceability.Journal
of Cryptology, 1(1):65–75, 1988.

[6] P. Dembiński, A. Janowska, P. Janowski, W. Penczek, A. Pólrola, M. Szreter, B. Woźna, and A. Zbrzezny.
VerICS: A tool for verifying Timed Automata and Estelle specifications. InProc. of TACAS’03, volume 2619
of LNCS, 278–283. Springer-Verlag, 2003.

[7] D. Dolev and A. Yao. On the security of public key protocols. IEEE Trans. Inf. Theory, 29(2):198–208, 1983.

[8] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi.Reasoning about Knowledge. MIT Press, Cambridge,
1995.

[9] J. Halpern, R. van der Meyden, and R. Pucella. Revisitingthe foundations of authentication logics.

[10] J. Y. Halpern and R. Pucella. Modeling adversaries in a logic for security protocol analysis. In
Proc. FASec’02), volume 2629 ofLNCS, pages 115–132. Springer-Verlag, 2003.

[11] G. Jakubowska and W. Penczek. Modelling and checking timed authentication of security protocols. In
Fundamenta Informaticae, 79(3-4):363–378, 2007.

[12] M. Kurkowski, W. Penczek, and A. Zbrzezny. Sat-based verification of security protocols via translation to
networks of automata. InMoChart IV, volume 4428 ofLNAI, pages 146–165. Springer-Verlag, 2007.

[13] P. Gammie and R. van der Meyden. MCK: Model checking the logic of knowledge. InCAV’04, volume 3114
of LNCS, 479–483. Springer-Verlag, 2004.

[14] M. Kacprzak, A. Lomuscio, A. Niewiadomski, W. Penczek,F. Raimondi, and M. Szreter. Comparing BDD
and SAT based techniques for model checking Chaum’s dining cryptographers protocol.Fundamenta Infor-
maticae, Vol 72(1-3), 215–234, 2006.

[15] A. Lomuscio, F. Raimondi, and B. Woźna. Verification ofthe tesla protocol in mcmas-x. InProceedings of
Concurrency, Specification & Programming (CS&P), Germany, 2006. Humboldt University Press.

[16] A. Lomuscio and F. Raimondi. MCMAS: A model checker for multi-agent systems. In H. Hermanns and
J. Palsberg, editors,Proc. of TACAS 2006, Vienna, volume 3920, 450–454. Springer Verlag, 2006.

[17] A. Lomuscio and B. Woźna. A complete and decidable security-specialised logic and its application to the
TESLA protocol. InProc. of AAMAS’06, ACM Press, 145–152, 2006.

[18] W. Penczek and A. Lomuscio. Verifying epistemic properties of multi-agent systems via bounded model
checking.Fundamenta Informaticae, 55(2):167–185, 2003.

A. Lomuscio and W. Penczek / LDYIS: a Framework for Model Checking security protocols 17

[19] W. Penczek, B. Woźna, and A. Zbrzezny. Bounded model checking for the universal fragment of CTL.
Fundamenta Informaticae, 51(1-2):135–156, 2002.

[20] F. Raimondi and A. Lomuscio. Automatic verification of multi-agent systems by model checking via OBDDs.
Journal of Applied Logic, 2005. To appear in Special issue on Logic-based agent verification.

[21] R. van der Meyden and Kaile Su. Symbolic model checking the knowledge of the dining cryptographers. In
Proc. CSFW’04, 280–291, USA, 2004. IEEE Computer Society.

