
MCMAS: A model checker for the verification of
multi-agent systems⋆

Alessio Lomuscio∗, Hongyang Qu∗, Franco Raimondi†
∗Imperial College London, UK †University College London, UK

1 Overview

While temporal logic in its various forms has proven essential to reason about reactive
systems, agent-based scenarios are typically specified by considering high-level agents
attitudes. In particular, specification languages based onepistemic logic [7], or logics
for knowledge, have proven useful in a variety of areas including robotics, security
protocols, web-services, etc. For example, security specifications involving anonymity
[4] are known to be naturally expressible in epistemic formalisms as they explicitly state
the lack of different kinds of knowledge of the principals.

More generally, various extensions of temporal logic have been studied in agents
and AI contexts to represent properties of autonomous systems. In addition to epistemic
operators, at the very core of these approaches is the importance of deontic modalities
expressing norms and compliance/violation with respect topreviously agreed commit-
ments, and ATL-like modalities expressing cooperation among agents.

While these languages have been long explored and appropriate semantics devel-
oped, until recently there has been a remarkable gap in the availability of efficient sym-
bolic model checking toolkits supporting these. In this paper we describe MCMAS,
a symbolic model checker specifically tailored to agent-based specifications and sce-
narios. MCMAS [12] supports specifications based on CTL, epistemic logic (includ-
ing operators of common and distributed knowledge) [7], Alternating Time Logic [2],
and deontic modalities for correctness [16]. The release described in this abstract is
a complete rebuild of a preliminary experimental checker [14]. The model input lan-
guage includes variables and basic types and it implements the semantics of interpreted
systems, thereby naturally supporting the modularity present in agent-based systems.
MCMAS implements OBDD-based algorithms optimised for interpreted systems and
supports fairness, counter-example generation, and interactive execution (both in ex-
plicit and symbolic mode). MCMAS has been used in a variety ofscenarios including
web-services, diagnosis, and security. MCMAS is released under GNU-GPL.

2 Multi-Agent Systems Formalisms

Multi-Agent Systems (MAS) formalisms are typically built on extensions of compu-
tational tree logic (CTL). For the purposes of this abstractwe consider specifications
given in the following languageL built from a set of propositional atomsp ∈ P , and a
set of agentsi ∈ A (G ⊆ A denotes a set of agents):

⋆ The research described in this paper is partly supported by the European Commission Frame-
work 6 funded project CONTRACT (IST Project Number 034418).

φ ::= ¬φ | φ ∧ φ | 〈〈G〉〉Xφ | 〈〈G〉〉Fφ | 〈〈G〉〉[φUψ] | Kiφ | DGφ | CGφ | Oiφ.
L extends ATL (hence CTL) by considering epistemic modalities representing “agent
i knowsφ” (Kiφ), “groupG has distributed knowledge ofφ” (DGφ), “groupG has
common knowledge ofφ” (CGφ), and deontic modalities encoding “whenever agent
i is working correctlyφ holds” (Oiφ). The ATL modalities above are read as custom-
ary: 〈〈G〉〉Xφ stands for “groupG can enforceφ at the next step” and〈〈G〉〉Fφ stands
for “groupG can enforceφ at some point in the future”. As standard, CTL modali-
ties forAG,AU,AX and their existential counterparts may be derived from the ATL
modalities, and, similarly, epistemic modalities forEG (“everyone inG knows”) may
be rewritten as a conjunction of appropriateKi, i ∈ G, formulas. The specification lan-
guage above is very rich as it includes AI-based modalities representing various notions
of knowledge [7], deontic conditions [16], ATL-style modalities for cooperation [2], as
well as standard CTL.

A computationally grounded semantics for the family of MAS formalisms above (in
the sense of [19], i.e., one in which the interpretation to all modalities is defined in terms
of the computational states of the system) can be given by suitably extendinginterpreted
systems. Interpreted systems [7], originally proposed for linear time only, are an agent-
based semantics where the components, or agents, are definedby a set of possible local
states, a set of actions that they may perform according to their local protocol, and
transition functions returning the target local state given the current local state and the
set of actions performed by all agents. An environment (described similarly to an agent)
is also modelled as part of the system. ATL and CTL modalitiesare interpreted on
the induced temporal relation given by the protocols and transition functions [15], the
epistemic modalities are defined on the equivalence relations built on the equality of
local states [7], and the deontic modalities are interpreted on “green states”, i.e., subsets
of local states representing states of locally correct behaviour for the agent in question.
Specifically, satisfaction for the epistemic modalities isdefined by(IS, s) |= Kiφ iff
for all s′ ∈ S we have thats ∼i s

′ implies (IS, s′) |= φ, whereIS is an interpreted
system,s, s′ reachable global states, and∼i is defined on the local equality of global
states, i.e.,s ∼i s

′ iff li(s) = li(s
′) whereli is the function returning the local state

of agenti in a given global state. Satisfaction for common knowledge is defined by
(IS, s) |= CGφ iff for all s′ ∈ S we have thats ∼∗ s′ implies(IS, s′) |= φ, where∼∗

is the reflexive and transitive closure of the union of the relations∼i, i ∈ G. We refer to
the user manual available from [12] for satisfaction of distributed knowledgeDG and
correctness modalitiesOi, as well as more details and examples.

The languageL has been used to specify a wide range of scenarios in application
areas such as web-services, security, and communication protocols. For example, in a
communication protocol we can useEF (Ksender(Kreceiver(bit = 0))) to specify that
at some point in the future the sender will know that the receiver knows that the bit being
sent is equal to 0; in a game-based setting, we can writeAGOp1

〈〈p1, p2〉〉X(p1 p2win)
to represent that it is always the case that, as long as player1 is functioning correctly,
player1 and player2 can together force a win at any step.

The complexity of the model checking problem ofL against compact represen-
tations (e.g., via reactive modules, or ISPL modules as below) is given by its more
expensive fragment (ATL) and so it is EXPTIME-complete [9].Note, however, that

the problem of checking its temporal-epistemic-deontic fragment is only PSPACE-
complete [13], i.e., the same as CTL [11].

3 The MCMAS toolkit

MCMAS is implemented in C++ and compiled for all major platforms. It exploits the
CUDD [18] library for BDD operations. MCMAS implements standard algorithms for
CTL and ATL [3, 2], and dedicated BDD-based algorithms for the epistemic and deontic
operators [17], in particular, the algorithms for satisfaction forKi andCG are sketched
in Algorithm 1 (S represents the set of reachable states).

Algorithm 1 Algorithms forSATK(φ, i)(left) andSATC(φ,G) (right).

1: X ⇐ SAT (¬φ);
2: Y ⇐ {s ∈ S | ∃s′ ∈ X s.t.s ∼i s′};
3: return ¬Y ∩ S;

1: X ⇐ Σ; Y ⇐ SAT (¬φ);
2: while X 6= Y do
3: X ⇐ Y ;
4: Y ⇐ {s ∈ S | ∃s′ ∈ X andi ∈ G s.t.s ∼i s′};
5: end while
6: return ¬Y ∩ S;

A number of optimisations are implemented in MCMAS in an attempt to minimise
the memory consumption and verification time. For example, the checker does not build
a single OBDD for the global transition relation, but performs any required operation
against the local evolutions. Also, MCMAS does not compute the union of equivalence
relations∼i in Algorithm 1 when checking common knowledge, but instead repeatedly
operates on all∼i. MCMAS provides counterexamples and witnesses for a wide range
of formulas including epistemic modalities thereby givingguidance to the user. The
algorithm used to return witnesses and counterexamples is novel and inspired by the
tree-like construction of [5].

MCMAS takes ISPL (Interpreted Systems Programming Language) descriptions
as input. An ISPL file fully describes a multi-agent system (both the agents and the
environment), and it closely follows the framework of interpreted systems described
above. We refer to the user manual for examples and usage. Essentially, an ISPL agent
is described by giving the agents’ possible local states, their actions, protocols, and lo-
cal evolution functions. Local states are defined by using variables of typeBoolean,
integer, andenumeration. An optional sectionRedStates permits the defini-
tion of non-green states by means of any Boolean formula on the variables of the local
states to interpret the correctness modalitiesOi. The local transition function is given
as a set ofevolution itemsof the formA if C, whereC is a Boolean condition over
local variables, global variables (see below), and actionsby the agents and the envi-
ronment, andA is a set of assignments on the agent’s local variables. All variables not
present inA remain constant in the local transition. Any enabling condition and syn-
chronisation among the agents is specified inC; note also that any non-deterministic
behaviour may be specified by using several evolution items.Compared to that of an
agent, an environment definition may have additional features, including the definition
of global variables observable to some or all agents. Table 1shows an example of a
self-explanatory ISPL file for the Train/Gate/Controller scenario with two trains.

An ISPL file also contains sections for the definition of the initial states (given
by Boolean conditions on the agents’ local variables), any fairness constraints, groups

Table 1. ISPL snippet for the Train/Gate/Controller (Agent T2, similar to Agent T1, is omitted).

Agent Environment
Vars: s: {g, r}; end Vars
Actions={E1, L1, E2, L2};
Protocol:
s=g: {E1, E2};
s=r: {L1, L2};

end Protocol
Evolution:
s=g if s=r and ((Action=L1 and T1.Action=L1)

or (Action=L2 and T2.Action=L2));
s=r if s=g and ((Action=L1 and T1.Action=E1)

or (Action=L2 and T2.Action=E2));
end Evolution
end Agent

Agent T1
Vars: s: {w, t, a}; end Vars
Actions={E1, L1, B1};
Protocol:
s=w: {E1}; s=t: {L1}; s=a: {B1};

end Protocol
Evolution:
s=w if s=a and Action=B1;
s=t if s=w and Action=E1 and

Environment.Action=E1;
s=a if s=t and Action=L1 and

Environment.Action=L1;
end Evolution
end Agent

of agents (to be used in epistemic and ATL formulas) and the actual formulae in the
languageL to be checked. The interpretation for the propositional atoms used in the
specifications is also given; among these the predefined atoms GreenStates, and
RedStates have their interpretation fixed to the locally green local states and their
set complement respectively. We refer to the user manual formore details and examples.

The graphical user interface (GUI) is an essential part of the MCMAS release. It is
built as an Eclipse plug-in and provides a rich number of functionalities, some of which
reported below.

ISPL program editing.The GUI guides the user to create and edit ISPL programs
by performing dynamic syntax checking (an additional ISPL parser was implemented
in ANTLR for this). The GUI also provides outline view, text formatting, syntax high-
lighting, and content assist automatically.

Interactive execution mode.The user can use MCMAS interactively to explore the
model. This can be done both in symbolic and explicit way. Theexplicit exploration
does not require installation of the checker itself and is provided entirely by the GUI.
Obviously large models are best explored symbolically. Users can choose which state
to visit among the possibilities presented, backtrack, etc.

Counterexample display.The user can launch the verification process via the GUI
which, in turns, calls the checker. The GUI shows which specifications are satisfied and
which are not. For a wide range of specifications (see the usermanual) the user can
visualise counterexamples or witnesses (the Graphviz package is used to display the
submodel representing the counterexample/witness). The user has a variety of options
once a submodel is displayed including inspecting the agents’ states in the system,
projecting the whole system onto agents, etc.

4 Experimental results and conclusions

MCMAS has been used in our group and in a limited number of other institutions to
verify a range of scenarios, including agent-based web services, networking protocols,
and security protocols. Some of these examples are available from the MCMAS web-
site. To evaluate the tool we discuss the experimental results obtained while verifying
the protocol of thedining cryptographers[4]. This is a scalable anonymity protocol in
which lack of knowledge needs to be preserved following a round of announcements.
We refer to [8, 10] for more details.

On a Linux x8664 machine with Intel Core 2 Duo 2.2GHz and 4GB memory, we
tested the protocol (code on the website) against two temporal epistemic specifications:

AG((odd∧ ¬payer
1
) → ((Kcryptographer

1

n∨

i=2

payeri) ∧ (
n∧

i=2

¬Kcryptographer
1

payeri))),

AG(even → C
{cryptographer

1
,...,cryptographer

n
}
¬(

n∨

i=1

payeri)). We checked the second

formula specifically to evaluate the performance of the toolagainst common knowledge.

Table 2.Verification results for the dinning cryptographers protocol.

n crypts possible reachable knowledge common knowledge
states states bdd memory (MB) time (s) bdd memory (MB) time (s)

10 1.86 × 1011 33792 12.5 1 12.5 1
11 2.23 × 1012 73728 12.4 3 12.6 2
12 2.67 × 1013 159744 12.8 4 12.9 4
13 3.21 × 1014 344064 28.2 23 28.4 23
14 3.85 × 1015 737280 15.8 14 16.1 13
15 4.62 × 1016 1.57 × 106 17.1 24 18.0 24
16 5.55 × 1017 3.34 × 106 42.3 149 42.3 150
17 6.66 × 1018 7.07 × 106 60.0 612 60.0 612
18 7.99 × 1019 1.49 × 107 222.8 2959 222.8 2959

The table reports the results for different numbers of cryptographers, indicated in
the first column. The size of the state space (equal to3× 12n) is reported in the second
column, and the third reports the number of actual reachablestates in the corresponding
model. Memory usage and time required for the verification ofthe two formulas follow
in the last four columns respectively.

A direct efficiency comparison with other toolkits is problematic. Apart from the
different input languages, other tools with overlapping functionalities support differ-
ent variable types making any comparison difficult. In termsof pure size of the model,
we found that MCMAS can explore the full state space of modelswhose size is ap-
proximately two orders of magnitude larger than most examples available for temporal-
epistemic model checkers [8, 6, 20], and comparable to the size of the models analysed
with BDD-based temporal-only model checkers such as NuSMV.

As mentioned in the introduction, MCMAS is a complete reimplementation of the
original proof-of-concept described in [14]. Compared to the original prototype, the
current version is several orders of magnitude faster. Thisis due to improved algo-
rithms for the verification of epistemic and ATL modalities,and the computation of the
reachable state space. Additionally, the revised input language now enables the user to
write code that naturally generates smaller models, e.g., by using globally observable
variables in the environment. Several functionalities, e.g., counterexample generation,
witnesses, fairness, a fully-fledged GUI, etc., are also nowincluded.

From the point of view of supported functionalities, MCMAS is the only checker
we are aware of that supports the specification languageL described above. Epistemic
modalities are also treated in [8] although not via an observation-based semantics as
here and not with the CUDD package. BMC based approaches for epistemic modalities
have also been presented [6]: a comparison with [6] reveals the known advantages and

disadvantages of BDD vs SAT-based approaches. Finally, ATLis of course supported by
MOCHA [1]. However, MOCHA is an on-the-fly checker tailored to assume/guarantee
analysis, whose efficiency crucially depends on the learning of successful decomposi-
tions and assumptions for the scenario under analysis.

References

1. R. Alur, T. Henzinger, F. Mang, S. Qadeer, S. Rajamani, andS. Tasiran. MOCHA: Modu-
larity in model checking. InProceedings of the 10th International Conference on Computer
Aided Verification (CAV’98), volume 1427 ofLNCS, pages 521–525. Springer-Verlag, 1998.

2. R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic.Journal of
the ACM, 49(5):672–713, 2002.

3. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic model
checking:1020 states and beyond.Information and Computation, 98(2):142–170, 1990.

4. D. Chaum. The dining cryptographers problem: Unconditional sender and recipient untrace-
ability. Journal of Cryptology, 1(1):65–75, 1988.

5. E. Clarke, Y. Lu, S. Jha, and H. Veith. Tree-like counterexamples in model checking. Inthe
17th IEEE Symposium on Logic in Computer Science. IEEE Computer Society, 2002.

6. P. Dembiński, A. Janowska, P. Janowski, W. Penczek, A. P´olrola, M. Szreter, B. Woźna, and
A. Zbrzezny. VerICS: A tool for verifying Timed Automata and Estelle specifications. In
Proceedings of TACAS’03, volume 2619 ofLNCS, pages 278–283. Springer-Verlag, 2003.

7. R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi.Reasoning about Knowledge. MIT Press,
Cambridge, 1995.

8. P. Gammie and R. van der Meyden. MCK: Model checking the logic of knowledge. In
Proceedings of CAV’04, volume 3114 ofLNCS, pages 479–483. Springer-Verlag, 2004.

9. W. van der Hoek, A. Lomuscio, and M. Wooldridge. On the complexity of practical atl
model checking knowledge, strategies, and games in multi-agent systems. InProceedings of
AAMAS’06, pages 946–947. ACM Press, 2006.

10. M. Kacprzak, A. Lomuscio, A. Niewiadomski, W. Penczek, F. Raimondi, and M. Szreter.
Comparing BDD and SAT based techniques for model checking Chaum’s dining cryptogra-
phers protocol.Fundamenta Informaticae, 63(2,3):221–240, 2006.

11. O. Kupferman, M. Y. Vardi, and P. Wolper. An automata-theoretic approach to branching-
time model checking.Journal of the ACM, 47(2):312–360, 2000.

12. A. Lomuscio, H. Qu, and F. Raimondi. MCMAS. http://www-lai.doc.ic.ac.uk/mcmas/.
13. A. Lomuscio and F. Raimondi. The complexity of model checking concurrent programs

against CTLK specifications. InProceedings of the 5th international joint conference on
Autonomous agents and multiagent systems (AAMAS’06), pages 548–550. ACM Press, 2006.

14. A. Lomuscio and F. Raimondi. MCMAS: A model checker for multi-agent systems. In
Proceedings of TACAS 2006, volume 3920, pages 450–454. Springer Verlag, 2006.

15. A. Lomuscio and F. Raimondi. Model checking knowledge, strategies, and games in multi-
agent systems. InProceedings of AAMAS’06, pages 161–168. ACM Press, 2006.

16. A. Lomuscio and M. Sergot. Deontic interpreted systems.Studia Logica, 75(1):63–92, 2003.
17. F. Raimondi and A. Lomuscio. Automatic verification of multi-agent systems by model

checking via OBDDs.Journal of Applied Logic, 5(2):235–251, 2005.
18. F. Somenzi. CUDD: CU decision diagram package - release 2.4.1.

http://vlsi.colorado.edu/ fabio/CUDD/cuddIntro.html,2005.
19. M. Wooldridge. Computationally grounded theories of agency. InProceedings of ICMAS,

International Conference of Multi-Agent Systems, pages 13–22. IEEE Press, 2000.
20. M. Wooldridge, M. Fisher, M. Huget, and S. Parsons. Modelchecking multiagent systems

with MABLE. In Proceedings of AAMAS’02, pages 952–959, 2002.

