Runtime monitoring of contract regulated
web services *

Alessio Lomuscio!, Wojciech Penczek??, Monika Solanki' and Maciej Szreter?
! Department of Computing, Imperial College London, UK
2 Institute of Computer Science, PAS, Poland
3 University of Podlasie, Poland

Abstract. We investigate the problem of locally monitoring contract
regulated behaviours in web services. We encode contract clauses in ser-
vice specifications by using extended timed automata. We propose a
non intrusive local monitoring framework along with an API to moni-
tor the fulfilment (or violation) of contractual obligations. We illustrate
our methodology by monitoring a service composition scenario from the
vehicle repair domain, and report on the experimental results.

1 Introduction

Web services (WS) are now considered one of the key technologies for building
new generations of digital business systems. Industrial strength distributed ap-
plications can be built across organisational boundaries using services as basic
building blocks. When services are combined, a significant challenge is to regulate
the business interactions between them. Service level agreements (SLAS) provide
a useful mechanism to establish agreed levels of service provision when interac-
tions are invoked within certain parameters. Although SLAs are useful, they can
represent only basic agreements of service provision. Applications running com-
plex, human-like activities require more general and sophisticated declarative
specifications certifying legal-like agreements among the parties. In an environ-
ment where previously unknown services are dynamically discovered and binded,
their composition is required to be underpinned by binding agreements.

A useful concept from the legal domain in this sense is the one of contract
as found in human societies. Should a contract be broken by one of the parties,
additional rights and /or obligations (e.g., penalties to be paid) may be applicable
to some party. Contracts may not simply prescribe certain actions depending on
certain states, but may go as far as to specify timing constraints (e.g, deadlines),
or more sophisticated measures (such as the number of actions per temporal
interval, as in some QoS agreements).

In this paper, we study the problem of monitoring runtime behaviours of
contract regulated web services. While contracts are usually negotiated offline,
it is of interest to monitor at runtime whether interactions between WS are

* Partly supported under the grant ,,Nowe technologie informacyjne dla elektronicznej
gospodarki spoteczenistwa informacyjnego oparte na paradygmacie SOA”.

complying to the contracts stipulated between the parties. Runtime monitoring
of web services (abbreviated RMCS) is concerned with the actual, rather than
possible state transitions occurring in the system. A runtime monitor continuosly
checks the executions against given set of specification properties. In the case of
contract-based web services we are interested in monitoring at runtime whether
the contracts the web services are supposed to adhere to are violated in a given
run of the system, and if so, whether some recovery action is performed.

Monitoring complex interactions such as the ones above is non-trivial. The
key issue is the one of scalability. It is relatively easy to envisage a methodol-
ogy whereby contracts and possible behaviours are explicitly stored in memory
and the stream of events at local WS level is matched at runtime against the
envisaged contract-compliant runs. However with many complex contracts to
be verified and several WS present in a system the approach is unlikely to be
effective in any scenario where the range of possible behaviours is large.

In this paper we put forward a “symbolic” solution to the problem above. We
represent both all possible behaviours and the contractually-correct ones as an
appropriate timed automata [1] at local web-service level. Specifically we present
a local contract runtime monitor (CRM) based on the symbolic toolkit Verics [5],
a symbolic model checker for timed-automata. CRM checks the local service’s
execution at runtime against the symbolic representations provided, and reports
back to the service (or directly to the engineer) any mismatch, or wviolation,
between the contract-compliant behaviours originally prescribed and the ones
actually received in the input stream. Note that differently from other lines of
research we do not wish to monitor the overall service composition here. Instead
we focus on a single service and aim to monitor continuosly its executions, i.e.,
the change of its local variables and actions. This is of relevance to several
application areas where individual enterprises wish to monitor whether any of
their executions violates existing contracts, or service level agreements.

The significant advantage of the approach is that we do not need to keep
the whole state space of the possible and the contract-compliant behaviours
in memory but we can simply call the timed-automata engine at runtime to
match moves against the stream of events coming from the input. Because of the
requirements of the setting the approach extends conventional timed automata
with additional constraints to allow the specification of compliance and violation
of contracts. As discussed below the memory footprint of the CRM is also very
attractive as is its performance. Additionally timed-automata offer us a natural
formalism to work with any timing properties of interest.

The paper is structured as follows: in Section 2 we briefly introduce the
formalism of timed automata as used here. Section 3 presents our monitoring
framework. We analyse a motivating case study in 4 and discuss the monitoring
results. Section 5 presents related work and conclusions.

2 Monitoring via Timed Automata

Let IN denote the set of naturals (including 0), ZZ - the set of integers, Q - the set
of rational numbers, IR (IR4) - the set of (non-negative) reals, and V be a finite
set of integer variables. By a (variable) valuation we mean any total mapping
v : V — IN. We extend the mapping v to expressions of Ex(V) in the usual
way. The satisfaction relation (=) for the boolean expressions is also standard.
Given a variable valuation v and an instruction o € Ins”(V), we denote by v(a)
the valuation v/, obtained after executing « at v, which is defined as follows:

— if @ = e then v/ = v,
— if a = (v := ex), then v/(v) = v(ex) and v/(v') = v(v’) for all v/ € V' \ {v},
— if @ = aqag, then v/ = (v(aq)) ().

Let X = {1,...,%n,} be a finite set of real-valued variables, called clocks.
The set of clock constraints over X and V, denoted C(X, V), is defined by
the grammar: cc == true | z; ~c| v, @z, ~c | ;i @z; ~v | T, QU ~

clv®@w ~ x| cc Acc, where z;,z; € X, v,w € V,c € N, ® € {+,-},
and ~ € {<,<,=,>,>}. Let X' denote the set X U {zg}, where 7o ¢ X is a
fictitious clock representing the constant 0. A clock-to-clock assignment A over
X is a function A : X — XT. Asg(X) denotes the set of all the assignments
over X. By a clock valuation we mean a mapping ¢ : X — IR ;. The satisfaction
relation (=) for a clock constraint cc € C(X, V) under a clock valuation ¢ and a
variable valuation v is defined as (c,v) | (z; ® v ~ ¢) iff ¢(z;) ® v(v) ~ ¢, and
similarly for the other cases.

In what follows, the set of all the pairs (c,v), composed of a clock and a
variable valuation, satisfying a clock constraint cc is denoted by [cc]. Given a
clock valuation ¢ and ¢ € R4, by ¢ + § we denote the clock valuation ¢’ such
that ¢/(z) = ¢(x) 4+ § for all z € X. Moreover, for a clock valuation ¢ and an
assignment A € Asg(X), by c¢(A) we denote the clock valuation ¢’ such that for
all z € X we have ¢/(z) = c(A(x)) if A(z) € X, and c/(z) = 0 if A(x) = wxo.
Finally, by ¢® we denote the initial clock valuation, i.e., the valuation such that
c’(z) = 0 for all z € X. In this paper we assume a slightly modified definition
of timed automata with discrete data [17], which extend the standard timed
automata of Alur and Dill in the following way:

Definition 1. A timed automaton with discrete data (TADD) is a tuple A =
(X,L,1°, V,X,E T), where

— X is a finite set of labels (actions),

— L is a finite set of locations,

— [€ L is the initial location,

— V is the finite set of integer variables,

— X is the finite set of clocks,

— ECLxXxBool(V)xC(X,V) x Inst(V) x Asg(X) x L is a transition
relation, and

—ZI:L— C(X,0) is an invariant function.

The invariant function assigns to each location a clock constraint (without inte-
ger variables?) expressing the condition under which A can stay in this location.
The semantics of a TADD A is given below.

Definition 2. The semantics of A = (X, L,1° V,X,&,T) for an initial valu-
ation v° 1 V. — Z is a labelled transition system S(A) = (Q,q°, s, —),
where:

~Q={lv,0)|leLrvezVInce]R‘f‘ ANc |=Z(1)} is the set of states,
— ¢ = (1°v°,c%) is the initial state,
— Ys =X UIR, is the set of labels,
— —CQ x Ys x Q is the smallest transition relation:
e forac X,
(I,v,c)-=(I',v',c) iff there exists a transition t = (I, a, 3, cc,a, A, l') €
E such that v |= 3, (c,v) = cc, v =v(a), c EZ(1), and ¢’ = c(4) E
Z(I") (action transition),
e foro e Ry,

(1,v,e)-5(l,v,c+6) iff c =Z(l) and c + 6 |= Z(1) (time transition).

Intuitively, in the initial state all the variables are set to their initial values, and
all the clocks are set to zero. Then, at a state ¢ = (I, v, c) the system can either
execute an action or time transition.

2.1 TADD Semantics for RMCS

Inspired by related work in the formal representation of states of compliance
and violation [10], we partition the set of global states @ of S(A) for A =
(X,L,1°,V,X,E,T) into two subsets G and R such that G N R = ()°. The set G
represents green (or ideal) states, whereas R represents the red (or non-ideal)
ones. Intuitively, G contains the states of compliance and R contains the states
of violation with respect to the contract, i.e., the whole set of clauses being
included. Figure 1 illustrates the intuition behind the semantics.

contract compliant
recovery

green state

contract violating

/4 red state

continuous contract violating

Fig. 1. Partitioning of states and transitions in a TADD

4 To ensure the monotonicity of the timed successor relation.
5 This partition is obtained “location-wise” from a partition of the set of locations L.

Based on the above partitioning each action transition (g, a,q’) of S(A) can
be one of the following four types of transitions:

— Contract compliant: between green and green states, i.e., ¢,¢' € G. These
transitions occur when the observed behaviour is in compliance with the
prescribed behaviour of the contract.

— Contract violating: between green and red states, i.e., ¢ € G and ¢’ € R.
These transitions occur when the observed behaviour violates the prescribed
behaviour of the contract.

— Recovery: between red and green states, i.e., ¢ € R and ¢’ € G. These
transitions occur when a recovery action is taken by the service after a
violation of the prescribed behaviour is recorded.

— Continuous contract violating: between red and red states, i.e., ¢,¢’ € R.
The transitions occur when no recovery results from a previous violation.

. . . 5 5
We say that there is a step from state ¢; to gz in A if ¢ —= ¢} % ¢5—25¢y, for
some states ¢}, ¢4 € @, 01,02 € Ry, and a € X.

2.2 Querying of TADD for RMCS

In our approach described below, we rephrase the problem of local monitoring
of executions against contract compliant behaviours into the following model
checking problem: For a given TADD A and a pair (Q1,Q2) of sets of global
states of S(A), we check whether there are two states ¢1 € Q1 and g2 € Q2 such
that there is a step from ¢ to ¢o. If so, we denote the step as Q1 ~ Q3. Below
we explain the methodology for monitoring contracts represented by a TADD:

— The transition relation is first encoded into a propositional formula. Then
for each step, this propositional formula is conjuncted with the encodings of
a pair of sets of states (Q1,Q2) given as an input.

— We start by making a query about a step from the source set @1 to the set
of the red states (@1 ~ R). To this aim the input (@1, R) is encoded. If the
resulting formula is satisfiable, then “non compliance” is reported.

— If the resulting formula is not satisfiable, then the input (@1, Q2) is encoded.
Again, satisfiability of the resulting formula is tested. Depending on the
result, either “compliance” or “invalid transition” is reported

Our tool uses MiniSAT [6] for checking satisfiability, but any standard SAT-
solver capable of processing propositional formulas in the conjunctive normal
form can be applied.

3 Runtime monitoring framework

Our architecture for local monitoring, RMCS, is illustrated in Figure 2. Agents
implementing WS are the primary entities within our framework. Service be-
haviour and contracts associated with them may be specified at a high level using

\‘Service“—‘
R RN

o

WSBPEL,
WSCDL,
OWL-S

WSLA,
ws-policy, | Contract
WSBPEL | Specification

Desired service
v behaviour as
Updated Clock Timed Automata
Variable valuations o hronisation t
at runtime sent as synchronisatiol specified
XML input in UPPAAL's
5] XML format

i Service' —I

s the resulting
formula SAT?

NO,

Are the source and
target state in the
transition relation?

YE§ 5
s the resulting ?
GREEN | formula SAT?
NO I

ONE |+—| |

Fig. 2. The general architecture and methodology

WS standards, e.g., WSBPEL [13] and contracts, e.g., WSLA [7]. The TADD
specification for the service is engineered from these interface representations.
A significant feature of our framework is that we do not place any restriction
on service implementation in terms of development infrastructure and execu-
tion platforms. Central to our framework is a non intrusive approach to mon-
itoring. The mechanism works independently of service execution. The module
responsible for linking the service to the monitoring mechanism is the “logging
framework”. Each service to be monitored is associated with a logger. The log-
ger records a “snapshot” of the variables of interest that are to be monitored.
Snapshots may be finely grained (i.e., every change in valuation is recorded),
or coarse (i.e, recorded after every pre-specified or random number of changes).
Snapshots may also be time bound, i.e., taken after a specific time interval. Each
snapshot captures variable valuation as they are generated, updated by the ser-
vice or received from partners. Every snapshot is passed to the runtime state
analyser using a dedicated API provided by the logging framework.

TADDs for services: The specification of service behaviour used by RMCS is
the TADD representation described in Section 2. We use the XML format gen-
erated by the model checker UPPAAL for representing the TADD. Our choice
is motivated by the fact that UPPAAL provides a user friendly GUI. This is of
great help to system engineers when modelling the TADDs. Secondly, the XML
representation format can be modified easily in order to take into account any
extensions to the TADD model. As illustrated in Figure 3, the TADD specifica-
tion encodes all possible desired behaviours for a service. Typically, the full set
of behaviours for a contract regulated service can be derived from:

Full behaviours =) %

TADD

Fig. 3. Set of behaviours for a service

— its contractually compliant behaviours. These behaviours encapsulate con-
tractual obligations for the service.

— behaviours that are classified as violations of the contract.

— behaviours that define a recovery from incurred violations.

There is a one-to-one correspondence between variables defined in the TADD
and the service implementation in terms of types and names i.e., variables names
and their types across the two representations are kept identical for simplicity.
The logging framework passes execution snapshots to the RSA as an XML data
structure.

Runtime State Analyser (RSA): The runtime state analyser interfaces with
the logger for receiving snapshots of the latest variable valuations generated
by the service. Snapshots are passed to the RSA via the logging framework.
RSA is also responsible for updating clocks by querying the system hardware,
in accordance with the granularity of a tick chosen by the service. A tick can
be defined in terms of seconds, minutes, hours or days i.e., clock values may
be captured every second, minute or day or any other interval chosen by the
service. Clocks may also be updated based on resets and assignments defined
in the TADD for the service. The monitoring engine reports back any resets
or assignments made to the clocks, along with reporting the results, e.g., if
the monitoring engine reports that a clock x is reset, the current valuation of
the clock is discarded and the clock is re-initialised. Clock resets and updates
are significant especially when a recovery action is taken against a violation
of contract. In such scenarios one would like to start the monitoring again with
clock valuation recorded before the violation occurred. The clock valuations once
recorded are then added to the variable valuation snapshot received from the
logger. RSA is also responsible for storing the history of service executions and
passing the augmented snapshots to the monitoring engine.

The runtime information passed to the monitoring engine from the RSA
consists of one or several steps. A step is a pair of consecutive snapshots, rep-
resented as “source” and “target” states. The states define immediately pre-
vious (source) and current (target) clock and variable valuations recorded for
the service. An example step for the case study in section 4 for the component

RepairCompany, clock x and variable maxz Repair RequestTime can be infor-
mally shown as: (z = 3, maxzRepair RequestTime = 7) — (xz = 5).

Any component of a source or a target such as a clock valuation, or a variable
valuation can be omitted. Thus each set can range from containing only the
system states (no values given at all) to a single state (every component is
specified).

3.1 The monitoring engine

The monitoring engine is the core component responsible for testing the confor-
mance of runtime service behaviour presented as an input from the RSA, against
the prescribed TADD specification of the service. Each execution step passed to
the engine is encoded and its conformance to the TADD specification is tested by
means of the model checking approach described in Section 2.2. Our SAT-based
verification method does not need to construct the complete model for A, which
could be unfeasible for both the explicit-state as well as BDD-based methods.
Instead, the timed automaton is encoded as a propositional formula, but testing
of its satisfiability is postponed until the concrete source and target states of an
execution step are provided. This significantly reduces the computational cost
as information about concrete states prunes the state space to be searched. The
engine monitors if the service has taken an execution step from the source set
to the target set of states in accordance with its prescribed TADD. In addition,
it checks if it is possible to reach a target red state from a given set of source
states. In the general case the system consists of several components represented
by automata; if at least one component of a location reachable as a result of the
transition is red, then this fact is reported.

Monitoring results: The engine checks at runtime whether the stream of exe-
cution steps received as inputs from the RSA, conforms with its symbolic repre-
sentation of all possible behaviours. For each execution step, the answer returned
by the monitoring engine is one of the following facts:

— GREEN - the step is conforming with the specification, i.e., there is a
contract compliant transition between the source and target states.

— RED - a red state is reached as a target of the transition given, i.e., a
contract has been violated as a result of the transition. This also signifies
the fact that the inputs do not comply with the extended format of the
TADD for the service.

— NONE - the step is not conforming with the specification, i.e., there is no
such transition, neither contract compliant or otherwise.

— ERROR - the specification given does not mirror the observed transition
so it amounts to an error.

Results reported at runtime may be analysed in several ways. In case of contract
compliant transitions, the service can continue executing as per the orchestrated
workflow. For contract violating transitions, the service administrator may im-
pose on the service to execute one of the prescribed recovery transition. In other

cases the administrator may choose to override the violations reported and allow
the service to carry on the execution. For a continuous contract violating transi-
tion being reported, the service may be stopped. Finally, the outputs generated
may be stored in a log file for future offline analysis.

4 A vehicle repair contract: case study

We now present a description of a case study followed by a detailed discussion
on the local monitoring and analysis of one of the agents in the composition.

We consider a service composition scenario that defines a repair contract be-
tween a client (C') and a vehicle repair company (RC). A repair contract specifies
details concerning a particular repair, i.e., the type of repair to be performed,
price, dates, pickup and delivery locations etc. For simplicity we only model the
behaviour of RC. Table 1 identifies some of the contract clauses governing the
actions taken by RC, the deadlines against which the contracts are monitored, if
the clause can be violated, and, if a violation is recorded, whether any recovery is
possible. Note that in some cases RC' may take an “offline” action, in response
to a violation from which no recovery may be possible. For example consider
clause 6: “For any violation take recovery action within maxRecoveryTime -
number of days”. If the recovery action is not taken, C' may take an offline legal
action against RC'.

The informal behaviour of RC' is described as follows. When RC' receives a
request from C' to undertake a repair job, it sends a repair proposal. In response,
C sends an acceptance or rejection message. If accepted, RC sends a contract
initiation message to C. RC then waits for the vehicle to arrive, failing which it
sends two reminders to C. If the vehicle fails to arrive, it takes an offline action.
As per the contract, RC is obliged to assess the damage, repair the vehicle and
send a report to C. On receiving the report, C is obliged to send payment to
RC'. If the payment is not sent, RC sends two reminders to C' and then takes
an offline action.

The actions taken by RC' in response to messages sent by C are monitored
to meet the deadlines set for various activities as per the contract. Failure to
meet deadlines is considered a violation of the contractual obligations. In some
cases a recovery from the violation may be possible.

4.1 Monitoring the runtime behaviour of the Repair Company

The full set of behaviours of the RC is represented by a TADDS. As described in
Section 4, deadlines for various activities are decided during contract negotiation
between the parties. Deadlines are defined in terms of number of days. For
example consider a contract clause to be monitored: If C' sends a damaged
vehicle to RC, RC' assesses the damage to the vehicle within 3 days -clause (3)
in table 1. A snippet of the TADD for the clause is shown in the Figure 4. Figure

5 The complete TADD for the example is too large to be shown here.

clause|Contract regulated ac-|Deadline|Violation Recovery

tions

1 |Receives a repair re-|5 days - -
quest by C'

2 |Sends a repair pro-|7 days - -
posal to C

3 |Assess damage to the|3 days yes yes
vehicle

4 |Execute repair 30 days yes yes

5 |Send repair report to|5 days yes yes
C

6 |For any violation take|3 days yes no (take offline action)
recovery action

Table 1. Some contract regulated actions for RC'

s4=Contract Initiated
x<=7

vehicleSent
SendVehicle!

s5=Received Vehicle
damageAssessed

!damageAssessed

SendAssessed? clause=003,x=0

s7=Assessed
x<=30 x<=2

s8=notAssessed

Fig. 4. TA specification of clause (3)

4 describes the timeline in number of days for clause (3), a snapshot passed to
RSA at z = 0 from the logger when a vehicle for repair arrives, snapshots sent
to the monitoring engine by the RSA and the results from monitoring. As per
the contract, once a damaged vehicle has arrived the damage has to be assessed
within 3 days. A snapshot is again sent by the logger to the RSA at x = 5.
The snapshots taken at = 0 and at x = 5 are sent by the RSA as a pair
- or as a “step” to RMCS. The results returned by the monitoring engine are
{RED,reset,003}. RED signifies that a violation has occurred, i.e., the damage
was not assessed within the deadline, reset indicates that the clock has been reset
and 003 indicates the index of the clause that has been violated.

4.2 Experimental results and Discussion

In order to validate our methodology, we implemented the above case study
and monitored several runtime execution steps for the service. To provide an
indication of how many variables the toolkit can monitor at the same time we
scaled the example described above parametrizing the number of cars in the
contract. As one clock and one integer variable are associated with every car,
numbers of clocks and int variables grow respectively. Notice that the bigger
values can these vars have, the more bits are needed for encoding them.

10

Timeline in Status Snapshot Clock (x) Snapshot Step Results

Days logger - RSA RSA — Monitoring engine
start 0 — Received Request receivedRequest=true, 0+
maxRepairAcceptTime=5,
1 acceptRequest=false 1 4+
2 receivedRequest=true, 2
maxRepairAcceptTime=5, Request=t
+ Received Request 4 receiveRequest=true,
3 a acceptRequest=true 3 maxRepairAcceptTime=5, ——m SOUICE
_ acceptRequest=true, x=3
3+ Accepted Request acceptRequest=true, 0 {reset
maxSendProposalTime=3, REEN
4 sendProposal=false 1 ,
reset
1 acceptRequest=true, 1 acceptRequest=true,
5 Accepted Request g b oposalTme=3, 2 maxSendProposalTime=3, ——w target
sendProposal=true sendProposal=true x=2
5+ Proposal Sent 3 4

Fig. 5. Runtime valuations for clause (2)

The client is interested in getting x cars repaired. The request for all these
repairs is included as a single contract.

Step | state |Explanation
step 1|source|RC waits to receives the request for repairing cars.
target |RC receives the request for repairing x cars. We show here an example
of the clock and variable valuations for three cars.
step 3|source|RC accepts the request for repairing = cars.
target |RC sends repair proposals for repairing z cars.
Table 2. Explanation of trace contents for steps 1 and 3

step nr |nr of cars|nr of int variables|nr of clocks| Nc/Nvars [time [s] |answer
10 10 10 6779/16528 |<1

1 20 20 20 17738/43455 |<1 YES
300 300 300 265741/652852(4.3
10 10 10 6743/16431 |<1

3 30 30 30 26781/65822 |<1 NO
300 300 300 265811/653052|5.4

Table 3. The experimental results. Parameters of the example are described in the
text; size of encoding: Nc¢/Nvars is the number of clauses/Boolean variables in the
result CNF formula; time refers to checking this formula using the tool Minisat.

Table 2 explains the contents of traces for contract clauses 1 and 3 (see Table
1). Table 3 presents experimental results. It can be stated that the approach
performs extremely well against explicit approaches, which, although more im-
mediate in their construction, typically fail to scale due to their memory foot-
print. This phenomenon could be even more visible if we could have a network
of automata instead of a single automaton defining a contract. The experiments
show the approach can monitor effectively several hundreds of variables. This

11

is sufficient for very complex monitoring of key aspects of a service. We did
not optimise the monitoring process in any way; we expect our results to im-
prove significantly by tailoring the approach to a particular problem we wish to
monitor.

We found the only timeconsuming step of our methodology to be the con-
struction of the automaton representing all behaviours. However this only needs
to be done once, tools to assist the user in the design exist, and it can then be
used for all monitoring purposes. Additionally it is to be noted that for complex
applications, a representation of the service composition in an automata-based
framework (or something equivalent) is expected to be produced during the de-
sign phase, so the construction above may in practice be derivable from existing
formalisations of the composition under analysis.

5 Related work and conclusions

In this paper we presented a symbolic approach based on timed automata for the
runtime monitoring of contract regulated agent based WS. Monitoring service
behaviour has been an active area of research. Several efforts have investigated
various formalisms and frameworks for the monitoring of functional and non-
functional properties of services. The monitoring problem has been considered
for several formalisms in papers [16,2,4,14,12,11,9, 3]. Timed automata have
been used in earlier work such as [8] on monitoring and fault diagnosis of systems,
while [15] presents an approach which also uses timed automata for monitoring
SLAs. The aims of the above approaches are however quite different from our
objectives in this paper. However [8, 15] are not concerned with local monitoring
of contract-based executions.

An attractive feature of our approach over those mentioned above is that his-
tories and pending contracts are not stored in memory during the monitoring.
This positively impacts the scalability of the approach and is particularly useful
when monitoring multiple and long running contracts between several services.
As a case study we presented the monitoring of contracts for a repair company.
Although the TADD for the service is not large enough to exploit the full ca-
pabilities of RMCS, we believe it is still sufficiently significant to demonstrate
the methodology and scope of the proposed approach. Experiments demonstrate
larger scenarios would be handled just as well by the technique.

While verification is still an aspect of systems validation we are not aware
of symbolic attempts to the runtime monitoring of these notions. It seems to us
that it may be of interest to investigate whether this could be achieved in ways
related to the technique presented here.

Much work remains to be done. An important part of our future work is the
translation to TADDs from high level specification standards such as WSBPEL.
Developing such a translation is non trivial as most standards do not support
the explicit representation of timing constraints on prescribed activities. These
standards therefore need to be augmented with such support. Additionally, we

12

are interested in developing an interactive compiler for services specified in WS-
BPEL to be compiled into our TADD representation.

References

1.

o

10.

11.

12.

13.

14.

15.

16.

17.

R. Alur. Timed Automata. In Proceedings of the 11th International Conference
on Computer Aided Verification (CAV’99), volume 1633 of LNCS, pages 8-22.
Springer-Verlag, 1999.

Fabio Barbon, Paolo Traverso, Marco Pistore, and Michele Trainotti. Run-time
monitoring of instances and classes of web service compositions. In ICWS ’06:
Proceedings of the IEEE International Conference on Web Services.

Luciano Baresi, Carlo Ghezzi, and Sam Guinea. Smart monitors for composed
services. In ICSOC ’04: Proceedings of the 2nd International Conference on Service
Oriented Computing. ACM.

Domenico Bianculli and Carlo Ghezzi. Monitoring conversational web services.
In IW-SOSWE ’07: 2nd international workshop on Service oriented software engi-
neering. ACM.

P. Dembinski, A. Janowska, P. Janowski, W. Penczek, A. Pdlrola, M. Szreter,
B. Wozna, and A. Zbrzezny. VerICS: A tool for verifying Timed Automata and
Estelle specifications. In Proc. of the 9th Int. Conf. on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS’03), LNCS. Springer-Verlag.
N. Eén and N. Sorensson. MiniSat. http://minisat.se/MiniSat.html.

Alexander Keller and Heiko Ludwig. The WSLA Framework: Specifying and Mon-
itoring Service Level Agreements for Web Services. J. Netw. Syst. Manage., 2003.
M. Krichen and S. Tripakis. Black-box conformance testing for real-time systems.
In 11th International SPIN Workshop on Model Checking of Software (SPIN’04),
Barcelona, Spain, LNCS.

Zheng Li, Yan Jin, and Jun Han. A runtime monitoring and validation framework
for web service interactions. In ASWEC ’06: Proceedings of the Australian Software
Engineering Conference (ASWEC’06). IEEE Computer Society.

A. Lomuscio and M. Sergot. Deontic interpreted systems. Studia Logica, 75(1):63—
92, 2003.

G. Mahbub, K.; Spanoudakis. Run-time monitoring of requirements for systems
composed of web-services: initial implementation and evaluation experience. In
ICWS’05, IEEE International Conference on Web Services.

Carlos Molina-Jimenez, Santosh Shrivastava, Ellis Solaiman, and John Warne.
Contract representation for run-time monitoring and enforcement. cec, 2003.
OASIS Web service Business Process Execution Language (WSBPEL) TC. Web
service Business Process Execution Language Version 2.0, 2007.

Marco Pistore, F. Barbon, Piergiorgio Bertoli, D. Shaparau, and Paolo Traverso.
Planning and monitoring web service composition. In AIMSA, pages 106-115,
2004.

F. Raimondi, J. Skene, L. Chen, and W. Emmerich. Efficient monitoring of web
service slas. Technical report, UCL, London, 2007.

Monika Solanki. A Compositional Framework for the Specification, Verification and
Runtime Validation of Reactive Web Service. PhD thesis, De Montfort University,
Leicester, UK, October 2005.

A. Zbrzezny and A. Pélrola. SAT-based reachability checking for timed automata
with discrete data. Fundamenta Informaticae, 79(3-4):579-593, 2007.

13

