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Abstract—This paper addresses the issue of guaranteeing the MAS [8]. In contrast to ad-hoc analysis, in this approach
correctness of fault diagnosis mechanisms in multi-agenystems.  faults can be automatically injected into a model of a cdlyec
We propose an automated approach to verifying the property & papaying MAS in order to mutate it into one that exhibits

diagnosability by combining fault injection with model checking. . . . .
In particular we show how to reason about individual agent’sand possible faulty behaviour. Once a mutated model is avai|abl

system wide knowledge of faults, which is essential for thegents ~diagnosability can be verified in it by using the MAS based
to cooperate and coordinate to recover from them. The multi- model checker MCMAS [13]. This enables us to verify the cor-
agent system model checker MCMAS is used for verification rect and faulty behaviour of agents, as well as tkaowledge
and epistemic specifications are defined to specify that a dgsn 55t the behaviour in a temporal-epistemic logic settBig [
accurately diagnoses faults. S Specifically, we define tem [-epistemic f las t

Index Terms—model checking; fault tolerance; fault injection; P Y, porai-epistemic formulas 1o oeas
epistemic logic; about the knowledge of faultshat have been injected into
the system. These specifications allow us to verify distedu
diagnosability, and appear more intuitive than purely terap
diagnosability specifications [4].

In recent years considerable interest has been shown tewardTo model realistic faulty behaviour, we define complex
the use of multi-agent systems (MAS) [18] as a paradigfaults with varying persistence and develop a graphicdltmo
for software engineering (see e.qg., [10]). Most of thisiest inject them automatically. We highlight the usefulness of o
is due to the high level of complexity required to engineeipproach by using it to verify both individual agent and eyt
software architectures in which the core components, wide diagnosability in a model we constructed of the IEEE
agents, autonomously interact with one another, engagingg02.5 token ring LAN protocol, which utilises distributed
communication, negotiation, coordination, etc. Althoiigas  diagnosis to achieve fault tolerance.
been argued that MAS are a natural way to engineer complexThe rest of the paper is structured as follows. In Section Il
software architectures, confidence in the robustness of MAf provide the background on model checking, interpreted
is a practical concern when considering whether to adot it ystems, MCMAS, and fault injection into MAS. In Section Il
a software engineering paradigm. we extend the fault injection approach presented in Sedtion

Central to the issue of robustness is ensuring fault toterarby defining new faults with varying persistence, and intro-
in MAS. One way in which fault tolerance can be improved iducing a fully functional compiler for injecting faults mta
by employing MAS architectures in which agents are able MAS program. In Section IV we define temporal-epistemic
diagnosefaults so that they can communicate and co-ordinagpecifications that can be used for verifying diagnosabilit
to recover from them [12], [15], [16]. The general problensection V we describe a version of the token ring protocol
of fault diagnosis has received considerable attentiosesinand its implementation in the MCMAS input language. In
the late 80s (see e.g., [6]). Further to this, studies haes beSection VI we show how our approach is applied to verify
conducted on the property ofiagnosability i.e., establishing diagnosability in the token ring protocol. In Section VII we
whether a fault can be correctly detected from the obsegvakliscuss the related work and in Section VIl we conclude and
events of the system [17]. For systems in which accuraté faplt forward future work.
diagnosis is critical, automated verification techniqusshsas
model checkingb] have been used to verify diagnosability [4]. Il. BACKGROUND
However, in that approachistributed diagnosability is not  Model checking [5] is a widely adopted technique for
considered, and the faulty behaviour of the system is medellsystems verification. In model checking the system consitler
by hand. for verificationS is represented by a logical models which

In this paper we propose an automated approach to verifyiagcodes the behaviour of the system as computational traces
diagnosability in MAS. The analysis of faulty behaviour idn this approach a specification of a propeRtys expressed by
automated usingfault injection which has recently beenmeans of a logical formulap. The model checker establishes
combined with model checking to verify fault tolerance irwhether or notMg satisfiespp (formally, M E ¢p). The

I. INTRODUCTION



satisfaction relation is implemented as a decision proeeduholds; K;p expresses thaagenti knowsp, Erp expresses
whoseautomaticnature makes model checking attractive fothat everybody in groug® knowsy, Cry expresses that is
the purpose of verification [5]. common knowledge in group that ¢, and Dry expresses
In the case of MASyp is often expressed by using athatit is distributed knowledge in group that ¢ [9].
number of rich modal logics including temporal, ATL, and Any interpreted system is associated with a mof&ls

epistemic logics [18]. Particularly relevant to diagndbgbis = (W, Ry, ~1,--- ,~y, L) that can be used to interpret any
temporal-epistemic logic, which can be used to reason abéotmula ¢. The set of possible world$l is the setG of
the knowledgeof the agents over time. reachable global states. The temporal relatitonC W x W

A. Interpreted systems and MCMAS (r;ls;iir(ljger;(\r:vo worlds (i.e., two _g_lobal states) is define(/j by
_ g the temporal transitign Two worldsw and w
Interpreted systems [9] are a popular semantics fgfe such thafz, (w,w’) iff there exists a joint actiom € Act
temporal-epistemic logic. We summarise the framework @{ich that(w,a) = w’, wheret is the transition relation ofS.
interpreted systems in  [9] to model MAS. Each agér# The epistemic accessibility relations C W x W are defined
{1,---,n} in the system is characterised by a finite set ¢y considering the equality of the local components of the
local states.; and by a finite set of actiondct;. Actions are global states. Two worlds),w’ € W are such that ~; w’
performed in compliance with a protocd} : L; — 24, gt 1. (w) = I;(w’) (i.e., two worldsw andw' are related via
specifying which actions may be performed in a given staighe epistemic relation-; when the local states of agehin
In this formalism, the environment in which agents “live” yna global statess andw’ are the same [9]). The labelling relation

be modelled by means of a special agéhtAssociated with 7 ¢ AP x W can easily be defined in terms of the valuation
E are a set of local statebg, a set of actionsActg, and a g|ation V.

protocol Pp. Atupleg = (l1,- -+ ,ln,lp) € Lix---X Ly XL Formulae can be interpreted ;s in a standard way [5],
wherel; € L; for eachi and eachiy € L, is aglobal state [9] [14] as follows. Letr = (wo,wr,---) be an infinite
describing the system at a particular instant of time. sequence of global states such that for zallR, (w;, w4 1),

The evolution of the agents’ local states is described by |etr (i) denote the-th world of the sequence (notice that,
functiont; : L; x L x Acty X --- X Acty X --- Actg — Li,  following standard conventions we assume that the temporal
which returns a local state (the “next” local state) for &@gen rejation is serial and thus all computation paths are irgnit
given the “current” local state of the agent, the “currenitdl \ye write (M, w) F ¢ to represent that a formulais true at a

state of the environment and all the agents’ actions. Sityilayor1d « in a Kripke modelM, associated with an interpreted
the evolution of the environment’s local states is describg systemIS. Satisfaction is defined as follows.

afunctiontg : Lg x Acty X -+ x Act, X --- Actg — LEg. Itis .
: ; M E iff L,
assumed that in every state, agents evolve simultanedtrsdy. EM’ Z% ':Z: iff E\Z/)[’;U) <
evolution of the global states of the system is described by(ﬁ[’ w) E 90<1p\/ 0y iff eithergDJ,V[ oy of ME oy
)

functiont : S x Act — S, whereS C Ly x---x L, x Lg, and . .
' iy Lo (M,w)E EXyp iff there exists a pathr such that
Act C Acty x --- x Act,, X Actg. The functiont is defined as 7(0) = w, and (M, 7(1)) E o,

—_ - . . — 7. / -_
t(g’a,) =g it for all 4,t:(li(g), a) = Li(¢') andtx(ix(g), a) = (M,w) E AGy iff for all paths we have that
le(g"), wherel;(g) denotes theé-th component of global states (0) = w, and (M, =(i)) F
g (corresponding to the local state of ageht Given a set for all i > 0 ’ 4
ICSof pOSS|_bIe initial global states agétg S of reachable M, w) E E(oU) iff there exists a pathr such that
global states is generated by all possible runs of the syste 7(0) = w, and there exist& > 0
Finally, the definition includes a set of atomic propositiohP and (M 7’7( ) E ¢ such that
together with a valuation functiolr C AP x S. We define (M w(lc’)) éw arfd (M, 7(j)) F ¢
aninterpreted systeras the tuple: forall 0'< j < k,

1S = <(Ll, Act;, Pi7ti)i€{1,m nhs (LE, Actg, PE,tE), 1, V> (]\/[7 U)) F Kigo iff forall w' e W, w ~i w' |mpI|eS

. . (M, w'") E ¢,
The syntacthal constructs and the semgnuc modgl t tL w) E Erg ift for all w' e W RE(w,w') implies
are presented in [13] are adopted for the interpretation (M, ') F o
temporal-ep|st_em|c formulae_ln mterpreted_s_ystems. pe_c_(M7 w) £ Cre iff forall w' e W RS (w,w) implies
cally, we consider the following syntax defining our specifi: (M, ') F o
cation language: . ! , D .
pu=p|-p|eVe | EXp| AGe | E(eUy) | Kip | (M, w) F Dre iff f?&ai/suhiw R’ (w,w’) Implies
Ere | Cre | Drey ’ '
In the grammar abovg € AP is an atomic propositionf X In the definition above, the relatioRZ is defined as the

is a temporal operator expressing that there exists a ratet stinion of the epistemic relations for the agentsIin Rf =
in which  holds; AG is a temporal operator expressing that) ~i; the relationR{ is defined as the intersection of the
in all runs¢ holds globally; E(oUv) is a temporal operator ‘S

. ; . . . epistemic relations for the agents In RE = ~;; the
expressing that there exists a run in whighholds until ¢ P g r iQF !



TABLE |
o - 5
relation Ry is the transitive closure oRy. TRANSITION RELATION MUTATION RULES FORAT™.

We say that a formula is true in the model and we write

M E @ if (M, w) o for.all weW. Similarly to [9], we say  rransTFaur Target State | Transition Condition
that a formulay is true in an interpreted systei, and we |7, N/A state = =

*tc

write IS F ¢, it M E ¢. A formula is true in an interpreted |¢,r. |any state = x xe & Actp; = notinject
system if it is true in the associated Kripke model tars | random| state =z || lz | #c & Actrr = inject
MCMAS [13] provides ISPL as an input language for|tar~ |invert |state =!z *e & Actpr =inject

modelling a MAS and expressing (amongst others) temporafar: | Stuck al state = state |+ & Acter = inject

and epistemic formulas as specifications of the system. The

structure of an ISPL program allows the local states to be

defined usingboolean bounded integer and enumeration (Lg,Actg, Pg,tg), 7%, VE*)
variables. ISPL programs are closely related to intergreys-
tems; specifically each ISPL program describes an interprer%
system. MCMAS supports the verification for all formulas i
the language above.

The evolution functiort 4 is mutated to contain the desired
aulty behaviour int 4».. More formally, Table | gives the
precise mutation rulesfor different potential faults. In the
table Trans indicates the evolution functiorFault indicates
B. Fault injection into MAS programs the type of fault, Target Stateindicates the target state of

Model checking has traditionally been applied to providéie chosen variable for the injected fault, afidansition
assurances about tigerrect behaviour of the system in termsCondition shows the transition condition of the evolution
of temporal specifications. However, injecting faulty bébar function under original and mutated conditions, whete
allows the analysis of both theorrect and faultybehaviours indicates the original transition condition.
of systems by means of model checking [1]-[3], [8], [11].  The definition of the fault injection agent and the mutation

To inject faulty behaviour into an interpreted system, eules for the faulty agent presented above as reported in [8]
general way to mutate any ageatinto a faulty agent4d™  are limited in that:
was defined in [8]. In this approach a fault injection agent . during a system run it is only possible to reason about
(F'1) determines the conditions under which faulty behaviour  paths in which faults are either never injected or randomly
occurs in the faulty agent. The faulty behaviour is triggere injected,

in the faulty agent whenever thevject action is performed , faults can only be injected on states which contain
by F'I. Conversely, the original behaviour is preserved in the pgolean variables.

faulty agent whenever theotinject action is performed by o ever, for diagnosability it is necessary to reason about
FI. o o , faults which can be identified by a diagnosis mechanism.
The occurrence of thewtinject and inject actions are s implies defining faults with both random and constant
handled by F'I's protocol Ppy(nofault) = {notinject}, pergistence, that can begin and stop at certain points of a
Pp(fault) = {notinject,inject}. The local states of the system run. To inject faults into an interpreted system that
faultinjection agenL p; = {nofault, fault} indicate whether \n,qes 5 realistic MAS in which fault diagnosis is present,

a fault isever injected during a run of the system. This is S}, need to reason about faults affecting local variables.
as an initial state of the system and persists during thelrun.

other words, faults are injectedndomlyinto the faulty agent I1l. TOWARDS VERIFYING DIAGNOSABILITY

whenever'] is in a faulty state. In the previous section we described the limitations of our

gt?m:c pbroEos_mons c:lrrz be used Ejo_reason aZOUtStIr“;rﬁSO”S%Snng approach to fault injection which makes it curhgent
and faulty behaviours of the mutated interpreted sy unsuitable for reasoning about diagnosability. In thistisac

i itiohBF* =
wherle thg muta’;ed f_ﬁt of atom.u_: prop(l)5|t|.omé' d_ AP;J we surpass these limitations by defining extensions to the
{f(;u ty’m]elde }. g?ropolsmonfau tyis uze (together o sistence of the fault injection agent and introduce new
with temporal-epistemic formulas) to reason about systems r transition relation mutation rules on enumerate varialites

where faults are either never injected or randomly injectef?]e faulty agent. We also show how these are incorporated int
Similarly the propositioninjected is used to reason abouta fully functional compiler for fault injection

system runs where faults are injectedts current tick of the

clock A. Persistence extensions for the fault injection agent
The evaluation function/ is modified to VI* so that

VE*(faulty) = {9 € G | lar-(9) = fault} and fa

V7" (injected) whenever the evolution into the current statg, i iniection, fault injection after and beforerandom start
of the faulty agent required the actiénject of F'I to occur.

Th ¢ of initial stateq i dated that the initial stat point (rstt) and arandom stop poinfrsto), and fault injection
€ set ofinflial states Is updated so that the initial Stal€ager ang pefore atart action occurqastt) and astop action
of the fault injection agent'I is eithernofault or fault in

175 Th ded faul is defined as follows: occurs(asto), which is an action of any agent. Any of these
- The extended faulty system Is defined as follows: options can be combined defining different types of fauld an

ISF* = (LF*, Act™™;, P> t5% ) ic g1, ns determining the local states of the fault injection agent.

To allow for varying fault persistence we defineeanstant
ult injection agent as default with options fiandom(rnd)



TABLE I
DEFINITION OF LOCAL STATES AND ACTIONS OFF'].

TABLE IV
DEFINITION OF TRANSITION RELATION OFF'[.

options Lrr Actrr options Target |Transition Condition
default {nofault, fault_i,|{notinject, inject} State
fault_ni} astt fault_ni|w_astt & STT
rstt U {w_rstt} U {start} astt, rstt w_astt |w_rstt & Actrr = start
astt U {w_astt} lastt, rstt fault_ni|w_rstt & Actp; = start
asto U {stop_ni} lasto fault_i |(fault_i || fault_ni)
asto, rsto U {stop_i} & Actpr = inject
rsto U {stop_ni} U {stop} lasto, rnd fault_ni|(fault_i || fault_ni)
rsto, asto U {asto_i} & Actrr = notinject
rsto,asto,rnd| U {asto_ni} asto fault_i |(fault_i || fault_ni)
& ACTrr = inject & 'STO
asto, rnd fault_ni|(fault_i || fault_ni)
& ACTrr = notinject & 'STO
Table Il defines the local states and actions of the fault®sto:'rsto stop_i | (((fault_i || fault_ni) & STO)
. . . & Actpr = inject
injection agent according to these options. For the default stop_mi | stop.i
injection agent we havelCTr; = {notinject,inject}. The asto, Irsto,rnd|stop_ni | (((fault_i || fault_ni) & STO)
actions start and stop are added if random start and stop & Actpr = notinject
options are set. asto,rsto,rnd |asto_i | (((fault_i || fault_ni) & STO)
L . . o || (asto_i || asto_ni))
The fault injection agent can either be in a state where it ig & Actps = inject
never injecting fault_sdo fault), has injected or not i_r?jected a asto_ni | (((fault_i || fault_ni) & STO)
fault at the current tick of the clockf@ult_[i, ni]), waiting for || (asto_i || asto_ni))
a start condition_[astt, rstt]), has injected or not injected | & Actrr = notinject
a fault at the current tick of the clock after a stop action| @5/, 7sto, Irnd astot %‘i“lt—_l ||tfa“lt—m) & STO
(asto_[i, ni]), has injected or not injected a fault at the current!"* Stop_tw | Actrl = SLop
tick of the clock and will not inject faults in any future tick
of the clock Gtop_[i, ni]). TABLE V
The definition of the fault injection agent protocBY; is DEFINITION OF INITIAL STATES OF F'I.
given in Table Ill. For the default fault injection agent we options I
have thatPp;(nofault) = {notinject}, Pp;(fault_i) = de;?un {nofaulzg
{inject}. A set of actionsActp associated with some of the " U {w_rstt}
. . . astt,Irstt | U {w_astt}
states is defined dynamically. lrstt, lastt | U { fault_ni}

The transition relation for the fault injection agent
is defined in Table IV, which shows the target state
and the transition condition as defined by the options.

STT C Acty x --- x Act, x Actp is a set of start actions. about faults. Initially we have that the mutated set of atomi
STO C Acty x -+ x Act, x Actp is a set of stop actions. Propositions AP™™ = AP U {faulty} where faulty is
The initial states of the fault injection agent are defined i#efined to reason about whether faults are ever injectedtisto
Table V. The initial state is eithenofault, which persists Systém. The corresponding evaluation functiéris updated
indefinitely, or a state determined by the selected options. SO that V™ (faulty) = {g € G | lar-(9) # nofault}.

Finally, we introduce some atomic propositions to reas

cimilarly we have thatAP** = AP™* U {injected}. The

corresponding evaluation function is updated according to
IND a set of states in which faults are injected into the

TABLE Il system at the current tick of the clock as defined in Table VI,

. DEFINITION OF PROTOCOL OFF'I. so that VF* (injected) _ {g c G | Lyre (g) c IND}.

gp;'or:s Actp Prr — For random faults if any start or stop option is selected we
efault {inject} {(({L?}th {(;f:th cct))) have thatAPF* = APF* U {injecting}. The corresponding
rnd U {(faultin@ {mfect})} evaluation function is updated according }/J a set of
rnd U {notinject} |U {(fault_ni, Actp})}
rstt U {(w_rstt,
{notinject, start})} TABLE VI

astt U {(w_astt, {notinject})} DEFINITIONS OF STATES FOR UPDATING THE EVALUATION FUNCTION
asto U {(stop_ni, {notinject})} options IND options | NIJ
asto rsto U {(stop_i, {notinject})} default {fault_i} default | 0
rsto U {(stop_ni, {notinject})} asto,rsto | U {stop_i} || astt U {w_astt}
rsto, lasto U {stop} asto,rsto | U {asto_i} || rstt U {w_rstt}
rsto, asto U {(asto_i, Actp U {stop})} asto U {stop_ni}
rsto, asto, rnd U {(asto_ni, Actp U {stop})} rsto U {stop_ni}




TABLE VI o .- . .
NEW MUTATION RULES FORAF* of the state the agent is in. Thus, the original behaviour is

preserved for all transitions wheneVEACTr; = inject),
Trang Target State | Transition Condition and onlyvar is updated tov; wheneverACTr; = inject.
A var = 01 & %1a | *1e The fault is useful for defining scenarios in which an agent

tare | var = v1 & *i | e & ((ACTr = inject) immediately evolves to a state as a result of a fault.

tars | var = vg & #¢s | *ee & ACTRr = inject . . S
SAthk at selec2t el £ . C. A fully functional compiler for fault injection

Trang Target State | Transition Condition In the previous two sections we introduced complex faults
ta |var =g i s |vAr =0 i *tc& ACT o based upon combining several options and mutation rules. To
tare |var = vy & xsvar = v &xe &UACTpr = inject)| guon for these faults to be injected into an ISPL program

tgr« |var = v1 & ¢ |var = v & x¢e & ACTFr = inject . .
Variable transition we developed a fully functional compiler to manage these

Variable value replace

Trang Target State | Transition Condition faults during the injection process. The compiler is aldda

ta [*ts *te for public use. [7]

taFs |*ts *1c & (ACTFr = inject) The toolkit takes an ISPL program as input and provides a
tare Jvar = v ACTrr = inject GUI which allows the user to inject faults into the progrand an

output a mutated program. The GUI facilitates the injectibn
any number of faults using any number of corresponding fault

states in which faults cannot be injected into the system IBfection agents. Each fault injection agent is named ugliqu
the current tick of the clock as defined in Table VI, so tha@nd can be defined using the persistence options previously

VE*(injecting) = {g € G | lur-(9) ¢ NIJ}. If any stop introduced. . _ .
option is selected we havéP?™* = APF* U {stopped} and The ISPL code is mutated by applying the mutation rules

VF*(stopped) = {g € G | Lur-(g) = stop_ni}. to each evolution line of the agent the fault is being injdcte
- into. The transition relation is mutated into the transitio
B. Transitions for the faulty agent relation of the faulty agent,~.. The mutation is performed

In this subsection we define new mutation rules for thésing string find and string remove functions. The pseudieco

faulty agent that denote the mutated transition relation fg€low illustrates how the transition relatign of an agent
states that includenumeratevariables. The rules are shown in4 1S mutated for a variable value. In the pseudo-cddgéS
Table VII. In the tableTransindicates the evolution function, '€tUrns a string containing the target state #tid S return a

Target Stateindicates the target state of the chosen variabR¥ing containing the transition condition. The functiind
for the injected fault, andransition Conditiorshows the tran- "€tUrns & boolean value indicating whether a string has been

sition condition of the evolution function under originaica found. The functioniZemove takes two strings as parameters,
mutated conditions. In the target state colurap, indicates €MOves the_ second string from the first string and returas th
the original target state, similarly in the transition citioh "€Sultant string.

column x;. indicates the original transition condition. In theor each line L in tA

cases where individual variable components of the targégst | f Find(LHS(L), var + "=" + vl)
and transition condition are distinguisheg, andx;. indicate tAx += LHS(L) + "if" + RHS(L) + "and"
the remaining component of the target state and transition + FI + ".Action = inject"\n";
condition respectively. Note that we u§edCTr; = inject) tAx += var + "=" + v2 + "and"
to define when a fault is injected rather thaACTr; = + Renove(LHS(L), var + "=" + vl)
notinject) since the actionstart and stop do not cause a + "if" + RHS(L) + "and !'"
fault to be injected. + FI + "Action = inject\n";

A variable value replacdault defines that the value of an €l se
enumerate variablear is updated with a values in t,-- tA« += LHS(L) + "if" + RHS(L) + "\n";

whenever the value afar is updated ta, in t4. This faultis 5 jniact multiple faults on the same agent for each fault the

useful for defmlng faullty conditions where some of the Coweprocess is repeated on the transition relation mutated &y th
agent behaviour is skipped. previous fault.

A stuck at selecfault defines that the valug of a variable
var persists if the current value afar is vy. If in t4 the IV. REASONING ABOUT DIAGNOSABILITY
variablevar is updated to a value, # v; whenvar = vy, the So far we have described the automatic fault injection
the faulty behaviour irt 4». preservesar = v;. This allows approach that can be applied to a MAS mof&lto produce
other values of the variable to change when the agent evoleesnutated model S¥*. In this section we define a number
andwvar # vi. A complete stuck at select rule would considesf diagnosability specification pattern¥hese are temporal-
cases wherear is absent from the transition condition andepistemic formulas that can be used to reason about the
var = v, is in the target state. knowledge of injected faults for verifying diagnosability

A variable transitionfault defines that a variablear is set Diagnosability is informally defined by saying theafault is
to the valuev; int 4»- whenever the fault is injected regardlessliagnosable if there are a finite number of observationsrafte



the occurrence of the fault that correctly identify[#t7]. In about group knowledge of faults. Consider the following
the context of MAS, we say that tHeowledge a faults the specification:

property that determines whether a fault is diagnosablevé\s

show below we can formally verify this high-level expressiv -E(-© U © A ~AF(Dr(0))) (4)
property.

For our specification patterns we define a diagnosis propeftjis formula states that there is no path in which at some
of the system ag\ and express the persistence of an injectd?Pint © and a which point it is not true that at some point in
fault as© which we define as: the future it is distributed knowledge in grodpthat®. The
formula specifies the ability of a group of agents to diagnose
faults correctly. Similar specifications can also be defifoed
where faulty, injecting, stopped, andinjected are atomic reasoning about whether everybody knows about faults and
propositions that relate to the faults persistence. common knowledge of faults.

Consider the following formula: Finally we may wish to reason about the propagation of the

knowledge of faults through the system, using the following
AG(A — Ki(©)) (1)  specification:

This formula states that whenever a diagnosis property of

the systemA occurs, agent knows that©. This provides —E(-Ki(©) U (Ki(©) A=AF(Dr(0)))) ()

an insight into the ability of agent to determine that the r;g formyla states that there is no path in which at some
fau!ty. behgwour ha;loc.curred. This sp.ec_|f|ca.t|on is uskful point agenti comes to know® and at which point it is not
verifying diagnosability in agents that distinguish andaeon e that at some point in the future it is distributed knalge

individual faults. , o ) in groupT" that ©. This formula specifies the propagation of
In the case where a diagnosis is made for different typggs knowledge of faults to a group of agents. We consider this

of faults using the same mechanism, consider the followiggyma to be the most interesting of or specification pater

formula: Similar specifications can also be defined determining wéreth
AG((O1 A O3 A A) — (Ki(O1V Oy) distributed knowledge of the fault leads to everybody kmayvi
about the fault, and whether everybody knowing about thi fau
A —Ki(O1) A Ki(02))) (@) leads to common knowledge of the fault.

This formula states that whenev@r and©s and a diagnosis We consider these specification patterns to be of interest

property of the system occurs, agent knows that the either since they provide an insight into the correctness of diag-
©: or O, but does not know specifically whethér, or .. nosability, however, other variations exist. The formutas

Thus, the formula specifies the ability of agento use the P& extended where required, for example we can extend
same mechanism for identifying nge of faults correctly, Formulas_ 3, 4,_ar_1d 5, to reason about the diagnosis of a range
rather than diagnosing individual faults. of faults in a similar manner to Formula 2.

The previous two formulas refer to the knowledge of faults
with respect to an observable diagnosis property of thesysst
We now consider knowledge of faults in relation to the The IEEE 802.5 token ring protocol is a popular local area
occurrence of faults, which is not necessarily an obseevatletwork (LAN) protocol in which the nodes of the network are
property of the system. The following formula can be used tegically organised in a ring topology. The data circulates
reason about the diagnosability of a fault after the firsetiime  one direction in the form of éokenpassed from node to node.
fault has occurred without explicitly referencing a diagiso While the token ring is logically defined as a ring topology,

© 1= 0V 0|0 A O|faulty|injecting|stopped|injected

V. THE IEEE 802.5TOKEN RING PROTOCOL

property of the system. it is physically defined as a star topology. This facilitates
fault tolerance by allowing faulty nodes to be bypassed by
~E(=0 U (0 A =AF(K;(0)))) A3) physically disconnecting the faulty node and re-estabish

the logical ring.

This formula states that there is no path in which at sometpoin To ensure fault tolerance a node can act asenitor
O becomes true and at which point it is not true that at some diagnose faults and take action to resolve them. During
point in the future agent knows ©. The formula specifies normal operation of the network a token can be populated by
the ability of agent to diagnose faults correctly in relation toa node with data to be sent to another node. When a fault
the first occurrence of a fault. This specification is sugdiok  occurs, tokens containing fault information are sent adoun
situations in which fault diagnosis leads to resolution toé t the network thereby allowing a monitor to identify and caotre
fault that implies no further diagnosis of the fault is nessgy. faults on the network.
We leave situations in which diagnosis of repeating fawdts i When the ring is initialised, a contention process takesepla
required for future work. during which one node is designated as autive monitor

So far we have described specifications pertaining to indihe active monitor has the responsibility of issuing new
vidual agent diagnosis of faults. It is also possible to seastokens when tokens are lost, removing orphaned tokens which



: . - TABLE VIII
circulate the ring more then once, and establishing and re- INJECTED EAULTS ON THE TOKEN RING PROTOCOL

establishing a fully operational ring. The rest of the nodes ez

. ) - . - Agent| Fault type Persistence
act asstandby monitorsvhich are responsible for diagnosing  [sN2ns [N2 | State replace |rstt, astt, asto
faulty nodes or cable breaks. When an active monitor is @nabl Istatus STT = {N1l.send_D}
to perform its duties correctly, a standby monitor can make a vl = Send STO = {Nl.send_C}
claim to become an active monitor. v2 = Wait
Th f sending data, determining the active monitor hiNSns|N3 | State replace rsit, astt

elprpcess 0 . 9 . nini g X v Q I Istatus STT = {N2.send_D}
establishing an operational ring and diagnosing faultyasad vl = Send
made possible by using several different types of tokedata v2 = Wait

token circulates the ring when the ring is fully operational. |hN4nr|N4 |Stuck at select|rsit, astt

A claim tokenis used to decide which node becomes the Iitit?;/ . STT = {N3.send_D}
active monitor. When a node receives the claim token back v — T

. . . . . . hIN6ns| N6 State replace |rstt, astt

it become.s the active monitor. Aingpolling token is used Istatus STT = {N5.send_D}
by the active monitor to establish the correct operatiorhef t vl = Send

ring. When the active monitor receives the ringpolling toke v2 = Wait

back it creates a new data token and circulates heAconing
token is used to signal a problem when a node is unable to
receive tokeqs. It contains the address.ofthe last I_<n_ovvrestaa The node agent is comprised of a number of enumerate,
upstream_n_e|ghbour of the node that is not receiving tOken_ﬁneger and boolean variables as follows:
Determining when there is a problem on the network is
achieved by a timer on each node. After it has sent out a datdatus {Wait, Process, TimeO, SetT, Send, Disconnect}
token, the active monitor starts a timer that counts dowil unRstatus { Repeating, Ringpolling, Claiming, Beaconing}
the time it takes for a token to circulate the network. If théoken {D,RP,C,B}
timer reaches zero without the active monitor receiving th%mo?; ?00'3\%‘4 XF
token back, the active monitor knows the data token has begwgcZ 1 MAXR
lost and sends out a ringpolling token. If a timeout occurs ] .
for the ringpolling token, the active monitor knows it cabngVhere Istatus is the internal status of the agemstatus
establish a fully operational ring, de-activates itselfagtive IS the status on the ringl'oken is the current token being
monitor and initiates the claim token process. All otheremd Processed or sent by the ageritynon defines whether the
timeout when they have not received a token from their near89de is an active monitor, anfélfail and Brec are the number
upstream neighbour after a specified period of time. If th@f tokens that have been sent unsuccessfully, and received t
timeout occurs, the node makes a claim to become the actijgicate a fault on the node. -
monitor. If the claim process times out the node enters into aln terms of behaviours a node agent starts off by waiting
beaconing mode. for a token {Vait). When a token is received it processes the
The goal of the beaconing process is to allow the rinté’ken (Process). After this it can set the tokerSetT') before

to bypass any faulty nodes on the network. The beaconi@%?ding the tokenSend) at which point it returns to waiting. -
node identifies the fault domain as either itself or its neafyNen a token has not been received after a specified period
est upstream neighbour by sending out a beaconing tol@cnt'_me the node§ receives a messag'e from the environment
containing the address of its nearest upstream neighbburSiAting that the timer has timed oul'¢nc0). If the node

a node receives several beaconing tokens reporting it as fRgeiVes or sends several beaconing tokens it disconnects
faulty node, it disconnects from the network. If a beaconirg’¢sconnect), and remains in this state. Tokens are sent for
station sends out several beaconing tokens with no suages& foken typei] using an actiomsend_|¢].

repairing the network it disconnect from the network. VI. VERIEYING THE DIAGNOSABILITY OF THE TOKEN

RING PROTOCOL

A. ISPL implementation To verify diagnosability in the token ring protocol we used

We implemented the protocol above to study its resilien@emodel with 6 nodedV1 ... N6. We injected different faults
under faulty behaviour. In the ISPL implementation the ernto several node agents in order to determine the abilithef
vironment agent encodes the hub, abstracts from the tin@ative and standby monitors to diagnose faults. In the model
details of the individual nodes, and manages the tokenm@ssnodes are arranged clockwise from node 1 to node 6 with the
between nodes. A node agent represents a node of the netwtwken circulating clockwise; it is assumed node 1 alwaysswin
we implement as many node agents as nodes there arecontention for the active monitor.
the ring. Each node agent is namédx] where [z] is the The injected faults we experimented with are shown in Ta-
number of the node. A token agent contains the token dabde VIII where Fault indicates the name chosen for the fault,
an associated token bit agent determines whether the tokégent is the node that the fault is injected oFRigult type is
has been inspected. the type of fault injected and the corresponding parameters



TABLE IX
PROPOSITIONS FOR THE TOKEN RING PROTOCOL
Proposition | Condition
hard; hN3ns; V hN4nr; V hIN6ns;
soft; sN2ns;
any; hard; V soft;
N34 N3.Istatus = Disconnect

N34 N3.Bfail = MAXF V N3.Brec= MAXR
N4dg N3.RStatus = Beaconing A N3.Bfail =0
N1te, N1l.Istatus = TimeO AN N1.Amon = true
N1t N1.Istatus = TimeO AN N1.Amon = false
ally hN3nsy AN hN4nry AN hN6nsy A sN2nsy

TABLE X
SPECIFICATIONS FOR THE TOKEN RING PROTOCQL
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and Persistence indicates the persistence options for the
fault. The meaning of the faults is as follows:

sN2ns: node 2 stops sending tokens (soft fault).
hN3ns: node 3 stops sending tokens (hard fault).
hN4nr: node 4 stops receiving tokens (hard fault).
hN6ns: node 6 stops sending tokens (hard fault).

A softfault is one in which the ring recovers without entering
the beaconing process; lard fault prevents tokens from
circulating until the faulty node is removed.

For this example we define that the ring does not enter a
state where non-faulty nodes become disconnected. Tov&chie
this the start actions are set so that faults must occur at
different times from each other. To distinguish betweert sof
and hard faults, the stop action for the soft faul2ns is set
so that it stops injecting when there is no active monitor on
the ring. Fairness is imposed on the faults so that in any path
where faulty is true for a fault, eventually a random start
occurs for the fault.

To reason about the injected faults, we define a number
of atomic propositions which can be found in Table IX
wherePropositionis the name of the atomic proposition and
Condition is the condition in which the atomic proposition
is true. For the naming conventidimrd indicates any hard
fault; soft indicates a soft faultzll indicates all faultspny
indicates any fault;; is the faulty persistence; is the
injecting persistence; indicates that a node is disconnected;
s indicates that a node has started sending beaggriagi-
cates that a node will disconnect after receiving a beagpnin
token;,, indicates a node has timed oyt; indicates that the
node is the active monitor.

The specifications defined to reason about diagnosability
in the token ring protocol are given in Table X, along with
the truth value that MCMAS returns for each specification.
We also performed preliminary verification on the protoal t
ensure that: 1) all the faults can enter a start state; 2) node
1 is the only active monitor; 3) if there is no active monitor
eventually node 1 becomes the active monitor; 4) nodes 1
and 4 can reach a timeout state; 5) nodes 3, 4, and 6 are
the only nodes that can disconnect. These represent additio
properties that we expect the system to satisfy. MCMAS
verifies all the specifications in approximately 14 hoursigsi
3.2GHz processor and approximately 57MB of memory, where
the number of reachable states is approximately:213)° out
of a possible 1.4< 10'3.

To verify the diagnosability of the diagnosis properties
used for the monitoring process, Specification A states that
whenever node 1 is not an active monitor and enters a timeout
state, it knows that there is a hard fault on node 6. Spediicat
B states that whenever all faults occur in a run of the system,
if node 1 is an active monitor and enters a timeout state, it
knows that there is a fault occurring on the ring, but does
not know if it is a soft or hard fault. This provides an insight
into the ability of active and standby monitors to determine
different faults on the ring. A standby monitor can detect a
fault on its nearest upstream neighbour and an active ntonito



can determine any fault on the ring. The knowledge of the occurrence of a fault is propagated by

To verify the diagnosability of the token ring withoutthe active monitor to become distributed knowledge on the
referring to a diagnosis property, Specifications C-F dfiaé¢ ring. 3) Not every node on the ring comes to know about a fault
when a fault begins injecting always at some point in theritusince the same mechanism that is used to diagnose soft faults
node 1 (the active monitor) knows that a fault has occurreid.used to establish the ring when it initialises, and thaditg
Since hN3ns can occur when node 3 is disconnected, fanonitors are not able to differentiate between initial@atand
our specifications we are only interested the first occugendiagnosis of soft faults; 4) The beaconing process allows a
of hN3ns when node 3 is not disconnected. Specification®de to diagnose and resolve a hard fault that has occurred
G-J represent that when a fault begins injecting it alwaymetween itself or its nearest upstream neighbour; 5) Inrasht
becomes distributed knowledge amongst dlL(.) nodes that to soft faults, the knowledge of the occurrence of a hardt faul
that a fault has occurred. However, Specifications K-N yerifs propagated during the beaconing process so that the nodes
that it is not the case that all of the nodes know that @ the ring can co-ordinate during the beaconing process; 6)
fault has occurred after one has begun injecting. Similariard faults do not become common knowledge amongst the
Specifications O and P verify that the when node 1 first comeedes as this would require a mechanism for broadcasting
to know a fault has occurred it always eventually becom&sowledge of the fault simultaneously to all nodes.
distributed knowledge that a fault has occurred, but not all
of the nodes always eventually come to know that a fault
has occurred. This is because the same mechanism that iShe majority of the previous work on combining fault
used to diagnose soft faults is used to establish the riiigection with model checking [1]-[3], [11] is limited to nalel
when it initialises, and the standby monitors are not able theckers that use temporal logic to reason about properties
differentiate between initialisation and resolution oftgaults. of the system and are not suitable for MAS. Moreover, the

To verify the diagnosability of the beaconing processpproaches do not deal with diagnosability, and are primar-
Specification Q encodes that whenever all faults occur inilg concerned with the properties of safety, fault toleranc
run of the system, if node 4 enters a state where it has begund recoverability. Formalisms used are the language of the
sending beacons, it knows that either it is not receiving@iek popular model checker NuSMV [2], process algebras such
or node 3 is not sending tokens, but does not know specificadly CCS/Meije [1], [3], and the commercial SCADE tool by
which of these faults has occurred. Specification R statas tlsterel Technologies coupled with the SCADE Design Verifier
whenever all faults occur in a run of the system, if node ®odel checker [11].
intends to disconnect, it knows that node 4 knows that eitherln previous work on verifying diagnosability, the model
node 3 is not sending tokens or node 4 is not receiving tokeniecker NuSMV has been applied to verify diagnosability in
but does not know specifically which of these nodes is natmodel based diagnosis system [4]. A model of the correct
sending or receiving tokens. and faulty behaviour is constructed using a tool that tetasl

To verify the diagnosability of the beaconing process withlthe diagnosis system into a NuSMV input model. Temporal
out referencing a diagnosis property, Specifications S andsjecifications are used to verify diagnosability, and itisted
state that whenever node 3 first stops sending tokens or ndiggnosis is not present.

4 first stops receiving tokens, at some point in the futurdeno Previous work on injecting faults into MAS [8] provides a
4 knows that one of these faults has occurred. Specificatiimited proof of concept command line fault injection comepi

U states that whenever node 4 first comes to know that nathat injects statically persistent random faults into leaol

3 is not sending tokens or node 4 is not receiving tokerstates. The verification is limited to recoverability andilfa

it always eventually becomes distributed knowledge that otolerant properties, and is carried out on a simple example
of these faults has occurred. Further to this, Specificationof the bit-transmission protocol. In this paper, we extehde
states that whenever it first becomes distributed knowledtigs work to allow for complex varying persistence faults to
that one of these faults has occurred all of the nodes alwayes injected for states comprising of enumerate variables an
eventually come to know that one of these faults has occurreéveloped a fully functional graphical compiler to injebet
Similarly, Specification W states that whenever it first bmes faults automatically. Epistemic specifications were defite
distributed knowledge that one of these faults has occualled reason about the knowledge of faults for verifying diagtisa

of the nodes always eventually come to know that a hard faitlf, and used to verify diagnosability in the widely empldye
has occurred. Specification X states that whenever all of thaken ring protocol in which several agents containing rich
nodes first come to know that a hard fault has occurredfitnctionality are present.

always eventually becomes common knowledge amongst all
of the nodes that a hard fault has occurred.

The results from verifying these specifications using MC- In this paper we presented an automated approach to
MAS allows us to determine a number of diagnosabilityerifying the property of diagnosability in MAS. We regard
properties of the token ring protocol as follows; 1) A stapdbthis work as a practically useful for ensuring accurate tfaul
monitor can diagnose a fault on its nearest upstream neighbmentification in MAS, which is important when diagnosis is
and an active monitor can diagnose any fault on the ring; @%ed to achieve fault tolerance. The compiler we developed

VIl. RELATED WORK

VIII. CONCLUSION



to inject complex faults provides a powerful and flexibleltoq1is] P. T. R. Micalizio and G. Torta. On-line monitoring andagnosis

for mutating a correctly behaving model into a faulty one. of multi-agent systems: a model based approach.Proceedings of
. e . . ECAI'04, pages 848-852. |IOS Press, 2004.

This automates the difficult and time consuming step of han% ) . :

. . . . e V\P' ] N. Roos, A. ten Teije, and C. Witteveen. A protocol for Itiu
mo_de”'ng fau"_y behaviour. _The (:"p_'s'“:*"‘nIC s_peuflcatloms ) agent diagnosis with spatially distributed knowledge. Pioceedings
defined are suitable for verifying diagnosability for MAS in  of AAMAS'03 pages 655-661. ACM, 2003.
which both individual agent and system wide diagnosis @f7] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamokideand

i i D. Teneketzis. Diagnosability of discrete-event systelBEE Transac-
gaeur‘lrt]znlztrgizzegt. Tshre] ptrha:tfoa!n afgre;:'](;)feousrtet?nocl; Zazct.}?en tions on Automatic Contrpl40(9):1555-1575, 1995.

. . .y using e P! . P! ! p ”(ffB] M. J. Wooldridge. Reasoning about Rational AgentsMIT Press,
tions to ve_r|fy_d|agnos_ab|l|ty in the token ring protocolhieh Cambridge, 2000.
includes distributed diagnosis.
In future work we intend to use our approach to verify
diagnosability in autonomous vehicle control systems and
pass our fault injection compiler on to engineers working
on the design of these systems. We envision the extension
of the compiler to allow for user defined mutation rules and
automatic generation of diagnosability specificationsahy,
we intend to investigate techniques to minimise any negativ
impact our approach has on the memory consumption and time
efficiency of the verification process.
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