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Abstract—This paper addresses the issue of guaranteeing the
correctness of fault diagnosis mechanisms in multi-agent systems.
We propose an automated approach to verifying the property of
diagnosability by combining fault injection with model checking.
In particular we show how to reason about individual agent’sand
system wide knowledge of faults, which is essential for the agents
to cooperate and coordinate to recover from them. The multi-
agent system model checker MCMAS is used for verification
and epistemic specifications are defined to specify that a system
accurately diagnoses faults.

Index Terms—model checking; fault tolerance; fault injection;
epistemic logic;

I. I NTRODUCTION

In recent years considerable interest has been shown towards
the use of multi-agent systems (MAS) [18] as a paradigm
for software engineering (see e.g., [10]). Most of this interest
is due to the high level of complexity required to engineer
software architectures in which the core components, or
agents, autonomously interact with one another, engaging in
communication, negotiation, coordination, etc. Althoughit has
been argued that MAS are a natural way to engineer complex
software architectures, confidence in the robustness of MAS
is a practical concern when considering whether to adopt it as
a software engineering paradigm.

Central to the issue of robustness is ensuring fault tolerance
in MAS. One way in which fault tolerance can be improved is
by employing MAS architectures in which agents are able to
diagnosefaults so that they can communicate and co-ordinate
to recover from them [12], [15], [16]. The general problem
of fault diagnosis has received considerable attention since
the late 80s (see e.g., [6]). Further to this, studies have been
conducted on the property ofdiagnosability, i.e., establishing
whether a fault can be correctly detected from the observable
events of the system [17]. For systems in which accurate fault
diagnosis is critical, automated verification techniques such as
model checking[5] have been used to verify diagnosability [4].
However, in that approachdistributed diagnosability is not
considered, and the faulty behaviour of the system is modelled
by hand.

In this paper we propose an automated approach to verifying
diagnosability in MAS. The analysis of faulty behaviour is
automated usingfault injection, which has recently been
combined with model checking to verify fault tolerance in

MAS [8]. In contrast to ad-hoc analysis, in this approach
faults can be automatically injected into a model of a correctly
behaving MAS in order to mutate it into one that exhibits
possible faulty behaviour. Once a mutated model is available,
diagnosability can be verified in it by using the MAS based
model checker MCMAS [13]. This enables us to verify the cor-
rect and faulty behaviour of agents, as well as theirknowledge
about the behaviour in a temporal-epistemic logic setting [9].
Specifically, we define temporal-epistemic formulas to reason
about the knowledge of faultsthat have been injected into
the system. These specifications allow us to verify distributed
diagnosability, and appear more intuitive than purely temporal
diagnosability specifications [4].

To model realistic faulty behaviour, we define complex
faults with varying persistence and develop a graphical tool to
inject them automatically. We highlight the usefulness of our
approach by using it to verify both individual agent and system
wide diagnosability in a model we constructed of the IEEE
802.5 token ring LAN protocol, which utilises distributed
diagnosis to achieve fault tolerance.

The rest of the paper is structured as follows. In Section II
we provide the background on model checking, interpreted
systems, MCMAS, and fault injection into MAS. In Section III
we extend the fault injection approach presented in SectionII
by defining new faults with varying persistence, and intro-
ducing a fully functional compiler for injecting faults into a
MAS program. In Section IV we define temporal-epistemic
specifications that can be used for verifying diagnosability. In
Section V we describe a version of the token ring protocol
and its implementation in the MCMAS input language. In
Section VI we show how our approach is applied to verify
diagnosability in the token ring protocol. In Section VII we
discuss the related work and in Section VIII we conclude and
put forward future work.

II. BACKGROUND

Model checking [5] is a widely adopted technique for
systems verification. In model checking the system considered
for verificationS is represented by a logical modelMS which
encodes the behaviour of the system as computational traces.
In this approach a specification of a propertyP is expressed by
means of a logical formulaϕP . The model checker establishes
whether or notMS satisfiesϕP (formally, M � ϕP ). The



satisfaction relation is implemented as a decision procedure,
whoseautomaticnature makes model checking attractive for
the purpose of verification [5].

In the case of MASϕP is often expressed by using a
number of rich modal logics including temporal, ATL, and
epistemic logics [18]. Particularly relevant to diagnosability is
temporal-epistemic logic, which can be used to reason about
the knowledgeof the agents over time.

A. Interpreted systems and MCMAS

Interpreted systems [9] are a popular semantics for
temporal-epistemic logic. We summarise the framework of
interpreted systems in [9] to model MAS. Each agenti ∈
{1, · · · , n} in the system is characterised by a finite set of
local statesLi and by a finite set of actionsActi. Actions are
performed in compliance with a protocolPi : Li → 2Acti,
specifying which actions may be performed in a given state.
In this formalism, the environment in which agents “live” may
be modelled by means of a special agentE. Associated with
E are a set of local statesLE, a set of actionsActE , and a
protocolPE . A tupleg = (l1, · · · , ln, lE) ∈ L1×· · ·×Ln×LE

whereli ∈ Li for eachi and eachlE ∈ LE , is a global state
describing the system at a particular instant of time.

The evolution of the agents’ local states is described by a
function ti : Li × LE ×Act1 × · · · ×Actn × · · ·ActE → Li,
which returns a local state (the “next” local state) for agent i
given the “current” local state of the agent, the “current” local
state of the environment and all the agents’ actions. Similarly
the evolution of the environment’s local states is described by
a functiontE : LE×Act1×· · ·×Actn×· · ·ActE → LE . It is
assumed that in every state, agents evolve simultaneously.The
evolution of the global states of the system is described by a
functiont : S×Act→ S, whereS ⊆ L1×· · ·×Ln×LE, and
Act ⊆ Act1×· · ·×Actn×ActE. The functiont is defined as
t(g,a) = g′ iff for all i, ti(li(g), a) = li(g′) andtE(lE(g), a) =
lE(g′), whereli(g) denotes thei-th component of global states
g (corresponding to the local state of agenti). Given a set
I ⊆ S of possible initial global states a setG ⊆ S of reachable
global states is generated by all possible runs of the system.
Finally, the definition includes a set of atomic propositionsAP
together with a valuation functionV ⊆ AP × S. We define
an interpreted systemas the tuple:

IS = 〈(Li, Acti, Pi, ti)i∈{1,··· ,n}, (LE , ActE , PE , tE), I, V 〉

The syntactical constructs and the semantic model that
are presented in [13] are adopted for the interpretation of
temporal-epistemic formulae in interpreted systems. Specifi-
cally, we consider the following syntax defining our specifi-
cation language:
ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | EXϕ | AGϕ | E(ϕUϕ) | Kiϕ |

EΓϕ | CΓϕ | DΓϕ

In the grammar abovep ∈ AP is an atomic proposition;EX
is a temporal operator expressing that there exists a next state
in which ϕ holds;AG is a temporal operator expressing that
in all runsϕ holds globally;E(ϕUψ) is a temporal operator
expressing that there exists a run in whichϕ holds until ψ

holds;Kiϕ expresses thatagent i knowsϕ, EΓϕ expresses
that everybody in groupΓ knowsϕ, CΓϕ expresses thatit is
common knowledge in groupΓ that ϕ, andDΓϕ expresses
that it is distributed knowledge in groupΓ that ϕ [9].

Any interpreted system is associated with a modelMIS

= (W,Rt,∼1, · · · ,∼n, L) that can be used to interpret any
formula ϕ. The set of possible worldsW is the setG of
reachable global states. The temporal relationRt ⊆ W ×W
relating two worlds (i.e., two global states) is defined by
considering the temporal transitiont. Two worldsw andw′

are such thatRt(w,w
′) iff there exists a joint actiona ∈ Act

such thatt(w, a) = w′, wheret is the transition relation ofIS.
The epistemic accessibility relations∼i⊆W ×W are defined
by considering the equality of the local components of the
global states. Two worldsw,w′ ∈ W are such thatw ∼i w

′

iff li(w) = li(w
′) (i.e., two worldsw andw′ are related via

the epistemic relation∼i when the local states of agenti in
global statesw andw′ are the same [9]). The labelling relation
L ⊆ AP ×W can easily be defined in terms of the valuation
relationV .

Formulae can be interpreted inMIS in a standard way [5],
[9], [14] as follows. Let π = (w0, w1, · · · ) be an infinite
sequence of global states such that for alli, Rt(wi, wi+1),
and letπ(i) denote thei-th world of the sequence (notice that,
following standard conventions we assume that the temporal
relation is serial and thus all computation paths are infinite).
We write(M,w) � ϕ to represent that a formulaϕ is true at a
world w in a Kripke modelM , associated with an interpreted
systemIS. Satisfaction is defined as follows.

(M,w) � p iff (p, w) ∈ L,
(M,w) � ¬ϕ iff M 2 ϕ,
(M,w) � ϕ1 ∨ ϕ2 iff either M � ϕ1 or M � ϕ2,
(M,w) � EXϕ iff there exists a pathπ such that

π(0) = w, and(M,π(1)) � ϕ,
(M,w) � AGϕ iff for all paths we have that

π(0) = w, and(M,π(i)) � ϕ,
for all i ≥ 0,

(M,w) � E(ϕUψ) iff there exists a pathπ such that
π(0) = w, and there existsk ≥ 0
and (M,π(j)) � ϕ such that
(M,π(k)) � ψ and (M,π(j)) � ϕ
for all 0 ≤ j < k,

(M,w) � Kiϕ iff for all w′ ∈ W , w ∼i w
′ implies

(M,w′) � ϕ,
(M,w) � EΓϕ iff for all w′ ∈ W RE

Γ (w,w′) implies
(M,w′) � ϕ,

(M,w) � CΓϕ iff for all w′ ∈W RC
Γ (w,w′) implies

(M,w′) � ϕ,
(M,w) � DΓϕ iff for all w′ ∈W RD

Γ (w,w′) implies
(M,w′) � ϕ.

In the definition above, the relationRE
Γ is defined as the

union of the epistemic relations for the agents inΓ: RE
Γ =⋃

i∈Γ

∼i; the relationRD
Γ is defined as the intersection of the

epistemic relations for the agents inΓ: RD
Γ =

⋂

i∈Γ

∼i; the



relationRC
Γ is the transitive closure ofRE

Γ .
We say that a formulaϕ is true in the model and we write

M � ϕ if (M,w) � ϕ for all w ∈W . Similarly to [9], we say
that a formulaϕ is true in an interpreted systemIS, and we
write IS � ϕ, if M � ϕ. A formula is true in an interpreted
system if it is true in the associated Kripke model.

MCMAS [13] provides ISPL as an input language for
modelling a MAS and expressing (amongst others) temporal
and epistemic formulas as specifications of the system. The
structure of an ISPL program allows the local states to be
defined usingboolean, bounded integer, and enumeration
variables. ISPL programs are closely related to interpreted sys-
tems; specifically each ISPL program describes an interpreted
system. MCMAS supports the verification for all formulas in
the language above.

B. Fault injection into MAS programs

Model checking has traditionally been applied to provide
assurances about thecorrect behaviour of the system in terms
of temporal specifications. However, injecting faulty behaviour
allows the analysis of both thecorrect and faultybehaviours
of systems by means of model checking [1]–[3], [8], [11].

To inject faulty behaviour into an interpreted system, a
general way to mutate any agentA into a faulty agentAF∗

was defined in [8]. In this approach a fault injection agent
(FI) determines the conditions under which faulty behaviour
occurs in the faulty agent. The faulty behaviour is triggered
in the faulty agent whenever theinject action is performed
by FI. Conversely, the original behaviour is preserved in the
faulty agent whenever thenotinject action is performed by
FI.

The occurrence of thenotinject and inject actions are
handled byFI ’s protocol PFI(nofault) = {notinject},
PFI(fault) = {notinject, inject}. The local states of the
fault injection agentLFI = {nofault, fault} indicate whether
a fault isever injected during a run of the system. This is set
as an initial state of the system and persists during the run.In
other words, faults are injectedrandomlyinto the faulty agent
wheneverFI is in a faulty state.

Atomic propositions can be used to reason about the correct
and faulty behaviours of the mutated interpreted systemISF∗

where the mutated set of atomic propositionsAPF∗ = AP ∪
{faulty, injected}. The propositionfaulty is used (together
with temporal-epistemic formulas) to reason about system runs
where faults are either never injected or randomly injected.
Similarly the propositioninjected is used to reason about
system runs where faults are injected atthe current tick of the
clock.

The evaluation functionV is modified to V F∗ so that
V F∗(faulty) = {g ∈ G | lAF∗(g) = fault} and
V F∗(injected) whenever the evolution into the current state
of the faulty agent required the actioninject of FI to occur.
The set of initial statesI is updated so that the initial state
of the fault injection agentFI is eithernofault or fault in
IF∗. The extended faulty system is defined as follows:

ISF∗ = 〈(LF∗
i, Act

F∗
i, P

F∗
i, t

F∗
i)i∈{1,··· ,n},

TABLE I
TRANSITION RELATION MUTATION RULES FORAF∗.

Trans Fault Target State Transition Condition
tA N/A state = x ∗tc

tAF∗ any state = x ∗tc & ActF I = notinject
tAF∗ random state = x || !x ∗tc & ActF I = inject
tAF∗ invert state = !x ∗tc & ActF I = inject
tAF∗ stuck at state = state ∗tc & ActF I = inject

(LE, ActE , PE , tE), IF∗, V F∗〉

The evolution functiontA is mutated to contain the desired
faulty behaviour intAF∗ . More formally, Table I gives the
precisemutation rulesfor different potential faults. In the
table Trans indicates the evolution function,Fault indicates
the type of fault,Target Stateindicates the target state of
the chosen variable for the injected fault, andTransition
Condition shows the transition condition of the evolution
function under original and mutated conditions, where∗tc

indicates the original transition condition.
The definition of the fault injection agent and the mutation

rules for the faulty agent presented above as reported in [8]
are limited in that:

• during a system run it is only possible to reason about
paths in which faults are either never injected or randomly
injected,

• faults can only be injected on states which contain
boolean variables.

However, for diagnosability it is necessary to reason about
faults which can be identified by a diagnosis mechanism.
This implies defining faults with both random and constant
persistence, that can begin and stop at certain points of a
system run. To inject faults into an interpreted system that
models a realistic MAS in which fault diagnosis is present,
we need to reason about faults affecting local variables.

III. T OWARDS VERIFYING DIAGNOSABILITY

In the previous section we described the limitations of our
existing approach to fault injection which makes it currently
unsuitable for reasoning about diagnosability. In this section
we surpass these limitations by defining extensions to the
persistence of the fault injection agent and introduce new
transition relation mutation rules on enumerate variablesfor
the faulty agent. We also show how these are incorporated into
a fully functional compiler for fault injection.

A. Persistence extensions for the fault injection agent

To allow for varying fault persistence we define aconstant
fault injection agent as default with options forrandom(rnd)
fault injection, fault injection after and before arandom start
point (rstt) and arandom stop point(rsto), and fault injection
after and before astart action occurs(astt) and astop action
occurs(asto), which is an action of any agent. Any of these
options can be combined defining different types of faults and
determining the local states of the fault injection agent.



TABLE II
DEFINITION OF LOCAL STATES AND ACTIONS OFFI .

options LF I ActF I

default {nofault, fault i, {notinject, inject}
fault ni}

rstt ∪ {w rstt} ∪ {start}
astt ∪ {w astt}
asto ∪ {stop ni}
asto, !rsto ∪ {stop i}
rsto ∪ {stop ni} ∪ {stop}
rsto, asto ∪ {asto i}
rsto, asto, rnd ∪ {asto ni}

Table II defines the local states and actions of the fault
injection agent according to these options. For the defaultfault
injection agent we haveACTFI = {notinject, inject}. The
actionsstart and stop are added if random start and stop
options are set.

The fault injection agent can either be in a state where it is
never injecting faults (nofault), has injected or not injected a
fault at the current tick of the clock (fault [i, ni]), waiting for
a start condition (w [astt, rstt]), has injected or not injected
a fault at the current tick of the clock after a stop action
(asto [i, ni]), has injected or not injected a fault at the current
tick of the clock and will not inject faults in any future tick
of the clock (stop [i, ni]).

The definition of the fault injection agent protocolPFI is
given in Table III. For the default fault injection agent we
have thatPFI(nofault) = {notinject}, PFI(fault i) =
{inject}. A set of actionsActP associated with some of the
states is defined dynamically.

The transition relation for the fault injection agent
is defined in Table IV, which shows the target state
and the transition condition as defined by the options.
STT ⊆ Act1 × · · · × Actn × ActE is a set of start actions.
STO ⊆ Act1 × · · · ×Actn ×ActE is a set of stop actions.

The initial states of the fault injection agent are defined in
Table V. The initial state is eithernofault, which persists
indefinitely, or a state determined by the selected options.

Finally, we introduce some atomic propositions to reason

TABLE III
DEFINITION OF PROTOCOL OFFI .

options ActP PF I

default {inject} {(fault i, ActP ),
(nofault, {notinject})}

!rnd ∪ {(fault ni, {inject})}
rnd ∪ {notinject} ∪ {(fault ni, ActP})}
rstt ∪ {(w rstt,

{notinject, start})}
astt ∪ {(w astt, {notinject})}
asto ∪ {(stop ni, {notinject})}
asto !rsto ∪ {(stop i, {notinject})}
rsto ∪ {(stop ni, {notinject})}
rsto, !asto ∪ {stop}
rsto, asto ∪ {(asto i, ActP ∪ {stop})}
rsto, asto, rnd ∪ {(asto ni, ActP ∪ {stop})}

TABLE IV
DEFINITION OF TRANSITION RELATION OFFI .

options Target T ransition Condition
State

astt fault ni w astt & STT
astt, rstt w astt w rstt & ActF I = start
!astt, rstt fault ni w rstt & ActF I = start
!asto fault i (fault i || fault ni)

& ActF I = inject
!asto, rnd fault ni (fault i || fault ni)

& ActF I = notinject
asto fault i (fault i || fault ni)

& ACTF I = inject & !STO
asto, rnd fault ni (fault i || fault ni)

& ACTF I = notinject & !STO
asto, !rsto stop i (((fault i || fault ni) & STO)

& ActF I = inject
stop ni stop i

asto, !rsto, rnd stop ni (((fault i || fault ni) & STO)
& ActF I = notinject

asto, rsto, rnd asto i (((fault i || fault ni) & STO)
|| (asto i || asto ni))
& ActF I = inject

asto ni (((fault i || fault ni) & STO)
|| (asto i || asto ni))
& ActF I = notinject

asto, rsto, !rnd asto i (fault i || fault ni) & STO
rsto stop ni ActF I = stop

TABLE V
DEFINITION OF INITIAL STATES OFFI .

options IF I∗

default {nofault}
rstt ∪ {w rstt}
astt, !rstt ∪ {w astt}
!rstt, !astt ∪ {fault ni}

about faults. Initially we have that the mutated set of atomic
propositionsAPF∗ = AP ∪ {faulty} where faulty is
defined to reason about whether faults are ever injected intothe
system. The corresponding evaluation functionV is updated
so that V F∗(faulty) = {g ∈ G | lAF∗(g) 6= nofault}.
Similarly we have thatAPF∗ = APF∗ ∪ {injected}. The
corresponding evaluation function is updated according to
IND a set of states in which faults are injected into the
system at the current tick of the clock as defined in Table VI,
so that V F∗(injected) = {g ∈ G | lAF∗(g) ∈ IND}.
For random faults if any start or stop option is selected we
have thatAPF∗ = APF∗ ∪ {injecting}. The corresponding
evaluation function is updated according toNIJ a set of

TABLE VI
DEFINITIONS OF STATES FOR UPDATING THE EVALUATION FUNCTION.

options IND options NIJ
default {fault i} default ∅
asto, !rsto ∪ {stop i} astt ∪ {w astt}
asto, rsto ∪ {asto i} rstt ∪ {w rstt}

asto ∪ {stop ni}
rsto ∪ {stop ni}



TABLE VII
NEW MUTATION RULES FORAF∗ .

Variable value replace
Trans Target State Transition Condition
tA var = v1 & ∗ts ∗tc

tAF∗ var = v1 & ∗ts ∗tc & !(ACTF I = inject)
tAF∗ var = v2 & ∗ts ∗tc & ACTF I = inject
Stuck at select
Trans Target State Transition Condition
tA var = vx & ∗ts var = v1 & ∗tc

tAF∗ var = vx & ∗ts var = v1 & ∗tc & !(ACTF I = inject)
tAF∗ var = v1 & ∗ts var = v1 & ∗tc & ACTF I = inject
Variable transition
Trans Target State Transition Condition
tA ∗ts ∗tc

tAF∗ ∗ts ∗tc & !(ACTF I = inject)
tAF∗ var = v1 ACTF I = inject

states in which faults cannot be injected into the system at
the current tick of the clock as defined in Table VI, so that
V F∗(injecting) = {g ∈ G | lAF∗(g) /∈ NIJ}. If any stop
option is selected we haveAPF∗ = APF∗ ∪ {stopped} and
V F∗(stopped) = {g ∈ G | lAF∗(g) = stop ni}.

B. Transitions for the faulty agent

In this subsection we define new mutation rules for the
faulty agent that denote the mutated transition relation for
states that includeenumeratevariables. The rules are shown in
Table VII. In the tableTrans indicates the evolution function,
Target Stateindicates the target state of the chosen variable
for the injected fault, andTransition Conditionshows the tran-
sition condition of the evolution function under original and
mutated conditions. In the target state column,∗ts indicates
the original target state, similarly in the transition condition
column ∗tc indicates the original transition condition. In the
cases where individual variable components of the target state
and transition condition are distinguished,∗ts and∗tc indicate
the remaining component of the target state and transition
condition respectively. Note that we use!(ACTFI = inject)
to define when a fault is injected rather than(ACTFI =
notinject) since the actionstart and stop do not cause a
fault to be injected.

A variable value replacefault defines that the value of an
enumerate variablevar is updated with a valuev2 in tAF∗

whenever the value ofvar is updated tov1 in tA. This fault is
useful for defining faulty conditions where some of the correct
agent behaviour is skipped.

A stuck at selectfault defines that the valuev1 of a variable
var persists if the current value ofvar is v1. If in tA the
variablevar is updated to a valuevx 6= v1 whenvar = v1, the
the faulty behaviour intAF∗ preservesvar = v1. This allows
other values of the variable to change when the agent evolves
andvar 6= v1. A complete stuck at select rule would consider
cases wherevar is absent from the transition condition and
var = vx is in the target state.

A variable transitionfault defines that a variablevar is set
to the valuev1 in tAF∗ whenever the fault is injected regardless

of the state the agent is in. Thus, the original behaviour is
preserved for all transitions whenever!(ACTFI = inject),
and onlyvar is updated tov1 wheneverACTFI = inject.
The fault is useful for defining scenarios in which an agent
immediately evolves to a state as a result of a fault.

C. A fully functional compiler for fault injection

In the previous two sections we introduced complex faults
based upon combining several options and mutation rules. To
allow for these faults to be injected into an ISPL program
we developed a fully functional compiler to manage these
faults during the injection process. The compiler is available
for public use. [7]

The toolkit takes an ISPL program as input and provides a
GUI which allows the user to inject faults into the program and
output a mutated program. The GUI facilitates the injectionof
any number of faults using any number of corresponding fault
injection agents. Each fault injection agent is named uniquely
and can be defined using the persistence options previously
introduced.

The ISPL code is mutated by applying the mutation rules
to each evolution line of the agent the fault is being injected
into. The transition relation is mutated into the transition
relation of the faulty agenttAF∗ . The mutation is performed
using string find and string remove functions. The pseudo-code
below illustrates how the transition relationtA of an agent
A is mutated for a variable value. In the pseudo-codeLHS
returns a string containing the target state andRHS return a
string containing the transition condition. The functionFind
returns a boolean value indicating whether a string has been
found. The functionRemove takes two strings as parameters,
removes the second string from the first string and returns the
resultant string.

For each line L in tA
If Find(LHS(L), var + "=" + v1)

tA* += LHS(L) + "if" + RHS(L) + "and"
+ FI + ".Action = inject"\n";

tA* += var + "=" + v2 + "and"
+ Remove(LHS(L), var + "=" + v1)
+ "if" + RHS(L) + "and !"
+ FI + "Action = inject\n";

else
tA* += LHS(L) + "if" + RHS(L) + "\n";

To inject multiple faults on the same agent for each fault the
process is repeated on the transition relation mutated by the
previous fault.

IV. REASONING ABOUT DIAGNOSABILITY

So far we have described the automatic fault injection
approach that can be applied to a MAS modelIS to produce
a mutated modelISF∗. In this section we define a number
of diagnosability specification patterns. These are temporal-
epistemic formulas that can be used to reason about the
knowledge of injected faults for verifying diagnosability.

Diagnosability is informally defined by saying thata fault is
diagnosable if there are a finite number of observations after



the occurrence of the fault that correctly identify it[17]. In
the context of MAS, we say that theknowledge a faultis the
property that determines whether a fault is diagnosable. Aswe
show below we can formally verify this high-level expressive
property.

For our specification patterns we define a diagnosis property
of the system as∆ and express the persistence of an injected
fault asΘ which we define as:

Θ ::= Θ ∨ Θ|Θ ∧ Θ|faulty|injecting|stopped|injected

wherefaulty, injecting, stopped, and injected are atomic
propositions that relate to the faults persistence.

Consider the following formula:

AG(∆ → Ki(Θ)) (1)

This formula states that whenever a diagnosis property of
the system∆ occurs, agenti knows thatΘ. This provides
an insight into the ability of agenti to determine that the
faulty behaviour has occurred. This specification is usefulfor
verifying diagnosability in agents that distinguish and act upon
individual faults.

In the case where a diagnosis is made for different types
of faults using the same mechanism, consider the following
formula:

AG((Θ1 ∧ Θ2 ∧ ∆) → (Ki(Θ1 ∨ Θ2)

∧ ¬Ki(Θ1) ∧ ¬Ki(Θ2))) (2)

This formula states that wheneverΘ1 andΘ2 and a diagnosis
property of the system∆ occurs, agenti knows that the either
Θ1 or Θ2 but does not know specifically whetherΘ1 or Θ2.
Thus, the formula specifies the ability of agenti to use the
same mechanism for identifying arange of faults correctly,
rather than diagnosing individual faults.

The previous two formulas refer to the knowledge of faults
with respect to an observable diagnosis property of the system.
We now consider knowledge of faults in relation to the
occurrence of faults, which is not necessarily an observable
property of the system. The following formula can be used to
reason about the diagnosability of a fault after the first time the
fault has occurred without explicitly referencing a diagnosis
property of the system.

¬E(¬Θ U (Θ ∧ ¬AF (Ki(Θ)))) (3)

This formula states that there is no path in which at some point
Θ becomes true and at which point it is not true that at some
point in the future agenti knows Θ. The formula specifies
the ability of agenti to diagnose faults correctly in relation to
the first occurrence of a fault. This specification is suitable for
situations in which fault diagnosis leads to resolution of the
fault that implies no further diagnosis of the fault is necessary.
We leave situations in which diagnosis of repeating faults is
required for future work.

So far we have described specifications pertaining to indi-
vidual agent diagnosis of faults. It is also possible to reason

about group knowledge of faults. Consider the following
specification:

¬E(¬Θ U Θ ∧ ¬AF (DΓ(Θ))) (4)

This formula states that there is no path in which at some
point Θ and a which point it is not true that at some point in
the future it is distributed knowledge in groupΓ that Θ. The
formula specifies the ability of a group of agents to diagnose
faults correctly. Similar specifications can also be definedfor
reasoning about whether everybody knows about faults and
common knowledge of faults.

Finally we may wish to reason about the propagation of the
knowledge of faults through the system, using the following
specification:

¬E(¬Ki(Θ) U (Ki(Θ) ∧ ¬AF (DΓ(Θ)))) (5)

This formula states that there is no path in which at some
point agenti comes to knowΘ and at which point it is not
true that at some point in the future it is distributed knowledge
in groupΓ that Θ. This formula specifies the propagation of
the knowledge of faults to a group of agents. We consider this
formula to be the most interesting of or specification patterns.
Similar specifications can also be defined determining whether
distributed knowledge of the fault leads to everybody knowing
about the fault, and whether everybody knowing about the fault
leads to common knowledge of the fault.

We consider these specification patterns to be of interest
since they provide an insight into the correctness of diag-
nosability, however, other variations exist. The formulascan
be extended where required, for example we can extend
Formulas 3, 4, and 5, to reason about the diagnosis of a range
of faults in a similar manner to Formula 2.

V. THE IEEE 802.5TOKEN RING PROTOCOL

The IEEE 802.5 token ring protocol is a popular local area
network (LAN) protocol in which the nodes of the network are
logically organised in a ring topology. The data circulatesin
one direction in the form of atokenpassed from node to node.
While the token ring is logically defined as a ring topology,
it is physically defined as a star topology. This facilitates
fault tolerance by allowing faulty nodes to be bypassed by
physically disconnecting the faulty node and re-establishing
the logical ring.

To ensure fault tolerance a node can act as amonitor
to diagnose faults and take action to resolve them. During
normal operation of the network a token can be populated by
a node with data to be sent to another node. When a fault
occurs, tokens containing fault information are sent around
the network thereby allowing a monitor to identify and correct
faults on the network.

When the ring is initialised, a contention process takes place
during which one node is designated as anactive monitor.
The active monitor has the responsibility of issuing new
tokens when tokens are lost, removing orphaned tokens which



circulate the ring more then once, and establishing and re-
establishing a fully operational ring. The rest of the nodes
act asstandby monitorswhich are responsible for diagnosing
faulty nodes or cable breaks. When an active monitor is unable
to perform its duties correctly, a standby monitor can make a
claim to become an active monitor.

The process of sending data, determining the active monitor,
establishing an operational ring and diagnosing faulty nodes is
made possible by using several different types of token. Adata
token circulates the ring when the ring is fully operational.
A claim token is used to decide which node becomes the
active monitor. When a node receives the claim token back
it becomes the active monitor. Aringpolling token is used
by the active monitor to establish the correct operation of the
ring. When the active monitor receives the ringpolling token
back it creates a new data token and circulates it. Abeaconing
token is used to signal a problem when a node is unable to
receive tokens. It contains the address of the last known nearest
upstream neighbour of the node that is not receiving tokens.

Determining when there is a problem on the network is
achieved by a timer on each node. After it has sent out a data
token, the active monitor starts a timer that counts down until
the time it takes for a token to circulate the network. If the
timer reaches zero without the active monitor receiving the
token back, the active monitor knows the data token has been
lost and sends out a ringpolling token. If a timeout occurs
for the ringpolling token, the active monitor knows it cannot
establish a fully operational ring, de-activates itself asactive
monitor and initiates the claim token process. All other nodes
timeout when they have not received a token from their nearest
upstream neighbour after a specified period of time. If this
timeout occurs, the node makes a claim to become the active
monitor. If the claim process times out the node enters into a
beaconing mode.

The goal of the beaconing process is to allow the ring
to bypass any faulty nodes on the network. The beaconing
node identifies the fault domain as either itself or its near-
est upstream neighbour by sending out a beaconing token
containing the address of its nearest upstream neighbour. If
a node receives several beaconing tokens reporting it as the
faulty node, it disconnects from the network. If a beaconing
station sends out several beaconing tokens with no success in
repairing the network it disconnect from the network.

A. ISPL implementation

We implemented the protocol above to study its resilience
under faulty behaviour. In the ISPL implementation the en-
vironment agent encodes the hub, abstracts from the timer
details of the individual nodes, and manages the token passing
between nodes. A node agent represents a node of the network;
we implement as many node agents as nodes there are on
the ring. Each node agent is namedN [x] where [x] is the
number of the node. A token agent contains the token data;
an associated token bit agent determines whether the token
has been inspected.

TABLE VIII
INJECTED FAULTS ON THE TOKEN RING PROTOCOL.

Fault Agent Fault type Persistence
sN2ns N2 State replace rstt, astt, asto

Istatus STT = {N1.send D}
v1 = Send STO = {N1.send C}
v2 = Wait

hN3ns N3 State replace rstt, astt
Istatus STT = {N2.send D}
v1 = Send
v2 = Wait

hN4nr N4 Stuck at select rstt, astt
Istatus STT = {N3.send D}
v1 = Wait

hN6ns N6 State replace rstt, astt
Istatus STT = {N5.send D}
v1 = Send
v2 = Wait

The node agent is comprised of a number of enumerate,
integer and boolean variables as follows:

Istatus {Wait, Process, T imeO, SetT, Send, Disconnect}
Rstatus {Repeating,Ringpolling, Claiming, Beaconing}
Token {D, RP, C, B}
Amon boolean
Bfail 1 · · ·MAXF
Brec 1 · · ·MAXR

where Istatus is the internal status of the agent,Rstatus
is the status on the ring,Token is the current token being
processed or sent by the agent,Amon defines whether the
node is an active monitor, andBfail andBrec are the number
of tokens that have been sent unsuccessfully, and received to
indicate a fault on the node.

In terms of behaviours a node agent starts off by waiting
for a token (Wait). When a token is received it processes the
token (Process). After this it can set the token (SetT ) before
sending the token (Send) at which point it returns to waiting.
When a token has not been received after a specified period
of time the nodes receives a message from the environment
stating that the timer has timed out (T imeO). If the node
receives or sends several beaconing tokens it disconnects
(Disconnect), and remains in this state. Tokens are sent for
a token type[t] using an actionsend [t].

VI. V ERIFYING THE DIAGNOSABILITY OF THE TOKEN

RING PROTOCOL

To verify diagnosability in the token ring protocol we used
a model with 6 nodesN1 ... N6. We injected different faults
into several node agents in order to determine the ability ofthe
active and standby monitors to diagnose faults. In the model
nodes are arranged clockwise from node 1 to node 6 with the
token circulating clockwise; it is assumed node 1 always wins
contention for the active monitor.

The injected faults we experimented with are shown in Ta-
ble VIII whereFault indicates the name chosen for the fault,
Agent is the node that the fault is injected on,Fault type is
the type of fault injected and the corresponding parameters,



TABLE IX
PROPOSITIONS FOR THE TOKEN RING PROTOCOL.

Proposition Condition
hardi hN3nsi ∨ hN4nri ∨ hN6nsi

softi sN2nsi

anyi hardi ∨ softi

N3d N3.Istatus = Disconnect
N3rd N3.Bfail = MAXF ∨ N3.Brec = MAXR
N4sb N3.RStatus = Beaconing ∧ N3.Bfail = 0
N1to

am N1.Istatus = T imeO ∧ N1.Amon = true

N1to
¬am N1.Istatus = T imeO ∧ N1.Amon = false

allf hN3nsf ∧ hN4nrf ∧ hN6nsf ∧ sN2nsf

TABLE X
SPECIFICATIONS FOR THE TOKEN RING PROTOCOL.

A AG(N1to
¬am− > KN1(hN6nsf ))) T

B AG((allf ∧ N1to
am) → (KN1(anyi) T
∧¬KN1(hardi) ∧ ¬KN1(softi)))

C ¬E(¬sN2nsi U (sN2nsi ∧ ¬AF (KN1(anyi)))) T
D ¬E((¬hN3nsi ∧ ¬N3d) U T

((hN3nsi ∧ ¬N3d) ∧ ¬AF (KN1(anyi))))
E ¬E(¬hN4nri U (hN4nri ∧ ¬AF (KN1(anyi)))) T
F ¬E(¬hN6nsi U (hN6nsi ∧ ¬AF (KN1(anyi)))) T
G ¬E(¬sN2nsi U (sN2nsi ∧ ¬AF (DALL(anyi)))) T
H ¬E((¬hN3nsi ∧ ¬N3d) U T

((hN3nsi ∧ ¬N3d) ∧ ¬AF (DALL(anyi))))
I ¬E(¬hN4nri U (hN4nri ∧ ¬AF (DALL(anyi)))) T
J ¬E(¬hN6nsi U (hN6nsi ∧ ¬AF (DALL(anyi)))) T
K ¬E(¬sN2nsi U (sN2nsi ∧ ¬AF (EALL(anyi)))) F
L ¬E(¬(¬hN3nsi ∧ ¬N3d) U F

((hN3nsi ∧ ¬N3d) ∧ ¬AF (EALL(anyi))))
M ¬E(¬hN4nri U (hN4nri ∧ ¬AF (EALL(anyi)))) F
N ¬E(¬hN6nsi U (hN6nsi ∧ ¬AF (EALL(anyi)))) F
O ¬E(¬KN1(anyi) U (KN1(anyi) T

∧¬AF (DALL(anyi))))
P ¬E(¬DALL(anyi) U (DALL(anyi) F

∧¬AF (EALL(anyi))))
Q AG((allf ∧ N4sb) → (KN4(hN3nsi ∧ hN4nri) T

∧¬KN4(hN3nsi) ∧ ¬KN4(hN4nri)))
R AG((allf ∧ N3rd) → (KN3(KN4(hN3nsi ∨ hN4nri) T

∧¬KN4(hN3nsi) ∧ ¬KN4(hN4nri))))
S ¬E((¬hN3nsi ∧ ¬N3d) U ((hN3nsi ∧ ¬N3d) T

∧¬AF (KN4(hN3nsi ∨ hN4nri))))
T ¬E(¬hN4nri U (hN4nri T

∧¬AF (KN4(hN3nsi ∨ hN4nri))))
U ¬E(¬KN4(hN3nsi ∨ hN4nri) U T

(KN4(hN3nsi ∨ hN4nri)
∧¬AF (DALL(hN3nsi ∨ hN4nri))))

V ¬E(¬DALL((hN3nsi ∨ hN4nri)) U F
(DALL(hN3nsi ∨ hN4nri)
∧¬AF (EALL(hN3nsi ∨ hN4nri))))

W ¬E(¬DALL((hN3nsi ∨ hN4nri)) U T
(DALL((hN3nsi ∨ hN4nri))

∧¬AF (EALL(hardi))))
X ¬E(¬EALL(hardi) U F

(EALL(hardi)
∧¬AF (CALL(hardi))))

and Persistence indicates the persistence options for the
fault. The meaning of the faults is as follows:

sN2ns: node 2 stops sending tokens (soft fault).
hN3ns: node 3 stops sending tokens (hard fault).
hN4nr: node 4 stops receiving tokens (hard fault).
hN6ns: node 6 stops sending tokens (hard fault).

A soft fault is one in which the ring recovers without entering
the beaconing process; ahard fault prevents tokens from
circulating until the faulty node is removed.

For this example we define that the ring does not enter a
state where non-faulty nodes become disconnected. To achieve
this the start actions are set so that faults must occur at
different times from each other. To distinguish between soft
and hard faults, the stop action for the soft faultsN2ns is set
so that it stops injecting when there is no active monitor on
the ring. Fairness is imposed on the faults so that in any path
where faulty is true for a fault, eventually a random start
occurs for the fault.

To reason about the injected faults, we define a number
of atomic propositions which can be found in Table IX
wherePropositionis the name of the atomic proposition and
Condition is the condition in which the atomic proposition
is true. For the naming conventionhard indicates any hard
fault; soft indicates a soft fault;all indicates all faults;any
indicates any fault;f is the faulty persistence;i is the
injecting persistence;d indicates that a node is disconnected;
sb indicates that a node has started sending beacons;rd indi-
cates that a node will disconnect after receiving a beaconing
token;to indicates a node has timed out;am indicates that the
node is the active monitor.

The specifications defined to reason about diagnosability
in the token ring protocol are given in Table X, along with
the truth value that MCMAS returns for each specification.
We also performed preliminary verification on the protocol to
ensure that: 1) all the faults can enter a start state; 2) node
1 is the only active monitor; 3) if there is no active monitor
eventually node 1 becomes the active monitor; 4) nodes 1
and 4 can reach a timeout state; 5) nodes 3, 4, and 6 are
the only nodes that can disconnect. These represent additional
properties that we expect the system to satisfy. MCMAS
verifies all the specifications in approximately 14 hours using a
3.2GHz processor and approximately 57MB of memory, where
the number of reachable states is approximately 2.3× 105 out
of a possible 1.4× 1013.

To verify the diagnosability of the diagnosis properties
used for the monitoring process, Specification A states that
whenever node 1 is not an active monitor and enters a timeout
state, it knows that there is a hard fault on node 6. Specification
B states that whenever all faults occur in a run of the system,
if node 1 is an active monitor and enters a timeout state, it
knows that there is a fault occurring on the ring, but does
not know if it is a soft or hard fault. This provides an insight
into the ability of active and standby monitors to determine
different faults on the ring. A standby monitor can detect a
fault on its nearest upstream neighbour and an active monitor



can determine any fault on the ring.
To verify the diagnosability of the token ring without

referring to a diagnosis property, Specifications C-F statethat
when a fault begins injecting always at some point in the future
node 1 (the active monitor) knows that a fault has occurred.
Since hN3ns can occur when node 3 is disconnected, for
our specifications we are only interested the first occurrence
of hN3ns when node 3 is not disconnected. Specifications
G-J represent that when a fault begins injecting it always
becomes distributed knowledge amongst all (ALL) nodes that
that a fault has occurred. However, Specifications K-N verify
that it is not the case that all of the nodes know that a
fault has occurred after one has begun injecting. Similarly,
Specifications O and P verify that the when node 1 first comes
to know a fault has occurred it always eventually becomes
distributed knowledge that a fault has occurred, but not all
of the nodes always eventually come to know that a fault
has occurred. This is because the same mechanism that is
used to diagnose soft faults is used to establish the ring
when it initialises, and the standby monitors are not able to
differentiate between initialisation and resolution of soft faults.

To verify the diagnosability of the beaconing process,
Specification Q encodes that whenever all faults occur in a
run of the system, if node 4 enters a state where it has begun
sending beacons, it knows that either it is not receiving tokens
or node 3 is not sending tokens, but does not know specifically
which of these faults has occurred. Specification R states that
whenever all faults occur in a run of the system, if node 3
intends to disconnect, it knows that node 4 knows that either
node 3 is not sending tokens or node 4 is not receiving tokens,
but does not know specifically which of these nodes is not
sending or receiving tokens.

To verify the diagnosability of the beaconing process with-
out referencing a diagnosis property, Specifications S and T
state that whenever node 3 first stops sending tokens or node
4 first stops receiving tokens, at some point in the future, node
4 knows that one of these faults has occurred. Specification
U states that whenever node 4 first comes to know that node
3 is not sending tokens or node 4 is not receiving tokens,
it always eventually becomes distributed knowledge that one
of these faults has occurred. Further to this, SpecificationV
states that whenever it first becomes distributed knowledge
that one of these faults has occurred all of the nodes always
eventually come to know that one of these faults has occurred.
Similarly, Specification W states that whenever it first becomes
distributed knowledge that one of these faults has occurredall
of the nodes always eventually come to know that a hard fault
has occurred. Specification X states that whenever all of the
nodes first come to know that a hard fault has occurred it
always eventually becomes common knowledge amongst all
of the nodes that a hard fault has occurred.

The results from verifying these specifications using MC-
MAS allows us to determine a number of diagnosability
properties of the token ring protocol as follows; 1) A standby
monitor can diagnose a fault on its nearest upstream neighbour
and an active monitor can diagnose any fault on the ring; 2)

The knowledge of the occurrence of a fault is propagated by
the active monitor to become distributed knowledge on the
ring. 3) Not every node on the ring comes to know about a fault
since the same mechanism that is used to diagnose soft faults
is used to establish the ring when it initialises, and the standby
monitors are not able to differentiate between initialisation and
diagnosis of soft faults; 4) The beaconing process allows a
node to diagnose and resolve a hard fault that has occurred
between itself or its nearest upstream neighbour; 5) In contrast
to soft faults, the knowledge of the occurrence of a hard fault
is propagated during the beaconing process so that the nodes
of the ring can co-ordinate during the beaconing process; 6)
Hard faults do not become common knowledge amongst the
nodes as this would require a mechanism for broadcasting
knowledge of the fault simultaneously to all nodes.

VII. R ELATED WORK

The majority of the previous work on combining fault
injection with model checking [1]–[3], [11] is limited to model
checkers that use temporal logic to reason about properties
of the system and are not suitable for MAS. Moreover, the
approaches do not deal with diagnosability, and are primar-
ily concerned with the properties of safety, fault tolerance,
and recoverability. Formalisms used are the language of the
popular model checker NuSMV [2], process algebras such
as CCS/Meije [1], [3], and the commercial SCADE tool by
Esterel Technologies coupled with the SCADE Design Verifier
model checker [11].

In previous work on verifying diagnosability, the model
checker NuSMV has been applied to verify diagnosability in
a model based diagnosis system [4]. A model of the correct
and faulty behaviour is constructed using a tool that translates
the diagnosis system into a NuSMV input model. Temporal
specifications are used to verify diagnosability, and distributed
diagnosis is not present.

Previous work on injecting faults into MAS [8] provides a
limited proof of concept command line fault injection compiler
that injects statically persistent random faults into boolean
states. The verification is limited to recoverability and fault
tolerant properties, and is carried out on a simple example
of the bit-transmission protocol. In this paper, we extended
this work to allow for complex varying persistence faults to
be injected for states comprising of enumerate variables and
developed a fully functional graphical compiler to inject the
faults automatically. Epistemic specifications were defined to
reason about the knowledge of faults for verifying diagnosabil-
ity, and used to verify diagnosability in the widely employed
token ring protocol in which several agents containing rich
functionality are present.

VIII. C ONCLUSION

In this paper we presented an automated approach to
verifying the property of diagnosability in MAS. We regard
this work as a practically useful for ensuring accurate fault
identification in MAS, which is important when diagnosis is
used to achieve fault tolerance. The compiler we developed



to inject complex faults provides a powerful and flexible tool
for mutating a correctly behaving model into a faulty one.
This automates the difficult and time consuming step of hand
modelling faulty behaviour. The epistemic specifications we
defined are suitable for verifying diagnosability for MAS in
which both individual agent and system wide diagnosis of
faults is present. The practical aspect of our tool has been
demonstrated by using the compiler and epistemic specifica-
tions to verify diagnosability in the token ring protocol, which
includes distributed diagnosis.

In future work we intend to use our approach to verify
diagnosability in autonomous vehicle control systems and
pass our fault injection compiler on to engineers working
on the design of these systems. We envision the extension
of the compiler to allow for user defined mutation rules and
automatic generation of diagnosability specifications. Finally,
we intend to investigate techniques to minimise any negative
impact our approach has on the memory consumption and time
efficiency of the verification process.
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