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Abstract

We investigate a class of first-order temporal epistemic log-
ics for the specification of multi-agent systems. We con-
sider well-known properties of multi-agent systems includ-
ing perfect recall, synchronicity, no learning, unique initial
state, and define natural correspondences between these and
quantified interpreted systems. Our findings identify several
monodic fragments of first-order temporal epistemic logic
that we prove to be both sound and complete with respect to
the corresponding classes of quantified interpreted systems.
The results show that interaction axioms for propositional
temporal epistemic logic can be lifted to the monodic frag-
ment.

Introduction

and Moses 1992). Specifically, we prove the complete-
ness of our first-order temporal epistemic logics veguasi-
model construction, which has previously been used in
(Hodkinson, Wolter, and Zakharyaschev 2000; 2002) to
prove decidability fomonodicfragments of first-order tem-
poral logic (FOTL) with respect to linear and branching
flows of time (Hodkinson, Wolter, and Zakharyaschev 2000;
2002). Quasimodels have also been applied to first-order
temporal and epistemic logic in (Sturm, Wolter, and Za-
kharyaschev 2000; Wolter and Zakharyaschev 2002). In
(Wolter and Zakharyaschev 2002) the authors present a com-
plete axiomatisation for the monodic fragment odTL

on the naturals. In (Sturm, Wolter, and Zakharyaschev
2000) we have a similar result for a variety of first-order
epistemic logics with common knowledge. However, the
interaction between temporal and epistemic modalities at

First-order modal logics for reasoning about knowledge and the first order has not yet been taken into account, nor
time have attracted increasing interest from logicians and pas the interpreted systems semantics (Fagin et al. 1995;
researchers in Al, both as regards their theoretical prop- parikh and Ramanujam 1985): both of these are relevant for

erties (completeness, decidability, complexity) (Gabbay
al. 2003; Hodkinson et al. 2003; Sturm, Wolter, and Za-

kharyaschev 2000), and their applications to multi-agent
systems (Cohen and Levesque 1995; Rao and Georgeff

1991; Wooldridge 2000).

In this paper we introduce several classequantified in-
terpreted system@elardinelli and Lomuscio 2008; 2009z;
2009b) that are suitable for modeling the interaction be-
tween temporal and epistemic modalities at the first or-
der. Specifically, we analyse systems with perfect recall, n
learning, synchronicity and a unique initial state (Fadin e

applications to multi-agent systems (MAS).

In this paper we also make use of the results in (Halpern,
Meyden, and Vardi 2003; Halpern and Moses 1992) on the
completeness of propositional temporal epistemic lodits.
particular, in (Halpern, Meyden, and Vardi 2003) the aushor
provide a framework for proving completeness on semantics
similar to those here considered. We combine their approach
with the quasimodel technique to prove completeness for
monodic fragments of first-order temporal epistemic logic.

This contribution is motivated by an interest in first-

al. 1995). For all these we present sound and complete ax- order temporal epistemic formalisms to model high-level

iomatisations of the set ehonodicvalidities, where at most

properties of multi-agent systems. Recent papers witness

one free variable appears in the scope of any modal operator 0 increasing need in web-services, security, communica-

(Hodkinson, Wolter, and Zakharyaschev 2000).

Our starting point for this contribution consists of result
on the axiomatisability (Sturm, Wolter, and Zakharyaschev
2000; Wolter and Zakharyaschev 2002), decidability (Hod-
kinson, Wolter, and Zakharyaschev 2000; Wolter and Za-
kharyaschev 2001), and complexity (Hodkinson 2006; Hod-
kinson et al. 2003) of first-order modal logics, together
with completeness results for propositional temporal epis
temic logics (Halpern, Meyden, and Vardi 2003; Halpern
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tion protocols, as well as other areas, to extend the ex-
pressive power of temporal epistemic languages to the first
order (see for instance (Deutsch, Sui, and Vianu 2004;
Hallé and Villemaire 2009)). As a preliminary contribution
to this project in (Belardinelli and Lomuscio 2008) we intro
duced quantified interpreted systems (QIS) to model a first-
order temporal epistemic formalism. These investigations
were further pursued in (Belardinelli and Lomuscio 2009a),
which explicitly assumes linear-time operators and the nat
ural numbers as the flow of time. Neither contribution con-
siders the interaction between time and knowledge, which is
addressed here.



Quantified Interpreted Systems

We extend interpreted systems to the first order by endow-
ing each structure with a domain of individuals. Prelim-
inary investigations in “static” quantified interpretedssy
tems, where no account of evolution for the system is
given, have appeared in (Belardinelli and Lomuscio 2009b).
Fully-fledged QIS on a language with temporal modalities
have been introduced in (Belardinelli and Lomuscio 2008;
2009a). We follow the definition of QIS there provided, but
differently from these contributions, we also considerithe
teraction between temporal and epistemic modalities.
Givenasetd = {1,...,m} of agents, the first-order tem-
poral epistemic languagg,, contains individual variables
z1, T2, ..., individual constants, cs, . . ., n-ary predicative
letters Pi*, Py, ..., for n € N, the connectives. and —,
the quantifierv, the temporal operatorS) andi{, and the
epistemic operatoK; for each agent € A. The only terms
tq,ts,...In L, are individual variables and constants.

Definition 1 Formulas inZ,,, are defined as follows:

¢u=Pr(tr, . te) | | — ¢ | Vo | O | YUY | Ky

The formulas))¢ and¢l/¢’ are read asdt the next step
¢" and “eventually¢’ and until then¢”; K;¢ represents
“agenti knowsg¢”. We define the symbolg, v, <, 3, G
(*always in the future”),F (“some time in the future”) as
standard;K; ¢ is short for—K;—¢. By ¢[y] we mean that
7=u1,...,y, are all the free variables iy, while ¢[i//1] is
the formula obtained by substituting simultaneously some,
possibly all, free occurrences gfin ¢ with £ = ¢1,..., ¢,
and renaming bounded variables.

To introduce quantified interpreted systems we assume
a setL; of local statesl;,l.,..., a setAct; of actions
a;,al,..., and a protocolP; : L; — 24 from local
states to non-empty sets of actions for each ageat A
in a multi-agent system. We consider local states, actions,
and a protocol for the environment as well. The set

S C L. x L x...x L, contains the global states of the
MAS, Act C Act, x Acty X...X Act,, is the set of joint ac-
tions, whileP = (P., Py, ..., P,,) is the joint protocol. We

also introduce a transition function: Act — (S — §)
such thatr(a)(s) = s only if a € P(s). Intuitively,
7(a)(s) = s’ encodes that the system moves from state
to states’ if agents perform the joint actiom We say that
the global state’ is reachable in one stefpom s, ors C ¢/,

if there isa € Act such thatr(a)(s) = s’. To represent the
temporal evolution of the MAS we consider the flow of time
N of the naturals numbers. Ainis any functionr : N — S
such thatr(n) C r(n + 1). Intuitively, a run represents a
possible evolution of the MAS according to the transition
functionr. Finally, we define the quantified interpreted sys-
tems for the languagg,,, as follows:

Definition 2 (QIS) A quantified interpreted systens a
triple P = (R, D, I) such that (i)R is a non-empty set of
runs; (ii) D is a non-empty set of individuals; (iii) is an
interpretation ofL,, such that/(c¢) € D, and forr € R,
n €N, I(P* r n)is ak-ary relation onD.

Following standard notation (Fagin et al. 1995) a pair
(r,n)isapointin P. If r(n) = (l¢,l1,...,ly) is the global

state at poin{r, n) thenr.(n) = . andr;(n) = [; are the
environment's and age#is local state atr, n) respectively.
Further, fori € A the equivalence relation; is defined
such that(r,n) ~; (r',n/) if r;(n) = ri(n').

In this paper we consider the following classes of QIS.

Definition 3 ¢ A QISP is synchronousf for every agent

i€ A, (r,n)~; (r,n)impliesn =n'.
e A QIS satisfieperfect recallif for all points (r, ) ~;
(r',n), if n > 0 then either(r,n — 1) ~; (+',n’) or

there isl < n’ such that(r,n — 1) ~; (v, l) and for all
I <k <n'wehave(r,n) ~; (', k).

e A QIS satisfiemo learningif for all points (r,n) ~;
(r',n') either (r,n + 1) ~; (+',n’) or there isl > n’
such that(r,n + 1) ~; (+/,1) and for alll > k > n’ we
have(r,n) ~; (', k).

e A QIS has ainique initial statéf for all », 7" € R, (0) =
r'(0).

These conditions have extensively been discussed in the
literature (Halpern, Meyden, and Vardi 2003) together with
equivalent formulations. Intuitively, a QIS is synchrosou
if time is part of the local state of each agent. A QIS satis-
fies perfect recall if an agent’s local state registers dhary
that has happened to her. No learning is dual to perfect re-
call. Finally, a QIS has a unique initial state if all runsrsta
from the same global state.

By Q7S,, we denote the class of QIS with agents; the
superscriptsync, pr, nl, uis denote specific subclasses of
Q78S,, satisfying the respective constraints. For instance,
QIS;¥""*¥ is the class of synchronous QIS withagents
and a unique initial state.

We now assign a meaning to the formulasipf in quan-
tified interpreted systems. Letbe an assignment from the
variables to the individuals i, the valuation/?(¢) of a
term¢ is defined aw (y) for t = y, and1?(¢t) = I(c) for
t = c. Avarianto (%) of an assignment assigns: € D to
2 and coincides witlr on all the other variables.

Definition 4 The satisfaction relation= for ¢ € L,,,
(r,n) € P, and an assignment is defined as follows:

P, r,n) = PrRE)if (I9(t1),...,19(ty)) € I(P*,r,n)
P,r,n) = 1f(P rn)b&w
P, r,n) Ey—yif (P7,r,n) por (P7,r,n) E ¢’
P rn) Ve if foralla € D, (P7&),r,n) =
P rn) = Ow i (P7r,n+1) b= 4
,m,n) EyUy’ if there is n’ > n such that (P7,r,n’) E '
andn < n” < n' implies (P?,r,n") E 9
(P, r,n)EK;v if (r,n) ~; (r',n’) implies (77"77“',71') =y
The truth conditions fon, Vv, <, 3, G and F' are defined
from those above. A formula € L,, is true at a point
(r,n) if it is satisfied at(r,n) by everyo; ¢ is valid on a
QISP ifitis true at every point irP; ¢ is valid on a clasg
of QISif it is valid on every QIS inC.
By considering all subsets dfsync, pr,nl, uis} we ob-
tain 16 subclasses &@ZS,, for anym € N. Not all of
them are independent nor axiomatisable. Some of these are
not axiomatisable already at the propositional level (idedp
and Moses 1992; Halpern and Vardi 1989). In Table 1 we
group together the classes of QIS that share the same set of
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validities onL,,, for m > 1. The proofs of these equiva-
lences can be obtained similarly to the propositional case.

QISm, QIS;I]{JTLC] QIS%*I QIS;ILMLC,UM
stf;i/ncyp’r’ QISf,gnc’pT’“is

QIS QTS

QIS

QZ'Sf;i/nc,nl

QTSP

QI Snhprouis

QzSnhvis

QISSmync,nl,pr

QISsync,nl,uis QISS?/"Ca"lmT,uis

Table 1: Equivalences among classes of QIS.

By following (Halpern, Meyden, and Vardi 2003) we re-
mark that the sets of propositional validities on all classe
above are axiomatisable b@ZS™\*™"i and QZS""*,
Also, notice thatQZS}""** is equivalent toQZS?' and
QIS}HPvs s equivalent toQZST". Thus, form
1 the sets of propositional validities OQISZf’W’““ and
QTS™-"i* are nonetheless axiomatisable.

In the next section we show that the known axiomatisabil-
ity result at the propositional level can be extended to the
monodic fragment of the languads,, defined as follows:

Definition 5 The monodic fragment?, is the set of formu-
las ¢ € L,, such that any subformula gfof the formi; 1,
O or yp1Urpo contains at most one free variable.

In other words the monodic fragment 6f,, contains for-
mulas such as

Vy (Resourcéy) — K; (VzAvailabley, z)i{3xRequestr, y))

The monodic fragments of a number of first-order
modal logics have been thoroughly investigated (Hodkinson
Wolter, and Zakharyaschev 2000; Hodkinson et al. 2003;
Wolter and Zakharyaschev 2001; 2002). In the casg,pf
this fragment is quite expressive as it containsdalldicto
formulas, i.e., formulas where no free variable appears in
the scope of any modal operator.

Axiomatisations

In this section we present sound and complete axiomatisa-
tions of the sets of monodic validities for the classes ofqua
tified interpreted systems defined in the previous sectian. W
begin by introducing the basic system QK That extends to

the first order the epistemic logic S5 combined with the lin-
ear temporal logic LTL.

Definition 6 The system QK] contains the following
schemes of axioms and rules, where> andy are formulas
in L.

Taut | classic propositional tautologies
MP | 9=, o=

K O¢ = 9¥) = (O — OY)

TL | O9<-0¢

T2 | qUp = PV (¢ A O(eUY))
Nec | ¢ = Oo

T3 | x— W AOx = x — ~(eU)
K Ki(¢ — ) — (Kid — Ki9)

T Ki¢p — ¢

5 -Ki¢p — K;=K;¢

Nec | ¢ = K;¢

BF OVzp < Ve O ¢

BF KVNxp — VaK;¢p

Ex | Vaz¢ — ¢lx/t]

Gen | ¢ — Ylz/t] = ¢ — Vi), for z not free ing

The epistemic operatdk; is an.S5 modality, while the
next(O) and untilZ/ operators are axiomatised as linear-time
modalities. To this we add the classic postulafes and
Gen for quantification. Note that both are sound as we are
considering a unique domain of individuals in our struc-
tures. We consider the standard definitionprofof andthe-
orem + ¢ means thap < £;, is a theorem in QKT,.

In this paper we focus on the schemes of axioms in Table 2
that specify the interaction between time and knowledge.

KT2 | Kig AN O(Kith A =Kix) — Ki((Kigp)U((Ki)U=x))
KT3 | (Kip)UK ) — K;((K;pUKth)
KT4 | OKi¢p — Ki O ¢
KT5 | Kip — K;¢
Table 2: the axioms KT1-KT5.
We usel, ..., 5 as superscripts to denote the systems ob-

tained by adding to QKjJ, any combination of KT1-5. For
instance, the system QKP extends QKT, with the ax-
ioms KT2 and KT3.

It is easy to check that the axioms of QKTare valid
on every QIS and the inference rules preserve validity. On
the other hand, the axioms KT1-5 are valid only on specific
classes of QIS as stated in the following theorem.

Theorem 7 The systems in the first column are sound for
the corresponding classes of QIS in the second column.

System QIS

QKT,, | OIS,., OISy™, QISE", QIS /™™
QKTin QIS;zl;nc,pr, QIS.:rzl/nc,pr,uis
QKT:, | OTSIy, QTS

QKT;, | QISH

QKT§13 QIS.:%ncA,nl

QKT:? | QTS

QKT%S QIS';LZ,pT,uis

QKT QTS

QKT;,;’AL stfrgnc,nl,pr

QKT}T,;LS QISfrgnc,nl,uis, QISfr%/nc,nl,pr,uis

We now show that the systems in Theorem 7 are not only
sound but also complete for the corresponding classes of
QIS. For proving these results we need to introduce Kripke
models as generalizations of quantified interpreted system



Kripke Models

To prove the completeness of the systems above we first in-
troduce an appropriate class of Kripke models as a gener-
alization of QIS, and prove completeness for these models.
Then we apply a map between Kripke models and QIS to
obtain the desired result.

Definition 8 A Kripke model for £,, is a tuple M =
(R,{~i}ica,D,I) such that (iR is a non-empty set of in-
dexesr,r’, .. .; (ii) for i € A, ~; is an equivalence relation
on the set of pointér,n) for » € R andn € N; (iii) the
elements and [ are defined as for QIS.

Kripke models can be seen as abstractions of QIS where
no details are given about the inner structure of points. The
clauses for the satisfaction relatign17, (r,n)) E ¢ are
straightforwardly defined from those for QIS, as well as the
notions of truth and validity. For instance, we have

(M?,(r,n)) | Kb if (r,n) ~i (r',n) = (M7, (',n)) E ¢

We will consider Kripke models satisfying synchronicity,
perfect recall, no learning, or with a unique initial stafbe
definition of these subclasses can be derived directly from
Definition 3. For instance, a Kripke model satisfpfect
recall if for all points (r,n) ~; (v',n’), if n > 0 then either
(ry,m—1) ~; (r',n') orthereid < n’ such thatr,n—1) ~;
(r',1)and for alll < k < n’ we have(r,n) ~; (', k).

Now letC,,, be the class of Kripke models with agents;
in the following we adopt the same naming conventions as
for QIS. For instancelCs¥"<v* is the class of synchronous
Kripke models with a unique initial state

We compare Kripke models and quantified interpreted
systems by means of a map: K,, — QIS,,. Let
M = (R,{~;}ica,D,I) be a Kripke model. For every
equivalence relation-;, for (r,n) € M, let the equiv-
alence clasg§(r,n)]~, {(+',n)) | (ryn) ~; (#',n)}
be a local state for agenit while each(r,n) is a local
state for the environment. Then defipeM) as the tuple
(R',D,I'y whereR' contains the runs, for » € R such
thatr.(n) = ((r,n),[(r,n)]~y,-..,[(r,n)]~,.), D is the
same as inM, and’(P*,r,.,n) = I(P*,r,n). The struc-
tureg(M) is a QIS that satisfies the following result:

Lemma 9 For every¢ € L, andn € N,
(M7, (rn) o it (g(M)7,rr,n) = ¢

This lemma is proved by induction on the length @f
Note that if M satisfies any of synchronicity, perfect recall,
no learning, or unique initial state, then algo\) satisfies
the corresponding condition. Thug,defines a map from
each of the 16 subclasses/of,, outlined above to the cor-
responding subclass @ZS,,.

For reasoning about the monodic fragmentZgf when
we have no learning and perfect recall we need to introduce
the following class of “monodic friendly” Kripke models.

Definition 10 (mf-model) A monodic friendly Kripke
modelfor £, is a tuple M = (R,{~;q}icaaep, D, I)
such that (i) the element®, D and I are defined as for
Krikpe models; (i) fori € A, a € D, ~; 4 is an equivalence
relation on the set of points iM.

We can define synchronicity, perfect recall, no learning,
and having a unique initial state also for mf-models by spec-
ifying Definition 3 for each relationv; ,. For instance, a
mf-model satisfieperfect recallif for all points (r,n) ~; 4
(r',n'),if n > Otheneithefr,n—1) ~; , (',n’) orthereis
I <n'suchtha(r,n—1) ~; , (v',l)andforalll < k < n/
we have(r,n) ~; o (', k).

As regards the subclasses of the cladsr,,, of all mf-
models withm agents, we adopt the same naming conven-
tions as for QIS and Kripke models. Also notice that Kripke
models are isomorphic to the mf-models such that for all
i€ A a,beD,~,;,isequal to~, .

Finally, the satisfaction relatiop- for ¢ € £1 in a mf-
model M is defined as for Kripke models, but for the epis-
temic operator:

(MU> (7'7 n)) ': Kﬂ/}[y} if
(7‘, n) ~io(y) (7“,771/) = (Md7 (Tlv TL/)) ': P

where at mosy appears free in.

We can now prove the following lemma, which will be
useful in the completeness proof for systems encompassing

either perfect recall or no learning.

Lemma 11 For every¢ € L. and for every subset of
{sync, pr,nl, uis},

Ko l=o it MF, ¢

Proof sketch. The implication from right to left is im-
mediate by the remark above. For the converse, assume
that M is a mf-model such thatM?, (r,n)) & ¢ for
some assignment, r € R andn € N. We show
how to build a Kripke modeM’ = (R’,{~}}ica, D', I')
such that(M’?, (r',n’)) K ¢ for somer’ € R’ and
n’ € N. LetR'" = R andD’ = D. In order to define
each~/} for i € A we reason as follows. Suppose that
(M7, (r,n)) E Kpplz] and (r,n) ~; o) (',n'), then
(r,n) ~% (r',n'). However, if (M7, (r,n)) &= K;x[y],
(r1) ~iog (",n") and (MO, (", ")) B vle], we
have that(r,n) ~! (+",n”) and (M7, (r",n")) ¥ ¥[x]
against the fact thdtM?, (r,n)) = K;y[z]. So, we have to
define the interpretatioff so that(M°, (r"”,n")) = ¥x].
This is possible as we are considering only the monodic
fragment), of £,,. We repeat this process for all points
reachable fronfr, n) via any epistemic relation.

The Completeness Proof

We outline the main steps of the completeness proof, which
is based on a quasimodel construction (Gabbay et al. 2003).
Intuitively, a quasimodel for a monodic formufais a rela-
tional structure whose points are sets of sets of subfosnula
of ¢. Each set of sets of subformulas describes a “possible
state of affairs”, and contains sets of subformulas defining
the individuals in the point.

Given a formulap € £} we denote byubn-¢ the set
subp U {~ | ¢ € subp} U{Ov | ¢ € subg} U{O~ |
¥ € subgp} wheresubg is the set of subformulas aef. Fur-
ther, letsub,, ¢ be the subset afub~- ¢ containing formulas
with at mostn free variables, and let be a variable not oc-

curring in¢, we definesub,¢ = {Y[y/x] | Y]y] € subi¢}.



Clearly, z is the only free variable iBub,¢. By cong we
denote the set of all constants occurringin

Definition 12 For £ € N we define the closures; ¢ and
cli,;¢ by mutual recursion. Letlo¢p = suby¢ and fork >
1, clyop = UieA clii¢. Fork > 0,1 € A, cly ;0 = clyo U
{Ki(wl V...V wn); _‘Ki(¢1 V...V wn) | wla s 7wn S

Following (Halpern, Meyden, and Vardi 2003) we define
ad(¢) as the greatest number of alternations of distilict
modalities along any branch if's parse tree. Further, an
indexis any finite sequence = iy, ..., of agents such
thati,, # i,41; the length of is denoted by:|. Also, wfi
is the absorptive concatenation of indexand i such that
i = ¢if i, = 4. Finally, we write K, for K;, ... K, 1.

Definition 13 Let: be an index such that| < ad(¢). If tis
the empty sequeneghencl,¢ = clqq(g) 9. If L = /i, then
cl,d = cli ¢ for k = ad(p) — |i]. Ac-typetfor ¢ is any
maximal and consistent subsetcgfo.

Two (-typest, t' are said tagreeif they contains the same
closed formulas, i.e., formulas where no free variable ap-
pears. Given a-typet for ¢ and a constant € cong, t¢ is
anindexed typdor ¢.

Definition 14 A .-state candidatdor ¢ is a pair € =
(T, T<°™) such that (i)T is a set ofi-types for¢ that agree;
and (ii) 7°°™ is a set containing for each € con¢ an in-
dexed type“ such thatt € T. A .-pointfor ¢ is a pair
B = (¢, 1) such that (i)¢ is a .-state candidate fop; and
(i) t € Cis ar-type.

Note that by abuse of notation, we calbints both the
stateqr, n) and the pair§3 = (¢, t). Thisis to be consistent
with our references (Fagin et al. 1995; Halpern, Meyden,
and Vardi 2003); the context will disambiguate.

Given ai-state candidaté€ = (T',7°°") and a point}y =
(€, t) we define the formulase andgy as follows:

N Fztlz] Avz \/ tlz] A N\ tz/d]
teT teT tegeon
(67 At

Qg

By

A .-state candidat€ is consistentf the formula o is
consistent; similarly for points. Consistent state caathd

Furthermore, for: € cong, €; = &y if t§ € €1, 15 € &,
and<€1, fi) = <Q:271£(1:>

We now present the frame underlying the quasimodel for
¢.
Definition 16 A frame F is a tuple (R,
{Ni,a}iGA,aG’DaD7 f> where (I) R! {Ni,a}iGAA,aGD and
D are defined as for mf-models; (if)is a partial function
associating to each poirft, n) a consistent state candidate
f(r,n) = €., such that (a) the domain dfis not empty;
(b) if § is defined on(r,n) then it is defined orfr,n + 1);
(c) if f is defined or(r,n) and (r,n) ~; , (r',n’) thenfis
defined or(r’, n’).

Next, we provide the definition adbjects which corre-
spond to theunsin (Gabbay et al. 2003). We choose this
name to avoid confusion with the runs in QIS.

Definition 17 For a € D, anobjectin F is a mapp, asso-
ciating with every(r,n) € Dom(f) a typep,(r,n) € T, ,
such that:

1. pa(r,n) = pa(r,n+1); and if (r,n) ~; 4 ('

pa(r, n) i pa(rla n/)

2. xUp € pu(r,n) iff there isn’ > n such thaty €
pa(r,n') andx € pq(r,n”) forall n < n' < n/;

i pa(r,n) =; t are i-types then for somér’,n’),
(r,n) ~iq (r',n') andp,(r',n’) = t.
An object" satisfies (1), (2) above and (3’) instead of (3).

if po(r,n) is ac-type,tis a.fi-type, andp,(r,n) ~; t
then for somer’, n') ~; o (r,n), po(r',n') = t.

Now we have all the elements to give the definition of
guasimodel.

n') then

3

Definition 18 A quasimodelfor ¢ is a tupleQ = (R,
{Nz p}zGA peO, 0, f> such that<R {Nz p}zeA peO> O f) is
a frame, and

1. ¢ € tforsomet € T, , andT, , € €, ,,

2. ¢ = C iy andif (r,n) ~ n') thenp(r,n) ~;
p(r',n’)

for everyt € T, ,, there exists an objegt € O such that
p(r,n) =t

for everyc € cong, the functionp® such thatp®(r,n) =
¢ € Teo" is an object inO.

7,0 (T/v
3.

4.

represent the states of our quasimodels. We now define the A quasimodet is defined as a quasimodel in which

relations ofsuitability that constitute the relational part of
guasimodels.

Definition 15 e A «;-type t; and a to-type to are (O-
suitable or t; = to, if ¢1 e andt; A Oty is con-
sistent. They aré-suitable or t; ~; to, if ¢1fi = toffi and
1 A\ K;to is consistent.

e A -state candidate®; and ats-state candidate, are
(O-suitablg or €1 = &, if 11 = 1y andae, A Qae, IS
consistent. They arésuitableif ¢18i = woffi and o, A
K, ag, is consistent.

e Ay-point3; and awe-pointP. are O)-suitable or P, =
Po, if 11 = 12 and By, A OPy, is consistent. They are
i-suitableif .1 i = offi and B, A Kiﬁmz is consistent.

clauses (3) and (4) refer to objettsather than objects. We
can define quasimodels satisfying perfect recall, no leggni
synchronicity, or unigue initial state by assuming the eorr
sponding condition on the frame.

We now state the main result of this section, that is, satis-
fability in quasimodels implies satisfability in mf-model

Theorem 19 If there is a quasimodel (respectively
quasimodet) Q for a monodic formulap € £} theng is
satisfiable in a monodic friendly Kripke model.

Proof sketch. The proof is inspired by those for Lemmas
11.72 and 12.9 in (Gabbay et al. 2003).

First, for every monodic formula) € L£! of the form
K;x, Ox or x1Ux2 we consider &-ary predicater for k



equalto O or 1. The formulﬂf(x) is called thesurrogate

of 1. Given a formulap € £, we denote byp the formula
obtained from¢ by substituting all its modal subformulas
which are not within the scope of another modal operator by
their surrogates.

Since every state candidatén the quasimodef is con-
sistent and the system QKTis based on first-order logic,
the formulaa is consistent with first-order (non-modal)
logic. By completeness of first-order logic, there is a first-
order structur€ = (I, D), whereD is a non-empty set of
individuals and! is an interpretation o, which satisfies
g, thatis,I? = @ for some assignmetto D.

Now, we consider a cardinal number> X, greater than
the cardinality of the se® of all objects inQ, and define
D = {{p,&) | p € O,& < k}. By Lowenheim-Skolem
theorem we can assume without loss of generality That
is the domain of the first-order structute,, = (I, ., D)
satisfyingae, , , that is, all structureg,.,, share a common
domainD, and for everyt € T, ,,, {p,&) € D, we have that
p(r,n) = tiff I7, = tz] for o(x) = (p,§). Moreover,
I, n(c) = (p,0) for everyc € cong.

We define the mf-modelM as the triple (R,
{~ia}ticaaep,D,I) such thatrR is the set of runs in the
quasimodel, for a = (p,§) € D, ~;, is equal to~; ,,

D is defined as above, and the interpretatiois obtained
by gluing together the various.,,. We can now prove the
following result for M.

Remark 20 If M is obtained from a quasimod€l as de-
scribed above, then for evety € sub, ¢

I, Ev iff (M7, (rn) ¢

Moreover, ifQ is a quasimodel, f(r, n) is a-state candi-
date, andud(K,v) < d then

I;"T,n ): E iff (MU> (7"7 n)) |: (0
Furthermore, ifQ satisfies any of perfect recall, no learn-

ing, synchronicity, or unique initial state, then the mf-gab
M obtained from) satisfies the corresponding constraints.

Dealing with each System

In this section we consider the completeness proof for each

system in Theorem 7. In particular, we show thabtife

L1 is consistent with respect to a syst&nthen we can
build a quasimodel (or a quasimodeh some cases) fap
based on a frame fa$. We only present the main steps of
the construction. Notice that in the following sections the
symbol - represents provability in the appropriate system
S.

The ClasseZS,,, QIS QTSUs, QT Ssyneuis
We start the completeness proof for the basic system QKT
with the following definition.

Definition 21 Let a =-sequence be a possibly infinite se-
quencedy = ¢; = ... of state candidates.
A =-sequence iacceptabléf

(i) forall £ > 0if YUy € t; € € then there i:w > k such
thaty et, € ¢, andy € t,, € €, foralln <m < k;

(i) forall £ > 0if YUy € tf € € then there iw > k such

thaty e t£ € €,, Y € £, € €, forall n < m < k and
Cp =° €k+1 =¢...=°¢,.

The following lemmas entail the completeness result.
Lemma 22 For any consistenp € £} there is a consistent

m

e-state candidate& = (T, T°°") for ¢ such thaty € t for
somet € T.

Lemma 23 Every =-sequence of state candidates can be
extended to an infinite acceptabe-sequence.

These lemmas are proved similarly to Claims 11.75-76 in
(Gabbay et al. 2003).

If ¢ € L} is consistent then by Lemma 22 there is a
consistent-state candidate€ = (T, T<"™) such thatp be-
longs to some typg € T. So, by Lemma 23 the set
of infinite acceptable=--sequences is non-empty. Now
let r be a new object. A sequenge...,r,@,, Chiq,...
is acceptable fromn if it starts with n copies of ¢
and¢,,,¢,.1,... is an acceptable=-sequence. LeR
be the set of all such acceptabte-sequences, and for
each (r, k) define the partial function as f(r, k) = €
if r is the =-sequence,...,r, &,,&,11,... acceptable
from n and k& > n, undefined otherwise. Finally, let
O be the set of all objects on the framg (R,
{~ipticapco,O,f) such thatF is synchronous. We can
prove the following result.

Lemma 24 The tuple(R, {~; ,}ica,pc0, O, §) is a quasi-
model fore.

The completeness of QK,J with respect to the classes
Q7S and QZS8°¥"¢ directly follows from Theorem 19. To
prove completeness fa@ZS"** and QZS*¥"“*** we use
the next result.

Remark 25 Suppose is a subset ofpr, sync}. If ¢ € Ly,
is satisfiable inQZS” then itis also satisfiable iIQZS?"**.

The ClasseQZS?", QTSPruis
The completeness proof for QK Twith respect toQZS”"
and QZSP"*** relies on the following lemma.

Lemma 26 For c-pointsP; = (€1, 1), Po = (Ca, t3) and
gi-typet,, if P = Po andty ~; t, then there is ati-
type3, = (¢}, t,) such that either (a); ~; t; or (b) there
is a.fi-type ] = (€, t]) such thatt; =~; t; and a=-
sequence ofti-pointsSy = ... = &, = P, such that
Sk = (Dg, 51) andsy, =; ty for k < n, andP] = S .

For any consistent € L1, we define a quasimodelfor
¢ to establish the completeness of QKWith respect to
QZSP". Let R be the set of all acceptable-sequences,
and definef such thatf(r, k) = & if r is the=-sequence
€y, €1,.... Finally, let© be the set of all objectson the
frameF = (R,{~; ,}tica pco,O,f) such thatF satisfies
perfect recall. We can now show the following lemma.

Lemma 27 The tuple (R,{~i,}ica pc0,O,f)
guasimodet for ¢.

However, we need to ensure that the @etf objects” is
non-empty. In particular, we need the following lemma to
show that clause (3’) is satisfied.

is a



Lemma 28 if p(r,n) € f(r,n) is ac-type,tis a.fi-type and
p(r,n) ~; tthen for somér’, n’) ~; , (r,n), t € f(r',n’).

Proof sketch. This proof is similar to the one for
Lemma 5.6 in (Halpern, Meyden, and Vardi 2003); it pro-
ceeds by induction on. Forn = 0 we define a consistent
fi-state candidat® = {s | s € {(r,0),5 # p(r,0)} U {t}.

By Lemma 239 can be extended to &--acceptable se-
quencer’ such thaip(r’,0) = t. Finally, (', n’) ~; , (r,n)
andt € f(r',n’).

For the inductive step assume that,n — 1) = f(r,n)
andp(r,n) ~; t. By Lemma 26 either (g)(r,n—1) ~; tor
(b) there is afi-type’ = (¢’ t') such thap(r,n—1) ~; t'
and a=-sequence offi-pointsSy = ... = &; = (D, t)
such thatS, = (D, sx) ands, =; p(r,n) for k < [ and
B = Sq. If we apply the induction hypothesis in case
(a) then we obtain that for some’,n’) ~;, (r,n — 1),

t € §{(r',n') and p(r,n — 1) =; p(r,n). Thus, also
(r',n') ~i, (r,n). In case (b) by induction hypoth-
esis we have that for someg’,n’) ~;, (r,n — 1),

t' € f(r’,n'). Now assume that run’ is derived from
the =-acceptable sequencég,¢;,..., and let "’ be
the run derived from the sequence with initial segment
Coy-- s €, Do, ..., by Lemma 23. By construction
fir'".n’ +1+1) =D andp(r,n) ~; p(r’",n' +1+1) =t.
Hence,(r,n) ~;, (r",n' +1+1).

This completes the proof fopZS?". The completeness
of QKT2, with respect taQZS?">"** follows by Remark 25.

The ClassesQZ Sy, QTS

The completeness of QKT with respect toQZS*V"*F"
is proved similarly to the previous case by using the next
lemma instead of Lemma 26.

Lemma 29 For c-pointsP3;, PBo andfi-point P, if Py =
P2 and Py ~; P, then there is ati-point P} such that
P1 ~; P and P = Ps.

Completeness of QKIT with respect tongz;:,sync,uis
follows again by Remark 25.

The ClassQZS™!

First, we give the following definition, which will be useful
in the completeness proof.

Definition 30 Two sequences of typés and ¥/ are ~;-
concordant if there is some € N (n may be o)
and non-empty consecutive intervalsg, ...,Y%, of ¥ and
¥, ..., 2, of ¥ such that for alls € ¥; ands’ € ¥/ we
haves =~; s’ for j < n.

To prove the completeness of QK Tor Q75" we need
the following lemma, which is dual to Lemma 26.

Lemma 31 For ¢-pointsP; = (€1, t1), Po = (€3, t2) and
i-typet], if 1 = P, andt, =; t] then there is agi-point
P = (€], t)) and a=-sequenc] = S9 = ... = 6,
of «fi-points such thats;, = (Dy,s;) ands, =~; t; for
k < n,andty =; s,,.

As pointed out in (Halpern, Meyden, and Vardi 2003)
Lemma 31 is not sufficient to construct a quasimddstis-
fying the no learning condition. In fact, given-a-sequence
Y = ¢, ¢y, ... of i-state candidates and&-point t, such
thatty ~; t; for ty € €, by Lemma 31 we can find &-
sequenc&’ = €, 7, ... such thatf, € ¢ and satisfying
the no learning condition. However, it does not follow from
the acceptability of that Y’ is also acceptable. So, as in
the propositional case, we have to work with trees of state
candidates. Hereafter we extend to the first order the defi-
nitions given in (Halpern, Meyden, and Vardi 2003) for the
propositional case.

Definition 32 A k-tree for¢ (for k < ad(¢)) is a setll of
t-state candidates fop with |¢| < k that contains a unique
e-state candidate, i.e., the root, and for everpoint t in
some¢ < II,
e if t' is a.ffi-type such that =; t' and|.4i| < k then there
is somed’ € II such thatt’ € ¢’;
e if . = //tii then there is a’-state candidat&’ € IT and a
/-typet’ € € such thatt =; t'.
Intuitively, a k-tree is a view of the epistemic state of a
guasimodel from a particular type up to k& steps fromt.
We now extend the relatios- to k-trees.

Definition 33 If IT andII" are k-trees forg thenIl = ¢ II'

if f is a function associating with eachtypet € €, for
¢ e II, a finite=--sequence af-types inll U IT’ such that:

Liff(t) =t = ... = tx then (@)t = to; (b) t; € ¢; for

some¢; € I for j < k andt;, € ¢ for some;, € IT';

2. ift=; t' thenf(t) and f(¥') are ~,;-concordant;
3. for at least ond the sequencé(t) has length at least 2.

We now show how to obtain acceptable sequences of state
candidates from sequences of trees. Given two sequences of
t-state candidate$ = ¢, ..., €, andy = €, . .., wherei
is finite, thefusion A - i is defined a¥y, ..., ¢x_1, ), ...
only if €, = €. Furthermore, given an infinite sequence
© =1y =4 II; =y ...of k-trees, we say that a se-
guence\ of (-state candidates tompatible witho if there
exists somé € N and.-state candidate®;,, €;, 1, . . ., with
¢; € II; for j > h, such thath = f5,(€4) - fri1(Cp1) ...

The sequenc® is acceptablef every =-sequence com-
patible with© is infinite and acceptable. The basic idea of
the completeness proof is to define the quasimodedrting
from an acceptable sequenge

Lemma 34 If ¢ € L] is consistent with QKJ, then there
is an acceptable sequen€eof ad(¢)-trees such thap be-
longs to the root of the first tree.

The proof of this lemma relies on Lemma 31. Now7et
consist of all acceptable>-sequences compatible with,
while the functionf is defined as for perfect recall. Further-
more, O is the set of all object on the frameF = (R,
{~ipticapco, O,f) such thatF satisfies no learning. We
can now state the following lemma.

Lemma 35 The tuple (R,{~i,}icapc0,0,f) is a
guasimodet for ¢.

This completes the proof for QKTwith respect to
QzS™.



The ClassQZSntsyne The ClasseQZS"hsyneuis gnd QT S-Pr-synciuis

To show that QKY, is a complete axiomatisation for ~ We now show that the system QKT* is complete with re-

QZSMvme we need the following analogue of Lemma 31.  Spect to the classe@Z S svneuis gnd QT SNLPrsyneuis,
] o o First, we remark that these two classes share the same set
Lemma 36 For (-pointsP, P2 and.fi-point P, if Py = of validities. By this remark and axiom KT5 it is suffi-

Bz f%‘?;ﬁdip{?’}wthen there is ai-point ; such that  gient to prove the completeness of QKwith respect to
i 2 2 ~i P QI&ThPrevnetis - Erom the previous section QKT is
Further, ifIT andIl" arek-trees therll =" II’ only if complete with respect tQZS}"*"**"* and the result fol-

J 1
IT =, II' and for allt € II, f(t) has exactly length 2. A lows by Remark 38.
syncacceptable sequence of trees is defined as an acceptable

sequence where the relatien is substituted by the relation  Security Protocols as Message Passing Systems
="¥"¢. The following analogue of Lemma 34 holds. In this section we present a demonstration of the formal ma-

Lemma 37 If ¢ € L] is consistent with QK then there chinery developed thus far. Specifically, we model a secu-
is async_acceptab|e Sequen@ of ad(¢)_trees such thab I’Ity pI’OtOCO| as a message passing SyStem_ (Fag|n etal. 1995,
belongs to the root of the first tree. Lamport 1978) in the framework of QIS. First of all, a mes-

) _ sage passing system (MPS) is a MAS in which the only
Let R consist of all acceptable>-sequences compatible  actions for the agents are sending and receiving messages.
with ©. The functionj is defined as in the previous sec-  Thjs setting is common to a variety of distributed systems,

tion, andO is the set of all object on the frameF = (R, well beyond the realms of MAS and Al.
{~ipticapco, O, ) such thatF satisfies synchronicity and To define message passing QIS we introduce &lsgbf
no learning. As in the previous sections the tugfe, messageg , iz, - . ., and define the local statg for agent
{~iptieapeo, O, 1) is a quasimodel for ¢. This com- i as ahistory over Msg, that is, a sequence of events of the
pletes the proof for QKT with respect toQZS"!5¥", form sends, j, 1) andrec(j, u), fori,j € A, n € Msg
Intuitively, sends, j, 1) represents the event wheagenti

The ClassesQZS™*" and QIS?l,pnuis sends agenj message:, while the meaning ofec(j, 1)

) : ] is thatagent; receives message. A global states € S
If ¢ € L}, is consistent with QK¥;* then by Lemma 34 s a tuple(i,, 11, ..., 1,) wherels, ..., 1, are local states as
there exists an acceptable sequeficef ad(¢)-trees such above and, contains all the events i, . . . , L,,.
that the consistent formukﬁ belongs to the root of the first We define the protoco| for message passing Systems as
tree. LetR be the set of all acceptabte-sequenceghat follows:

have a suffixhat is compatible with®, while the function

f is defined as in the previous section. Finallyjs the set  *® P(li) = {}send(j, u) | j € 4, 1 € Msg}

of all object” on the frameF = (R,{~; ,}ica,pc0,O,f) o P(le) ={\del(j,p) | j € A,u € Msg}
such thatF satisfies perfect recall and no learning. We Ineach local state agentan either perform the null action
can prove that the tuplgR,{~;,}icapc0,0.f) is a or send a message. The environment can either do nothing or

quasimodet for ¢. This establishes the completeness of deliver a message. Further, we define the transition fumctio

2,3 : nl,pr . _ i
QKT?== with zeipsgt toQZS;.F". Completeness with re o (8,81, ) (S, 51,- -, 5m) = (sh,sh, ... s ) if
spect.toQIsl’ i f_ollows from thg next remark, whose a. = del(j, ) implies 39 = (sj,rec(j,p)) anda; =
proof is the same as in the propositional case. send(j, p) impliess] = (s;, send(i, j, )).

Remark 38 A formula¢ € £} is satisfiable inQISQ”’?T Arunr is a function from the naturalS to S that respects
(resp. QZSTHP™*¥") iff it is satisfiable in QTSP the transition functiorr. By the definitions of local states,

protocols and transition function it is easy to check that th
following specifications MP1 and MP3 are satisfied.

The CIaSSstnml,pr,sync MP1 for everyn € N, r;(n) is a history oveMsg
MP2 fori € A, r;(0) is the empty sequence

(resp.QZSThPrsyneuisy

To prove the completeness of QKT with respect to C o e
QTS"-Prsune e combine the results of the previous twd“1P3 fori € A, r;(n + 1) is either identical to;(n) or results
m

sections. If¢p € L. is consistent with QKT then by from appending an event ig(r).
Lemma 37 there is ayncacceptable sequen&eof ad(¢)- By MP1 the local state of each agent records the messages
trees such thap belongs to the root of the first tree. LBt she has sent or received, so the system satigéggct re-

be the set of all acceptable-sequences with suffixes that  call. We assume also MP2, which enforces a unique initial
are compatible witl®; the functionf is defined as above.  state in the system.

Finally, O is the set of all object on the frameF = (R, We define message passing QIS (MPQIS) as the class of
{~ipticapco, O,f) such thatF satisfies perfect recall, no  quantified interpreted syster® = (R,D,I) whereR is
learning and synchronicity. Also in this case we can show a non-empty set of runs defined as abofecontains the
that the tuple&R, {~; , }ica pc0, O, f) is a quasimodeél for agents inA and the messages Msg and! is an interpre-

¢. This completes the proof. tation for £,,,. By MP1-3 message passing QIS belong to



the clasQZSP""** of QIS with perfect recall and a unique
initial state. In what follows we use the same notation for
objects in the model and syntactic elements.

For the specification of MPQIS we introduce a predica-
tive constantSend such that(P?,r,n) = Sendi, j, i) if
eventsends, j, ;1) Occurs to agent at timen in runr, i.e.,
r;(n) is the result of appendingends, j, 1) to r;(n — 1).
Also, we introduce the predica8entsuch tha{P?,r, n) =
Senti, j, 1) if eventsends, j, 1) occurs to agent before
time n in run r, i.e., sendi, j, u) appears inr;(n). The
predicateRedj, 1) andRec’ed, 1) are similarly defined
for eventrec(j, ). Finally, Reds, j, 1) is a shorthand for
Reqj, 1) A Senti, j, p).

We briefly explore the range of specifications that can be
expressed in this formalism. A property often required in
MPQIS is that there are no “ghost” messages: if agent
receives a messagethen; knows thaf: must actually have
been sent by some agentWe can express this requirement
as a monodic formula:

V/.L(Re('(j, M) - Kjaisen(iaj’ :u)) (l)

This specification is not satisfied by the present definition o
MPQIS, but we can modify the protocol for the environment
as follows in order to enforce the validity of formula (1) on

MPQIS.

o P(le) = {Adel(j, p) | send(j,p) € le,j € Ap €
Msg}

We compare (1) with a further relevant property of
MPQIS, i.e.,authentication if agent: has received a mes-
sageu from agentj, theni knows thatu had actually been
sent byy:

Vuj(Redi, j, u) — K;Sentj, i, i) )

Note that, differently from (1), (2) is not monodic.

We now introduce the basic constructors to specify
cryptographic protocols within the framework of MPQIS.
Specifically, we model a security protocol as a MPQIS that

X () fstp,p') =x i (@) snd(p,p') =x p; (i)
{{/J,}ki].}ki—jl =x p. Ane.c.tf isclear fori € A if for
all w € & {utrij =x .

We extend the definition of local state for a principad
A by adding an e.c.€; = (X;,=;) to everyl;. Further, for
5= (leslyy . ) let & = (X, =) for X = J;c 4 Xi
and=,= UieA =, be the e.c.t. for the state Thus, we
have

(PU,T,H) }:NEH/ if IU(M)vla(:ul) EX(T,TL)

and IU(M) E(r,n) IU(,U,/)
Notice that the formula

Vo, pf (p = p' — Ki(p = p'))
does not hold in general. This is a desirable property of
MPQIS, since it expresses the limits of one agent’s knowl-
edge as to the meaning of encrypted messages.

The language’,, is suitable for specifying a wealth of
properties of security protocols. Since our languagg
does not contain functors, we define some shorthands in or-
der to simplify the notation of specifications in the next-sec
tion. First, we introduce a predicative const&uncsuch
that

(P7,r,n) = Condp, p/, p") i p" = p,
By usingConcwe can define what it means for a message
' to be the first (resp. second) projection of a term
fst(u) = p' Ju""Condy, 1", 1)
sndu) = 4/ Ju""Condp”, ', )
Further, we introduce a predicative constémc to ex-
press message encryption:
(P?,r,n) EENdu, i k) if p={u'}x
We normally writep, = {u'} instead ofEnd(p, 1/, k).
Now we can define what it means that a principal knows

a cryptographic key, i.ea principal j knows a key iff she
knows the identites of every message encryptediwith

exchanges encrypted messages. We assume atomic mes- K;Key(k):=Vu, ' (n={p'}x — Kj(p = {1 }x))(3)

sagesm;y, ma, ..., honcesN;, N/, ..., and symmetric en-
cryption keysk;;, . .. for principalsi, j € A. The encrypted
messages in the domaid are inductively defined as fol-
lows:

Definition 39 (Term)
po=m| Ny | kij |, g | fst(u) [ snd(p) [{p}r,,

{M}k;jl

We have thaj, ¢/ is the concatenation of messageand
w', fst(p) and snd(p) are the first and second projection
of  respectively, whilg{y.}«,; is the encryption of message
p with the keyk;;. Similarly, the decryption functioi;;'
applies to an encrypted messag® return a decrypted mes-
sage{u} 1.

We now introduce equational cryptographic theories to
reason about the meaning of encrypted messages.

Definition 40 Anequational cryptographic theog.c.t.) is
a couple = (X,=x) where (i) X C Term, and (ii)
=y is an equivalence relation oX such that foru, i/ €

The concepts here introduced will be useful in the analysis
in the next section.

The Otway-Rees protocol

In this section we apply the formal machinery developed
thus far to the analysis of the Otway-Rees protocol (Otway
and Rees 1987). This is a shared-key authentication proto-
col, in which two principalsA and B use a trusted server

S to generate a session kéyig. Further,k 5 is the key
shared betweed and S, kps is shared betweeB and S,

N4 and Np are nonces, and g is the primitive message
whose intuitive meaning isA wants to communicate with
B”. We represent the protocol in the Alice-Bob notation as
follows:

A—B : pap,{Na,paB}tras

B—5 {NAaMAB}kAsv{NBaMAB}kBS
S—B {NA’kAB}kAS?{NB7kAB}kBS
B— A {NA, kaB}kas



Principal A sends B the encrypted message
{Na,paB}r.s together with enough information for
B (i.e. the message.4p) to send a similar encrypted
message t&. Principal B forwards{N4, uap}as to S
together with the encrypted mess&g€g, pap t5s. When

Since B does not know the key shared betweérand S,
he cannot decrypt the message sentibyrhus, atr*,2) B
does not know the meaning §N 4, pap i, g:

(P,r*,2) r Kp({Na, taBrass = (Na,praB))

S receives the message he checks whether the components In the third step, when the serv8ireceives the message

uap, Na, Np, A and B match in the encrypted messages.
If this is the case,S generates a new session kkypg,
encrypts it withk 4,5 andkpg, then sends both messages to
B, who forwards the appropriate part to Finally, A and

B decript the messages, check the nonces and: ygeas
the new session key.

We can represent the Otway-Reese protocol as a MPQIS

in which the protocol is defined as follows:
o Pu(e) =send(B, (hap, {Na, A}k ,s))
L4 PB((’/‘@C(B, (,U“ABz /J‘/))>) = Send(57 (.u/7 {N37 ,U’AB}ICBS))
o Ps({rec(S,({Na,paB}tras: {NB, paBtips))))
send(B, ({NA, kAB}kA.SW {N37 kAB}kBS))
o Pp((rec(B, (1, {NB,kaB}rps)))) = send(A, u)
Let P include all runs consistent with the definitions
above, and let* be the run such that for at € N the
e.c.t. inr}(n) is clear fori € A. Intuitively, * is the run

from B, he checks whether the componentss, N4, Np,
A and B match in the encrypted messages, then sends the
encrypted keys to B.
Vv ((Rec(S,v) N Ks(fst(v) = (Na,paB)) A
AKs(snd(v) = (Ns, pas))) —
- O‘send(sv B7 ({NA7 kAB}kAsv {NB, kAB}kBS))IS)
Also, S knows that the messages were actually semd by
andB:
Vv ((Rec(S,v) A Ks(fst(v) = (Na,pan)) A
NKs(snd(v) = (Np,paB))) —
— KgSent(A,B,(Na,pag)) A
ANKsSent(B, S, (N, uag)))
If S knows that the messages were actually sentitand

B, then he generates a new sessionkey, encrypts it with
kas andkgg, and sends both messagedoWe represent

in which each agent knows the meaning of the messages en-this by the following specification:

crypted with her keys. Also, let the environmeninodel a
Dolev-Yao intruderl, which can eavesdrop all the commu-
nications betweerl, B andS.

In the first step of the Otway-Rees protocol principhl
sends the message s, {Na, tap}k,s 10 B. Let Init be
a propositional constant such th@, r, n) = Init iff 7;(n)
is the empty list for allj € A U {e}. We represent the first
step by means of the following specification:

Init — Send(A, B, (ptap, {Na, taB}k4s))) (4)

We can check that formula (4) holds in the QFSrepre-
senting the Otway-Rees protocol.

The message{Na,uap}tr,s iS the encryption of
(Na,pnap) with key kgs. Therefore,{Na, papti,e =
(N4, pagp) holds in the e.c.t. at’ (1) as it is clear forA.
Principal A knows the keyk 45, hence by(3) A knows the
meaning of the encrypted messgg€4, ptap ti,s:

('P,T‘,l) ): KA({NA’NAB}kAs = (NA7MAB))

In the second step of the protocol princip@ re-
ceives a messag@iap, {Na,aptr,s) and forwards it
to the serverS after appending the encrypted message
{NB, paptiss. We represent this step by means of the fol-
lowing specification:

Vv (Rec(B,v) A fst(v) = pap —
- QSSTLd(B, S, (Va {NBvﬂAB}kBs)))

We assumed that the MPQIS representing the Otway- g

Rees protocol does not validate version (1) of authentica-
tion, henceB does not know the identity of the sender. This
means that he might consider a paint, n) where the local
state ofB is the same as ir*(2), i.e.,rz(n) = r5(2), while

the intruderl has delivered the messagelgpretending to
be A. Thus, the following specification is not satisfied:

Vv(Rec(B, (1ap,v)) — KpSent(A, B, (uas,v)))

(KsSent(A, B, (Na, pap)) A
A KsSent(B,S, (NB,,LLAB)) —
—QOSend(S, B, ({Na,kaB}as:{NB,kaB}BSs)))

On the other hand, if the intruder had eavesdropped
the communication betweeA and B, he could have sent
a messag€{Na, paptr,s,v) 10 S pretending to beB.
This situation is represented by a stat§n’’) such that
ra(n”) = r4(3), r%(n”) is empty and the local state of
the server is defined as follows:

ré(n’) (rec(S,{Na, #AB}kas V)

By checking nonces and keys as specified in (5) the server
S understands that she received a message from an indi-
vidual (i.e. I) different from the one principall wants to
communicate with (i.eB). Since the preconditiok’s(v =
(NB,pagp)) in (5) is not satisfied, the server does not dis-
tribute keys to the principals.

Assuming no intruder eavesdropped messages and the
protocol went on smoothly, in the fourth stépreceives the
key from.S, checks the message, and forwards the appropri-
ate part toA:

Vv (Rec(B,v) AN Kg(snd(v) = (Np,kag))) —
— OSend(B, A, fst(v)))

In fact, Rec(B, ({NA, kAB}kAsa {NB, kAB}kBs)) holds
at(r*, 4) and by (3)B knows the encrypted message sent by

(P,r*,4) B Kg({NB,kap}kss = (N, kag))

Finally, in the fifth stepA receives the message frah)
check the nonce, and knows tltagg is the new session key:

Rec(A,{Na,kaB}tr,s) = Ka({Na,kaB}i,s = (Na,kap))
This completes our analysis of the Otway-Rees protocol.



Conclusions and Further Work

In this paper we presented a number of classes of quanti-
fied interpreted systems satisfying conditions such as syn-
chronicity, no learning, perfect recall, and unique iditia
state, which are relevant for applications in real scesario
In Theorem 19 we proved that the sets of monodic validities
in these classes of QIS are axiomatisable. These results ex-
tend previous contributions on pure first-order epistemit a
temporal logic (Sturm, Wolter, and Zakharyaschev 2000;
Wolter and Zakharyaschev 2002) and propositional tempo-
ral epistemic logic (Halpern, Meyden, and Vardi 2003).

Still, further work is required in this line of research.
On the temporal dimension, it would be of interest to pur-
sue an analysis of CTL modalities interpreted on quanti-
fied interpreted systems. In this area there are contribu-
tions on pure branching time logic (Gabbay et al. 2003;
Hodkinson, Wolter, and Zakharyaschev 2002). On the epis-
temic dimension, it would be of interest for applications to
add epistemic operators for group knowledge. We antici-
pate that common knowledge is likely to lead to increased
complexity, as this already happens at the propositiorel le
(Halpern and Vardi 1989). Both dimensions need to be ex-
plored in more detail. Finally, it seems worthwhile to ex-
plore the issues pertaining to the decidability of the log-
ics here discussed. An obvious starting point here are the
results in (Hodkinson, Wolter, and Zakharyaschev 2000;
Wolter and Zakharyaschev 2001).
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