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Abstract

We investigate a class of first-order temporal epistemic log-
ics for the specification of multi-agent systems. We con-
sider well-known properties of multi-agent systems includ-
ing perfect recall, synchronicity, no learning, unique initial
state, and define natural correspondences between these and
quantified interpreted systems. Our findings identify several
monodic fragments of first-order temporal epistemic logic
that we prove to be both sound and complete with respect to
the corresponding classes of quantified interpreted systems.
The results show that interaction axioms for propositional
temporal epistemic logic can be lifted to the monodic frag-
ment.

Introduction
First-order modal logics for reasoning about knowledge and
time have attracted increasing interest from logicians and
researchers in AI, both as regards their theoretical prop-
erties (completeness, decidability, complexity) (Gabbayet
al. 2003; Hodkinson et al. 2003; Sturm, Wolter, and Za-
kharyaschev 2000), and their applications to multi-agent
systems (Cohen and Levesque 1995; Rao and Georgeff
1991; Wooldridge 2000).

In this paper we introduce several classes ofquantified in-
terpreted systems(Belardinelli and Lomuscio 2008; 2009a;
2009b) that are suitable for modeling the interaction be-
tween temporal and epistemic modalities at the first or-
der. Specifically, we analyse systems with perfect recall, no
learning, synchronicity and a unique initial state (Fagin et
al. 1995). For all these we present sound and complete ax-
iomatisations of the set ofmonodicvalidities, where at most
one free variable appears in the scope of any modal operator
(Hodkinson, Wolter, and Zakharyaschev 2000).

Our starting point for this contribution consists of results
on the axiomatisability (Sturm, Wolter, and Zakharyaschev
2000; Wolter and Zakharyaschev 2002), decidability (Hod-
kinson, Wolter, and Zakharyaschev 2000; Wolter and Za-
kharyaschev 2001), and complexity (Hodkinson 2006; Hod-
kinson et al. 2003) of first-order modal logics, together
with completeness results for propositional temporal epis-
temic logics (Halpern, Meyden, and Vardi 2003; Halpern
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and Moses 1992). Specifically, we prove the complete-
ness of our first-order temporal epistemic logics via aquasi-
model construction, which has previously been used in
(Hodkinson, Wolter, and Zakharyaschev 2000; 2002) to
prove decidability formonodicfragments of first-order tem-
poral logic (FOTL) with respect to linear and branching
flows of time (Hodkinson, Wolter, and Zakharyaschev 2000;
2002). Quasimodels have also been applied to first-order
temporal and epistemic logic in (Sturm, Wolter, and Za-
kharyaschev 2000; Wolter and Zakharyaschev 2002). In
(Wolter and Zakharyaschev 2002) the authors present a com-
plete axiomatisation for the monodic fragment of FOTL
on the naturals. In (Sturm, Wolter, and Zakharyaschev
2000) we have a similar result for a variety of first-order
epistemic logics with common knowledge. However, the
interaction between temporal and epistemic modalities at
the first order has not yet been taken into account, nor
has the interpreted systems semantics (Fagin et al. 1995;
Parikh and Ramanujam 1985): both of these are relevant for
applications to multi-agent systems (MAS).

In this paper we also make use of the results in (Halpern,
Meyden, and Vardi 2003; Halpern and Moses 1992) on the
completeness of propositional temporal epistemic logics.In
particular, in (Halpern, Meyden, and Vardi 2003) the authors
provide a framework for proving completeness on semantics
similar to those here considered. We combine their approach
with the quasimodel technique to prove completeness for
monodic fragments of first-order temporal epistemic logic.

This contribution is motivated by an interest in first-
order temporal epistemic formalisms to model high-level
properties of multi-agent systems. Recent papers witness
an increasing need in web-services, security, communica-
tion protocols, as well as other areas, to extend the ex-
pressive power of temporal epistemic languages to the first
order (see for instance (Deutsch, Sui, and Vianu 2004;
Hallé and Villemaire 2009)). As a preliminary contribution
to this project in (Belardinelli and Lomuscio 2008) we intro-
duced quantified interpreted systems (QIS) to model a first-
order temporal epistemic formalism. These investigations
were further pursued in (Belardinelli and Lomuscio 2009a),
which explicitly assumes linear-time operators and the nat-
ural numbers as the flow of time. Neither contribution con-
siders the interaction between time and knowledge, which is
addressed here.



Quantified Interpreted Systems
We extend interpreted systems to the first order by endow-
ing each structure with a domain of individuals. Prelim-
inary investigations in “static” quantified interpreted sys-
tems, where no account of evolution for the system is
given, have appeared in (Belardinelli and Lomuscio 2009b).
Fully-fledged QIS on a language with temporal modalities
have been introduced in (Belardinelli and Lomuscio 2008;
2009a). We follow the definition of QIS there provided, but
differently from these contributions, we also consider thein-
teraction between temporal and epistemic modalities.

Given a setA = {1, . . . ,m} of agents, the first-order tem-
poral epistemic languageLm contains individual variables
x1, x2, . . ., individual constantsc1, c2, . . ., n-ary predicative
lettersPn1 , P

n
2 , . . ., for n ∈ N, the connectives¬ and→,

the quantifier∀, the temporal operators© andU , and the
epistemic operatorKi for each agenti ∈ A. The only terms
t1, t2, . . . in Lm are individual variables and constants.
Definition 1 Formulas inLm are defined as follows:

φ ::= P k(t1, . . . , tk) | ¬ψ | ψ → ψ′ | ∀xψ | ©ψ | ψUψ′ | Kiψ

The formulas©φ andφUφ′ are read as “at the next step
φ” and “eventuallyφ′ and until thenφ”; Kiφ represents
“agenti knowsφ”. We define the symbols∧, ∨, ↔, ∃, G
(“always in the future”),F (“some time in the future”) as
standard;K̄iφ is short for¬Ki¬φ. By φ[~y] we mean that
~y = y1, . . . , yn are all the free variables inφ; whileφ[~y/~t] is
the formula obtained by substituting simultaneously some,
possibly all, free occurrences of~y in φ with ~t = t1, . . . , tn
and renaming bounded variables.

To introduce quantified interpreted systems we assume
a setLi of local statesli, l′i, . . ., a setActi of actions
ai, a

′
i, . . ., and a protocolPi : Li → 2Acti from local

states to non-empty sets of actions for each agenti ∈ A
in a multi-agent system. We consider local states, actions,
and a protocol for the environmente as well. The set
S ⊆ Le × L1 × . . . × Lm contains the global states of the
MAS,Act ⊆ Acte×Act1×. . .×Actm is the set of joint ac-
tions, whileP = (Pe, P1, . . . , Pm) is the joint protocol. We
also introduce a transition functionτ : Act → (S → S)
such thatτ(a)(s) = s′ only if a ∈ P (s). Intuitively,
τ(a)(s) = s′ encodes that the system moves from states
to states′ if agents perform the joint actiona. We say that
the global states′ is reachable in one stepfrom s, or s ⊏ s′,
if there isa ∈ Act such thatτ(a)(s) = s′. To represent the
temporal evolution of the MAS we consider the flow of time
N of the naturals numbers. Arun is any functionr : N → S
such thatr(n) ⊏ r(n + 1). Intuitively, a run represents a
possible evolution of the MAS according to the transition
functionτ . Finally, we define the quantified interpreted sys-
tems for the languageLm as follows:

Definition 2 (QIS) A quantified interpreted systemis a
triple P = 〈R,D, I〉 such that (i)R is a non-empty set of
runs; (ii) D is a non-empty set of individuals; (iii)I is an
interpretation ofLm such thatI(c) ∈ D, and for r ∈ R,
n ∈ N, I(P k, r, n) is ak-ary relation onD.

Following standard notation (Fagin et al. 1995) a pair
(r, n) is apoint in P. If r(n) = 〈le, l1, . . . , lm〉 is the global

state at point(r, n) thenre(n) = le andri(n) = li are the
environment’s and agenti’s local state at(r, n) respectively.
Further, fori ∈ A the equivalence relation∼i is defined
such that(r, n) ∼i (r′, n′) if ri(n) = r′i(n

′).
In this paper we consider the following classes of QIS.

Definition 3 • A QISP is synchronousif for every agent
i ∈ A, (r, n) ∼i (r′, n′) impliesn = n′.

• A QIS satisfiesperfect recallif for all points (r, n) ∼i
(r′, n′), if n > 0 then either(r, n − 1) ∼i (r′, n′) or
there isl < n′ such that(r, n − 1) ∼i (r′, l) and for all
l < k ≤ n′ we have(r, n) ∼i (r′, k).

• A QIS satisfiesno learningif for all points (r, n) ∼i
(r′, n′) either (r, n + 1) ∼i (r′, n′) or there isl > n′

such that(r, n + 1) ∼i (r′, l) and for all l > k ≥ n′ we
have(r, n) ∼i (r′, k).

• A QIS has aunique initial stateif for all r, r′ ∈ R, r(0) =
r′(0).

These conditions have extensively been discussed in the
literature (Halpern, Meyden, and Vardi 2003) together with
equivalent formulations. Intuitively, a QIS is synchronous
if time is part of the local state of each agent. A QIS satis-
fies perfect recall if an agent’s local state registers everything
that has happened to her. No learning is dual to perfect re-
call. Finally, a QIS has a unique initial state if all runs start
from the same global state.

By QISm we denote the class of QIS withm agents; the
superscriptssync, pr, nl, uis denote specific subclasses of
QISm satisfying the respective constraints. For instance,
QISsync,uism is the class of synchronous QIS withm agents
and a unique initial state.

We now assign a meaning to the formulas ofLm in quan-
tified interpreted systems. Letσ be an assignment from the
variables to the individuals inD, the valuationIσ(t) of a
term t is defined asσ(y) for t = y, andIσ(t) = I(c) for
t = c. A variantσ

(

x
a

)

of an assignmentσ assignsa ∈ D to
x and coincides withσ on all the other variables.

Definition 4 The satisfaction relation|= for φ ∈ Lm,
(r, n) ∈ P, and an assignmentσ is defined as follows:

(Pσ, r, n) |=P k(~t) if 〈Iσ(t1), . . . , I
σ(tk)〉 ∈ I(P k, r, n)

(Pσ, r, n) |=¬ψ if (Pσ, r, n) 6|=ψ
(Pσ, r, n) |=ψ→ψ′ if (Pσ, r, n) 6|= ψ or (Pσ, r, n) |= ψ′

(Pσ, r, n) |=∀xψ if for all a ∈ D, (Pσ(x
a), r, n) |= ψ

(Pσ, r, n) |=©ψ if (Pσ, r, n+ 1) |= ψ
(Pσ, r, n) |=ψUψ′ if there is n′ ≥ n such that (Pσ, r, n′) |= ψ′

and n ≤ n′′ < n′ implies (Pσ, r, n′′) |= ψ
(Pσ, r, n) |=Kiψ if (r, n) ∼i (r′, n′) implies (Pσ, r′, n′) |= ψ

The truth conditions for∧, ∨, ↔, ∃,G andF are defined
from those above. A formulaφ ∈ Lm is true at a point
(r, n) if it is satisfied at(r, n) by everyσ; φ is valid on a
QISP if it is true at every point inP; φ is valid on a classC
of QISif it is valid on every QIS inC.

By considering all subsets of{sync, pr, nl, uis} we ob-
tain 16 subclasses ofQISm for anym ∈ N. Not all of
them are independent nor axiomatisable. Some of these are
not axiomatisable already at the propositional level (Halpern
and Moses 1992; Halpern and Vardi 1989). In Table 1 we
group together the classes of QIS that share the same set of



validities onLm for m > 1. The proofs of these equiva-
lences can be obtained similarly to the propositional case.

QISm, QISsync
m , QISuis

m , QISsync,uis
m

QISsync,pr
m , QISsync,pr,uis

m

QISpr
m , QISpr,uis

m

QISnl
m

QISsync,nl
m

QISnl,pr
m

QISnl,pr,uis
m

QISnl,uis
m

QISsync,nl,pr
m

QISsync,nl,uis
m , QISsync,nl,pr,uis

m

Table 1: Equivalences among classes of QIS.

By following (Halpern, Meyden, and Vardi 2003) we re-
mark that the sets of propositional validities on all classes
above are axiomatisable butQISnl,pr,uism andQISnl,uism .
Also, notice thatQISnl,uis1 is equivalent toQISnl1 and
QISnl,pr,uis1 is equivalent toQISnl,pr1 . Thus, form =

1 the sets of propositional validities onQISnl,pr,uism and
QISnl,uism are nonetheless axiomatisable.

In the next section we show that the known axiomatisabil-
ity result at the propositional level can be extended to the
monodic fragment of the languageLm defined as follows:

Definition 5 The monodic fragmentL1
m is the set of formu-

lasφ ∈ Lm such that any subformula ofφ of the formKiψ,
©ψ or ψ1Uψ2 contains at most one free variable.

In other words the monodic fragment ofLm contains for-
mulas such as

∀y (Resource(y) → Ki (∀zAvailable(y, z)U∃xRequest(x, y))

The monodic fragments of a number of first-order
modal logics have been thoroughly investigated (Hodkinson,
Wolter, and Zakharyaschev 2000; Hodkinson et al. 2003;
Wolter and Zakharyaschev 2001; 2002). In the case ofLm
this fragment is quite expressive as it contains allde dicto
formulas, i.e., formulas where no free variable appears in
the scope of any modal operator.

Axiomatisations

In this section we present sound and complete axiomatisa-
tions of the sets of monodic validities for the classes of quan-
tified interpreted systems defined in the previous section. We
begin by introducing the basic system QKTm that extends to
the first order the epistemic logic S5 combined with the lin-
ear temporal logic LTL.

Definition 6 The system QKTm contains the following
schemes of axioms and rules, whereφ,ψ andχ are formulas
in L1

m.

Taut classic propositional tautologies
MP φ→ ψ, φ⇒ ψ
K ©(φ→ ψ) → (©φ→ ©ψ)
T1 ©¬φ↔ ¬© φ
T2 φUψ ↔ ψ ∨ (φ ∧©(φUψ))
Nec φ⇒ ©φ
T3 χ→ ¬ψ ∧©χ⇒ χ→ ¬(φUψ)
K Ki(φ→ ψ) → (Kiφ→ Kiψ)
T Kiφ→ φ
4 Kiφ→ KiKiφ
5 ¬Kiφ→ Ki¬Kiφ
Nec φ⇒ Kiφ
BF ©∀xφ↔ ∀x© φ
BF Ki∀xφ↔ ∀xKiφ
Ex ∀xφ→ φ[x/t]
Gen φ→ ψ[x/t] ⇒ φ→ ∀xψ, for x not free inφ

The epistemic operatorKi is anS5 modality, while the
next© and untilU operators are axiomatised as linear-time
modalities. To this we add the classic postulatesEx and
Gen for quantification. Note that both are sound as we are
considering a unique domainD of individuals in our struc-
tures. We consider the standard definitions ofproof andthe-
orem: ⊢ φ means thatφ ∈ L1

m is a theorem in QKTm.
In this paper we focus on the schemes of axioms in Table 2

that specify the interaction between time and knowledge.

KT1 Ki © φ→ ©Kiφ
KT2 Kiφ ∧©(Kiψ ∧ ¬Kiχ) → K̄i((Kiφ)U((Kiψ)U¬χ))
KT3 (Kiφ)UKiψ → Ki((Kiφ)UKiψ)
KT4 ©Kiφ→ Ki © φ
KT5 Kiφ↔ Kjφ

Table 2: the axioms KT1-KT5.

We use1, . . . , 5 as superscripts to denote the systems ob-
tained by adding to QKTm any combination of KT1-5. For
instance, the system QKT2,3

m extends QKTm with the ax-
ioms KT2 and KT3.

It is easy to check that the axioms of QKTm are valid
on every QIS and the inference rules preserve validity. On
the other hand, the axioms KT1-5 are valid only on specific
classes of QIS as stated in the following theorem.

Theorem 7 The systems in the first column are sound for
the corresponding classes of QIS in the second column.

System QIS
QKTm QISm, QISsync

m , QISuis
m , QISsync,uis

m

QKT1
m QISsync,pr

m , QISsync,pr,uis
m

QKT2
m QISpr

m , QISpr,uis
m

QKT3
m QISnl

m

QKT4
m QISsync,nl

m

QKT2,3
m QISnl,pr

m

QKT2,3
1 QISnl,pr,uis

1

QKT3
1 QISnl,uis

1

QKT1,4
m QISsync,nl,pr

m

QKT1,4,5
m QISsync,nl,uis

m , QISsync,nl,pr,uis
m

We now show that the systems in Theorem 7 are not only
sound but also complete for the corresponding classes of
QIS. For proving these results we need to introduce Kripke
models as generalizations of quantified interpreted systems.



Kripke Models
To prove the completeness of the systems above we first in-
troduce an appropriate class of Kripke models as a gener-
alization of QIS, and prove completeness for these models.
Then we apply a map between Kripke models and QIS to
obtain the desired result.

Definition 8 A Kripke model for Lm is a tuple M =
〈R, {∼i}i∈A,D, I〉 such that (i)R is a non-empty set of in-
dexesr, r′, . . .; (ii) for i ∈ A, ∼i is an equivalence relation
on the set of points(r, n) for r ∈ R andn ∈ N; (iii) the
elementsD andI are defined as for QIS.

Kripke models can be seen as abstractions of QIS where
no details are given about the inner structure of points. The
clauses for the satisfaction relation(Mσ, (r, n)) |= φ are
straightforwardly defined from those for QIS, as well as the
notions of truth and validity. For instance, we have

(Mσ, (r, n)) |= Kiψ if (r, n) ∼i (r′, n′) ⇒ (Mσ, (r′, n′)) |= ψ

We will consider Kripke models satisfying synchronicity,
perfect recall, no learning, or with a unique initial state.The
definition of these subclasses can be derived directly from
Definition 3. For instance, a Kripke model satisfiesperfect
recall if for all points (r, n) ∼i (r′, n′), if n > 0 then either
(r, n−1) ∼i (r′, n′) or there isl < n′ such that(r, n−1) ∼i
(r′, l) and for alll < k ≤ n′ we have(r, n) ∼i (r′, k).

Now letKm be the class of Kripke models withm agents;
in the following we adopt the same naming conventions as
for QIS. For instance,Ksync,uism is the class of synchronous
Kripke models with a unique initial state

We compare Kripke models and quantified interpreted
systems by means of a mapg : Km → QISm. Let
M = 〈R, {∼i}i∈A,D, I〉 be a Kripke model. For every
equivalence relation∼i, for (r, n) ∈ M, let the equiv-
alence class[(r, n)]∼i

= {(r′, n′) | (r, n) ∼i (r′, n′)}
be a local state for agenti, while each(r, n) is a local
state for the environment. Then defineg(M) as the tuple
〈R′,D, I ′〉 whereR′ contains the runsrr for r ∈ R such
that rr(n) = 〈(r, n), [(r, n)]∼1

, . . . , [(r, n)]∼m
〉, D is the

same as inM, andI ′(P k, rr, n) = I(P k, r, n). The struc-
tureg(M) is a QIS that satisfies the following result:

Lemma 9 For everyφ ∈ Lm andn ∈ N,

(Mσ, (r, n)) |= φ iff (g(M)σ, rr, n) |= φ

This lemma is proved by induction on the length ofφ.
Note that ifM satisfies any of synchronicity, perfect recall,
no learning, or unique initial state, then alsog(M) satisfies
the corresponding condition. Thus,g defines a map from
each of the 16 subclasses ofKm outlined above to the cor-
responding subclass ofQISm.

For reasoning about the monodic fragment ofLm when
we have no learning and perfect recall we need to introduce
the following class of “monodic friendly” Kripke models.

Definition 10 (mf-model) A monodic friendly Kripke
model for Lm is a tupleM = 〈R, {∼i,a}i∈A,a∈D,D, I〉
such that (i) the elementsR, D and I are defined as for
Krikpe models; (ii) fori ∈ A, a ∈ D, ∼i,a is an equivalence
relation on the set of points inM.

We can define synchronicity, perfect recall, no learning,
and having a unique initial state also for mf-models by spec-
ifying Definition 3 for each relation∼i,a. For instance, a
mf-model satisfiesperfect recallif for all points (r, n) ∼i,a
(r′, n′), if n > 0 then either(r, n−1) ∼i,a (r′, n′) or there is
l < n′ such that(r, n−1) ∼i,a (r′, l) and for alll < k ≤ n′

we have(r, n) ∼i,a (r′, k).
As regards the subclasses of the classMFm of all mf-

models withm agents, we adopt the same naming conven-
tions as for QIS and Kripke models. Also notice that Kripke
models are isomorphic to the mf-models such that for all
i ∈ A, a, b ∈ D, ∼i,a is equal to∼i,b.

Finally, the satisfaction relation|= for φ ∈ L1
m in a mf-

modelM is defined as for Kripke models, but for the epis-
temic operator:

(Mσ, (r, n)) |=Kiψ[y] if
(r, n) ∼i,σ(y) (r′, n′) ⇒ (Mσ, (r′, n′)) |= ψ

where at mosty appears free inψ.
We can now prove the following lemma, which will be

useful in the completeness proof for systems encompassing
either perfect recall or no learning.

Lemma 11 For everyφ ∈ L1
m and for every subsetx of

{sync, pr, nl, uis},

Kx
m |= φ iff MFx

m |= φ

Proof sketch. The implication from right to left is im-
mediate by the remark above. For the converse, assume
that M is a mf-model such that(Mσ, (r, n)) 6|= φ for
some assignmentσ, r ∈ R and n ∈ N. We show
how to build a Kripke modelM′ = 〈R′, {∼′

i}i∈A,D
′, I ′〉

such that(M′σ, (r′, n′)) 6|= φ for some r′ ∈ R′ and
n′ ∈ N. Let R′ = R andD′ = D. In order to define
each∼′

i for i ∈ A we reason as follows. Suppose that
(Mσ, (r, n)) |= Kiψ[x] and (r, n) ∼i,σ(x) (r′, n′), then
(r, n) ∼′

i (r′, n′). However, if (Mσ, (r, n)) |= Kiχ[y],
(r, n) ∼i,σ(y) (r′′, n′′) and (Mσ, (r′′, n′′)) 6|= ψ[x], we
have that(r, n) ∼′

i (r′′, n′′) and (Mσ, (r′′, n′′)) 6|= ψ[x]
against the fact that(Mσ, (r, n)) |= Kiψ[x]. So, we have to
define the interpretationI ′ so that(Mσ, (r′′, n′′)) |= ψ[x].
This is possible as we are considering only the monodic
fragmentL1

m of Lm. We repeat this process for all points
reachable from(r, n) via any epistemic relation.

The Completeness Proof
We outline the main steps of the completeness proof, which
is based on a quasimodel construction (Gabbay et al. 2003).
Intuitively, a quasimodel for a monodic formulaφ is a rela-
tional structure whose points are sets of sets of subformulas
of φ. Each set of sets of subformulas describes a “possible
state of affairs”, and contains sets of subformulas defining
the individuals in the point.

Given a formulaφ ∈ L1
n we denote bysub©¬φ the set

subφ ∪ {¬ψ | ψ ∈ subφ} ∪ {©ψ | ψ ∈ subφ} ∪ {©¬ψ |
ψ ∈ subφ} wheresubφ is the set of subformulas ofφ. Fur-
ther, letsubnφ be the subset ofsub©¬φ containing formulas
with at mostn free variables, and letx be a variable not oc-
curring inφ, we definesubxφ = {ψ[y/x] | ψ[y] ∈ sub1φ}.



Clearly,x is the only free variable insubxφ. By conφ we
denote the set of all constants occurring inφ.

Definition 12 For k ∈ N we define the closuresclkφ and
clk,iφ by mutual recursion. Letcl0φ = subxφ and fork ≥
1, clkφ =

⋃

i∈A clk,iφ. For k ≥ 0, i ∈ A, clk,iφ = clkφ ∪
{Ki(ψ1 ∨ . . . ∨ ψn),¬Ki(ψ1 ∨ . . . ∨ ψn) | ψ1, . . . , ψn ∈
clkφ}.

Following (Halpern, Meyden, and Vardi 2003) we define
ad(φ) as the greatest number of alternations of distinctKi

modalities along any branch inφ’s parse tree. Further, an
index is any finite sequenceι = i1, . . . , ik of agents such
that in 6= in+1; the length ofι is denoted by|ι|. Also, ι♯i
is the absorptive concatenation of indexι and i such that
ι♯i = ι if ik = i. Finally, we writeKιψ for Ki1 . . .Kikψ.

Definition 13 Let ι be an index such that|ι| ≤ ad(φ). If ι is
the empty sequenceǫ thenclιφ = clad(φ)φ. If ι = ι′♯i, then
clιφ = clk,iφ for k = ad(φ) − |ι|. A ι-type t for φ is any
maximal and consistent subset ofclιφ.

Two ι-typest, t′ are said toagreeif they contains the same
closed formulas, i.e., formulas where no free variable ap-
pears. Given aι-type t for φ and a constantc ∈ conφ, tc is
an indexed typefor φ.

Definition 14 A ι-state candidatefor φ is a pair C =
〈T, T con〉 such that (i)T is a set ofι-types forφ that agree;
and (ii) T con is a set containing for eachc ∈ conφ an in-
dexed typetc such thatt ∈ T . A ι-point for φ is a pair
P = 〈C, t〉 such that (i)C is a ι-state candidate forφ; and
(ii) t ∈ C is a ι-type.

Note that by abuse of notation, we callpoints both the
states(r, n) and the pairsP = 〈C, t〉. This is to be consistent
with our references (Fagin et al. 1995; Halpern, Meyden,
and Vardi 2003); the context will disambiguate.

Given aι-state candidateC = 〈T, T con〉 and a pointP =
〈C, t〉 we define the formulasαC andβP as follows:

αC :=
∧

t∈T

∃xt[x] ∧ ∀x
∨

t∈T

t[x] ∧
∧

tc∈T con

t[x/c]

βP := αC ∧ t

A ι-state candidateC is consistentif the formulaαC is
consistent; similarly for points. Consistent state candidates
represent the states of our quasimodels. We now define the
relations ofsuitability that constitute the relational part of
quasimodels.

Definition 15 • A ι1-type t1 and a ι2-type t2 are ©-
suitable, or t1 ⇒ t2, if ι1 = ι2 and t1 ∧ ©t2 is con-
sistent. They arei-suitable, or t1 ≈i t2, if ι1♯i = ι2♯i and
t1 ∧ K̄it2 is consistent.

• A ι1-state candidateC1 and aι2-state candidateC2 are
©-suitable, or C1 ⇒ C2, if ι1 = ι2 andαC1

∧ ©αC2
is

consistent. They arei-suitableif ι1♯i = ι2♯i andαC1
∧

K̄iαC2
is consistent.

• A ι1-pointP1 and aι2-pointP2 are©-suitable, or P1 ⇒
P2, if ι1 = ι2 andβP1

∧ ©βP2
is consistent. They are

i-suitableif ι1♯i = ι2♯i andβP1
∧ K̄iβP2

is consistent.

Furthermore, forc ∈ conφ, C1 ⇒c C2 if tc1 ∈ C1, tc2 ∈ C2

and〈C1, t
c
1〉 ⇒ 〈C2, t

c
1〉.

We now present the frame underlying the quasimodel for
φ.

Definition 16 A frame F is a tuple 〈R,
{∼i,a}i∈A,a∈D,D, f〉 where (i) R, {∼i,a}i∈A,a∈D and
D are defined as for mf-models; (ii)f is a partial function
associating to each point(r, n) a consistent state candidate
f(r, n) = Cr,n such that (a) the domain off is not empty;
(b) if f is defined on(r, n) then it is defined on(r, n + 1);
(c) if f is defined on(r, n) and (r, n) ∼i,a (r′, n′) thenf is
defined on(r′, n′).

Next, we provide the definition ofobjects, which corre-
spond to theruns in (Gabbay et al. 2003). We choose this
name to avoid confusion with the runs in QIS.

Definition 17 For a ∈ D, anobjectin F is a mapρa asso-
ciating with every(r, n) ∈ Dom(f) a typeρa(r, n) ∈ Tr,n
such that:

1. ρa(r, n) ⇒ ρa(r, n + 1); and if (r, n) ∼i,a (r′, n′) then
ρa(r, n) ≈i ρa(r

′, n′)

2. χUψ ∈ ρa(r, n) iff there is n′ ≥ n such thatψ ∈
ρa(r, n

′) andχ ∈ ρa(r, n
′′) for all n ≤ n′′ < n′;

3. if ρa(r, n) ≈i t are ι-types then for some(r′, n′),
(r, n) ∼i,a (r′, n′) andρa(r′, n′) = t.

An object+ satisfies (1), (2) above and (3’) instead of (3).

3’ if ρa(r, n) is a ι-type, t is a ι♯i-type, andρa(r, n) ≈i t
then for some(r′, n′) ∼i,a (r, n), ρa(r′, n′) = t.

Now we have all the elements to give the definition of
quasimodel.

Definition 18 A quasimodelfor φ is a tuple Q = 〈R,
{∼i,ρ}i∈A,ρ∈O,O, f〉 such that〈R, {∼i,ρ}i∈A,ρ∈O,O, f〉 is
a frame, and

1. φ ∈ t for somet ∈ Tr,n andTr,n ∈ Cr,n
2. Cr,n ⇒ Cr,n+1; and if (r, n) ∼i,ρ (r′, n′) thenρ(r, n) ≈i
ρ(r′, n′)

3. for everyt ∈ Tr,n there exists an objectρ ∈ O such that
ρ(r, n) = t

4. for everyc ∈ conφ, the functionρc such thatρc(r, n) =
tc ∈ T conr,n is an object inO.

A quasimodel+ is defined as a quasimodel in which
clauses (3) and (4) refer to objects+ rather than objects. We
can define quasimodels satisfying perfect recall, no learning,
synchronicity, or unique initial state by assuming the corre-
sponding condition on the frame.

We now state the main result of this section, that is, satis-
fability in quasimodels implies satisfability in mf-models.

Theorem 19 If there is a quasimodel (respectively
quasimodel+) Q for a monodic formulaφ ∈ L1

m thenφ is
satisfiable in a monodic friendly Kripke model.

Proof sketch.The proof is inspired by those for Lemmas
11.72 and 12.9 in (Gabbay et al. 2003).

First, for every monodic formulaψ ∈ L1
m of the form

Kiχ, ©χ or χ1Uχ2 we consider ak-ary predicateP kψ for k



equal to 0 or 1. The formulaP kψ(x) is called thesurrogate

of ψ. Given a formulaφ ∈ L1
m we denote byφ the formula

obtained fromφ by substituting all its modal subformulas
which are not within the scope of another modal operator by
their surrogates.

Since every state candidateC in the quasimodelQ is con-
sistent and the system QKTm is based on first-order logic,
the formulaαC is consistent with first-order (non-modal)
logic. By completeness of first-order logic, there is a first-
order structureI = 〈I,D〉, whereD is a non-empty set of
individuals andI is an interpretation onD, which satisfies
αC, that is,Iσ |= αC for some assignmentσ toD.

Now, we consider a cardinal numberκ ≥ ℵ0 greater than
the cardinality of the setO of all objects inQ, and define
D = {〈ρ, ξ〉 | ρ ∈ O, ξ < κ}. By Löwenheim-Skolem
theorem we can assume without loss of generality thatD
is the domain of the first-order structureIr,n = 〈Ir,n,D〉
satisfyingαCr,n

, that is, all structuresIr,n share a common
domainD, and for everyt ∈ Tr,n, 〈ρ, ξ〉 ∈ D, we have that
ρ(r, n) = t iff Iσr,n |= t[x] for σ(x) = 〈ρ, ξ〉. Moreover,
Ir,n(c) = 〈ρ, 0〉 for everyc ∈ conφ.

We define the mf-modelM as the triple 〈R,
{∼i,a}i∈A,a∈D,D, I〉 such thatR is the set of runs in the
quasimodelQ, for a = 〈ρ, ξ〉 ∈ D, ∼i,a is equal to∼i,ρ,
D is defined as above, and the interpretationI is obtained
by gluing together the variousIr,n. We can now prove the
following result forM.

Remark 20 If M is obtained from a quasimodelQ as de-
scribed above, then for everyψ ∈ subxφ

Iσr,n |= ψ iff (Mσ, (r, n)) |= ψ

Moreover, ifQ is a quasimodel+, f(r, n) is a ι-state candi-
date, andad(Kιψ) ≤ d then

Iσr,n |= ψ iff (Mσ, (r, n)) |= ψ

Furthermore, ifQ satisfies any of perfect recall, no learn-
ing, synchronicity, or unique initial state, then the mf-model
M obtained fromQ satisfies the corresponding constraints.

Dealing with each System
In this section we consider the completeness proof for each
system in Theorem 7. In particular, we show that ifφ ∈
L1
m is consistent with respect to a systemS, then we can

build a quasimodel (or a quasimodel+ in some cases) forφ
based on a frame forS. We only present the main steps of
the construction. Notice that in the following sections the
symbol⊢ represents provability in the appropriate system
S.

The ClassesQISm, QISsync
m , QISuis

m , QISsync,uis
m

We start the completeness proof for the basic system QKTm

with the following definition.

Definition 21 Let a⇒-sequence be a possibly infinite se-
quenceC0 ⇒ C1 ⇒ . . . of state candidates.

A⇒-sequence isacceptableif

(i) for all k ≥ 0 if ψUχ ∈ tk ∈ Ck then there isn ≥ k such
thatχ ∈ tn ∈ Cn andψ ∈ tm ∈ Cm for all n ≤ m < k;

(ii) for all k ≥ 0 if ψUχ ∈ tck ∈ Ck then there isn ≥ k such
thatχ ∈ tcn ∈ Cn, ψ ∈ tcm ∈ Cm for all n ≤ m < k and
Ck ⇒c Ck+1 ⇒c . . .⇒c Cm.

The following lemmas entail the completeness result.

Lemma 22 For any consistentφ ∈ L1
m there is a consistent

ǫ-state candidateC = 〈T, T con〉 for φ such thatφ ∈ t for
somet ∈ T .

Lemma 23 Every⇒-sequence of state candidates can be
extended to an infinite acceptable⇒-sequence.

These lemmas are proved similarly to Claims 11.75-76 in
(Gabbay et al. 2003).

If φ ∈ L1
m is consistent then by Lemma 22 there is a

consistentǫ-state candidateC = 〈T, T con〉 such thatφ be-
longs to some typet ∈ T . So, by Lemma 23 the set
of infinite acceptable⇒-sequences is non-empty. Now
let x be a new object. A sequencex, . . . , x,Cn,Cn+1, . . .
is acceptable fromn if it starts with n copies of x
and Cn,Cn+1, . . . is an acceptable⇒-sequence. LetR
be the set of all such acceptable⇒-sequences, and for
each(r, k) define the partial functionf as f(r, k) = Ck
if r is the ⇒-sequencex, . . . , x,Cn,Cn+1, . . . acceptable
from n and k ≥ n, undefined otherwise. Finally, let
O be the set of all objects on the frameF = 〈R,
{∼i,ρ}i∈A,ρ∈O,O, f〉 such thatF is synchronous. We can
prove the following result.

Lemma 24 The tuple〈R, {∼i,ρ}i∈A,ρ∈O,O, f〉 is a quasi-
model forφ.

The completeness of QKTm with respect to the classes
QIS andQISsync directly follows from Theorem 19. To
prove completeness forQISuis andQISsync,uis we use
the next result.

Remark 25 Supposey is a subset of{pr, sync}. If φ ∈ Lm
is satisfiable inQISy then it is also satisfiable inQISy,uis.

The ClassesQISpr
m , QISpr,uis

m

The completeness proof for QKT2
m with respect toQISpr

andQISpr,uis relies on the following lemma.

Lemma 26 For ι-pointsP1 = 〈C1, t1〉, P2 = 〈C2, t2〉 and
ι♯i-type t′2, if P1 ⇒ P2 and t2 ≈i t′2 then there is aι♯i-
typeP′

2 = 〈C′
2, t

′
2〉 such that either (a)t1 ≈i t′2 or (b) there

is a ι♯i-typeP′
1 = 〈C′

1, t
′
1〉 such thatt1 ≈i t′1 and a⇒-

sequence ofι♯i-pointsS0 ⇒ . . . ⇒ Sn = P′
2 such that

Sk = 〈Dk, sk〉 andsk ≈i t2 for k ≤ n, andP′
1 ⇒ S0 .

For any consistentφ ∈ L1
m we define a quasimodel+ for

φ to establish the completeness of QKT2 with respect to
QISpr. Let R be the set of all acceptable⇒-sequences,
and definef such thatf(r, k) = Ck if r is the⇒-sequence
C0,C1, . . . . Finally, letO be the set of all objects+ on the
frameF = 〈R, {∼i,ρ}i∈A,ρ∈O,O, f〉 such thatF satisfies
perfect recall. We can now show the following lemma.

Lemma 27 The tuple 〈R, {∼i,ρ}i∈A,ρ∈O,O, f〉 is a
quasimodel+ for φ.

However, we need to ensure that the setO of objects+ is
non-empty. In particular, we need the following lemma to
show that clause (3’) is satisfied.



Lemma 28 if ρ(r, n) ∈ f(r, n) is aι-type,t is aι♯i-type and
ρ(r, n) ≈i t then for some(r′, n′) ∼i,ρ (r, n), t ∈ f(r′, n′).

Proof sketch. This proof is similar to the one for
Lemma 5.6 in (Halpern, Meyden, and Vardi 2003); it pro-
ceeds by induction onn. Forn = 0 we define a consistent
ι♯i-state candidateD = {s | s ∈ f(r, 0), s 6= ρ(r, 0)} ∪ {t}.
By Lemma 23D can be extended to a⇒-acceptable se-
quencer′ such thatρ(r′, 0) = t. Finally, (r′, n′) ∼i,ρ (r, n)
andt ∈ f(r′, n′).

For the inductive step assume thatf(r, n − 1) ⇒ f(r, n)
andρ(r, n) ≈i t. By Lemma 26 either (a)ρ(r, n−1) ≈i t or
(b) there is aι♯i-typeP′ = 〈C′, t′〉 such thatρ(r, n−1) ≈i t′

and a⇒-sequence ofι♯i-pointsS0 ⇒ . . . ⇒ Sl = 〈D, t〉
such thatSk = 〈Dk, sk〉 andsk ≈i ρ(r, n) for k ≤ l and
P′ ⇒ S0. If we apply the induction hypothesis in case
(a) then we obtain that for some(r′, n′) ∼i,ρ (r, n − 1),
t ∈ f(r′, n′) and ρ(r, n − 1) ≈i ρ(r, n). Thus, also
(r′, n′) ∼i,ρ (r, n). In case (b) by induction hypoth-
esis we have that for some(r′, n′) ∼i,ρ (r, n − 1),
t′ ∈ f(r′, n′). Now assume that runr′ is derived from
the ⇒-acceptable sequenceC0,C1, . . ., and let r′′ be
the run derived from the sequence with initial segment
C0, . . . ,Cn′ ,D0, . . . ,Dl by Lemma 23. By construction
f(r′′, n′ + l + 1) = D andρ(r, n) ≈i ρ(r

′′, n′ + l + 1) = t.
Hence,(r, n) ∼i,ρ (r′′, n′ + l + 1).

This completes the proof forQISprm . The completeness
of QKT2

m with respect toQISpr,uism follows by Remark 25.

The ClassesQISsync,pr
m , QISsync,pr,uis

m

The completeness of QKT1m with respect toQISsync,pr

is proved similarly to the previous case by using the next
lemma instead of Lemma 26.

Lemma 29 For ι-pointsP1, P2 andι♯i-pointP′
2, if P1 ⇒

P2 and P2 ≈i P′
2 then there is aι♯i-point P′

1 such that
P1 ≈i P′

1 andP′
1 ⇒ P′

2.

Completeness of QKT1m with respect toQISpr,sync,uism

follows again by Remark 25.

The ClassQISnl
m

First, we give the following definition, which will be useful
in the completeness proof.

Definition 30 Two sequences of typesΣ and Σ′ are ≈i-
concordant if there is somen ∈ N (n may be ∞)
and non-empty consecutive intervalsΣ1, . . . ,Σn of Σ and
Σ′

1, . . . ,Σ
′
n of Σ′ such that for alls ∈ Σj and s′ ∈ Σ′

j we
haves ≈i s′ for j ≤ n.

To prove the completeness of QKT3
m for QISnlm we need

the following lemma, which is dual to Lemma 26.

Lemma 31 For ι-pointsP1 = 〈C1, t1〉, P2 = 〈C2, t2〉 and
ι♯i-typet′1, if P1 ⇒ P2 andt1 ≈i t′1 then there is aι♯i-point
P′

1 = 〈C′
1, t

′
1〉 and a⇒-sequenceP′

1 = S0 ⇒ . . . ⇒ Sn

of ι♯i-points such thatSk = 〈Dk, sk〉 and sk ≈i t1 for
k < n, andt2 ≈i sn.

As pointed out in (Halpern, Meyden, and Vardi 2003)
Lemma 31 is not sufficient to construct a quasimodel+ satis-
fying the no learning condition. In fact, given a⇒-sequence
Σ = C0,C1, . . . of ι-state candidates and aι♯i-point t′0 such
that t0 ≈i t′0 for t0 ∈ C0 by Lemma 31 we can find a⇒-
sequenceΣ′ = C′

0,C
′
1, . . . such thatt′0 ∈ C′

0 and satisfying
the no learning condition. However, it does not follow from
the acceptability ofΣ that Σ′ is also acceptable. So, as in
the propositional case, we have to work with trees of state
candidates. Hereafter we extend to the first order the defi-
nitions given in (Halpern, Meyden, and Vardi 2003) for the
propositional case.
Definition 32 A k-tree forφ (for k ≤ ad(φ)) is a setΠ of
ι-state candidates forφ with |ι| ≤ k that contains a unique
ǫ-state candidate, i.e., the root, and for everyι-point t in
someC ∈ Π,
• if t′ is a ι♯i-type such thatt ≈i t′ and|ι♯i| ≤ k then there

is someC′ ∈ Π such thatt′ ∈ C′;
• if ι = ι′♯i then there is aι′-state candidateC′ ∈ Π and a
ι′-typet′ ∈ C′ such thatt ≈i t′.
Intuitively, a k-tree is a view of the epistemic state of a

quasimodel from a particular typet, up to k steps fromt.
We now extend the relation⇒ to k-trees.
Definition 33 If Π andΠ′ are k-trees forφ thenΠ ⇒f Π′

if f is a function associating with eachι-type t ∈ C, for
C ∈ Π, a finite⇒-sequence ofι-types inΠ ∪ Π′ such that:
1. if f(t) = t0 ⇒ . . . ⇒ tk then (a)t = t0; (b) tj ∈ Cj for

someCj ∈ Π for j < k andtk ∈ Ck for someCk ∈ Π′;
2. if t ≈i t′ thenf(t) andf(t′) are≈i-concordant;
3. for at least onet the sequencef(t) has length at least 2.

We now show how to obtain acceptable sequences of state
candidates from sequences of trees. Given two sequences of
ι-state candidatesλ = C0, . . . ,Ck andµ = C′

0, . . ., whereλ
is finite, thefusionλ · µ is defined asC0, . . . ,Ck−1,C

′
0, . . .

only if Ck = C′
0. Furthermore, given an infinite sequence

Θ = Π0 ⇒f0 Π1 ⇒f1 . . . of k-trees, we say that a se-
quenceλ of ι-state candidates iscompatible withΘ if there
exists someh ∈ N andι-state candidatesCh,Ch+1, . . ., with
Cj ∈ Πj for j ≥ h, such thatλ = fh(Ch) ·fh+1(Ch+1) · . . ..
The sequenceΘ is acceptableif every ⇒-sequence com-
patible withΘ is infinite and acceptable. The basic idea of
the completeness proof is to define the quasimodel+ starting
from an acceptable sequenceΘ.

Lemma 34 If φ ∈ L1
m is consistent with QKT3m then there

is an acceptable sequenceΘ of ad(φ)-trees such thatφ be-
longs to the root of the first tree.

The proof of this lemma relies on Lemma 31. Now letR
consist of all acceptable⇒-sequences compatible withΘ,
while the functionf is defined as for perfect recall. Further-
more,O is the set of all object+ on the frameF = 〈R,
{∼i,ρ}i∈A,ρ∈O,O, f〉 such thatF satisfies no learning. We
can now state the following lemma.

Lemma 35 The tuple 〈R, {∼i,ρ}i∈A,ρ∈O,O, f〉 is a
quasimodel+ for φ.

This completes the proof for QKT3 with respect to
QISnlm .



The ClassQISnl,sync
m

To show that QKT4m is a complete axiomatisation for
QISnl,syncm we need the following analogue of Lemma 31.

Lemma 36 For ι-pointsP1, P2 andι♯i-pointP′
1, if P1 ⇒

P2 and P1 ≈i P′
1 then there is aι♯i-point P′

2 such that
P′

1 ⇒ P′
2 andP′

2 ≈i P2.

Further, ifΠ andΠ′ arek-trees thenΠ ⇒sync
f Π′ only if

Π ⇒f Π′ and for allt ∈ Π, f(t) has exactly length 2. A
sync-acceptable sequence of trees is defined as an acceptable
sequence where the relation⇒ is substituted by the relation
⇒sync. The following analogue of Lemma 34 holds.

Lemma 37 If φ ∈ L1
m is consistent with QKT4m then there

is a sync-acceptable sequenceΘ of ad(φ)-trees such thatφ
belongs to the root of the first tree.

Let R consist of all acceptable⇒-sequences compatible
with Θ. The functionf is defined as in the previous sec-
tion, andO is the set of all object+ on the frameF = 〈R,
{∼i,ρ}i∈A,ρ∈O,O, f〉 such thatF satisfies synchronicity and
no learning. As in the previous sections the tuple〈R,
{∼i,ρ}i∈A,ρ∈O,O, f〉 is a quasimodel+ for φ. This com-
pletes the proof for QKT4m with respect toQISnl,syncm .

The ClassesQISnl,pr
m andQISnl,pr,uis

1

If φ ∈ L1
m is consistent with QKT2,3m then by Lemma 34

there exists an acceptable sequenceΘ of ad(φ)-trees such
that the consistent formulaφ belongs to the root of the first
tree. LetR be the set of all acceptable⇒-sequencesthat
have a suffixthat is compatible withΘ, while the function
f is defined as in the previous section. Finally,O is the set
of all object+ on the frameF = 〈R, {∼i,ρ}i∈A,ρ∈O,O, f〉
such thatF satisfies perfect recall and no learning. We
can prove that the tuple〈R, {∼i,ρ}i∈A,ρ∈O,O, f〉 is a
quasimodel+ for φ. This establishes the completeness of
QKT2,3 with respect toQISnl,prm . Completeness with re-
spect toQISnl,pr,uis1 follows from the next remark, whose
proof is the same as in the propositional case.

Remark 38 A formulaφ ∈ L1
1 is satisfiable inQISnl,pr1

(resp. QISnl,pr,sync1 ) iff it is satisfiable inQISnl,pr,uis1

(resp.QISnl,pr,sync,uis1 ).

The ClassQISnl,pr,sync
m

To prove the completeness of QKT1,4
m with respect to

QISnl,pr,syncm we combine the results of the previous two
sections. Ifφ ∈ L1

m is consistent with QKT1,4m then by
Lemma 37 there is async-acceptable sequenceΘ of ad(φ)-
trees such thatφ belongs to the root of the first tree. LetR
be the set of all acceptable⇒-sequences with suffixes that
are compatible withΘ; the functionf is defined as above.
Finally, O is the set of all object+ on the frameF = 〈R,
{∼i,ρ}i∈A,ρ∈O,O, f〉 such thatF satisfies perfect recall, no
learning and synchronicity. Also in this case we can show
that the tuple〈R, {∼i,ρ}i∈A,ρ∈O,O, f〉 is a quasimodel+ for
φ. This completes the proof.

The ClassesQISnl,sync,uis
m andQISnl,pr,sync,uis

m

We now show that the system QKT1,4,5
m is complete with re-

spect to the classesQISnl,sync,uism andQISnl,pr,sync,uism .
First, we remark that these two classes share the same set
of validities. By this remark and axiom KT5 it is suffi-
cient to prove the completeness of QKT1,4

1 with respect to
QISnl,pr,sync,uis1 . From the previous section QKT1,4

1 is
complete with respect toQISnl,pr,sync1 and the result fol-
lows by Remark 38.

Security Protocols as Message Passing Systems
In this section we present a demonstration of the formal ma-
chinery developed thus far. Specifically, we model a secu-
rity protocol as a message passing system (Fagin et al. 1995;
Lamport 1978) in the framework of QIS. First of all, a mes-
sage passing system (MPS) is a MAS in which the only
actions for the agents are sending and receiving messages.
This setting is common to a variety of distributed systems,
well beyond the realms of MAS and AI.

To define message passing QIS we introduce a setMsgof
messagesµ1, µ2, . . ., and define the local stateli for agent
i as ahistoryoverMsg, that is, a sequence of events of the
form send(i, j, µ) and rec(j, µ), for i, j ∈ A, µ ∈ Msg.
Intuitively, send(i, j, µ) represents the event whereagenti
sends agentj messageµ, while the meaning ofrec(j, µ)
is thatagentj receives messageµ. A global states ∈ S
is a tuple〈le, l1, . . . , ln〉 wherel1, . . . , ln are local states as
above andle contains all the events inl1, . . . , ln.

We define the protocol for message passing systems as
follows:

• P (li) = {λ, send(j, µ) | j ∈ A,µ ∈Msg}

• P (le) = {λ,del(j, µ) | j ∈ A,µ ∈Msg}

In each local state agenti can either perform the null actionλ
or send a message. The environment can either do nothing or
deliver a message. Further, we define the transition function:

• τ(ae, a1, . . . , am)(se, s1, . . . , sm) = (s′e, s
′
1, . . . , s

′
m) if

ae = del(j, µ) implies s′j = (sj , rec(j, µ)) and ai =
send(j, µ) impliess′i = (si, send(i, j, µ)).

A run r is a function from the naturalsN toS that respects
the transition functionτ . By the definitions of local states,
protocols and transition function it is easy to check that the
following specifications MP1 and MP3 are satisfied.

MP1 for everyn ∈ N, ri(n) is a history overMsg;

MP2 for i ∈ A, ri(0) is the empty sequence

MP3 for i ∈ A, ri(n + 1) is either identical tori(n) or results
from appending an event tori(n).

By MP1 the local state of each agent records the messages
she has sent or received, so the system satisfiesperfect re-
call. We assume also MP2, which enforces a unique initial
state in the system.

We define message passing QIS (MPQIS) as the class of
quantified interpreted systemsP = 〈R,D, I〉 whereR is
a non-empty set of runs defined as above,D contains the
agents inA and the messages inMsg, andI is an interpre-
tation forLm. By MP1-3 message passing QIS belong to



the classQISpr,uis of QIS with perfect recall and a unique
initial state. In what follows we use the same notation for
objects in the model and syntactic elements.

For the specification of MPQIS we introduce a predica-
tive constantSend such that(Pσ, r, n) |= Send(i, j, µ) if
eventsend(i, j, µ) occurs to agenti at timen in run r, i.e.,
ri(n) is the result of appendingsend(i, j, µ) to ri(n − 1).
Also, we introduce the predicateSentsuch that(Pσ, r, n) |=
Sent(i, j, µ) if event send(i, j, µ) occurs to agenti before
time n in run r, i.e., send(i, j, µ) appears inri(n). The
predicatesRec(j, µ) andRec’ed(j, µ) are similarly defined
for eventrec(j, µ). Finally, Rec(i, j, µ) is a shorthand for
Rec(j, µ) ∧ Sent(i, j, µ).

We briefly explore the range of specifications that can be
expressed in this formalism. A property often required in
MPQIS is that there are no “ghost” messages: if agentj
receives a messageµ, thenj knows thatµmust actually have
been sent by some agenti. We can express this requirement
as a monodic formula:

∀µ(Rec(j, µ) → Kj∃iSent(i, j, µ)) (1)

This specification is not satisfied by the present definition of
MPQIS, but we can modify the protocol for the environment
as follows in order to enforce the validity of formula (1) on
MPQIS.

• P (le) = {λ,del(j, µ) | send(j, µ) ∈ le, j ∈ A,µ ∈
Msg}

We compare (1) with a further relevant property of
MPQIS, i.e.,authentication: if agenti has received a mes-
sageµ from agentj, theni knows thatµ had actually been
sent byj:

∀µj(Rec(i, j, µ) → KiSent(j, i, µ)) (2)

Note that, differently from (1), (2) is not monodic.
We now introduce the basic constructors to specify

cryptographic protocols within the framework of MPQIS.
Specifically, we model a security protocol as a MPQIS that
exchanges encrypted messages. We assume atomic mes-
sagesm1,m2, . . ., noncesNi, N ′

i , . . ., and symmetric en-
cryption keyskij , . . . for principalsi, j ∈ A. The encrypted
messages in the domainD are inductively defined as fol-
lows:

Definition 39 (Term)

µ ::= m |Ni |kij |µ, µ
′ |fst(µ) |snd(µ) |{µ}kij

|{µ}k−1

ij

We have thatµ, µ′ is the concatenation of messagesµ and
µ′, fst(µ) and snd(µ) are the first and second projection
of µ respectively, while{µ}kij

is the encryption of message
µ with the keykij . Similarly, the decryption functionk−1

ij

applies to an encrypted messageµ to return a decrypted mes-
sage{µ}k−1

ij
.

We now introduce equational cryptographic theories to
reason about the meaning of encrypted messages.

Definition 40 An equational cryptographic theory(e.c.t.) is
a coupleE = 〈X,≡X〉 where (i)X ⊆ Term, and (ii)
≡X is an equivalence relation onX such that forµ, µ′ ∈

X (i) fst(µ, µ′) ≡X µ; (ii) snd(µ, µ′) ≡X µ′; (iii)
{{µ}kij

}k−1

ij
≡X µ. An e.c.t.E is clear for i ∈ A if for

all µ ∈ E , {µ}kij ≡X µ.

We extend the definition of local state for a principali ∈
A by adding an e.c.t.Ei = 〈Xi,≡i〉 to everyli. Further, for
s = 〈le, l1, . . . , lm〉 let Es = 〈Xs,≡s〉 for Xs =

⋃

i∈AXi

and≡s=
⋃

i∈A ≡i be the e.c.t. for the states. Thus, we
have

(Pσ, r, n) |= µ ≡ µ′ if Iσ(µ), Iσ(µ′) ∈ X(r,n)

and Iσ(µ) ≡(r,n) I
σ(µ′)

Notice that the formula

∀µ, µ′(µ ≡ µ′ → Ki(µ ≡ µ′))

does not hold in general. This is a desirable property of
MPQIS, since it expresses the limits of one agent’s knowl-
edge as to the meaning of encrypted messages.

The languageLm is suitable for specifying a wealth of
properties of security protocols. Since our languageLm
does not contain functors, we define some shorthands in or-
der to simplify the notation of specifications in the next sec-
tion. First, we introduce a predicative constantConcsuch
that

(Pσ, r, n) |= Conc(µ, µ′, µ′′) if µ′′ ≡ µ, µ′

By usingConcwe can define what it means for a message
µ′ to be the first (resp. second) projection of a termµ:

fst(µ) = µ′ ::= ∃µ′′Conc(µ′, µ′′, µ)

snd(µ) = µ′ ::= ∃µ′′Conc(µ′′, µ′, µ)

Further, we introduce a predicative constantEnc to ex-
press message encryption:

(Pσ, r, n) |= Enc(µ, µ′, k) if µ ≡ {µ′}k

We normally writeµ ≡ {µ′}k instead ofEnc(µ, µ′, k).
Now we can define what it means that a principal knows

a cryptographic key, i.e.,a principal j knows a keyk iff she
knows the identites of every message encrypted withk:

KjKey(k) ::=∀µ, µ′(µ ≡ {µ′}k → Kj(µ ≡ {µ′}k))(3)

The concepts here introduced will be useful in the analysis
in the next section.

The Otway-Rees protocol
In this section we apply the formal machinery developed
thus far to the analysis of the Otway-Rees protocol (Otway
and Rees 1987). This is a shared-key authentication proto-
col, in which two principalsA andB use a trusted server
S to generate a session keykAB . Further,kAS is the key
shared betweenA andS, kBS is shared betweenB andS,
NA andNB are nonces, andµAB is the primitive message
whose intuitive meaning is “A wants to communicate with
B”. We represent the protocol in the Alice-Bob notation as
follows:

A→ B : µAB , {NA, µAB}kAS

B → S : {NA, µAB}kAS
, {NB , µAB}kBS

S → B : {NA, kAB}kAS
, {NB , kAB}kBS

B → A : {NA, kAB}kAS



Principal A sends B the encrypted message
{NA, µAB}kAS

together with enough information for
B (i.e. the messageµAB) to send a similar encrypted
message toS. PrincipalB forwards{NA, µAB}AS to S
together with the encrypted message{NB , µAB}BS . When
S receives the message he checks whether the components
µAB , NA, NB , A andB match in the encrypted messages.
If this is the case,S generates a new session keykAB ,
encrypts it withkAS andkBS , then sends both messages to
B, who forwards the appropriate part toA. Finally,A and
B decript the messages, check the nonces and usekAB as
the new session key.

We can represent the Otway-Reese protocol as a MPQIS
in which the protocol is defined as follows:
• PA(ǫ) = send(B, (µAB , {NA, µAB}kAS

))

• PB(〈rec(B, (µAB , µ
′))〉) = send(S, (µ′, {NB , µAB}kBS

))

• PS(〈rec(S, ({NA, µAB}kAS
, {NB , µAB}kBS

))〉) =
send(B, ({NA, kAB}kAS

, {NB , kAB}kBS
))

• PB(〈rec(B, (µ, {NB , kAB}kBS
))〉) = send(A,µ)

Let P include all runs consistent with the definitions
above, and letr∗ be the run such that for alln ∈ N the
e.c.t. inr∗i (n) is clear fori ∈ A. Intuitively, r∗ is the run
in which each agent knows the meaning of the messages en-
crypted with her keys. Also, let the environmente model a
Dolev-Yao intruderI, which can eavesdrop all the commu-
nications betweenA,B andS.

In the first step of the Otway-Rees protocol principalA
sends the messageµAB , {NA, µAB}kAS

to B. Let Init be
a propositional constant such that(P, r, n) |= Init iff rj(n)
is the empty list for allj ∈ A ∪ {e}. We represent the first
step by means of the following specification:

Init→ Send(A,B, (µAB , {NA, µAB}kAS
))) (4)

We can check that formula (4) holds in the QISP repre-
senting the Otway-Rees protocol.

The message{NA, µAB}kAS
is the encryption of

(NA, µAB) with key kAS . Therefore,{NA, µAB}kAS
≡

(NA, µAB) holds in the e.c.t. atr∗A(1) as it is clear forA.
PrincipalA knows the keykAS , hence by(3) A knows the
meaning of the encrypted message{NA, µAB}kAS

:

(P, r, 1) |= KA({NA, µAB}kAS
≡ (NA, µAB))

In the second step of the protocol principalB re-
ceives a message(µAB , {NA, µAB}kAS

) and forwards it
to the serverS after appending the encrypted message
{NB , µAB}kBS

. We represent this step by means of the fol-
lowing specification:

∀ν (Rec(B, ν) ∧ fst(ν) ≡ µAB →

→ ©Send(B,S, (ν, {NB , µAB}kBS
)))

We assumed that the MPQIS representing the Otway-
Rees protocol does not validate version (1) of authentica-
tion, henceB does not know the identity of the sender. This
means that he might consider a point(r′, n) where the local
state ofB is the same as inr∗(2), i.e.,r′B(n) = r∗B(2), while
the intruderI has delivered the message toB pretending to
beA. Thus, the following specification is not satisfied:

∀ν(Rec(B, (µAB , ν)) → KBSent(A,B, (µAB , ν)))

SinceB does not know the key shared betweenA andS,
he cannot decrypt the message sent byA. Thus, at(r∗, 2) B
does not know the meaning of{NA, µAB}kAS

:

(P, r∗, 2) 6|= KB({NA, µAB}kAS
≡ (NA, µAB))

In the third step, when the serverS receives the message
fromB, he checks whether the componentsµAB , NA, NB ,
A andB match in the encrypted messages, then sends the
encrypted keys to B.

∀ν ((Rec(S, ν) ∧KS(fst(ν) ≡ (NA, µAB)) ∧

∧KS(snd(ν) ≡ (NB , µAB))) →

→ ©Send(S,B, ({NA, kAB}kAS
, {NB , kAB}kBS

)))(5)

Also, S knows that the messages were actually sent byA
andB:

∀ν ((Rec(S, ν) ∧KS(fst(ν) ≡ (NA, µAB)) ∧

∧KS(snd(ν) ≡ (NB , µAB))) →

→ KSSent(A,B, (NA, µAB)) ∧

∧KSSent(B,S, (NB , µAB)))

If S knows that the messages were actually sent byA and
B, then he generates a new session keykAB , encrypts it with
kAS andkBS , and sends both messages toB. We represent
this by the following specification:

(KSSent(A,B, (NA, µAB)) ∧

∧KSSent(B,S, (NB , µAB)) →

→©Send(S,B, ({NA, kAB}kAS
, {NB , kAB}BS)))

On the other hand, if the intruderI had eavesdropped
the communication betweenA andB, he could have sent
a message({NA, µAB}kAS

, ν) to S pretending to beB.
This situation is represented by a stater′′(n′′) such that
r′′A(n′′) = r∗A(3), r′′B(n′′) is empty and the local state of
the server is defined as follows:

r′′S(n′′) = 〈rec(S, {NA, µAB}kAS
, ν)〉

By checking nonces and keys as specified in (5) the server
S understands that she received a message from an indi-
vidual (i.e. I) different from the one principalA wants to
communicate with (i.e.B). Since the preconditionKS(ν ≡
(NB , µAB)) in (5) is not satisfied, the server does not dis-
tribute keys to the principals.

Assuming no intruder eavesdropped messages and the
protocol went on smoothly, in the fourth stepB receives the
key fromS, checks the message, and forwards the appropri-
ate part toA:

∀ν (Rec(B, ν) ∧KB(snd(ν) ≡ (NB , kAB))) →

→ ©Send(B,A, fst(ν)))

In fact,Rec(B, ({NA, kAB}kAS
, {NB , kAB}kBS

)) holds
at(r∗, 4) and by (3)B knows the encrypted message sent by
S:

(P, r∗, 4) |= KB({NB , kAB}kBS
≡ (NB , kAB))

Finally, in the fifth stepA receives the message fromB,
check the nonce, and knows thatkAB is the new session key:

Rec(A, {NA, kAB}kAS
) → KA({NA, kAB}kAS

≡ (NA, kAB))

This completes our analysis of the Otway-Rees protocol.



Conclusions and Further Work
In this paper we presented a number of classes of quanti-
fied interpreted systems satisfying conditions such as syn-
chronicity, no learning, perfect recall, and unique initial
state, which are relevant for applications in real scenarios.
In Theorem 19 we proved that the sets of monodic validities
in these classes of QIS are axiomatisable. These results ex-
tend previous contributions on pure first-order epistemic and
temporal logic (Sturm, Wolter, and Zakharyaschev 2000;
Wolter and Zakharyaschev 2002) and propositional tempo-
ral epistemic logic (Halpern, Meyden, and Vardi 2003).

Still, further work is required in this line of research.
On the temporal dimension, it would be of interest to pur-
sue an analysis of CTL modalities interpreted on quanti-
fied interpreted systems. In this area there are contribu-
tions on pure branching time logic (Gabbay et al. 2003;
Hodkinson, Wolter, and Zakharyaschev 2002). On the epis-
temic dimension, it would be of interest for applications to
add epistemic operators for group knowledge. We antici-
pate that common knowledge is likely to lead to increased
complexity, as this already happens at the propositional level
(Halpern and Vardi 1989). Both dimensions need to be ex-
plored in more detail. Finally, it seems worthwhile to ex-
plore the issues pertaining to the decidability of the log-
ics here discussed. An obvious starting point here are the
results in (Hodkinson, Wolter, and Zakharyaschev 2000;
Wolter and Zakharyaschev 2001).
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Hallé, S., and Villemaire, R. 2009. Browser-based enforce-
ment of interface contracts in web applications with beep-
beep. InComputer Aided Verification, 21st International
Conference, CAV 2009, 648–653. Springer.
Halpern, J., and Moses, Y. 1992. A guide to completeness
and complexity for modal logics of knowledge and belief.
Artificial Intelligence54:319–379.
Halpern, J. Y., and Vardi, M. Y. 1989. The complexity
of reasoning about knowledge and time 1: lower bounds.
Journal of Computer and System Sciences38(1):195–237.
Halpern, J.; Meyden, R.; and Vardi, M. Y. 2003. Complete
axiomatisations for reasoning about knowledge and time.
SIAM Journal on Computing33(3):674–703.
Hodkinson, I. M.; Kontchakov, R.; Kurucz, A.; Wolter, F.;
and Zakharyaschev, M. 2003. On the computational com-
plexity of decidable fragments of first-order linear tempo-
ral logics. In10th International Symposium on Temporal
Representation and Reasoning (TIME-ICTL 2003), 91–98.
IEEE Computer Society.
Hodkinson, I. M.; Wolter, F.; and Zakharyaschev, M. 2000.
Decidable fragment of first-order temporal logics.Annals
of Pure and Applied Logic106(1-3):85–134.
Hodkinson, I. M.; Wolter, F.; and Zakharyaschev, M. 2002.
Decidable and undecidable fragments of first-order branch-
ing temporal logics. In17th IEEE Symposium on Logic in
Computer Science, 393–402. IEEE Computer Society.
Hodkinson, I. 2006. Complexity of monodic guarded frag-
ments over linear and real time.Annals of Pure and Applied
Logic 138:94–125.
Lamport, L. 1978. Time, clocks, and the ordering of
events in a distributed system.Communications of the
ACM 21(7):558–565.
Otway, D., and Rees, O. 1987. Efficient and timely mutual
authentication.Operating Systems Review21(1):8–10.
Parikh, R., and Ramanujam, R. 1985. Distributed pro-
cesses and the logic of knowledge. InLogic of Programs,
256–268. Springer.
Rao, A., and Georgeff, M. 1991. Deliberation and its role
in the formation of intentions. InProceedings of the 7th
Conference on Uncertainty in Artificial Intelligence, 300–
307. Morgan Kaufmann Publishers.
Sturm, H.; Wolter, F.; and Zakharyaschev, M. 2000.
Monodic epistemic predicate logic. InLogics in Artificial
Intelligence, European Workshop, 329–344. Springer.
Wolter, F., and Zakharyaschev, M. 2001. Decidable frag-
ments of first-order modal logics.Journal of Symbolic
Logic 66(3):1415–1438.
Wolter, F., and Zakharyaschev, M. 2002. Axiomatizing the
monodic fragment of first-order temporal logic.Annals of
Pure and Applies Logic118(1-2):133–145.
Wooldridge, M. 2000.Reasoning about Rational Agents.
MIT Press.


