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Abstract. We survey some of the recent work in verification via sym-
bolic model checking of temporal-epistemic logic. Specifically, we dis-
cuss OBDD-based and SAT-based approaches for epistemic logic built
on discrete and real-time branching time temporal logic. The underlying
semantical model considered throughout is the one of interpreted system,
suitably extended whenever necessary.

1 Introduction

The study of epistemic logic, or logic for the representation of knowledge, has a
long and successful tradition in Logic, Computer Science, Economics and Phi-
losophy. Its main motivational thrust is the observation that knowledge of the
principals (or agents) in an exchange is fundamental in the study not only of the
information they have at their disposal, but also in the analysis of their ratio-
nal actions and, consequently, of the overall behaviour of the system. It is often
remarked that the first systematic attempts to develop modal formalisms for
knowledge date back to the sixties and seventies and in particular to the works
of Hintikka [26] and Gettier [38]. The line of work at the time focussed on the ad-
equacy of particular principles, expressed as axioms of modal logic, representing
certain properties of knowledge in a rational setting. The standard framework
consisted of the propositional normal modal logic S5n [6] built on top of the
propositional calculus by considering the axioms K : Ki(p→ q)→ Kip→ Kiq,

T : Kip → p, 4 : Kip → KiKip, 5 : ¬Kip → Ki¬Kip, together with usual
normal rules of necessitation Nec : From ϕ infer Kiϕ and modus ponens. Since
then several other formalisms have been introduced accounting for weaker no-
tions of knowledge as well as subtly different mental notions such as belief,
explicit knowledge and others.

While in the sixties soundness and completeness of these formalisms were
shown, the standard semantics considered was the one of plain Kripke mod-
els. These are models of the form M = (W, {Ri}i∈A, V ), where W is a set of
“possible worlds”, Ri ⊆ W ×W is a binary relation between worlds expressing
epistemic indistinguishability between them, and V : W → 2PV is an interpre-
tation function for a set of basic propositional variables PV . Indeed, much of
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the theory of modal logic has been developed in this setting up to recent times.
However, in the eighties and nineties attention was given to finer grained se-
mantics that accounted for the particular states of computation in a system. In
terms of epistemic logic, the challenge was to develop semantics that accounted
both to the low-level models of (a-)synchronous actions and protocols, and that
at the same time would be amenable to simple yet intuitive notions of knowl-
edge. The key basic semantical concept put forward at the time satisfying these
considerations was the one which became popular with the name of “interpreted
system”. Originally developed independently by Parikh and Ramanujam [51],
Halpern and Moses [24] and Rosenscheim [58] and later popularised by [20], the
interpreted system model offered a natural yet powerful formalism to represent
the temporal evolution of a system as well as the evolution of knowledge of
the principals in the run. The development of this model, succinctly described
in the next section, triggered a tremendous acceleration in the study of logic
for knowledge with several results being produced both in terms of axiomatisa-
tions with respect to several different classes of models of agents (synchronous,
asynchronous, perfect recall, no learning, etc.) as well as applications of these
to standard problems such as coordinated attack, communication, security, and
others.

In this setting logic was most often seen as a formal reasoning tool. Atten-
tion was given to the exploration of metaproperties of the various formalisms
(such as their completeness, decidability, and computational complexity), and
axiomatisations developed. Attempts were made to verify systems automatically
by exploring the relation ΓL ⊢ ϕ, where ϕ is a specification for the system, L is
the axiomatised logic representing the system and Γ , a set of formulae expressing
the initial conditions. However, partly due to the inherent complexity of some of
the epistemic formalisms, verification of concrete systems via theorem proving
for epistemic logic did not attract too much attention.

At the same time (the early nineties) the area of verification by model check-
ing [13] began acquiring considerable attention with a stream of results being
produced for a variety of temporal logics. The idea of switching attention from
theorem proving to model checking became prominent [25]. However, it was
not before the very end of the nineties that similar ideas were applied to the
verification of multi-agent systems via temporal-epistemic formalisms. The first
contribution in the area to our knowledge dates back to a paper by van der
Meyden and Shilov [50], where the complexity of model checking perfect re-
call semantics is analysed. After that attention switched to the possible use of
ad-hoc local propositions for translating the verification of temporal-epistemic
into plain temporal logic [27]. Following this there were studies on the extension
of bounded model checking algorithms [53] and binary-decision diagrams [57].
Several other extensions and algorithms later appeared.

The aim of this paper is to summarise some of the early results obtained
by the authors in this area. The area has grown tremendously in recent years
and this paper is not intended to provide a survey of the area. The choice of
the topics to present is guided by the influence that Prof. Marek Sergot had on
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their development. The rest of the paper is organised as follows. In Section 2 we
present syntax and semantics of the basic logic. In Section 3 we introduce and
discuss an OBDD-based approach to verification of temporal-epistemic logic. In
Section 4 an alternative yet complementary approach based on bounded and
unbounded model checking is discussed. In Section 5 extensions to real-time are
summarised briefly. We conclude in Section 6.

2 Syntax and Semantics

Many model checking approaches differ depending on the syntax supported as a
specification language for the properties to be verified by the model checker. We
begin here with the basic temporal branching time temporal-epistemic logic.

2.1 Syntax

Given a set of agents A = {1, . . . , n} and a set of propositional variables PV , we
define the language L of CTLK as the fusion between the branching time logic
CTL and the epistemic logic S5n for n modalities of knowledge Ki (i = 1, . . . , n)
and group epistemic modalities EΓ , DΓ , and CΓ (Γ ⊆ A):

ϕ, ψ ::= p ∈ PV | ¬ϕ | ϕ ∧ ψ | Kiϕ | EΓϕ | DΓϕ | CΓϕ | AXϕ | AGϕ | A(ϕUψ)

In addition to the standard Boolean connectives the syntax above defines two
fragments: an epistemic and a temporal one. The epistemic part includes for-
mulas of the form Kiϕ representing “agent i knows that ϕ”, EΓϕ standing for
“everyone in group Γ knows that ϕ”, DΓϕ representing “it is distributed knowl-
edge in group Γ that ϕ is true′′, CΓ formalising “it is common knowledge in
group Γ that ϕ”. We refer to [20] for a discussion of these concepts and exam-
ples. The temporal fragment defines formulas of the form AXϕ meaning “in all
possible paths, ϕ holds at next step”; AGϕ standing for “in all possible paths
along ϕ is always true”; and A(ϕUψ) representing “in all possible paths at some
point ψ holds true and before then ϕ is true along the path”.

Whenever Γ = A we will omit the subscript from the group modalities E, D,
and C. As customary we will also use “diamond modalities”, i.e., modalities dual
to the ones defined. In particular, for the temporal part we use EFϕ = ¬AG¬ϕ,
EXϕ = ¬AX¬ϕ representing “there exists a path where at some point ϕ is
true” and “there exists a path in which at the next step ϕ is true” respectively.
We will also use the E(ϕUψ) with obvious meaning. For the epistemic part we
use overlines to indicate the epistemic diamonds; in particular we use Kiϕ as a
shortcut for ¬Ki¬ϕ, meaning “agent i considers it possible that ϕ” and similarly
for EΓ , DΓ , and CΓ .

Formulas including both temporal and epistemic modalities can represent
expressive specifications in particular scenarios, e.g., the evolution of private
and group knowledge over time, knowledge about a changing environment as
well as knowledge about other agents’ knowledge. We refer to [20] for standard
examples such as alternating bit protocol, attacking generals, message passing
systems, etc.
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2.2 Interpreted systems semantics

In what follows the syntax of the specification language supported is interpreted
on the multi-agent semantics of Interpreted Systems [20]. Interpreted systems
are a fine-grained semantics put forward in [24] to represent temporal evolution
and knowledge in multi-agent systems. Although initially developed for linear
time, given the applications of this paper we present them in their branching
time version. Given the model checking algorithms described later we summarise
the formalism below in relation to a branching time model. For more details we
refer to [20].

Assume a set of possible local states Li for each agent i in a set A = {1, . . . , n}
and a set Le of possible local states for the environment e. The set of possible
global states G ⊆ L1×· · ·×Ln×Le is the set of all possible tuples (l1, . . . , ln, le)
representing a snapshot of the system as a whole. The model stipulates that
each agent i performs one of the enabled actions in a given state according to a
protocol function Pi : Li → 2Acti. Pi maps local states to sets of possible actions
for agent i within a repertoire of its actions Acti. Similarly, the environment e is
assumed to be performing actions following its protocol Pe : Le → 2Acte . Joint
actions (act1, . . . , actn, acte) are tuples of actions performed jointly by all agents
and the environment in accordance with their respective protocol. Joint actions
are used to determine the transition function T ⊆ G×Act1×· · ·×Actn×Acte×G
which gives the evolution of a system from an initial global state g0 ∈ G. A path
π = (g0, g1, . . .) is a maximal sequence of global states such that (gk, gk+1) ∈ T
for each k ≥ 0 (if π is finite then the range of k is restricted accordingly). For a
path π = (g0, g1, . . .), we take π(k) = gk. By Π(g) we denote the set of all the
paths starting at g ∈ G.

The model above can be enriched in several ways by expressing explicitly
observation functions for the agents in the system or by taking more concrete
definitions of the sets of local states thereby modelling specific classes of systems
(perfect recall, no learning, etc.). We do not discuss these options here; we simply
note that in a later section we will pair this semantics with an automata-based
one.

To interpret the formulas of the language L for convenience we define models
simply as tuples M = (G, g0, T,∼1, . . . ,∼n, V ), where G is the set of the global
states reachable from the initial global state g0 via T; ∼i ⊆ G×G is an epistemic
relation for agent i defined by g ∼i g

′ iff li(g) = li(g
′), where li : G→ Li returns

the local state of agent i given a global state; and V : G× PV → {true, false}
is an interpretation for the propositional variables PV in the language.

The intuition behind the definition of models above is that the global states
whose local components are the same for agent i are not distinguishable for the
agent in question. This definition is standard in epistemic logic via interpreted
systems - again we refer to [20] for more details.

We can use the model above to give a satisfaction relation |= for L inductively
as standard. Let M be a model, g = (l1, . . . , ln) a global state, and ϕ, ψ formulas
in L:

– (M, g) |= p iff V (g, p) = true,
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– (M, g) |= Kiϕ iff for all g′ ∈ G if g ∼i g
′, then (M, g′) |= ϕ,

– (M, g) |= DΓϕ iff for all i ∈ Γ and g′ ∈ G if g ∼i g
′, then (M, g′) |= ϕ,

– (M, g) |= EΓϕ iff (M, g) |=
∧

i∈Γ Kiϕ,

– (M, g) |= CΓϕ iff for all k ≥ 0 we have (M, g) |= EkΓϕ,

– (M, g) |= AXϕ iff for all π ∈ Π(g) we have (M,π(1)) |= ϕ,

– (M, g) |= AGϕ iff for all π ∈ Π(g) and for all k ≥ 0 we have (M,π(k)) |= ϕ,

– (M, g) |= A(ϕUψ) iff for all π ∈ Π(g)) there exists a k ≥ 0 such that
(M,π(k)) |= ψ and for all 0 ≤ j < k we have (M,π(j)) |= ϕ.

The definitions for the Boolean connectives and the other inherited modalities
are given as standard and not repeated here. Ekϕ is to be understood as a
shortcut for k occurrences of the E modality followed by ϕ, i.e., E0ϕ = ϕ;
E1ϕ = Eϕ; Ek+1ϕ = EEkϕ.

2.3 The dining cryptographers problem

The formalism of interpreted systems has been used successfully to model a
variety of scenarios ranging from basic communication protocols (e.g., the bit
transmission problem, message passing systems), to coordination (e.g., the at-
tacking generals setting), deadlocks (e.g., the train-gate-controller scenario), etc.
We refer the reader to the specialised literature; the key consideration here is
that in each of these scenarios it is shown that temporal-epistemic languages can
be used to express specification for the systems and the individual agents very
naturally.

To exemplify this we present a protocol for anonymous broadcast very well-
known in the security literature: The dining cryptographers (DC). The DC was
introduced by D. Chaum [10] and analysed in a temporal-epistemic setting by
Meyden and Su [44]. A reformulation to include cheating cryptographers appears
in [32]. We report the original wording here [10] (part of this text was originally
cited in [44]).

“Three cryptographers are sitting down to dinner at their favorite three-star
restaurant. Their waiter informs them that arrangements have been made with
the maitre d’hotel for the bill to be paid anonymously. One of the cryptographers
might be paying for dinner, or it might have been NSA (U.S. National Security
Agency). The three cryptographers respect each other’s right to make an anony-
mous payment, but they wonder if NSA is paying. They resolve their uncertainty
fairly by carrying out the following protocol:

Each cryptographer flips an unbiased coin behind his menu, between him and
the cryptographer on his right, so that only the two of them can see the outcome.
Each cryptographer then states aloud whether the two coins he can see–the one
he flipped and the one his left-hand neighbor flipped–fell on the same side or on
different sides. If one of the cryptographers is the payer, he states the opposite of
what he sees. An odd number of differences uttered at the table indicates that a
cryptographer is paying; an even number indicates that NSA is paying (assuming
that dinner was paid for only once). Yet if a cryptographer is paying, neither of
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the other two learns anything from the utterances about which cryptographer it
is.”

Temporal-epistemic logic can be used to analyse the specification of the ex-
ample - we summarise here the description reported in [57, 56]. It is relatively
straightforward to model the protocol above by means of interpreted systems. For
each agent i we can consider a local state consisting of the triple (l1i , l

2
i , l

3
i ), repre-

senting respectively whether the coins observed are the same or different, whether
agent i paid for the bill, and whether the announcements have an even or odd
parity. A local state for the environment can be taken as a 4-tuple (l1e , l

2
e , l

3
e, l

4
e)

where l1e−l
3
e represent the coin tosses for each agent and l4e represents whether or

not the agent in question paid for the bill. Actions and protocols for the agents
and the environment can easily be given following Chaum’s narrative descrip-
tion above and relations for the temporal evolution and the epistemic relation
are easily built in this way.

In principle by coding the above we would be able to show on the model for
DC that

(MDC , g
0) |=

∧

i∈A

(odd ∧ ¬paidi)→ AX(Ki(
∨

j 6=i

paidj)
∧

k 6=i

¬Kipaidk)

The specification above states that if an agent i observes an odd parity and
did not cover the bill then in all next states (i.e., when the announcements have
been made) she will know that one of the others paid for dinner but without
knowing who it was.

Although conceptually easy, the example is already large enough to make it
difficult to work out all possible execution traces on the model. Of note is the
fact that DC can actually be scaled to any number of cryptographers. By using
model checking techniques one can verify DC up to 8 and more cryptographers
with resulting state spaces for the model of about 1036 states, and considerably
more cryptographers if the representation of the model is optimised [32].

Other examples are equally amenable to representation via interpreted sys-
tems and model checking via the techniques presented below.

3 OBDD-based Symbolic Model Checking

As it is customary in model checking in the following we analyse systems of finite
states only. Given a system S and a property P to be checked, the model checking
approach suggests coding S as a logical model MS, the property P as a logic
formula ϕP , and investigating whether MS |= ϕP . In the traditional approach
the model MS is finite and represents all the possible computations of system S

and ϕP is a formula in temporal logic expressing some property to be checked on
the system, e.g., liveness, safety, etc. When ϕP is given in LTL or CTL, checking
ϕP on an explicitly given MS is, of course, a very tractable problem. However,
it is impractical to represent MS explicitly, so MS is normally implicitly given
by means of a dedicated programming language using imperative commands on
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sets of variables. This can be convenient for the programmer, but the number of
states in the resulting model grows exponentially with the number of variables
used in the program describing MS potentially causing great difficulty (state
explosion problem).

Much of the model checking literature in plain temporal logic deals with
techniques to limit the impact of this, the most prominent being partial order
reductions [52, 23], symmetry reductions [12, 18, 19], ordered-binary decision di-
agrams [8, 47], bounded and unbounded model checking [5, 48], and (predicate)
abstraction [16, 3]. By using partial-order reduction techniques the computa-
tional tree MS is pruned and certain provably redundant states are eliminated
and/or collapsed with others depending on the formula to be checked thereby re-
ducing the state space. Symmetry reductions are used to reduce the state spaces
of distributed systems composed of many similar processes. Predicate abstrac-
tion is based on the identification of certain predicates which have no impact
on the verification of the formula in question; crucially it is used in verifica-
tion of infinite-state systems. Binary-decision diagrams (described below) offer
a compact representation for Boolean formulas and traditionally constitute one
of the leading symbolic approaches. Bounded and unbounded model checking
(described in Subsection 4.1 and 4.2, respectively) exploit recent advances in
the efficiency of checking satisfiability for appropriate Boolean formulas suitably
constructed. Several tools have been developed for model checking temporal log-
ics, including: SPIN [28] for on-the-fly automata-based approach combined with
partial-order reductions for LTL, SMV and NuSMV [47, 11] for OBDDs and
bounded model checking for LTL and CTL, and POEM [43] for a partial-order
semantics. Several other tools exist for other varieties of temporal logic, e.g.,
real-time logic, probabilistic temporal logic, and indeed other implementations
are available for the same or slightly different techniques.

Even if all tools mentioned above are nowadays very sophisticated and sup-
port ad-hoc input languages they are traditionally limited to temporal logic only.
In the rest of the paper we discuss work by the authors towards techniques and
tools supporting temporal-epistemic logic.

3.1 The OBDD approach

The two main model checking platforms for temporal-epistemic logic based on
binary-decision diagrams are the MCK and the MCMAS toolkits. They both
implement model checking of temporal-epistemic logic on interpreted systems
semantics via ordered-binary decision diagrams. MCK [21, 45] implements a va-
riety of different semantics (observational, perfect recall, etc), supports a concise
and specialised input language, and was the first model checker available sup-
porting temporal-epistemic logic. MCMAS [40] implements standard interpreted
systems semantics and a number of extensions, including deontic modalities, ex-
plicit knowledge, ATL, etc. In terms of implementations the two tools are rather
different. MCK is implemented in Haskell using Long’s BDD library (written
in C), whereas MCMAS is implemented in C++ and relies on Somenzi’s [59]
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BDD package (also in C). MCMAS and its theoretical background is succinctly
described in the rest of this section; we refer to [56] for an in-depth description.

Irrespective of the implementation details, the crux of the ordered-binary
decision diagrams (OBDDs) approx lies in the symbolic representation of sets
and functions paired with the observation that to assess whether (M, g) |= ϕ it
is sufficient to evaluate whether g ∈ SAT (ϕ) where SAT (ϕ) is the set of states
in the model M satisfying ϕ. To introduce the main ideas of the approach we
proceed in three stages: first, we observe we can encode sets as Boolean for-
mulas; second, we show how OBDDs offer a compact representation to Boolean
functions; third we give algorithms for the calculation of SAT (ϕ).

First of all observe that given a set G of size |G| it is straightforward to asso-
ciate uniquely a vector of Boolean variables (w1, . . . , wm) to any element g ∈ G
where m = ⌈log2|G|⌉ (note that a tuple of m places can represent 2m different el-
ements). Any subset S ⊆ G can be represented by using a characteristic function
fS : (g1, . . . , gm)→ {0, 1}, expressing whether the element (as encoded) is in S

or otherwise. Note that functions and relations can also be encoded as Boolean
functions; for instance to encode that two states are related by some relation
we can simply consider a vector of Boolean functions comprising of two copies
of the representation of the state to which we add a further Boolean variable
expressing whether or not the states are related. Vectors designed in this way
represent conjunctions of Boolean atoms or their negation and as such constitute
a simple (albeit possibly long) Boolean formula.

In the construction of OBDD-based model checking for plain temporal logic
it is normally assumed that the propositions themselves (appropriately ordered)
constitute the basis for the encoding of the states of the model. In the MCMAS
approach Boolean functions first and then OBDDs are constructed iteratively by
considering all aspects of the interpreted system given. These involve building
the:

– Boolean functions for the sets of local, global states, actions, and initial
global states;

– Boolean functions representing the protocols for each agent, the local evalu-
ation function for each agent, and the valuation for the atoms;

– Boolean functions representing the global temporal relation and the n epis-
temic relations for the agents. The Boolean formula coding the temporal
relation needs to encode that joint actions correspond to enabled actions for
all agents: fT (g, g′) =

∨

a∈JointAct(g, a, g
′) ∈ T

∧

i∈A ai ∈ Pi(li(g)), where
a = (a1, . . . , an) is a joint action for the system and all individual action
components ai are enabled by the local protocols at the corresponding local
state li(g) in g. The epistemic relations for the agents can be represented
simply by imposing equality on the corresponding local state component.

– A Boolean formula representing the set of reachable states for the interpreted
system. This can be encoded as standard by calculating the fix-point of the
operator τ(Q) = (I(g) ∨ ∃g′(T (g, a, g′) ∧Q(g′)).

Boolean functions are a convenient representation to perform certain logical op-
erations on them (e.g., ∧,∨); however it is well known that working out their
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satisfiability and validity can be expensive. Truth tables themselves do not offer
any advantage in this respect: for instance checking satisfiability on them may
involve checking 2n rows of the table where n is the number of atoms present.
OBDDs constitute a symbolic representation for Boolean functions and are nor-
mally much cheaper to handle. Before introducing OBDDs observe that for every
Boolean function we can associate a binary decision tree (BDT), in which each
level represents a different atom appearing in the Boolean function. Taking a
different path along the tree corresponds to selecting a particular combination
of values for the atoms (see Figure 1), thereby determining the truth value of
the formula.

c

a

bb

c c c

11111000

a

b

10

c

Fig. 1. A BDT for the Boolean function a ∨ (b ∧ c) (left) and its corresponding BDD
(right). The dotted lines correspond to assigning the value false to the atom whose
name the edge leaves from. Conversely solid lines represent assignments to true.

In most instances a BDT is not an efficient representation of its corresponding
Boolean function. However, a series of operations can be performed on it to
reduce it to a binary decision diagram (BDD). A BDD is a directed acyclic
graph with an initial node, and in which each node (representing a Boolean
atom) has two edges (corresponding to decision points true and false) originating
from it with the final leaves being either “true” or “false” (see Figure 1). There
are several algorithms for producing BDDs from BDTs; however the order of
the operations on the initial BDT affects the resulting BDD and, most crucially,
comparing BDDs turns out to be an expensive operation. What makes the whole
approach useful is the provable assertion that there exist sets of algorithms for
computing canonical BDDs once the ordering of the variables is fixed. In other
words, as long as the ordering of the variables is fixed the resulting BDD is
unique for a given Boolean function. This is a remarkable result and leads to
an alternative technique to compare Boolean functions: compute their canonical
BDDs; if they are the same they represent the same function, if not they are

9



the result of different functions. The canonical BDDs produced by this set of
algorithms are normally referred to as OBDDs and constitute one of the leading
data structures in symbolic model checking. We do not discuss algorithms to
manipulate BDDs here and refer to [30] for details; but of particular significance
is the fact that Boolean operations on Boolean functions can be done directly
on the corresponding OBDDs without a very significant loss in performance.
Other model-checking specific set operations such as computing pre-images (see
below) may also be coded in terms of the corresponding BDDs. For more details
on OBDDs and related techniques we refer to [30] Chapter 6 and references,
notably [7].

We now present the algorithms for the calculation of the set of states SAT (ϕ)
satisfying a formula ϕ in L. In the OBDD approach all sets of states below are
computed symbolically on the corresponding OBDDs.

SAT (ϕ) {
ϕ is an atomic formula: return {g | V (g,ϕ) = true};
ϕ is ¬ϕ1: return S \ SAT (ϕ1);
ϕ is ϕ1 ∧ ϕ2: return SAT (ϕ1) ∩ SAT (ϕ2);
ϕ is EXϕ1: return SATEX(ϕ1);
ϕ is E(ϕ1Uϕ2): return SATEU(ϕ1, ϕ2);
ϕ is EFϕ1: return SATEF (ϕ1);
ϕ is Kiϕ1: return SATK(ϕ1, i);
ϕ is Eϕ: return SATE(ϕ);
ϕ is Cϕ: return SATC(ϕ);

}

In the algorithm above, the auxiliary procedures SATEX , SATEU , SATEF
follow the standard algorithms used in temporal logic3. For instance the set of
global states satisfying EXϕ is computed as follows (in what follows G is the
set of reachable states).

SATEX(ϕ) {
X = SAT (ϕ);
Y = {g ∈ G | ∃g′ ∈ X and T (g, a, g′)}
return Y;

}

Note that the calculation of EX involves working out the pre-image of T .
The set of states satisfying the epistemic modalities are defined as follow (note
that below we use ∼EΓ=

⋃

i∈Γ ∼i and ∼DΓ =
⋂

i∈Γ ∼i).

3 For efficiency reasons the CTL modalities implemented are typically EX, AF , and
EU .
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SATK(ϕ, i) {
X = SAT (¬ϕ);
Y = {g ∈ S | ∃g′ ∈ X and ∼i (g, g′)}
return ¬Y ∩ G;

}

SATE(ϕ, Γ ) {
X = SAT (¬ϕ);
Y = {g ∈ G |∼E

Γ (g, g′) and g′ ∈ X}
return ¬Y ∩ G;

}

SATD(ϕ, Γ ) {
X = SAT (¬ϕ);
Y = {g ∈ G |∼D

Γ (g, g′) and g′ ∈ X}
return ¬Y ∩ G;

}

SATC(ϕ, Γ ) {
Y = SAT (¬ϕ);
X = G;
while ( X 6= Y ) {

X = Y ;
Y = {g ∈ G |∼E

Γ (g, g′) and g′ ∈ X}
return ¬Y ∩ G;

}

The algorithm forKiϕ is similar in spirit to the CTL algorithm for computing
AXϕ: essentially we compute the pre-image under the epistemic relation of the
set of formulas not satisfying ϕ and negate the result. EΓϕ (respectively DΓϕ

is done similarly but on the ∼ΓE (∼ΓD, respectively). For C we need to use a
fix-point construction (fix-point constructions already appear in the algorithm
to compute the satisfiability of the until operator). All sets operations above are
implemented on the corresponding OBDDs thereby producing the OBDD for
SAT (ϕ). We can then solve (M, g0) |= ϕ by answering the query g0 ∈ SAT (ϕ)
on the corresponding OBDD.

3.2 MCMAS

MCMAS [40, 46] is a toolkit released under GNU GPL that implements the
OBDD-based procedures described in the previous subsection. Input to the
model checker is a program describing the evolutions of a multi-agent system.
The program is given in ISPL (Interpreted Systems Programming Language),
a modelling language specialised for the specifications of interpreted systems
and some extensions. An ISPL program consists of a sequence of declarations
for agents in the system, valuation for the atomic propositions, and formulas
in CTLK (other languages are also supported - see extensions). An agent is
given by explicitly listing the local states it may be in, the local actions, pro-
tocols, and the local evolution function. Note that the local evolution function
Ti : Li × Act1 × · · · × Actn → Li gives a set of rules specifying the target local
state when a certain combination of actions is performed. An example of an
ISPL fragment describing a very simple agent is given in Figure 2.

Upon invocation the tool parses the input, builds the OBDD for transition
relation and the OBDD for the set of reachable states. This is then used in
the calculation of the OBDD for the sets of states satisfying the formula to be
verified. By comparing whether the initial state belongs to this set the output is
displayed. A graphical and a web-interface are available for the tool.

Through MCMAS several scenarios from the areas of web-services, cache-
coherence protocols, diagnosis, and security protocols, have been verified. In
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Agent SampleAgent

Lstate = {s0,s1,s2};

Action = {a1,a2}

Protocol:

s0: {a1};

s1: {a2};

s2: {a1,a2};

end Protocol

Ev:

s1 if ((AnotherAgent.Action=a7);

s2 if Lstate=s1;

end Ev

end Agent

Fig. 2. A fragment of ISPL code describing an agent.

line with other BDD-based checkers, the size of the model that can be usefully
verified depends on the specific example and ranges from 106 to 1026 reachable
global states.

4 SAT-based Symbolic Model Checking

SAT-based model checking is the most recent symbolic approach for modal logic.
It was motivated by a dramatic increase in efficiency of SAT-solvers, i.e., algo-
rithms solving the satisfiability problem for propositional formulas [65]. The
main idea of SAT-based methods consists in translating the model checking
problem for a temporal-epistemic logic to the problem of satisfiability of a for-
mula in propositional logic. This formula is typically obtained by combining an
encoding of the model and of the temporal-epistemic property. In principle, the
approaches to SAT-based symbolic verification can be viewed as bounded (BMC)
or unbounded (UMC). BMC applies to an existential fragment of a logic (here
ECTLK) on a part of the model, whereas UMC is for an unrestricted logic (here
CTLK) on the whole model.

4.1 Bounded Model Checking

BMC was originally introduced for verification of LTL [5, 4] as an alternative
to approaches based on OBDDs. Then, BMC was defined for the existential
fragment of the logic CTL [55, 64] and then extended to ECTLK [53]. BMC is
based on the observation that some properties of a system can be checked over a
part of its model only. In the simplest case of reachability analysis, this approach
consists in an iterative encoding of a finite symbolic path as a propositional
formula. The satisfiability of the resulting propositional formula is then checked
using an external SAT-solver. We present here the main definitions of BMC
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for ECTLK and later discuss extensions to more expressive logics. We refer the
reader to the literature cited above for more details.

To explain how the model checking problem for an ECTLK formula is en-
coded as a propositional formula, we first define k-models, bounded semantics
over k-models, and then propositional encodings of k-paths in the k-model and
propositional encodings of the formulas. In order to define a bounded semantics
for ECTLK we define k-models. Let M = (G, g0, T,∼1, . . . ,∼n,V) be a model
and k ∈ IN+. The k−model for M is defined as a structure Mk = (G, g0, Pk,∼1

, . . . ,∼n,V), where Pk is the set of all the k-paths of M over G, where a k-path
is the prefix of length k of a path.

We need to identify k-paths that represent infinite paths so that satisfaction
of EG formulas in the bounded semantics implies their satisfaction on the un-
bounded one. To this aim define the function loop : Pk → 2IN as: loop(π) = {l |
0 ≤ l ≤ k and (π(k), π(l)) ∈ T }, which returns the set of indices l of π for which
there is a transition from π(k) to π(l).

Let Mk be a k−model and α, β be ECTLK formulas. (Mk, g) |= α denotes
that α is true at the state g of Mk. The bounded semantics is summarised
as follows. (Mk, g) |= EXα has the same meaning as for unbounded models.
(Mk, g) |= EGα states that there is a k-path π, which starts at g, all its states
satisfy α and π is a loop, which means that g is a T -successor of one of the
states of π. loop(π) returns the indexes of such states. For the other modalities
the bounded semantics is the same as unbounded, but insisting on reachability
of the state satisfying α on a path of length k.
Model checking over models can be reduced to model checking over k-models.
The main idea of BMC for ECTLK is that checking ϕ over Mk is replaced by
checking the satisfiability of the propositional formula [M,ϕ]k := [Mϕ,g0 ]k ∧

[ϕ]Mk
. [Mϕ,g0 ]k represents (a part of) the model under consideration whereas

[ϕ]Mk
- a number of constraints that must be satisfied onMk for ϕ to be satisfied.

Checking satisfiability of an ECTLK formula can be done by means of a SAT-
solver. Typically, we start with k := 1, test satisfiability for the translation, and
increase k by one until either [Mϕ,g0 ]k ∧ [ϕ]Mk

becomes satisfiable, or k reaches
the maximal depth of M , which is bounded by |G|. It can be shown that if

[Mϕ,g0 ]k ∧ [ϕ]Mk
is satisfiable for some k, then (M, g0) |= ϕ, where M is the full

unbounded model.

Translation to SAT We provide here some details of the translation. The
states and the transitions of the system under consideration are encoded simi-
larly as for BDDs in Section 3. Let w = (w[1], . . . , w[m]) be sequence of propo-
sitions (called a global state variable) for encoding global states. A sequence
w0,j , . . . , wk,j of global state variables is called a symbolic k-path j. Since a
model for a branching time formula is a tree (a set of paths), we need to use a
set of symbolic k-paths to encode it. The number of them depends on the value
of k and the formula ϕ, and it is computed using the function fk. This function
determines the number of k-paths sufficient for checking an ECTLK formula,
see [63] for more details. Intuitively, each nesting of an epistemic or temporal

13



formula in ϕ increases the value of fk(ϕ) by 1, whereas subformulas EU, EG and
CΓ add more k−paths.

The propositional formula [Mϕ,g0 ]k, representing the k-paths in the k-model,
is defined as follows:

[Mϕ,g0 ]k := Ig0 (w0,0) ∧

fk(ϕ)
∧

j=1

k−1
∧

i=0

T (wi,j , wi+1,j),

where w0,0 and wi,j for 0 ≤ i ≤ k and 1 ≤ j ≤ fk(ϕ) are global state variables,
and T (wi,j , wi+1,j) is a formula encoding the transition relation T .

An intuition behind this encoding is as follows. The vector w0,0 encodes the
initial state g0 and for each symbolic k-path, numbered 1 . . . fk(ϕ), each pair
of the consecutive vectors on this path encodes pairs of states that are in the
transition relation T . The formula T (w, v) is typically a logical disjunction of
the encodings of all the actions corresponding to the transitions of the model
M . This way, one symbolic k-path encodes all the (concrete) k-paths.

The next step of the algorithm consists in translating an ECTLK formula ϕ
into a propositional formula. Let w, v be global state variables. We make use of
the following propositional formulas in the encoding:

– p(w) encodes a proposition p of ECTLK over w.
– H(w, v) represents logical equivalence between global state encodings u and
v (i.e., encodes that u and v represent the same global states).

– HKi(w, v) represents logical equivalence between i-local state encodings u
and v, (i.e., encodes that u and v share i-local states).

– Lk,j(l) encodes a backward loop connecting the k-th state to the l-th state
in the symbolic k−path j, for 0 ≤ l ≤ k.

The translation of each ECTLK formula is directly based on its bounded se-
mantics. The translation of ϕ at the state wm,n into the propositional formula

[ϕ]
[m,n]
k is as follows (we give the translation of selected formulas only):

[EXα]
[m,n]
k :=

∨fk(ϕ)
i=1

(

H(wm,n, w0,i) ∧ [α]
[1,i]
k

)

,

[EGα]
[m,n]
k :=

∨fk(ϕ)
i=1

(

H(wm,n, w0,i) ∧ (
∨k
l=0 Lk,i(l)) ∧

∧k
j=0[α]

[j,i]
k

)

,

[E(αUβ)]
[m,n]
k :=

∨fk(ϕ)
i=1

(

H(wm,n, w0,i) ∧
∨k
j=0

(

[β]
[j,i]
k ∧

∧j−1
t=0 [α]

[t,i]
k

)

)

,

[Klα]
[m,n]

k :=
∨fk(ϕ)
i=1

(

Ig0(w0,i) ∧
∨k
j=0

(

[α]
[j,i]
k ∧ HKl(wm,n, wj,i)

)

)

.

Intuitively, [EGα][m,n]k is translated to all the fk(ϕ)-symbolic k-paths (EGα is
considered as a subformula of ϕ) that start at the states encoded by wm,n, satisfy

α, and are loops. [Klα]
[m,n]
k is translated to all the fk(ϕ)-symbolic k-paths such

that each symbolic k-path starts at the initial state g0, one of its states satisfies
α and shares the l-th state with these encoded by wm,n. Given the translations
above [63], verification of ϕ over Mk reduces to checking the satisfiability of the

propositional formula [Mϕ,g0 ]k ∧ [ϕ]Mk
, where [ϕ]Mk

= [ϕ]
[0,0]
k .

Several improvements have been suggested to the above encoding of ECTLK
such that the length of the formula [ϕ]Mk

is reduced. Firstly, the encoding by
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Zbrzezny [64] allocates a specific symbolic k-path to each subformula of ϕ start-
ing with a modality. Moreover, a special structure, called Reduced Boolean Cir-
cuit (RCB) [1], is used in [64] for representing the propositional formula [ϕ]Mk

.
A RCB represents subformulas of [ϕ]Mk

by fresh propositions such that each two
identical subformulas correspond to the same proposition. The above improve-
ments were defined for ECTL only.

Secondly, van der Meyden at al. [29] extended the solution of [64] to ECTLK,
but instead of using RCBs, they directly encoded ϕ such that each subformula
ψ of [ϕ]Mk

occurring within a scope of a k-element disjunction or conjunction
is replaced with a propositional variable pψ and the reduced formula [ϕ]Mk

is
taken in concjuntion with the implication pψ ⇒ ψ.

The above approaches show an improved preformance over the original en-
coding for some subclasses of ECTLK composed mainly of long and deeply nested
formulas.

4.2 Unbounded Model Checking

UMC was originally introduced for verification of CTL [48] as an alternative to
BMC and approaches based on BDDs. Then, UMC was extended to CTLpK [34]
as well as to other more expressive logics.

We begin by extending the syntax and semantics of CTLK to CTLpK by
adding past operators AY and AH. The operators including Since are omitted.
A backward path π = (g0, g1, . . .) is a maximal sequence of global states such
that (gk+1, gk) ∈ T for each k ≥ 0 (if π is finite, then k needs to be restricted
accordingly). LetΠ(g) denote the set of all the backward paths starting at g ∈ G.

– (M, g) |= AYϕ iff for all π ∈ Π(g) we have (M,π(1)) |= ϕ,
– (M, g) |= AHϕ iff for all π ∈ Π(g) and for all k ≥ 0 we have (M,π(k)) |= ϕ.

Intuitively, AYϕ specifies that for all the backward step states ϕ holds, whereas
AHϕ expresses that for all the states in the past ϕ holds.

Unlike BMC, UMC is capable of handling the whole language of the logic. Our
aim is to translate CTLpK formulas into propositional formulas in conjunctive
normal form, accepted as an input by SAT-solvers.

Specifically, for a given CTLpK formula ϕ, a corresponding propositional
formula [ϕ](w) is computed, where w is a global state variable (i.e., a vector of
propositional variables for representing global states) encoding these states of
the model where ϕ holds. The translation is not operating directly on temporal-
epistemic formulas. Instead, to calculate propositional formulas either the QBF
or the fix-point characterisation of CTLpK formulas (see Section 3) is used. More
specifically, three basic algorithms are exploited. The first one, implemented by
the procedure forall [48], is used for translating formulas Zα such that Z ∈ {AX,
AY, Ki, DΓ , EΓ }. This procedure eliminates the universal quantifiers from a
QBF formula characterising a CTLpK formula, and returns the result in a con-
junctive normal form. The second algorithm, implemented by the procedure gfpO
is applied to formulas Zα such that Z ∈ {AG,AH, CΓ }. This procedure computes
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the greatest fix-point, in the standard way, using Boolean representations of sets
rather than sets themselves. For formulas of the form A(αUβ) the third proce-
dure, called lfpAU , computing the least fix-point (in a similar way), is used. In so
doing, given a formula ϕ a propositional formula [ϕ](w) is obtained such that ϕ
is valid in the model M iff the propositional formula [ϕ](w)∧Ig0 (w) is satisfiable.

The reader is referred to [33] for more details, especially on computing fix-
points over propositional representations of sets. In the following section we
show how to represent CTLpK formulas in QBF and then translate them to
propositional formulas in CNF.

From a fragment of QBF to CNF Quantified Boolean Formulas (QBF)
are an extension of propositional logic by means of quantifiers ranging over
propositions. The BNF syntax of a QBF formula is given by:

α ::= p | ¬α | α ∧ α | ∃p.α | ∀p.α.

The semantics of the quantifiers is defined as follows:

• ∃p.α iff α(p← true) ∨ α(p← false),
• ∀p.α iff α(p← true) ∧ α(p← false),

where α ∈ QBF, p ∈ PV and α(p← q) denotes substitution with the variable q
of every occurrence of the variable p in formula α.
For example, the formula [AXα](w) is equivalent to the formula ∀v.(T (w, v) ⇒
[α](v)) in QBF. Similar equivalences are obtained for the formulas AYα, Kiα,
DΓα, and EΓα by replacing T (w, v) with suitable encodings of the relations T−1,
∼i, ∼

D
Γ , and ∼EΓ .

For defining a translation from a fragment of QBF (resulting from the trans-
lation of CTLpK) to propositional logic, one needs to know how to compute a
CNF formula which is equivalent to a given propositional formula ϕ. While the
standard algorithm toCNF [48, 54], which transforms a propositional formula to
one in CNF, preserving satisfiability only, is of linear complexity, a translation
to an equivalent formula is NP-complete. For such a translation, one can use
the algorithm equCNF - a version of the algorithm toCNF, known as a cube re-
duction. We refer the reader to [9, 22], where alternative solutions can be found.
The algorithm equCNF is a slight modification of the DPLL algorithm checking
satisfiability of a CNF formula (see [54]), but it can be presented in a general
way, abstracting away from its specific realisation.

Assume that ϕ is an input formula. Initially, the algorithm equCNF builds
a satisfying assignment for the formula toCNF(ϕ) ∧ ¬lϕ (lϕ is a literal used
in toCNF(ϕ)), i.e., the assignment which falsifies ϕ. If one is found, instead
of terminating, the algorithm constructs a new clause that is in conflict with
the current assignment (i.e., it rules out the satisfying assignment). Each time a
satisfying assignment is obtained, a blocking clause is generated by the algorithm
blocking clause and added to the working set of clauses. This clause rules out
a set of cases where ϕ is false. Thus, on termination, when there is no satisfying
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assignment for the current set of clauses, the conjunction of the blocking clauses
generated precisely characterises ϕ.

A blocking clause could in principle be generated using the conflict-based
learning procedure. If we require a blocking clause to contain only input vari-
ables, i.e., literals used in ϕ, then one could either use an (alternative) implication
graph [48] in which all the roots are input literals or a method introduced by
Szreter [61, 60], which consists in searching a directed acyclic graph representing
the formula.

Now, our aim is to compute a propositional formula equivalent to a given
QBF formula ∀p1 . . .∀pn.ϕ. The algorithm constructs a formula ψ equivalent
to ϕ and eliminates from ψ the quantified variables on-the-fly, which is correct
as ψ is in CNF. The algorithm differs from equCNF in one step only, where
the procedure blocking clause generates a blocking clause and deprives it of
the quantified propositional variables. On termination, the resulting formula is
a conjunction of the blocking clauses without the quantified propositions and
precisely characterises ∀p1 . . .∀pn.ϕ (see [33, 54] for more details).

4.3 VerICS

VerICS [17, 35] is a verification tool for real-time systems (RTS) and multi-agent
systems (MAS). It offers three complementary methods of model checking: SAT-
based Bounded Model Checking (BMC), SAT-based Unbounded Model Checking
(UMC), and an on-the-fly verification while constructing abstract models of
systems. The theoretical background for its implementation has been presented
elsewhere [54, 55].

A network of communicating (timed) automata (together with a valuation
function) is the basic VerICS’s formalism for modelling a system to be veri-
fied. Timed automata are used to specify RTS, whereas timed or untimed au-
tomata are applied to model MAS. VerICS translates a network of automata and
a temporal-epistemic formula into a propositional formula in CNF and invokes
a SAT-solver in order to check for its satisfiability.

Currently, VerICS implements BMC for ECTLKD (ECTLK extended with
deontic operators) and TECTLK (see Section 5), and UMC for CTLpK. VerICS

has been implemented in C++; its internal functionalities are available via a
interface written in Java [62].

In line with other BMC-based model checkers, the size of the state space,
which can be efficiently verified depends on the specific example and the size
of the submodel considered. In some scenarios VerICS proved capable to analyse
fragments of models as large as 10100 states and over.

5 Extensions to Real-Time Epistemic Logic

In this section we briefly discuss some extensions to real-time to the ECTLK
framework analysed so far. The timed temporal-epistemic logic TECTLK [42]
was introduced to deal with situation where time is best assumed to be dense
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and hence modelled by real numbers. The underlying semantics uses networks
of timed automata [2] to specify the behaviour of the agents. These automata
extend standard finite state automata by a set of clocks X (to measure the flow
of time) and time constrains built over X that can be used for defining guards on
the transitions as well invariants on their locations. When moving from a state to
another, a timed automaton can either execute action transitions constrained by
guards and invariants, or time transitions constrained by invariants only. Crucial
for automated verification of timed automata is the definition of an equivalence
relation ≡ ⊆ IR|X |× IR|X | on clocks valuations, which identifies two valuations v
and v′ in which either all the clocks exceed some value cmax

4, or two clocks x and
y with the same integer part in v and v′ and either their fractional parts are equal
to 0, or are ordered in the same way, i.e., fractional(v(x)) ≤ fractional(v(y))
iff fractional(v′(x)) ≤ fractional(v′(y)). The equivalence classes of ≡ are called
zones. Since ≡ is of finite index, there is only finitely many zones for each timed
automaton.

In addition to the standard epistemic operators, the language of TECTLK
contains the temporal operators EG and EU combined with time intervals I
on reals in order to specify when precisely formulas are supposed to hold. Note
that TECTLK does not include the next step operator EX as this operator is
meaningless on dense time models. The formal syntax of TECTLK in BNF is as
follows:

ϕ, ψ ::= p ∈ PV | ¬p | ψ∧ϕ | ψ∨ϕ | Kiϕ | EΓϕ | DΓϕ | CΓϕ | EGIϕ | E(ϕUIψ)

A (real-time interpreted) model for TECTLK over a timed automaton is defined

as a tuple M = (Q, s0, T,∼1, . . . ,∼n, V ), where Q is the subset of G × IR|X |

such that G is the set of locations of the timed automaton, all the states in Q

are reachable from s0 = (g0, v0) with g0 being the initial location of the timed
automaton and v0 the valuation in which all the clocks are equal to 0; T is defined
by the action and timed transitions of the timed automaton, ∼i ⊆ Q×Q is an
epistemic relation for agent i defined by (g, v) ∼i (g′, v) iff g ∼i g

′ and v ≡ v′;
and V : Q × PV → {true, false} is a valuation function for PV . Intuitively,
in the above model two states are in the epistemic relation for agent i if their
locations are in this relation according to the standard definition in Section 2
and their clocks valuations belong to the same zone.

In what follows, we give the semantics of E(ϕUIψ) and EGIϕ of TECTLK
and discuss how BMC is applied to this logic. Differently from the paths of
temporal-epistemic models, the paths in real-time models consist of action tran-
sitions interleaved with timed transitions. The time distance to a state s from
the initial one at a given path can be computed by adding the times of all the
timed transitions that has occurred up to this state. Following this intuition the
semantics is formulated as follows:

– (M, s) |= E(ϕUIψ) iff there is a path in M starting at s which contains a
state where ψ holds, reached from s within the time distance of I, and ϕ

holds at all the earlier states,

4 This constant is computed from a timed automaton and a formula to be verified.
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– (M, s) |= EGIϕ iff there is a path in M starting at s such that ϕ holds at
all the states within the time distance of I.

The idea of BMC for (M, s0) |= ϕ, where ϕ is TECTLK formula, is based on
two translations and on the application of BMC for ECTLK. An infinite real-
time model M is translated to a finite epistemic model Md and each formula
ϕ of TECTLK is translated to the formula cr(ϕ) of the logic ECTLKy, which
is a slight modification of ECTLK. The above two translations guarantee that
(M, s0) |= ϕ iff (Md, s

0) |= cr(ϕ).

Assume we are given a timed automaton A and a TECTLK formula ϕ. We
begin by translating the real-time model M (for A) to Md. First, the automaton
A is extended with one special clock y, an action ay, and the set of transitions
Ey going from each location to itself and resetting the clock y. These transitions
are used to start the paths over which sub-formulas of ϕ are checked. Then, the
finite model Md for the extended timed automaton is built. The model Md =
(Qd, q

0, Td,∼
d
1, . . . ,∼

d
n,Vd), where Qd is a suitably selected (via discretization)

finite subset of Q, the relations Td,∼
d
i are suitably defined restrictions of the

corresponding relations in M , and Vd = V|Qd.

The above translation cr of the temporal modalities is non-trivial only. Ap-
plying cr to E(αUIβ) we get the formula EXyE(cr(α)Ucr((β) ∧ p)), where the
operator EXy is interpreted over the transitions corresponding to the action
ay, and p is a propositional formula characterising zones. A similar translation
applies to EGIα.

After the above two translations have been defined, the model checking of a
TECTLK formula ϕ over M is reduced to model checking of cr(ϕ) over Md, for
which BMC can be used as presented in Section 4.1.

5.1 Example

To exemplify the expressive power of TECTLK we specify a correctness prop-
erty for an extension of the Railroad Crossing System (RCS) [36], a well-known
example in the literature of real-time verification. Below, we summarise the de-
scription from [42].

The system consists of three agents: Train, Gate, and Controller running in
parallel and synchronising through the events: approach, exit, lower and raise.
When a train approaches the crossing, Train sends the signal approach to Con-
troller and enters the crossing between 300 and 500 milliseconds (ms) from this
event. When Train leaves the crossing, it sends the signal exit to Controller.
Controller sends the signal lower to Gate exactly 100ms after the signal ap-

proach is received, and sends the signal raise signal within 100ms after exit.
Gate performs the transition down within 100ms of receiving the request lower,
and responds to raise by moving up between 100ms and 200ms.

Consider the following correctness property: there exists a behaviour of RCS
such that agent Train considers possible a situation in which it sends the signal
approach but agent Gate does not send the signal down within 50 ms. This

19



property can be formalised by the following TECTLK formula:

ϕ = EF[0,∞]KTrain(approach ∧ EF[0,50](¬down)).

By using BMC techniques we can verify the above property for RCS.

6 Conclusions

It has long been argued that epistemic logic provides an intuitive formalism
for several specifications of interest in computer science. In this article we have
surveyed some of the early contributions by the authors to solving the model
checking problem for temporal-epistemic logic in a branching time setting un-
der a discrete and a continuous model of time. The two main approaches here
presented, BDD- and SAT-based, are seen as complementary. Indeed, a rather
in-depth comparison between VerICS and MCMAS in the context of the dining
cryptographers protocol [32] showed each approach to be better suited in some
circumstances but not others.

Since the development of these core techniques, several optimisations have
been put forward and implemented, including abstraction and symmetry reduc-
tion [15, 14], parallel approaches [37], data abstraction [41], partial-order reduc-
tion [39], and combinations of BDDs with bounded model checking [31, 49].

The conclusion we can draw from the results above is that temporal-epistemic
logic specifications can now be verified effectively with appropriate symbolic
model checking techniques.

Afterword

Our joint work on symbolic model checking for multi-agent systems began in
2002 when we met at a meeting of the EU Project Alfebiite. Marek warmly en-
couraged Alessio, at that time a postdoc under his supervision, to participate in
the meeting and to pursue the research direction there identified. Research on the
technique summarised in Section 3 began there and continued through a series of
further visits encouraged by Marek. The results reported in the other sections of
this paper were developed in the following months and years. Following Alessio’s
move to King’s College London later in the same year, our collaboration con-
tinued through several joint projects and is still very active today. Marek has
regularly provided insightful feedback on these developments. We are indebted
to Marek for his advice and encouragement over the past ten years.
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54. W. Penczek and A. Pó lrola. Advances in Verification of Time Petri Nets and Timed
Automata: A Temporal Logic Approach, volume 20 of Studies in Computational
Intelligence. Springer-Verlag, 2006.
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