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Abstract
Artifact-Centric Systems are a novel paradigm in
service-oriented computing. In the present contri-
bution we show that model checking bounded, non-
uniform artifact-centric systems is undecidable. We
provide a partial model checking procedure for
artifact-centric systems against the universal frag-
ment of a first-order version of the logic CTL. We
obtain this result by introducing a counterpart se-
mantics and developing an abstraction methodol-
ogy operating on these structures. This enables us
to generate finite abstractions of infinite artifact-
centric systems, hence perform verification on ab-
stract models.

1 Introduction
Formalisms and techniques based on Multi-Agent Systems
(MAS) have made a significant contribution in a number of
application areas, including web-services [Singh and Huhns,
2005; Baldoni et al., 2012]. This has taken the form of MAS-
based architectures [Denti and Omicini, 1999; Omicini et al.,
2008; Winikoff, 2009], monitoring methodologies [Lomuscio
et al., 2011; Modgil et al., 2009], formal verification [Lomus-
cio et al., 2012], and many others.

Artifact-centric (AC) systems are a novel paradigm in web-
services [Hull, 2008; Hull et al., 2011]. In the artifact ap-
proach, now used prominently in business-process modelling
and case-based management, structured data and processes
live together with equal importance in the service model and
the interface descriptions. Structured data pose a considerable
challenge from a verification perspective. They entail dealing
with infinite state-spaces, which in turn require specification
languages supporting quantification, such as first-order tem-
poral logics.

Existing literature on the verification of AC systems [Hariri
et al., 2012; Belardinelli et al., 2012b; Deutsch et al., 2009;
Gerede and Su, 2007] makes it clear that the model check-
ing problem is typically undecidable, irrespectively of the un-
derlying formalisation. However, the state-of-the-art points
to conditions that can be imposed on the semantics of AC
systems to obtain decidability. In particular, a condition re-
ferred to as “uniformity” is shown to guarantee decidabil-
ity of systems with bounded runs [Belardinelli et al., 2012a;

2012b], even when considering infinite-state systems. The
same condition is satisfied by definition by the systems intro-
duced in [Hariri et al., 2012], thus guaranteeing the decidabil-
ity of the model checking problem for bounded runs. In both
cases decidability is shown by means of finite abstractions for
infinite models.

A natural open question in the area is therefore whether
uniformity is a necessary condition for deciding the model
checking problem for AC systems. In this paper we show
that this is not the case. Specifically, we show that a sound,
albeit incomplete, finite abstraction technique can be given
for bounded, non-uniform systems with respect to formulas
in the universal fragment of the first-order computation tree
logic FO-CTL. As we show, finite abstractions of infinite AC
systems can be obtained by defining a suitable counterpart
semantics [Brauner and Ghilardi, 2007; Corsi, 2001]. While
our results for the universal fragment are positive, we also
conclusively show that conditions such as uniformity are re-
quired for deciding the model checking problem against the
full logic FO-CTL. To this end, we prove that model checking
bounded, but non-uniform, AC systems against full FO-CTL
is in general undecidable.

The rest of the paper is organised as follows. In Section 2
we fix our notation and give the syntax of the temporal spec-
ification language used as well as a semantics for AC sys-
tems in terms of artifact-centric quantified interpreted sys-
tem (AC-QIS). Section 3 explores the model checking prob-
lem for bounded, non-uniform AC-QIS, thereby showing this
to be undecidable in general. A counterpart semantics for
AC systems and related simulation concepts are introduced
in Section 4. Section 5 contains the main result of the pa-
per concerning the derivation of finite abstractions for non-
uniform, bounded AC-QIS against the universal fragment of
FO-CTL. This also contains the decidability result. We con-
clude in Section 6 by discussing the results and pointing to
future work.

2 Preliminaries
In this section we define artifact-centric quantified interpreted
systems (AC-QIS), introduce a first-order version of the com-
putation tree logic CTL, and present the model checking
problem within this framework. Our notion of AC-QIS is
based on [Belardinelli et al., 2011; 2012a], but here we ab-
stract from the agents and their actions. We firstly introduce



the basic terminology on databases that will be used through-
out the paper as it appears in [Belardinelli et al., 2012a].
Definition 1 (Database schema and instance) A database
schema is a finite set D = {P1/q1, . . . , Pn/qn} of predicate
symbols Pi with arity qi ∈ N.

Given a (possibly infinite) interpretation domain U , a D-
instance over U is a mapping D associating each predicate
symbol Pi to a finite qi-ary relation on U , i.e., D(Pi) ⊆ Uqi .

The set D(U) contains all D-instances on the domain U .
The active domain ad(D) of a D-instance D is the finite set
of all individuals occurring in some predicate interpretation
D(Pi). The primed version of a database schema D as above
is the schema D′ = {P ′1/q1, . . . , P ′n/qn}. Finally, the dis-
joint union D ⊕ D′ of two D-instances D and D′ is the
(D ∪ D′)-instance s.t. (i) D ⊕ D′(Pi) = D(Pi); and (ii)
D ⊕D′(P ′i ) = D′(Pi). We can now introduce the notion of
AC-QIS.
Definition 2 (AC-QIS) An artifact-centric quantified inter-
preted system is a tuple P = 〈D, U,S, D0,→〉, where
• D is the database schema
• U is the interpretation domain
• D0 ∈ D(U) is the initial state
• →⊆ D(U)×D(U) is the transition relation
• S ⊆ D(U) is the set of states reachable from D0 by→

Intuitively, an AC-QIS represents the evolution of a
database instance D0 according to the transition relation→.
A run r from D ∈ S is an infinite sequence D0 → D1 →
· · · , for D0 = D. For n ∈ N, rn = Dn. A state D′ is reach-
able from D if there exists a run r from r0 = D s.t. ri = D′

for some i ≥ 0. In what follows we assume that the transi-
tion relation→ is serial, while S is the set of states reachable
from D0. Notice that S can be infinite. Hence, the AC-QIS
are infinite-state systems in general.

AC-QIS can be seen as a generalisation of the Artifact-
Centric Multi-Agent Systems (AC-MAS) in [Belardinelli et
al., 2012a], as the former abstract from the agents and their
actions, which determine the transition relation for AC-MAS.
AC-QIS are first-order temporal structures that can be used to
interpret a quantified version of CTL.
Definition 3 (FO-CTL) Given a set Var of individual vari-
ables and a set Con ⊆ U of individual constants, the FO-CTL
formulas ϕ on the predicate symbols in a database schema D
are defined as follows:

ϕ ::= Pi(~t) | ¬ϕ | ϕ→ ϕ | ∀xϕ | AXϕ | AϕUϕ | EϕUϕ

where Pi ∈ D and ~t is a qi-tuple of terms, i.e., elements in
Var ∪ Con.

The language FO-CTL is a first-order extension of CTL,
where the only function symbols are constants. Free and
bound variables are defined as standard, as well as the for-
mulas EXϕ, AFϕ, AGϕ, EFϕ, and EGϕ. The sublan-
guage FO-ACTL is the restriction of FO-CTL to the universal
modalities AX and AU defined as follows:
ϕ ::= Pi(~t) | ¬Pi(~t) | ϕ ∧ ϕ | ϕ ∨ ϕ | ∀xϕ | ∃xϕ | AXϕ | AϕUϕ

An assignment is a function σ : Var 7→ U . We denote by
σxu the assignment s.t. (i) σxu(x) = u; and (ii) σxu(x′) = σ(x′)

for x′ 6= x. Also, we assume a Herbrand interpretation of
constants, that is, σ(c) = c for all c ∈ Con.
Definition 4 (Semantics of FO-CTL) We define whether an
AC-QIS P satisfies a formula ϕ in a D-instance D according
to assignment σ as follows:
(Pσ, D) |= Pi(~t) iff 〈σ(t1), . . . , σ(tqi)〉 ∈ D(Pi)
(Pσ, D) |= ¬ϕ iff (Pσ, D) 6|= ϕ
(Pσ, D) |= ϕ→ ϕ′ iff (Pσ, D) 6|= ϕ or (Pσ, D) |= ϕ′

(Pσ, D) |= ∀xϕ iff for all u ∈ ad(D), (Pσ
x
u , D) |= ϕ

(Pσ, D) |= AXϕ iff for all r, if r0 = D then (Pσ, r1) |= ϕ
(Pσ, D) |= AϕUϕ′ iff for all r, if r0 = D then there is k ≥ 0 s.t.

(Pσ, rk) |= ϕ′, and for all j, 0 ≤ j < k
implies (Pσ, rj) |= ϕ

(Pσ, D) |= EϕUϕ′ iff for some r, r0 = D and there is k ≥ 0 s.t.
(Pσ, rk) |= ϕ′, and for all j, 0 ≤ j < k
implies (Pσ, rk) |= ϕ

A formula ϕ is true at D, or (P, D) |= ϕ, if (Pσ, D) |= ϕ
for all σ; ϕ is true in P , or P |= ϕ, if (P, D0) |= ϕ.

Notice that we adopt an active domain semantics, where
quantifiers range over the active domain ad(D) of D.

Finally, we present the model checking problem for AC-
QIS with respect to the specification language FO-CTL.

Definition 5 (Model Checking Problem) Given an AC-QIS
P and an FO-CTL formula ϕ, determine whether there is an
assignment σ0 such that (Pσ0 , D0) |= ϕ.

In general, the model checking problem for AC-QIS is
undecidable. In [Belardinelli et al., 2012a] the same prob-
lem is proved to be decidable for bounded and uniform AC-
MAS, a subclass of AC-QIS. We introduce both notions in
relation to AC-QIS. To do so, we define a notion of iso-
morphism between D-instances: the D-instances D and D′
are isomorphic, or D ' D′, iff there exists a bijection
ι : ad(D) ∪ Con 7→ ad(D′) ∪ Con s.t. (i) ι is the identity on
Con; and (ii) for every Pi ∈ D, for every ~u ∈ Uqi , ~u ∈ D(Pi)
iff ι(~u) ∈ D′(Pi).

Definition 6 (Boundedness and Uniformity) An AC-QIS P
is bounded iff there is b ∈ N s.t. for all D ∈ S, |ad(D)| ≤ b.

An AC-QIS P is uniform iff for every D,D′, D′′ ∈ S ,
D′′′ ∈ D(U), if D → D′ and D ⊕ D′ ' D′′ ⊕ D′′′, then
D′′ → D′′′.

We remark that boundedness places a restriction on the
number of elements appearing in the active domain of each
D-instance, not on the number of D-instances in S, which
might as well be infinite. Uniformity can intuitively be seen
as a fullness condition on AC-QIS: all pairs of D-instances
isomorphic to a pair of temporally related D-instances are
also temporally related. In [Belardinelli et al., 2012a] both
features were shown to entail a decidable model checking
problem through abstraction.

3 Undecidability for Bounded AC-QIS
In this section we show that in general the model checking
problem for bounded AC-QIS is undecidable. We assume
standard definitions of Turing machines and reductions [Pa-
padimitriou, 1994]. Let T = 〈Q,Σ, q0, qh, δ〉 be a determin-
istic Turing machine, where Q is the finite set of states, Σ



is the finite alphabet, q0 ∈ Q is the initial state, qh ∈ Q
is the halting state, and δ is the transition function. We as-
sume δ to be a function Q × Σ → Q × Σ × {L,R} with
δ(q, c) = (q′, c′, d) representing a transition from state q
to state q′, with symbols c and c′ being read and written
respectively, and head direction Left or Right respectively.
W.l.o.g. T uses only the righthand half of the tape.

Given the Turing machine T with input string in =
in0, . . . , ink ∈ Σ∗, we define the AC-QIS PT ,in =
〈D, U,S, D0,→〉 as follows. Let D be the database schema
{C/2, Q/1, S/1, H/0}; while U = N ∪ Q ∪ Σ. Further, let
Dn,m ⊂ D(U) be the set of D-instances Dn,m containing
exactly one pair (n,m) in the interpretation of the predicate
symbol C, for n,m ∈ N, that is, D(C) = {(n,m)}. Intu-
itively, D(C) = {(n,m)} indicates that D represents the n-
th cell in the m-th step of the computation of T on input in;
whileQ and S encode the state and symbol in the cell respec-
tively. Finally, H is a boolean variable expressing whether
the reading/writing head is pointing to the cell.

The initial state D0 is defined, by using infix notation for
relations, as D0,0 = {C(0, 0), Q(q0), S(in0),>}. The tran-
sition relation → for PT ,in is given as follows: (i) D0,0 →
D1,0 where D1,0 = {C(1, 0), Q(q0), S(in1),⊥}; (ii) for
1 ≤ n < k, Dn,0 → Dn+1,0 if Dn+1,0 = {C(n +
1, 0), Q(q0), S(inn+1),⊥}; (iii) for n ≥ k, Dn,0 → Dn+1,0

if Dn+1,0 = {C(n+ 1, 0), Q(q0), ∅,⊥}.
Moreover, for n,m ∈ N, d ∈ {L,R}, Dn,m → Dn,m+1

iff:

• δ(q, c) = (q′, c′, d), Dn,m(Q) = {q}, Dn,m(S) = {c},
Dn,m(H) = > and Dn,m+1(Q) = {q′}, Dn,m+1(S) =
{c′}, Dn,m(H) = ⊥; or

• δ(q, c) = (q′, c′, L), Dn+1,m(Q) = {q}, Dn+1,m(S) =
{c}, Dn+1,m(H) = >, Dn,m(Q) = {q′′}, Dn,m(S) =
{c′′}, Dn,m(H) = ⊥ and Dn,m+1(Q) = {q′},
Dn,m+1(S) = {c′′}, Dn,m+1(H) = >; or

• δ(q, c) = (q′, c′, R), Dn−1,m(Q) = {q}, Dn−1,m(S) =
{c}, Dn−1,m(H) = >, Dn,m(Q) = {q′′}, Dn,m(S) =
{c′′}, Dn,m(H) = ⊥ and Dn,m+1(Q) = {q′},
Dn,m+1(S) = {c′′}, Dn,m+1(H) = >; or

• Dn−1,m(H) = Dn+1,m(H) = ⊥, Dn,m(Q) = {q′′},
Dn,m(S) = {c′′}, Dn,m(H) = ⊥ and Dn,m+1(Q) =
{q′′}, Dn,m+1(S) = {c′′}, Dn,m+1(H) = ⊥.

As standard S in PT ,in is the set of all D-instances reach-
able from D0. Notice that by definition of the transition
relation, → mimicks the transition function δ. The D in-
stances D0,0, . . . , Dk,0 contain the input as the interpretation
of the predicate symbol S; at the beginning of the compu-
tation the head is on the initial cell D0,0. The D instances
D0,m, D1,m, . . . mimick the m-th step of the computation of
T on in. Further, for each m ∈ N, there exists exactly one
n ∈ N s.t. Dn,m(H) = >. This reflects the fact that the
Turing machine is deterministic.

By the definition of D0 and → it can readily be seen that
the AC-QIS PT ,in is bounded. In fact, for all D ∈ S,
|ad(D)| ≤ 4. Thus, PT ,in is indeed a bounded AC-QIS. We
can now prove the following result on the AC-QIS PT ,in.

Lemma 1 PT ,in |= EF Q(qh) iff the Turing machine T
halts on input in.

Proof (sketch). The proof relies on the fact that→ repre-
sents faithfully the transition function δ.⇐ If T halts on input
in, then there exists a step in the computation of T on input
in, say the m-th, where T enters state qh while reading the
n-th cell, say. By the definition of PT ,in this means that for
Dn,m ∈ S, Dn,m(Q) = {qh}. Hence, PT ,in |= EF Q(qh).
⇒ If PT ,in |= EF Q(qh) then there exists Dn,m ∈ S
s.t. Dn,m(Q) = {qh}. Since the transition relation→ mim-
icks the transition function δ, for each k ∈ N, the sequence
D0,k, D1,k, . . . represents the k-th step in the computation of
T on input in. In particular, Dn,m(Q) = {qh} implies that
T reaches the halting state at the m-th step, while reading the
n-th cell. Thus, the Turing machine T halts on input in.

As a consequence of the undecidability of the halting prob-
lem, we obtain the main result of this section.

Theorem 2 Model checking bounded AC-QIS against FO-
CTL specifications is undecidable.

Notice that the AC-QIS PT ,in obtained from the Turing
machine T and input in is not uniform. To see this, suppose
that δ(q, c) = (q′, c′, d), Dn,m = 〈{(n,m)}, {q}, {c},>〉
and Dn,m+1 = 〈{(n,m + 1)}, {q′}, {c′},⊥〉. By definition
of the transition relation→ we have that Dn,m → Dn,m+1.
Moreover, for Dn′,m′ = 〈{(n′,m′)}, {q′′}, {c′′},>〉 and
Dn′,m′′ = 〈{(n′,m′′)}, {q′′′}, {c′′′},⊥〉 we have that
Dn,m ⊕ Dn,m+1 ' Dn′,m′ ⊕ Dn′,m′′ . However, it is not
the case that Dn′,m′ → Dn′,m′′ whenever m′′ 6= m′ + 1. As
a result, the AC-QIS PT ,in is not uniform in general; there-
fore the technique developed in [Belardinelli et al., 2012a;
Hariri et al., 2012] cannot be applied here.

In the following section we show that, notwithstanding
this undecidability result, a decidable, although incomplete,
model checking procedure can be given if the specifications
are restricted to the universal fragment of FO-CTL.

4 Counterpart Semantics
In this section we introduce a semantics for FO-CTL based
on counterpart models. Then, we define a notion of simula-
tion for these systems and show that the simulation relation
preserves the interpretation of formulas in the universal frag-
ment of FO-CTL. We firstly introduce counterpart models as
a generalisation of AC-QIS.
Definition 7 (c-model) A counterpart model is a tupleM =
〈S, s0,→, U, C, I〉 s.t. (i) S is a non-empty set of states; (ii) s0
is the initial state; (iii)→ is a serial binary transition relation
on S; and (iv) for s, s′ ∈ S,
• U(s) is a non-empty set of individuals;
• Cs,s′ is a serial counterpart relation on U(s)× U(s′);
• I is a first-order interpretation, i.e., (i) if Pn is an n-ary

predicate symbol and s ∈ S, then I(Pn, s) is an n-ary
relation on U(s); and (ii) if c ∈ Con, then I(c, s) ∈ U(s).
Similarly to AC-QIS, the active domain ad(s) of a state

s is defined as the set of all individuals occurring in some
predicate interpretation I(Pn, s). Counterpart models can be
thought of as generalisations of AC-QIS, as an AC-QIS can



be seen as a c-model on a finite language, where the counter-
part relation is the identity, and constants are interpreted as
themselves:

Remark 1 Let M = 〈S, s0,→, U, C, I〉 be a c-model and
D a database schema containing some predicate symbols
interpreted by I . If for all s, s′ ∈ S, (i) the counterpart
relation Cs,s′ is the identity; and (ii) I(c, s) = c, then
MD = 〈D,

⋃
s∈S U(s), S, s0,→〉 is an AC-QIS.

On the other hand, any AC-QIS P can be seen as a c-
model:

Remark 2 Let P = 〈D, U,S, D0,→〉 be an AC-QIS and
considerMP = 〈S, D0,→, U ′, C, I〉, where for all D,D′ ∈
S (i) U ′(D) = U ; (ii) CD,D′ is the identity relation; (iii)
I(c,D) = c; and (iv) I(Pn, D) = D(Pn). ThenMP is a
c-model.

The notion of run is defined as for AC-QIS. The relation
C∗ is the transitive closure of C, i.e., C∗s,s′(a, a

′) iff there is
a sequence s0 → . . .→ sk s.t. s0 = s, sk = s′, and there are
a0, . . . , ak s.t. a0 = a, ak = a′, and Csi,si+1(ai, ai+1) for
i < k.

To define satisfaction for FO-CTL formulas in counter-
part models, we consider typed languages and finitary assign-
ments. This is standard when working in counterpart seman-
tics [Brauner and Ghilardi, 2007; Corsi, 2001]. Specifically,
every variable xj ∈ Var is a term of type n, or n-term, for
n ≥ j; while every constant c ∈ Con is an n-term.

Definition 8 (FO-CTLT ) The typed language FO-CTLT
contains all n-formulas φ : n, for n ∈ N, defined as follows:

• if Pm is an m-ary predicate symbol and ~t is an m-tuple of
n-terms, then Pm(~t) is an (atomic) n-formula;
• if ψ,ψ′ are n-formulas, then ¬ψ, ψ → ψ′ are n-formulas;
• if ψ,ψ′ are m-formulas and ~t is an m-tuple of n-terms,

then (AXψ)(~t), (AψUψ′)(~t), (EψUψ′)(~t) are n-formulas;
• if ψ is an (n+ 1)-formula, then ∀xn+1ψ is

an n-formula;

The other logical operators are defined as standard. The
formula AXφ : n is a shorthand for (AXφ)(x1, . . . , xn) : n;
similarly for AφUφ′ : n and EφUφ′ : n. In what follows we
consider also the sublanguage FO-ACTLT , which is obtained
by restricting FO-CTLT to the universal modalities AX and
AU . Also, FOT is the non-modal fragment of FO-CTLT .

The meaning of a typed formula φ : n at a state s can
intuitively be understood as a subset of U(s)n, i.e., the set of
n-tuples satisfying φ : n at s. Therefore, the definition of
satisfaction is given by means of finitary assignments, where
an n-assignment in s is an n-tuple ~a of elements in U(s). Let
t be an n-term, the valuation ~a(t) for the n-assignment ~a is
equal to aj if t = xj ; otherwise, ~a(t) = an whenever t = c.

Definition 9 (Semantics of FO-CTLT ) The satisfaction re-
lation |= for a state s ∈ M, a typed formula φ : n and an
n-assignment ~a is inductively defined as follows:
(M~a, s) |= Pm(~t) iff 〈~a(t1), . . . ,~a(tm)〉 ∈ I(Pm, s)
(M~a, s) |= ¬ψ iff (M~a, s) 6|= ψ
(M~a, s) |= ψ → ψ′ iff (M~a, s) 6|= ψ or (M~a, s) |= ψ′

(M~a, s) |= (AXψ)(~t) iff for all r,~b ∈ U(r1), if r0 = s and

Cs,r1(~a(ti), bi) then (M~b, r1) |= ψ
(M~a, s) |= (AϕUϕ′)(~t)iff for all r, if r0 = s then there are k ≥ 0,

~b ∈ U(rk) s.t. C∗s,rk (~a(ti), bi) and

(M~b, rk) |= ϕ′, and
for all j, ~c ∈ U(rj), if 0 ≤ j < k and
C∗s,rj (~a(ti), ci) then (M~c, rj) |= ϕ

(M~a, s) |= (EϕUϕ′)(~t)iff there is r s.t. r0 = s, and k ≥ 0,
~b ∈ U(rk) s.t. C∗s,rk (~a(ti), bi) and

(M~b, rk) |= ϕ′, and
for all j, ~c ∈ U(rj), if 0 ≤ j < k and
C∗s,rj (~a(ti), ci) then (M~c, rj) |= ϕ

(M~a, s) |= ∀xn+1ψ iff for all a∗ ∈ ad(s), (M~a·a∗ , s) |= ψ

where ~a · a∗ is the (n+ 1)-assignment 〈a1, . . . , an, a∗〉.
An n-formula φ is true at a state s, or (M, s) |= φ, iff it is

satisfied by every n-assignment; φ is true on a c-model M,
orM |= φ, iff (M, s0) |= φ.

Notice that by considering c-models where the counterpart
relation is the identity and constants are interpreted as them-
selves, we have that the relation of satisfaction in Def. 9 re-
duces to the notion in Def. 4. Thus, c-models can really be
seen as a generalisation of AC-QIS. We state this result for-
mally. Firstly, we define a translation πn, for n ∈ N, from
FO-CTL to FO-CTLT . Given an FO-CTL formula φ and n
greater than or equal to the maximum k such that xk occurs
in φ, the n-formula πn(φ) in FO-CTLT is inductively defined
as follows:

πn(Pm(~t)) := Pm(~t)
πn(¬ψ) := ¬πn(ψ)
πn(ψ → ψ′) := πn(ψ)→ πn(ψ′)
πn(AXψ) := AXπn(ψ)
πn(AψUψ′) := Aπn(ψ)Uπn(ψ′)
πn(∀xiψ) := ∀xn+1(πn(ψ)[xi/xn+1])

Notice that πn simply renames bound variables in φ. We
can now state the following result on the relation between an
AC-QIS P and the corresponding c-modelsMP .

Lemma 3 Let P be an AC-QIS, φ[~x] ∈ FO-CTL with free
variables ~x, and σ(~x) = ~a. We have that

(Pσ, D) |= φ[~x] iff (M~a
P , D) |= πn(φ[~x])

Proof (sketch). By induction on the length of φ.

This result allows us to model check an AC-QIS by verify-
ing the corresponding c-model.

We now present a notion of simulation for counterpart
models and we show that it preserves the satisfaction of for-
mulas in FO-ACTLT . Firstly, we introduce some prelimi-
nary definitions. In what follows we consider the c-models
M = 〈S, s0,→, U, C, I〉 andM′ = 〈S′, s′0,→′, U ′, C ′, I ′〉,
with s ∈ S and s′ ∈ S′.
Definition 10 A state s′ simulates s, or s � s′, iff there exists
a surjective mapping ι : U(s) → U ′(s′) s.t. (i) for every
constant c, I(c, s) = ι(I(c, s′)); (ii) for everyPi, ~u ∈ U(s)qi ,
~u ∈ I(Pi, s) iff ι(~u) ∈ I(Pi, s

′).

Any function ι as above is a witness for s � s′. We write

s
ι
� s′ to state this explicitly.



Definition 11 Let ~a ∈ U(s)n and ~a′ ∈ U ′(s′)n be n-
assignments, (s′,~a′) simulates (s,~a), or (s,~a) � (s′,~a′), iff

for some witness ι, (i) s
ι
� s′; and (ii) ι(~a) = ~a′.

We overload the symbol � for representing the relations
in Def. 10 and 11; the difference will be clear from the con-
text. Notice that � is a transitive relation. Also, simulations
preserve the interpretation of FO-formulas:

Lemma 4 If (s,~a) � (s′,~a′), then for each n-formula φ in
FOT ,

(M~a, s) |= φ iff (M′~a′ , s′) |= φ

Proof (sketch). By induction on the length and type of φ.

We now introduce the notion of simulation on c-models,
which is then used to extend the result in Lem. 4 to FO-
ACTLT .

Definition 12 (Simulation) A c-modelM′ simulatesM, or
M � M′, iff (i) for every ~a′0 ∈ U ′(s′0)n there exists ~a0 ∈
U(s0)n s.t. (s0,~a0) � (s′0,~a

′
0); and (ii) if (s,~a) � (s′,~a′)

then for every t, ~b ∈ U(t)n, if s → t and Cs,t(~a,~b), then
there are t′ ∈ S′, ~b′ ∈ U(t′)n s.t. s′ → t′, Cs′,t′(~a′,~b′), and
(t,~b) � (t′,~b′).

We use the same symbol� to express a simulation between
c-models and states; the difference will be clear from the con-
text. Also notice that, since, according to Remark 2, AC-QIS
are a specific subclass of c-models, the definition of simu-
lation for the latter applies also to the former. Further, the
simulation relation on c-models preserves the satisfaction of
formulas in FO-ACTLT .

Theorem 5 Suppose that M � M′ and (s,~a) � (s′,~a′),
then for each n-formula φ in FO-ACTLT , we have

(M′~a′ , s′) |= φ ⇒ (M~a, s) |= φ

Proof (sketch). By induction on the length and type of
φ. The base case and the inductive cases for propositional
connectives and quantifiers are proved as in Lem. 4. For φ =
(AXψ)(~t), suppose that (M~a, s) 6|= φ. Then, there exists a
run r,~b ∈ U(r1) s.t. r0 = s, Cs,r1(~a(ti), bi) and (M~b, r1) 6|=
ψ. By definition of simulation there are t′ ∈ S′,~b′ ∈ U ′(t′)n
s.t. s′ →′ t′, C ′s′,t′(~a′(ti), b′i), and (r1,~b) � (t′,~b′). Notice
that by seriality s′ →′ t′ can be extended to an infinite run r′
s.t. r′0 = s′ and r′1 = t′. Further, by induction hypothesis
we have that (M′~b′ , r′1) 6|= ψ. Thus, (M′~a′ , s′) 6|= φ. The
case for φ = (AψUψ′)(~t) is proved similarly.

From Thm. 5 we immediately obtain the following result.

Corollary 6 IfM�M′, then for every n-formula φ ∈ FO-
ACTLT , ~a′0 ∈ U ′(s′0)n, there exists ~a0 ∈ U(s0)n s.t.

(M′~a′0 , s′0) |= φ ⇒ (M~a0 , s0) |= φ

Proof (sketch). By the definition of simulation for ev-
ery ~a′0 ∈ U ′(s′0)n there exists ~a0 ∈ U(s0)n s.t. (s0,~a0) �
(s′0,~a

′
0). Moreover, by Thm. 5 we obtain that (M′~a′0 , s′0) |=

φ implies (M~a0 , s0) |= φ.

By Lem. 3 and Cor. 6 we can solve the model checking
problem for an AC-QIS P and an FO-ACTL formula φ by
considering a c-modelM′ that is similar toMP . By Cor. 6, if
(M′~a′0 , s′0) |= πn(φ) for some n-assignment ~a′0, then there
exists ~a0 ∈ U(s0) s.t. (M~a0

P , s0) |= πn(φ). Moreover, by
Lem. 3, if (M~a0

P , s0) |= πn(φ) then (Pσ, s0) |= φ for some
assignment σ that agrees with ~a0 on the free variables in φ.
Thus, a positive solution to the model checking problem for
the abstract c-modelM′ implies a positive solution also for
the concrete AC-QIS P . In the following section we analyse
the conditions under which the abstract c-modelM′ is finite.

5 Finite Abstractions
In this section we introduce the abstraction of a c-modelM
and show that it is similar to M. Further, we identify the
conditions under which such abstraction is finite, thus allow-
ing the verification of infinite-state AC-QIS by the results in
Section 4.

Firstly, we define [s] as the equivalence class of s accord-
ing to the symmetric closure ≈ of the relation �. Further, for
s ∈ [t], [s, a][t] is the equivalence class of (s, a) according to
the symmetric closure ≈ of �. Notice that we overload the
symbol≈ as we did with�; the distinction will be clear from
the context. Also, ≈ is not to be confused with the isomor-
phism relation '.

Definition 13 (Abstraction) Given a c-model M =
〈S, s0,→, U, C, I〉, the abstraction of M is a tuple
M′ = 〈S′, s′0,→′, U ′, C ′, I ′〉 s.t. (i) S′ = {[s] | s ∈ S}; (ii)
s′0 = [s0]; and for every [s], [s′] ∈ S′,
• [s]→′ [s′] iff there are u ∈ [s], v ∈ [s′] s.t. u→ v
• U([s]) = {[s, a][s] | a ∈ U(s)}
• C ′[s],[s′] = {([s, a][s], [s

′, b][s′]) | there are (u, a′) ∈ [s, a][s],
(v, b′) ∈ [s′, b][s′] and Cu,v(a′, b′)}
• I ′(c, s) = [s, I(c, s)][s] and ~[s, a][s] ∈ I ′(P, [s]) iff ~a ∈ I(P, s).

It can be shown that the abstraction of a c-model M is
also a c-model. In particular, the interpretation I ′ is well-
defined as it is independent from the specific representative:
if (s′, a′) ∈ ~[s, a][s], then (s′, a′) ≈ (s, a). In particular,
~a ∈ I(P, s) iff ~a′ ∈ I(P, s′).

Given a c-model M and its abstraction M′, we define a
mapping f :M→M′ s.t. f(s,~a) = ([s], ~[s, a][s]). We now
prove that the mapping f defines a simulation relation.

Theorem 7 LetM be a c-model andM′ its abstraction. The
relation F ((s,~a), f(s,~a)) is a simulation between M and
M′.

Proof (sketch). Firstly notice that for every ~[s0, a0][s0] ∈
U ′(s′0)n there exists~a0 ∈ U(s0)n and F ((s0,~a0), f(s0,~a0)).
To we show that (s,~a) � f(s,~a), we define a mapping
ι : U(s) → U ′([s]) s.t. ι(a) = [s, a][s] for a ∈ U(s). It

is clear that s
ι
� [s] by the definition of I ′. Thus, (s,~a) �

f(s,~a). Finally, suppose that for t ∈ S and ~b ∈ U(t)n,
we have that s → t and Cs,t(~a,~b). By the definition of
M′ we clearly see that [s] → [t]. Also, for every a ∈ ~a,
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b ∈ ~b, (s, a) ∈ [s, a][s], (t, b) ∈ [t, b][t] and Cs,t(a, b). Hence,
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~[t, b][t]), and F ((t,~b), f(t,~b)).

By Cor. 6 and Thm. 7 we obtain the following result.
Corollary 8 Let M be a c-model and M′ its abstraction .
For every n-formula φ in FO-ACTLT , for every ~a0 ∈ U(s0),

(M′
~[s0,a0][s0] , [s0]) |= φ ⇒ (M~a0 , s0) |= φ

Now we investigate the problem of determining sufficient
conditions for the abstraction of a c-model M to be finite.
This will allow the verification of an infinite-state AC-QIS P
by model checking the finite abstraction ofMP .
Theorem 9 If P is a bounded AC-QIS, then the abstraction
M′ of the c-modelMP is finite.

Proof (sketch). Notice that if P is bounded, then there
exists b ∈ N s.t. for every D ∈ S, |ad(D)| ≤ b. This means
that there is only a finite number of equivalence classes [D]
according to relation ≈. Hence, S′ is finite. Further, since
the active domain of each D is finite, there is only a finite
number of equivalence classes [D, a][D], for a ∈ U . Thus,
each U([D]) is also finite.

As a consequence of Cor. 8 and Thm. 9, to verify an FO-
ACTL formula φ on a bounded AC-QIS P , we can model
check πn(φ) ∈ FO-ACTLT on the finite abstraction ofMP .
We illustrate the procedure above by an example. Consider
the AC-QIS P in Fig. (a), where (i) D = {P/1}; (ii) U = N;
(iii) S = {Dn | n ∈ N and Dn(P ) = {n}}; (iv) D0 is the
initial state; (v) for all n ∈ N, Dn → Dn+1. Firstly, notice
that the AC-QIS P is not uniform, as D1 ⊕D2 ' D1 ⊕D3

and D1 → D2, but not D1 → D3. Thus, the techniques
developed in [Belardinelli et al., 2012a] cannot be applied.
Consider also the following specifications in FO-ACTL: χ =
∀xAG(P (x) → AX¬P (x)) and θ = ∀xAG(P (x) →
AXAG¬P (x)). Since P is infinite-state, χ and θ cannot be
model checked directly on P .

To define the abstractionM′ of P we observe that for ev-
ery i, j ∈ N, Dj � Di by the witness ι that maps j into i, and
N \ {j} into N \ {i}. Hence, S′ = {S} and S →′ S. Further,
for every i, j ∈ N, (Dj , j) � (Di, i); while for i′ 6= i, j′ 6= j,
(Dj , j

′) � (Di, i
′). Hence, we obtain two equivalence

classes a = {(Dn, n) | n ∈ N} and b = {(Dn, n
′) |

n 6= n′}. Then the counterpart relation is defined as CS,S =
{(a, b), (b, b), (b, a)}, corresponding respectively to the tran-
sitions (Dn, n) → (Dn+1, n), (Dn, n

′) → (Dn+1, n
′) for

n′ 6= n, n′ 6= n + 1, and (Dn−1, n) → (Dn, n). Finally, we
have I(P, S) = {a}. The abstract c-modelM′ is illustrated
in Fig. (b). We can now model check the typed versions of
χ and θ, namely χT = ∀x1AG(P (x1) → AX¬P (x1)) and

θT = ∀x1AG(P (x1) → AXAG¬P (x1)), onM′. Clearly,
(M′, S) |= χT , while (M′, S) 6|= θT . Hence, by Lem. 3 and
Cor. 8 we can derive that (P, D0) |= χ; while nothing can be
said about θ in P .

We conclude by remarking that in general the abstraction
of an AC-QIS as defined in Def. 13 is not an AC-QIS, but a
c-model. This motivates the introduction of c-models.

6 Conclusions and Further Work
As remarked earlier, a considerable amount of work has fo-
cused on the development of verification methodologies for
artifact-centric systems [Belardinelli et al., 2012a; 2012b;
Deutsch et al., 2009; Gerede and Su, 2007; Hariri et al.,
2012]. The-state-of-the-art in the area involves constructing
finite abstractions of the artifact-system’s infinite state space.
So far work in the literature has shown that this process can
be conducted whenever the artifact system is bounded and
“uniform”. In this paper we showed that there are noteworthy
cases where this condition can be relaxed. Specifically, we
demonstrated that in the case of universal specifications, finite
abstractions can be constructed for bounded but non-uniform
systems. This leads us to the following considerations.

From the theoretical point of view, it is of interest to ascer-
tain whether a necessary condition exists for finite abstrac-
tions. Our current results show that uniformity is not nec-
essary for partial decision procedures, but that at the same
time, bounded systems do not in general admit finite abstrac-
tions. Still, none of these results are “tight” and it is an open
problem whether the existence of finite abstractions can be
characterised in terms of system conditions.

From an application standpoint, while uniformity covers
a wide range of systems, the corresponding condition on
the underlying databases, namely genericity [Abiteboul et
al., 1995], is satisfied only by a restricted number of sys-
tems. It follows that a large class of data-aware systems,
such as those implemented by GSM [Heath et al., 2011], are
not “amenable” (in the sense of [Belardinelli et al., 2012b]),
hence may generate non-uniform models. Therefore, only
the techniques introduced in this paper may be used to model
check them. It would be of interest to implement the method-
ology of this paper into a toolkit for the practical verification
of artifact-centric systems. The model checker GSMC [Gon-
zalez et al., 2012] already targets the verification of artifact-
centric systems, but it presently offers no support for data and
deals with finite state spaces only. We leave both points above
for further work.
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