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Abstract. We put forward an agent-based refinement methodology
for the verification of infinite-state Multi-Agent Systems by predicate
abstraction. We use specifications defined in a three-valued variant
of the temporal epistemic logic ATLK. We define “failure states” as
candidates for refinement, and provide a sound automatic procedure
for their identification. Further, we introduce a methodology based
on Craig’s interpolants for the refinement of the agent-specific predi-
cates upon which the abstraction is built. We illustrate the refinement
technique on an infinite-state auction scenario, and show that speci-
fications of interest, that could not be checked by plain abstraction,
can now be verified on the refined models.

1 Introduction

Over the past 15 years, considerable research has taken place in
the area of verification of finite state Multi-Agent Systems (MAS).
This includes symbolic model checking methods [13, 25], SAT-based
methods [31], partial-order reductions [23], and symmetry reduc-
tion [8]. Considerably less attention has so far been paid to devising
techniques for verifying infinite state MAS. Since, like standard pro-
grams, MAS typically denote infinite models, devising techniques
for verifying infinite state MAS remains of considerable interest.

Predicate abstraction [9, 19] is a successful approach to the verifi-
cation of infinite state programs. In predicate abstraction finite state
models, representing under- and over-approximations of the system,
are generated automatically by Boolean programs built on predicates
derived from the program’s and the system’s specifications. If the
truth value of the specification cannot immediately be determined on
the initial Boolean program, the list of predicates is updated automat-
ically and a new Boolean program is generated and checked. While
this procedure cannot be complete due to the undecidability of the
underlying problem, by checking several refinements in succession
it is often possible to determine the truth value of the specification
on the infinite-state program. A key aspect of this approach is the
actual derivation of the refined abstractions.

While predicate abstraction is an established technique in software
verification, considerable challenges need to be overcome before it
can be applied to MAS. These include the fact that MAS semantics
are modular in the agents and that agent-based specifications are con-
siderably richer than those traditionally used in software engineering.
Any predicate abstraction technique for MAS ought to support these
aspects.

In this paper we introduce a refinement technique for verifying
MAS against specifications defined in the agent-based logic ATLK.
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A key aspect of the approach we take is the particular setup we
consider when combining ATL [2] and epistemic logic [12, 30] to
form the logic ATLK that we use to specify MAS. ATL is most often
used in its original variant that assumes systems with perfect recall
and complete information. This setup is attractive from a verification
perspective as the corresponding model checking problem is PTIME,
like CTL and CTLK [11, 26]. In contrast, epistemic logic is defined
on the basis of incomplete information. This creates a tension in com-
binations such as ATEL [15], where ATL and epistemic modalities
do not share the same underlying information model for the agents
in the system. Proposals have been made to overcome this modelling
difficulty. The natural setting involves assuming incomplete informa-
tion for both the strategic ATL modalities and the epistemic operators
[17]. If memoryless, uniform strategies [18] are assumed, this leads
to a decidable model checking problem; the resulting complexity is
however ∆P

2 -complete [16]. In turn this makes the model checking
problem exponential against implicit structures given by modelling
languages. Given the difficulty of model checking large state spaces,
any practical prospect of verifying MAS is unfeasible under this as-
sumption.

To solve the difficulty above we here work with a variant of ATLK
which is defined on incomplete information and memoryless, non-
uniform strategies. Under non-uniform strategies, agents do not have
to play the same action in the same local state, as long as the action is
allowed by their protocol. This set up has been proposed in [27] and
used in a number of applications [25]. Under this setting ATLK re-
tains a PTIME model checking problem and verification can be per-
formed via fixed-point characterisations of the ATL operators. The
semantics of non-uniform strategies is considerably more convoluted
and was formally presented in [20, 21, 22]. In this paper we adopt this
framework, which we recall in the next section. However, we refer
to these papers for more motivations, discussions of these features,
as well as relationship with alternative assumptions, including plain
ATEL (see [1]). We stress that the framework here proposed entirely
subsumes CTLK, for which no predicate refinement methodology
has been proposed yet.

Related Work. Other than the contributions hereafter, we are
aware of no work addressing the verification of infinite-state MAS
by predicate abstraction. In [32, 3] the authors define a predicate
abstraction methodologies supporting CTL and Alternating Modal
Logic (AML) specifications. This work differs from the present one
in several respects. Firstly, their specification language does not sup-
port epistemic modalities. Secondly, the AML semantics assumes
complete information and perfect recall; instead we only assume in-
complete information and no memory. Thirdly, no method is given
for the refinement of predicates. In contrast, we here put forward an
algorithm based on Craig’s interpolants that is used to generate suc-



cessive refinements from the agents’ models.
Closer to our work are [21, 22] where a three valued logic ATLK is

defined and a procedure for an agent-based state and action abstrac-
tion is given. However, no solution is proposed there for performing
refinement on the abstract models. So if a specification is initially un-
defined, no conclusion can be drawn. We here follow that approach,
but extend it by identifying so called “failure pairs”, which we ex-
ploit to build a refined model. This enables us to solve the verifica-
tion problem in several cases of interest where the original technique
fails.

Predicate abstraction for the verification of MAS against temporal-
epistemic specifications was proposed in [14]. Our contribution dif-
fers from that work as we support ATL specifications; the underlying
semantics is different; also while [14] addresses the specific case of
GSM programs, here we deal with generic MAS; lastly, in common
with [22], [14] cannot deal with predicate refinement, which consti-
tutes our main contribution here.

Scheme of the paper. The paper is structured as follows. In Sec-
tions 2 we summarise the methodology from [22] for initial abstrac-
tion on MAS. In Section 3 we define the concept of failure pair;
define an algorithm for their identification, and study its properties.
We adopt these in Section 4 to derive Craig’s interpolants that we use
to revise the list of predicates in the initial abstraction. We exemplify
the technique in Section 5 and conclude in Section 6 by pointing to
future work.

2 Predicate Abstraction for MAS
In this paper we assume that agents have imperfect information and
use memoryless (positional) strategies [4, 27]; this is in contrast
with previous approaches [32, 3] that assume perfect information.
We initially follow the three-valued abstraction methodology intro-
duced by [20, 21], that we summarise hereafter. In the following
Ag = {1, . . . ,m} is a set of agents and V a set of propositions.
Given a set U , U denotes its complement (w.r.t. some V ⊇ U ).

We first define the notion of interpreted system [12], to represent
formally the execution of a multi-agent system.

Definition 1 (IS) An interpreted system is a tuple M = ({Li, Acti,
Pi, ti}i∈Ag, I ,Π) such that:

• for each agent i ∈ Ag,

– Li is the (possibly infinite) set of local states;

– Acti is the set of actions;

– Pi : Li → (2Acti \ {∅}) is the local protocol;

– ti ⊆ Li × ACT × Li is the local transition relation, where
ACT = Act1 × · · · ×Act|Ag| is the set of joint actions;

• I ⊆ L1 × · · · × L|Ag| is the set of global initial states;

• Π : L1×· · ·×L|Ag|×V → {tt,ff,uu} is the labelling function.

By Def. 1 each agent i in an interpreted system is assumed to per-
form the actions in Acti, according to protocol Pi. Differently from
the standard notion of IS [12], here the transition function is local
[24], and propositional atoms can receive three truth values: true tt,
false ff , and undefined uu. We say that a truth value t is defined when-
ever t 6= uu. Also, v.i denotes the i+ 1-th element of tuple v.

Given an IS M , we introduce the global transition relation T ⊆
S ×ACT × S such that T (s, a, s′) holds iff for all i ∈ Ag,

• ti(s.i, a, s′.i), and

• a.i ∈ Pi(s.i).

Then, S ⊆ L1×· · ·×L|Ag| denotes the set of global states, reach-
able by the global transition relation T from the set I of initial states.
Finally, for every i ∈ Ag,∼i⊆ S2 is the epistemic indistinguishabil-
ity relation defined as s ∼i s

′ iff s.i = s′.i [12]. Given a set Γ ⊆ Ag
of agents, the relation ∼Γ is the transitive closure of (

⋃
i∈Γ ∼i). In

the following we assume that our models are non-terminating, i.e.,
for every s ∈ S and enabled joint action a ∈ ACT , T (s, a, s′)
holds for some state s′ ∈ S.

In this paper we analyse two logics built on the same syntax, but
with different semantics: the two-valued logic ATLK2v and the three-
valued logic ATLK3v .

Definition 2 (ATLK) Formulas in the logics ATLK2v and ATLK3v

are defined as follows:

ϕ ::= q | ¬ϕ | ϕ ∧ ϕ | 〈〈Γ〉〉Xϕ | 〈〈Γ〉〉(ϕUϕ) | 〈〈Γ〉〉Gϕ | CΓ′ϕ

where q ∈ V , i ∈ Ag, Γ,Γ′ ⊆ Ag, and Γ′ 6= ∅.

The logic ATLK is an epistemic extension of Alternating-time
Temporal Logic [17, 27], including the common knowledge operator
CΓ′ . We refer to [27, 21] for the reading of modalities and derived
operators in the context of the present semantics. We use abbrevia-
tions to introduce 〈〈Γ〉〉Fϕ, the remaining propositional connectives,
and ATLK operators. In particular, for every agent i ∈ Ag, we define
the individual knowledge operator Ki as C{i}.

In order to provide a semantics to ATLK by means of interpreted
systems, we introduce the notion of a memoryless strategy for agent
i ∈ Ag as a function fi : Li → (2Acti \ ∅) such that for every local
state l ∈ Li, fi(l) ⊆ Pi(l). Given a path p = s0s1 . . . , pi denotes
the i+ 1-th element si in p. Given a set FΓ = {fi | i ∈ Γ} of strate-
gies, one for each agent i ∈ Γ, a set X of paths is FΓ-compatible if
it is a minimal, non-empty set of paths such that for every p ∈ X ,
position j ≥ 0, joint actions a, a′, and state s′, if T (pj , a, pj+1),
T (pj , a′, s′), and for every i ∈ Γ, a′.i = a.i ∈ fi(pj .i), then there
exists some path p′ ∈ X starting with p0, . . . , pj , s′. Let out(s, FΓ)
be the family of all FΓ-compatible sets of paths starting from s.

We briefly comment on the notions of strategy and compatible
path just introduced. Specifically, we assume that strategies are non-
uniform in the sense of [27], i.e., agents can execute different ac-
tions at different global states in which their own local state is the
same. This is in contrast with both the original semantics for ATL [2],
which stipulates complete information of the global state, and with
successive proposals to accommodate imperfect information [17].
However, it can be proved that the present formulation and the per-
fect information account of [2] are logically equivalent in the sense
that an ATL formula is true in the setting we here adopt if and only if
the formula is true in the semantics adopted in [2]. It follows that, for
the two-valued fragment, an ATLK formula holds in an interpreted
system under the present semantics if it holds in the ATEL logic in
[15]. In particular, the fixed point characterisations of ATL operators
hold in the present setting.

Finally, we report the three-valued satisfaction relation |=3

from [21]. We assume the Kleene semantics for the standard boolean
connectives. For the ATL and knowledge modalities, the semantic is
defined as follows.

Definition 3 (Satisfaction) The 3-valued satisfaction relation |=3
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for an IS M , state s ∈ S, and formula ϕ is defined as follows:

M, s |=3〈〈Γ〉〉Xϕ =
tt iff for some strategy FΓ, some X ∈ out(s, FΓ)

and all p ∈ X , we have (M,p1 |=3 ϕ) = tt

ff iff for some strategy FΓ, some X ∈ out(s, FΓ)
and all p ∈ X we have (M,p1 |=3 ϕ) = ff

M, s |=3〈〈Γ〉〉ϕ1Uϕ2 =

tt iff for some strategy FΓ, some X ∈ out(s, FΓ)
and all p ∈ X , there is k ≥ 0 s.t. (M,pk |=3

ϕ2) = tt and for all j < k, (M,pj |=3 ϕ1) = tt

ff iff for some strategy FΓ, some X ∈ out(s, FΓ)

and all p ∈ X , k ≥ 0 we have (M,pk |=3 ϕ2) =
ff or there is j < k s.t. (M,pj |=3 ϕ1) = ff

M, s |=3〈〈Γ〉〉Gϕ =
tt iff for some strategy FΓ, some X ∈ out(s, FΓ) and

all p ∈ X , i ≥ 0 we have (M,pi |=3 ϕ) = tt

ff iff for some strategy FΓ, some X ∈ out(s, FΓ) and
all p ∈ X , there is i ≥ 0 s.t. (M,pi |=3 ϕ) = ff

M, s |=3 CΓϕ =

{
tt iff (M, s′ |=3 ϕ) = tt for all s′ ∼Γ s

ff iff (M, s |=3 ϕ) = ff

In all other cases, the value of formula ϕ is undefined (uu).

The two-valued satisfaction relation |=2 can be derived from |=3

by considering clauses for tt only, as well as classic negation. An IS
M satisfies property ϕ in ATLK, or M |=2 ϕ, iff for all initial states
s ∈ I , (M, s) |=2 ϕ. Similarly, (M |=3 ϕ) = tt (resp. ff) iff for all
(resp. some) s ∈ I , ((M, s) |=3 ϕ) = tt (resp. ff). Otherwise, (M
|=3 ϕ) = uu.

In [21] it is shown that that for every ϕ in ATLK, (M |=3 ϕ) = tt
implies M |=2 ϕ and (M |=3 ϕ) = ff implies M 6|=2 ϕ. That is,
defined truth values are preserved.

Since interpreted systems might have a possibly infinite state
space, abstraction techniques have been developed to make verifi-
cation feasible [7, 6]. In this section we describe the agent-based ab-
straction techniques put forward in [21, 22] that uses predicates de-
rived from the system description and the specification to be checked.

Assume an ISM and a list (~p1, . . . , ~p|Ag|) of tuples of predicates,
where intuitively each predicate represents a condition on an agent’s
protocol, or transition relation. The satisfaction of conjunctions c of
literals (predicates and their negation), called cubes, can naturally be
given at an agent’s local state, denoted as li |= c. A cube is satisfi-
able iff it is satisfied by some local state. By using predicates, agent
descriptions can be abstracted as follows.

Definition 4 (Abstract Agent) Given an agent i ∈ Ag and a list ~pi
of predicates, the abstract agent is a tuple iA = 〈LA

i , Acti, P
may
i ,

Pmust
i , tmay

i , tmust
i 〉 such that:

• LA
i is the set of all satisfiable cubes;

• the may protocol Pmay
i is such that a ∈ Pmay

i (c) iff for some l ∈
Li, l |= c and a ∈ Pi(l);

• the may relation tmay
i is such that tmay

i (c, a, c′) iff for some local
states l, l′ ∈ Li, l |= c, l′ |= c′, and ti(l, a, l′);

• the must protocol Pmust
i is such that a ∈ Pmust

i (c) iff for every
l ∈ Li, l |= c implies a ∈ Pi(l);

• the must relation tmust
i is such that tmust

i (c, a, c′) iff for all l ∈ Li,
if l |= c then ti(l, a, l′) for some l′ satisfying c′.

We say that a global state s ∈ S satisfies a tuple b =
(c1, . . . , c|Ag|) of cubes, denoted as s |= b, if each s.i satisfies ci.

Definition 5 (Abstract IS) The predicate abstraction of an IS M
w.r.t. predicates (~p1, . . . , ~p|Ag|) is the IS MA = (AgA, IA,ΠA),
where:

• AgA is the set of abstract agents iA w.r.t. ~pi, for i ∈ Ag;

• for every state b ∈ SA (where SA = LA
1 × · · · × LA

|Ag|), q ∈ V
and t ∈ {tt,ff}, ΠA(b, q) = t iff Π(s, q) = t for all states s
satisfying b;

• IA = {b | for some s ∈ I, s |= b}.

Furthermore, for every Γ ⊆ Ag, the abstract transition relation
TA

Γ (b, a, b′) holds iff

• for all i ∈ Γ, a.i ∈ Pmust(b.i) and tmust
i (b.i, a, b′.i);

• for all i 6∈ Γ, a.i ∈ Pmay(b.i) and tmay
i (b.i, a, b′i).

Intuitively, the may and must components of abstract IS can be
seen respectively as over- and under-approximations of the strategic
abilities of agents. In the following we use the notion of (immediate)
successor according to relations TA

Γ and TA
Γ

.
An abstraction MA can be used to interpret the language ATLK

according to the three-valued semantics. In particular, the following
preservation result applies [21].

Theorem 6 Let M be an IS with predicate abstraction MA. For
every ATLK property ϕ,

(MA |=3 ϕ) = tt implies M |=2 ϕ;

(MA |=3 ϕ) = ff implies M 6|=2 ϕ.

In [22] the result above is exploited to give a methodology for ver-
ifying infinite-state MAS. Starting from the infinite-state agents’ de-
scriptions and specifications, the relevant predicates, which are then
used to construct the abstract, finite-state interpreted system are de-
rived. The MAS specifications are then evaluated on it. If the truth
value is defined, it can be deduced whether or not the specification
holds on the original MAS. If the specification is undefined, no con-
clusion can be drawn. Indeed, [22] provides such an example where
the technique is unable to determine the value of a specification.

In what follows we put forward a methodology for iteratively re-
fining the agent-specific predicates so that finer and finer abstractions
can be constructed and the truth value of the specification may be de-
termined.

3 Identifying Failure Pairs
In this section, inspired by [3], we define a refinement procedure
based on Craig’s interpolants. Specifically, given an ATLK formula
ϕ, undefined in some state c of an abstract IS M , we investigate the
reason for the undefinedness of ϕ. To do so, we introduce the notion
of failure pair and provide an algorithm for their identification. Dif-
ferently from [3], which considers in detail only the sublanguage of
ATLK containing operator 〈〈A〉〉X (i.e., Alternating Modal Logic),
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here we account for ATLK, including epistemic operators. The pro-
cedure we define is agent-based and therefore modular, whereas in
[3] the abstraction is defined at the system level.

Since in this section we only work on abstract models, for conve-
nience we will denote them simply as M .

Definition 7 (Relevant Pair) Given a (abstract) state c and a for-
mula ϕ, the function R, which returns the set of pairs relevant for
the truth of ϕ in c, is the smallest function (w.r.t. the Lorenz order)
satisfying the following conditions for each c, ψ and ψ′.

• R(c, p) = {(c, p)}, for p ∈ AP
• R(c,¬ψ) = {(c, ψ)} ∪R(c, ψ)

• R(c, ψ ∧ ψ′) = {(c, ψ), (c, ψ′)} ∪R(c, ψ) ∪R(c, ψ′)

• R(c, 〈〈Γ〉〉Xψ) = {(c′, ψ) | TΓ(c, a, c′) or TΓ(c, a, c′),
for some joint action a ∈ ACT} ∪

⋃
c′ R(c′, ψ)

• R(c,Kiψ) = {(c′, ψ) | c′ ∼i c} ∪
⋃

c′ R(c′, ψ)

• R(c, 〈〈Γ〉〉Gψ) = {(c, ψ), 〈〈Γ〉〉Xψ}∪R(c, ψ)∪R(c, 〈〈Γ〉〉Xψ)∪
R(c, 〈〈Γ〉〉X〈〈Γ〉〉Gψ)

• R(c, 〈〈Γ〉〉(ψUψ′)) = {(c, ψ), (c, ψ′)} ∪ R(c, ψ) ∪ R(c, ψ′) ∪
R(c, 〈〈Γ〉〉Xψ) ∪R(c, 〈〈Γ〉〉Xψ′) ∪R(c, 〈〈Γ〉〉X〈〈Γ〉〉(ψUψ′))

• R(c, CΓψ) = {(c, ψ)}∪R(c, ψ)∪
⋃

i∈Γ R(c,Kiψ)∪R(c, ψ)∪⋃
i∈Γ R(c,KiCΓψ)

Observe that R(c, ϕ) is well defined and can be computed by
using standard fix-point algorithms, which are indeed validities in
the proposed semantics. Specifically, the clauses for G-, U -, and C-
formulas make use of the following fixed-point characterisations:

〈〈Γ〉〉Gψ ≡ ψ ∧ 〈〈Γ〉〉X〈〈Γ〉〉Gψ
〈〈Γ〉〉(ψUψ′) ≡ ψ′ ∨ (ψ ∧ 〈〈Γ〉〉X〈〈Γ〉〉(ψUψ′))

CΓψ ≡ ψ ∧
∧
i∈Γ

KiCΓψ

Example 8 Consider an abstract interpreted system IS with two
agents 1, 2, both having two states 0, 1 and two actions A, B, whose
model is depicted on Figure 1.

c00 c10

c01 c11

(B,A)
(A,A)

(∗, A)

(A,B)
(B,B)

(∗, B)

(∗, B) (∗, A)(A,B) (B,A)

(A,A)

(B,B)

Figure 1. A model for Example 8. We assume that
T∅ = T{1} = T{2} = T{1,2} are all as depicted.

This may be interpreted as follows: both agents start in a local
state 0. Agent 1 stays in the state 0 until both agents play the same
actions; when this happens agent 1 moves to state 1 where it stays

for the rest of the run. The second agent changes its state only on the
basis of its action: if it performs action A it then moves to 0; if it
performs action B, then it moves to state 1.

Assume that the labelling is such that the only state labelled with
p is c11. Consider the formula ϕ = 〈〈1, 2〉〉Gp.

By definition R(c00, ϕ) contains elements of {(c00, ϕ)},
R(c00, p), R(c00, 〈〈1, 2〉〉X〈〈1, 2〉〉Gp), and for all i, j,
R(cij , 〈〈1, 2〉〉Xp).

Then, R(c00, 〈〈1, 2〉〉X〈〈1, 2〉〉Gp) contains
(c00, 〈〈1, 2〉〉X〈〈1, 2〉〉Gp) and all the pairs of R(cij , 〈〈1, 2〉〉Gp), for
all i, j. For every j, R(c1j , 〈〈1, 2〉〉Gp) contains (c1j , 〈〈1, 2〉〉Gp)
and elements of R(c10, p), R(c10, 〈〈1, 2〉〉X〈〈1, 2〉〉Gp) and for all j,
R(c1j , 〈〈1, 2〉〉Xp).

The minimal function R satisfying the above conditions is as fol-
lows, for each i, j ∈ {0, 1}

R(cij , p) ={(cij , p)}

R(c1j , 〈〈1, 2〉〉Xp) ={(c1j , 〈〈1, 2〉〉Xp), (c10, p), (c11, p)}

R(c0j , 〈〈1, 2〉〉Xp) ={(c0j , 〈〈1, 2〉〉Xp), (c10, p), (c11, p),

(c00, p), (c01, p)}

R(c1j , ϕ) ={(c1k, ϕ), (c1k, 〈〈1, 2〉〉Gϕ),

(c1k, 〈〈1, 2〉〉Gp), (c1k, p) | k ∈ {0, 1}}

R(c0j , ϕ) ={(clk, ϕ), (clk, 〈〈1, 2〉〉Gϕ),

(clk, 〈〈1, 2〉〉Gp), (clk, p) | l, k ∈ {0, 1}}

The significance of relevant pairs is given by the following imme-
diate lemma.

Lemma 9 If the truth value of ϕ in c is defined, then truth values for
all relevant pairs in R(c, ϕ) are also defined.

Notice that because of loops and the expansions above, for a G-,
U -, or a C-formula ϕ and state c it might be that (c, ϕ) belongs to
R(c, ϕ). Moreover, we show below that the cases for these formulas
can be reduced to those for X- and K-formulas. As a consequence,
we will be able to focus on refining single steps in a temporal or
epistemic transition in the model.

Next, we introduce a notion of failure pair, inspired by [3]. Intu-
itively, for an abstract state c and formula ϕ, (c, ϕ) is a failure pair
iff ϕ is undefined at c, albeit IS M has definite values for all relevant
pairs for (c, ϕ) different from (c, ϕ) itself.

Definition 10 (Failure Pair) A tuple (c, ϕ) is a failure pair iff
((M, c) |=3 ϕ) = uu and for all relevant pairs (c′, ψ) ∈ R(c, ϕ),
where ψ is a strict subformula of ϕ, we have that ((M, c′) |=3 ψ) ∈
{tt,ff}.

A failure pair (c, ϕ) singles out a formula ϕ whose undefined
value in state c is due to the structural features of the abstract IS
itself. Hence, to provide a defined value to ϕ we have to refine the
abstraction by using the information in (c, ϕ).

Clearly, propositional formulas are defined whenever all relevant
pairs are. Hence, failure pairs can only be determined by atomic
propositions and ATL and epistemic operators, as detailed in the fol-
lowing lemma.

Lemma 11 A tuple (c, ϕ) is a failure pair iff ((M, c) |=3 ϕ) = uu
and one of the following cases hold

• ϕ = p ∈ V
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• ϕ = 〈〈Γ〉〉Xψ and for all states c′, if TA
Γ (c, a, c′) or TA

Γ
(c, a, c′)

for some joint action a, then ((M, c′) |=3 ψ) ∈ {tt,ff}
• ϕ = Kiψ and ((M, c′) |=3 ψ) ∈ {tt,ff} for all states c′ ∼i c
• ϕ is a G- or U -formula, in which case there is also a failure pair

(c′, ψ), where c′ is reachable from c and ψ is a X-formula.
• ϕ is aC-formula, in which case there is also a failure pair (c′, ψ),

where c′ is (epistemically) reachable from c andψ is aK-formula.

Proof sketch. The first part of the lemma follows from Def. 7 and
10. As an example, by contraposition suppose that ϕ = 〈〈Γ〉〉Xψ,
((M, c) |=3 ϕ) = uu, but for some state c′, TA

Γ (c, a, c′) or
TA

Γ
(c, a, c′) for some joint action a, and ((M, c′) |=3 ψ) = uu.

In particular, (c′, ψ) is a relevant pair for (c, ϕ). Hence, we derive
that (c, ϕ) is not a failure pair. The result follows by contraposition.

For the second part, we show that failure pairs for G-formulas can
be reduced to the case for X-formulas. Hence, suppose that

(i) ((M, c) |=3 〈〈Γ〉〉Gϕ) = uu

(ii) ((M, c) |=3 ϕ) ∈ {tt,ff}
(iii) ((M, c′) |=3 〈〈Γ〉〉Xϕ) ∈ {tt,ff} for every reachable c′ and

for c′ = c.

From (ii) and (iii) it follows that the truth value of ψ is defined in c
and in all of its successors. So, 〈〈Γ〉〉Gψ is indeed defined in c against
(i), which is a contradiction.

The cases for the U - and C-formulas are similar.

As a consequence of Lemma 11, we can focus the search for fail-
ure pairs and the refinement procedure on X- and K-formulas only.
The following result follows from Lemma 11, where aΓ (resp. aΓ)
are vectors of actions for the agents in Γ (resp. Γ).

Lemma 12 (i) If (c, 〈〈Γ〉〉Xψ) is a failure pair, then for every
aΓ ∈ Pmust

Γ (c), for some aΓ ∈ P
may

Γ
(c), TA(c, aΓ · aΓ, c

′)

implies ((M, c′) |=3 ψ) = ff , and for every aΓ ∈ P
must
Γ

(c),
for some aΓ ∈ Pmay

Γ (c), TΓ(c, aΓ·aΓ, c
′) implies ((M, c′) |=3

ψ) = tt.
(ii) If (c,Kiψ) is a failure pair, then for some c′ 6= c, c′i = ci and

((M, c′) |=3 ψ) = ff .

Proof sketch. To derive a contradiction, suppose that (c, 〈〈Γ〉〉Xψ)
is a failure pair, but some aΓ ∈ Pmust

Γ (c) is such that for every aΓ ∈
Pmay

Γ
(c), TA(c, aΓ · aΓ, c

′) implies ((M, c′) |=3 ψ) 6= ff . Since
(c, 〈〈Γ〉〉Xψ) is a failure pair, by Lemma 11 the truth value of ψ at c′

has to be defined, and therefore ((M, c′) |=3 ψ) = tt. But then, by
the semantics in Def. 3 we obtain that ((M, c) |=3 〈〈Γ〉〉Xψ) = tt,
against the hypothesis that (c, 〈〈Γ〉〉Xψ) is a failure pair.

By building on the preliminaries results illustrated above, we now
introduce the algorithm FRFP to find relevant failure pairs. The
procedure, presented as Algorithm 1, takes as input a finite abstract
IS M , a state c and a formula ϕ such that ((M, c) |=3 ϕ) = uu. As
we show hereafter, the algorithm returns a relevant failure pair for
(c, ϕ).

Lemma 13 The algorithm FRFP terminates provided that the in-
terpreted system is finite. Moreover, the algorithm is sound, that is,
if FRFP (c, ϕ) returns (c′, ϕ′), then (c′, ϕ′) ∈ R(c, ϕ) is a failure
pair relevant for (c, ϕ).

Proof sketch. Since abstract IS are finite, the algorithm termi-
nates in the case of X-, or K-formulas. Termination in the other
cases follows from the fact that ϕ is finite. The output of the algo-
rithm are failure pairs in view of Lemma 11. For instance, consider

Algorithm 1 The algorithm FRFP .
INPUT: Model M ; state c; formula ϕ s.t. ((M, c) |=3 ϕ) = uu.
OUTPUT: (c′, ϕ′) s.t. (c′, ϕ′) ∈ R(c, ϕ).

1: procedure FRFP (c, ϕ)
2: if ϕ = p ∈ V then
3: return (c, p)
4: else if ϕ = ¬ϕ′ then
5: return FRFP (c, ϕ′)
6: else if ϕ = ϕ1 ∨ ϕ2 then
7: let i be the minimum s.t. ((M, c) |=3 ϕi) = uu;
8: return FRFP (c, ϕi)
9: else if ϕ = 〈〈Γ〉〉Xϕ′ then

10: if for all c′, TΓ(c, a, c′) or TΓ(c, a, c′) for some joint ac-
tion a ∈ ACT implies ((M, c′) |=3 ϕ′) ∈ {tt,ff} then

11: return (c, ϕ)
12: else
13: let c′ be a successor of c s.t. ((M, c′) |=3 ϕ′) = uu;
14: return FRFP (c′, ϕ′)
15: end if
16: else if ϕ = Kiϕ

′ then
17: if for every c′ ∼i c, ((M, c′) |=3 ϕ′) ∈ {tt,ff} then
18: return (c, ϕ)
19: else
20: let c′ be s.t. c′ ∼i c and ((M, c′) |=3 ϕ′) = uu;
21: return FRFP (c′, ϕ′)
22: end if
23: else if ϕ = 〈〈Γ〉〉Gϕ′ then
24: if ((M, c) |=3 ϕ′) = uu then
25: return FRFP (c, ϕ′);
26: else
27: let c′ be c or a successor of c s.t. ((M, c′) |=3

〈〈Γ〉〉Xϕ′) = uu
28: return FRFP (c′, 〈〈Γ〉〉Xϕ′).
29: end if
30: else if ϕ = 〈〈Γ〉〉(ϕ1Uϕ2) then
31: if ((M, c) |=3 ϕ2) = uu then
32: return FRFP (c, ϕ2);
33: else if ((M, c) |=3 ϕ1) = uu then
34: return FRFP (c, ϕ1);
35: else
36: let c′ be c or a successor of c s.t. ((M, c′) |=3 ϕ1 ∧
〈〈Γ〉〉Xϕ2) = uu

37: return FRFP (c′, ϕ1 ∧ 〈〈Γ〉〉Xϕ2).
38: end if
39: else if ϕ = CΓϕ

′ then
40: if ((M, c) |=3 ϕ′) = uu then
41: return FRFP (c, ϕ′);
42: else
43: let c′ ∼Γ c and i ∈ Ag be s.t. ((M, c′) |=3 Kiϕ

′) =
uu

44: return FRFP (c′,Kiϕ
′).

45: end if
46: end if
47: end procedure

ϕ = 〈〈Γ〉〉Gψ. If ((M, c) |=3 ϕ) = uu, then by Lemma 11 ei-
ther ((M, c) |=3 ψ) = uu or for some successor c′ or c′ = c,
((M, c) |=3 〈〈Γ〉〉Xψ) = uu. In the former case, FRFP (c, ϕ) =
FRFP (c, ψ) and the algorithm is sound by the inductive step. In the
latter case, FRFP (c, ϕ) = FRFP (c′, 〈〈Γ〉〉Xψ), and once again
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the result follows by the inductive hypothesis. The other cases are
similar.

As a consequence, Algorithm 1 together with Lemma 13, defines
a procedure to identify failure pairs, which will be used in the next
section to refine the list of predicates, and therefore the abstraction.

4 Refining Abstractions
In this section we introduce and analyse a methodology for refining
an abstract model on which a specification is initially evaluated as
undefined. The method is based on the iterative application of Al-
gorithm 2 below, which takes as input the present list of predicates,
upon which the abstraction is built, and a failure pair, and returns as
output the revised predicate list upon which a further abstraction can
be built.

A key aspect in the derivation of the updated list of predicates is
the use of Craig’s interpolants [28]. Recall that the Craig’s inter-
polant of formulas A and B, whose conjunction A ∧ B is unsatisfi-
able, is a formula I such that

• A→ I is valid;

• I ∧B is unsatisfiable; and

• I contains only non-logical symbols appearing in both A and B.

Craig’s interpolants have previously been proven effective in re-
fining abstractions in the context of different semantics and less ex-
pressive specification languages [28, 29]. Intuitively, the refinement
methodology can be summarised as follows. Assume that formulas
A and B represent witnesses for the current and the successive state
in the abstract model. If the transition from A to B is spurious, that
is, the transition in the abstract model does not correspond to a tran-
sition in the concrete system, the conjunction A∧B is unsatisfiable.
The interpolant I forA∧B typically gives useful evidence as regards
the reasons of the transition’s spuriousness and can usefully provide
guidance to refine the model [6].

Hereafter we describe the interpolation procedure we use to gen-
erate new predicates. Since the specification of interpreted systems
includes first-order features, namely, linear arithmetic over the inte-
gers, in the following we adapt the approach originally put forward
in [29] by applying concepts from [5] to account for the particular
setting.

To begin, recall from Lemma 11 that all failure pairs can be re-
duced to the cases of atomic, X-, or K-formulas. Therefore, we
present the refinement procedure via Craig’s interpolations for these
three cases in Algorithm 2, and discuss its rationale in the follow-
ing. Algorithm 2 takes as input a failure pair (c, ϕ) and a tuple
(~p1, . . . , ~p|Ag|) consisting of vectors of predicates and it returns an
updated tuple (~p′1, . . . , ~p

′
|Ag|) of vectors of (possibly new) predi-

cates. We assume Algorithm 2 operates on the abstract model under
analysis and that ϕ is either an X- or a K-formula. We will address
the atomic case later in the section.

X-Formulas (lines 2-7). The procedure takes as input the failure
pair (c, 〈〈Γ〉〉Xϕ), as provided by Algorithm 1. By Lemma 12, we
have that (i) for every aΓ ∈ Pmust

Γ (c), for some aΓ ∈ Pmay

Γ
(c),

TΓ(c, aΓ · aΓ, c
′) implies ((M, c′) |=3 ϕ) = ff , and (ii) for every

a′
Γ
∈ Pmust

Γ
(c), for some a′Γ ∈ Pmay

Γ (c), TΓ(c, a′Γ ·a′Γ, c
′′) implies

((M, c′′) |=3 ϕ) = tt, which corresponds to line 3 in Algorithm 2.
In both cases we check whether the abstract transitions TΓ(c, aΓ ·

aΓ, c
′) and TΓ(c, a′Γ · a′Γ, c

′′) correspond to actual transitions in the

Algorithm 2 The algorithm Refine.
INPUT: Failure pair (c, ϕ); (~p1, . . . , ~p|Ag|).
OUTPUT: (~p′1, . . . , ~p

′
|Ag|).

1: procedure Refine((c, ϕ),(~p1, . . . , ~p|Ag|))
2: if ϕ = 〈〈Γ〉〉Xϕ′ then
3: let c′ be s.t. TΓ(c, aΓ ·aΓ, c

′) and ((M, c′) |=3 ϕ′) = ff ,
or TΓ(c, aΓ · aΓ, c

′) and ((M, c′) |=3 ϕ′) = tt;
4: if there is i ∈ Ag and l, l′ ∈ Li s.t. l |= c.i, l′ |= c′.i

and ti(l, aΓ · aΓ, l
′) does not hold then

5: let I be an interpolant for (l ∧ aΓ · aΓ) ∧ l′
6: return (~p1, . . . , ~pi · I, . . . , ~p|Ag|)
7: else return (~p1, . . . , ~p|Ag|)
8: else if ϕ = Kiϕ

′ then
9: let c′ be s.t. c′ 6= c, c′.i = c.i and ((M, c′) |=3 ϕ) = ff

10: if there are l, l′ ∈ Li s.t. l |= c.i, l′ |= c′.i and l 6= l′

11: let I be an interpolant for l ∧ l′
12: return (~p1, . . . , ~pi · I, . . . , ~p|Ag|)
13: else return (~p1, . . . , ~p|Ag|)
14: else return (~p1, . . . , ~p|Ag|)
15: end if
16: end procedure

concrete IS; that is, whether there exists concrete states s, s′, s′′ ∈ S
such that s |= c, s′ |= c′, s′′ |= c′′, and both T (s, aΓ · aΓ, s

′) and
T (s, a′Γ · a′Γ, s

′′). This check is performed modularly, on the various
agents i ∈ Ag. We comment on the case for TΓ(c, aΓ · aΓ, c

′); the
other case is similar.

By definition of the predicate abstraction, TΓ(c, aΓ · aΓ, c
′) holds

iff tmust
i (c.i, aΓ · aΓ, c

′.i) for i ∈ A and tmay
i (c.i, aΓ · aΓ, c

′.i) for
i /∈ A. Now consider an agent i ∈ Ag and witnesses l, l′ ∈ Li,
that is, l |= c.i and l′ |= c′.i. Depending on i ∈ Ag, we re-
fine either tmust

i (c.i, aΓ · aΓ, c
′.i) or tmay

i (c.i, aΓ · aΓ, c
′.i). If

ti(l, aΓ ·aΓ, l
′) holds, then l and l′ witness indeed the abstract transi-

tion (line 7 in Algorithm 2). Otherwise, we consider the conjunction
θ = l ∧ aΓ · aΓ ∧ l

′, where the atoms and variables in l′ are primed,
while actions are interpreted as equalities between variables and their
primed versions (line 4 in Algorithm 2). If ti(l, aΓ · aΓ, l

′) does not
hold, then θ is unsatisfiable, and we can make use of interpolation
to refine the abstract transition. To do this, we need to find two new
abstract states d.i and d′.i such that l |= d.i, l′ |= d′.i, and either
t′may
i (d.i, aΓ · aΓ, d

′.i) or t′must
i (d.i, aΓ · aΓ, d

′.i) does not hold
(depending on whether i ∈ Ag or i /∈ Ag), where t′may

i and t′must
i

are intuitively the new, refined transitions.
As a result, the new transition t′may

i is “finer” than tmay
i , or t′must

i

is “coarser” than tmust
i ; that is, t′may

i relates fewer concrete local
states than tmay

i , while t′must
i relates more concrete local states than

tmust
i . More specifically, by interpolation we obtain an interpolant I

such that l∧ aΓ · aΓ → I is valid and l′ ∧ I is unsatisfiable (line 5 in
Algorithm 2).

We now shoe how I can be used as a predicate to eliminate the
spurious transition from l to l′. In particular, I is built on non-
logical symbols appearing in both l and l′. Hence, it is local to
agent i and can be introduced as a new predicate. The updated list
(~p1, . . . , ~p

′
i, . . . , ~p|Ag|) of predicates, where ~p′i = ~pi ·I (line 6 in Al-

gorithm 2) is then returned and used to construct a further abstracted
model M ′A. Notice that M ′A does not contain the state c.i, but it in-
cludes at least one of the new states c.i∧I and c.i∧¬I . we now have
that either l |= c.i ∧ I or l |= c.i ∧ ¬I . Then, let d.i be the state sat-
isfied by l. Now, if l |= d.i and ti(l, aΓ · aΓ, l

′′) for some local state
l′′ ∈ Li such that l′′ |= c′.i, then l′′ |= c′.i ∧ I = d′′.i as well, as
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l∧aΓ ·aΓ → I is a validity. On the other hand, l′ |= c′.i∧¬I = d′.i,
and therefore the successors l′′ and l′ of l belong to different abstract
states d′′.i and d′.i. As a result, the transition t′may

i in M ′A is finer
than tmay

i , or t′must
i is coarser than tmust

i (depending on whether
i ∈ Ag or i /∈ Ag.) This terminates the procedure for X-formulas.

K-formulas (lines 8-13). The case of K-formulas is similar
to the previous one. By Lemma 12, for some c′ 6= c, c′.i = c.i
and ((M, c′) |=3 ϕ) = ff (line 9 in Algorithm 2). Now consider
witnesses l, l′ ∈ Li such that l |= c.i, l′ |= c′.i, but l 6= l′, if
any (line 10 in Algorithm 2). This means that l and l′ are spurious
witnesses for the i-indistinguishability of abstract states c and c′. It
follows that the conjunction l ∧ l′ is unsatisfiable, as l and l′ are two
different assignments of values to the variables and propositional
atoms of agent i. Hence, we can find a Craig’s interpolant I such that
l → I is valid and l′ ∧ I is unsatisfiable (line 11 in Algorithm 2).
As in the case of X-formulas, we use I as a predicate to refine the
spurious indistinguishability relation. Specifically, I can be used as
a new predicate, as it is built on non-logical symbols appearing in
both l and l′. The revised list (~p1, . . . , ~p

′
i, . . . , ~p|Ag|) of predicates

can now be returned (line 12 in Algorithm 2), where ~p′i = ~pi · I;
this can be used to generate a refinement M ′A. On the refined model
M ′A we will obtain l |= c.i ∧ I = d.i, while l′ |= c.i ∧ ¬I = d′.i.
Therefore, the states d.i and d′.i, refining the states c.i and c′.i
respectively, are different and therefore not i-indistinguishable. By
considering all c′ 6= c such that c′.i = c.i, ((M, c′) |=3 θ) = ff ,
and l |= c.i, l′ |= c′.i for some l 6= l′, we can eventually decide the
truth value of failure formula Kiϕ. This terminates the procedure
for K-formulas.

Since Algorithm 2 returns an updated list of predicates, the ab-
straction M ′A built on it is also an abstraction of the concrete IS M .
Hence, Theorem 6 applies, and therefore formulas defined in M ′A

are preserved in M . Moreover, the initial abstraction MA can be
thought of as an abstraction of M ′A as well, where state c′ abstracts
state c iff c′.i |= c.i, for every i ∈ Ag. We summarise these remarks
in the next immediate result.

Theorem 14 Given an abstraction MA of an IS M , the refinement
M ′A is also an abstraction of M and it is abstracted by MA. Thus,
the refinement procedure defines a sequenceM, . . . ,M ′A,MA of IS
such that any element in the sequence is an abstraction of its prede-
cessors.

Algorithm 2 does not address the case of atomic propositions that
were also identified in Lemma 11 as possible components of fail-
ure pairs. Observe that if (c, p) is indeed a failure pair, for p atomic,
then p refers to more than one agent. This follows immediately from
the fact that the list of predicates for an agent i contains all atoms
referring to i itself. Hence, the truth value of such atoms is always
immediately defined in the abstraction. As a consequence, an agent-
based refinement procedure cannot be given for atomic predicates,
as their satisfaction cannot be established by evaluating local states
only. This limitation does not appear to be significant as in most cases
of interest we expect to be able to resolve the value of the specifica-
tion of interest by refining the temporal and epistemic transitions.
Observe that any abstraction procedure is in any case incomplete as
the verification problem is undecidable in general.

Furthermore, note that the complexity of the refinement procedure
is determined by lines 6, 7, 12, and 13 in Algorithm 2. These re-
turn the states satisfying a given constraint or interpolants. Both these
problems can be reduced to solving linear inequalities; therefore the

complexity of the procedure is bounded by the complexity of linear
programming.

We conclude by remarking that, since M can be an infinite-state
IS and the refinement procedure adds finitely-many states only, the
sequence M, . . . ,M ′A,MA in Theorem 14 is infinite in principle.
Hence, as in other predicate abstraction approaches, the refinement
procedure is not guaranteed to terminate. Nonetheless, in many cases
of interest the methodology can resolve the truth value of specifica-
tions that cannot be evaluated on the initial abstraction. We consider
one such case in the following section.

5 Verification of an Infinite-state English Auction
Protocol

We now illustrate the methodology presented in the paper on an ex-
ample of an ascending English auction [10]. Consider an auction with
an auctioneer A and a finite number of bidders B1, . . . , Bn. Each
bidder Bi has a fixed amount of resources (e.g., money) mi > 2;
they follow a protocol of the form “if the latest bid was less than mi,
then non-deterministically decide to bid or not; otherwise do noth-
ing”. We assume that the protocols that the agents run are commonly
known. All the bidders and the auctioneer have an integer value to
store the latest highest bid. We assume that bids start from 0 and
each bid increases the previous bid by 1.

We would like to establish whether it is a common knowledge that
the auction terminates and whether the bidders have a strategy to buy
the item for 1 resources in two rounds.

We formalise this auction as an infinite-state interpreted system
M . Each bidder Bi has a variable lb of type integer representing
the latest bid, initially set to 0, and two actions: bid and skip. The
protocol of Bi is such that: Pi(lb) = {bid, skip} when lb ≤ mi;
Pi(lb) = {skip} when lb > mi. We can further encode that the
transition function ti is such that lb remains unchanged if bidder Bi

uses the action skip; lb is increased by 1 otherwise.
We model the auctioneer A by considering an integer variable lb

initially set to 0, a variable top bidder ∈ {0, . . . , n} initially set
to 0 and a boolean variable sold, initially set to false, as well as
the actions skip and soldi, where i ∈ {0, . . . , n}. The transition
function for A is such that when all the bidders perform the action
skip, the variable sold is set to true. At that time the auction is over
and the winner is announced; from that point onwards A loops in
the same state announcing winner i using action soldi. If any of
the bidders uses the action bid, then the top bidder is chosen non-
deterministically among all the bidders who bidded. The variable lb
is updated as in the case of bidders. We assume a labelling function
with atoms A.sold and A.lb = 1 depending on A’s local variables.

We investigate the properties specified above by evaluating the for-
mulas

ϕ = C{B1,...,Bn}〈〈∅〉〉F (A.sold)

ρ = 〈〈{B1, . . . , Bn}〉〉X〈〈{B1, . . . , Bn}〉〉X(A.sold ∧A.lb = 1)

on the infinite-state interpreted system described above.
By conducting the initial abstraction as in [22] we obtain a model

MA based on the predicates sold, top bidder = 0, and lb = 0 for
A (from the definition of the initial state) and the predicates lb =
0, lb < mi for agent Bi (the first from Bi’s initial state, the second
from Bi’s protocol).

The may and must transition relations for auctioneer A in MA

coincide. Specifically, from the initial state denoted by ¬sold ∧
(top bidder = 0) ∧ (lb = 0), if all bidders perform skip, then the
next state is ¬sold ∧ (top bidder = 0) ∧ (lb = 0); otherwise it
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becomes ¬sold ∧ (top bidder 6= 0) ∧ (lb 6= 0). From the latter
state, A loops whenever at least one bidder bids, or moves to the
state sold ∧ (top bidder 6= 0) ∧ (lb 6= 0) otherwise, where it can
only loop.

The initial state for agent Bi is (lb = 0) ∧ (lb < mi), where Bi

stays if all bidders skip, or moves to (lb 6= 0)∧ (lb < mi) otherwise
(recall that mi > 2.) These are both may and must transitions. From
the latter state,Bi has no must transition, but has two may transitions:
a loop and a transition to (lb 6= 0)∧(lb 6< mi) over any action where
one of the agents bids. In (¬lb = 0) ∧ (lb 6< mi), Bi loops for both
the may and must transitions.

It can be checked that the initial abstraction built on these predi-
cates is such that ρ is evaluated to true; it follows that ρ is satisfied
in the infinite state system. However, ϕ is undefined in the initial ab-
straction. We now show how the refinement procedure introduced in
this paper enables us to determine the truth value of ϕ.

By using algorithm FRFP from Section 3, we obtain
the failure pair (¬sold ∧ (top bidder 6= 0) ∧ (lb 6=
0), (c1, . . . , cn)), 〈〈∅〉〉X(A.sold)), where for each i, ci = (lb 6=
0) ∧ (lb < mi). This enables us to apply the refinement procedure
given in Algorithm 2 for the case of X-formulas.

We illustrate this by considering bidder 1 withm1 = 10. Consider
a transition from c = (lb 6= 0)∧ (lb < 10) to c′ = (lb 6= 0)∧ (lb 6<
10), which is the result of abstracting the transition encoded by the
condition lb′ = lb + 1. Let l be the state lb = 1, and l′ be the state
lb = 10. Clearly, l |= c and l′ |= c′. Therefore, we find an interpolant
for l ∧ lb′ = lb + 1 and l′. We can derive a refutation as shown in
Figure 2 (see [29]).

lb = 1
0 ≤ −lb+ 1

LE
0 = −lb′ + lb+ 1

0 ≤ −lb′ + lb+ 1
LE

0 ≤ −lb′ + 2

0 = lb′ − 10

0 ≤ lb′ − 10
LE

0 ≤ −8
C

Figure 2. Rule LE allows to derive disequalities from equalities, while C
returns 0 ≤ t+ t′ from the premises 0 ≤ t and 0 ≤ t′.

From the refutation of Figure 2 we can obtain an interpolant [5],
simply by setting all disequalities in branches for ψ′ to 0 ≤ 0, as
shown in Figure 3.

lb = 1
0 ≤ −lb+ 1

LE
0 = −lb′ + lb+ 1

0 ≤ −lb′ + lb+ 1
LE

0 ≤ −lb′ + 2
0 = 0
0 ≤ 0

LE

0 ≤ −lb′ + 2
C

Figure 3. Obtaining an interpolant from a refutation.

By doing so, we obtain the formula lb′ ≤ 2, which is indeed an
interpolant for the pair (ψ,ψ′), and can be used in the refinement
procedure. Therefore, the revised list of predicates for Bi is [lb =
0, lb ≤ 2, lb < mi].

This refinement step results in an abstraction that is still insuffi-
cient to decide the value of ϕ. However, by conducting a number
of further refinement steps for B1 bounded by m1, we may derive
the list of predicates that fully characterise all the possible values of
lb below m1. When this is done for all the bidders, the abstract in-
terpreted system is such that the states of bidder Bi correspond to
numbers 0, . . . ,mi. On such a system, it can be checked that the

property ϕ holds, and therefore it is satisfied in the original infinite-
state system.

6 Conclusions
Little attention has so far been devoted to the practical verification
of infinite-state MAS. A key requirement of any predicate abstrac-
tion technique is not only the initial generation of the predicates, but
also their refinement to produce a sequence of abstractions approx-
imating the concrete system. As we discussed in Section 1, present
approaches for MAS against ATL specifications fall short in this re-
spect.

In this paper we have put forward a refinement methodology for
MAS abstractions to be verified against ATLK specifications. The
proposed approach uses state-of-the-art automatic deduction tech-
niques based on interpolants via SMT calls, as pioneered by [29]
in the context of purely temporal logic. We showed that the method
is sound and illustrated its potential on an infinite state MAS imple-
mentation of a simple auction protocol.

A noteworthy feature of the approach lies in the choice and devel-
opment of both the semantics and the specification language, which
are both oriented towards MAS. In terms of semantics we use and
extended interpreted systems, that have long been used as a formal
model to reason about MAS. In particular, as discussed in the Intro-
duction and differently from [3], we here adopt incomplete informa-
tion and memoryless strategies. In terms of specifications we follow
our previous work in this line [20, 21, 22] by combining strategic
concepts given in a weaker form of ATL with an epistemic language.
The branching-time temporal-epistemic logic CTLK is entirely sub-
sumed in the approach should this be found to be preferable in some
applications.

A further aspect of the work concerns its potential applicability.
The choice of adopting non-uniform strategies keeps the decision
problem against explicit models in PTIME, which is important in
practical verification. It is well known that this comes at the cost of
expressivity and it is reflected in the reading of the ATL modalities.

In future work, we intend to implement the technique and algo-
rithms introduced here. We anticipate this will be challenging given
the complexity of devising efficient heuristics resolving the non-
determinism of some of the refinement steps here described. Since
the abstraction methodology is necessarily incomplete, this will also
require a considerable amount of tuning of the heuristics against sev-
eral benchmarks, so that any resulting tool offers the concrete possi-
bility of solving actual MAS programs.
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