
Model Checking Temporal Epistemic Logic under Bounded Recall

Francesco Belardinelli1, Alessio Lomuscio1, Emily Yu1, 2

1Imperial College London, UK
2 Johannes Kepler University Linz, Austria

Abstract

We study the problem of verifying multi-agent systems un-
der the assumption of bounded recall. We introduce the
logic CTLKBR , a bounded-recall variant of the temporal-
epistemic logic CTLK. We define and study the model check-
ing problem against CTLK specifications under incomplete
information and bounded recall and present complexity up-
per bounds. We present an extension of the BDD-based
model checker MCMAS implementing model checking un-
der bounded recall semantics and discuss the experimental
results obtained.

Introduction
An important aspect in the field of multi-agent systems
(MAS) is the safety guarantee relating to the system cor-
rectness. Model checking (Clarke et al. 2018; Baier and
Katoen 2008) has been put forward as a key technique
for the formal verification of multi-agent systems (Gam-
mie and van der Meyden 2004). A well-known difficulty
with model checking is the state explosion problem (Clarke
and Grumberg 1987), i.e., the fact that the size of the sys-
tem state space grows exponentially in the number of state
variables used to describe the system. Several approaches
have focused on mitigating this difficulty. The leading meth-
ods include abstractions (Denning et al. 1989), binary de-
cision diagrams (Bryant 1986), and bounded model check-
ing (Biere et al. 1999). All of these have been employed
in model checking MAS (Lomuscio, Qu, and Russo 2010;
Penczek and Lomuscio 2003; Gammie and van der Meyden
2004).

A key difference between the use of model checking in
hardware or reactive systems and in MAS is the specifica-
tion languages typically employed. While in reactive and
hardware systems, specifications of interest are generally
limited to reachability or temporal properties, more expres-
sive languages such as temporal-epistemic logics (Fagin et
al. 1997) or logics for strategic abilities (Alur, Henzinger,
and Kupferman 1997; Mogavero, Murano, and Vardi 2010)
are normally considered for MAS.

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In particular, a large body of research has focused on the
verification of MAS against temporal-epistemic properties
(van der Meyden and Shilov 1999; Lomuscio and Penczek
2007). In all these approaches agents in a MAS are assumed
to have incomplete information, i.e., they do not perceive the
whole of the global state.

Approaches, however, differ in terms of the underlying
assumptions made in terms of the memory of the agents in
the system. Tools such as MCMAS (Lomuscio, Qu, and Rai-
mondi 2017) and Verics (Meski et al. 2014) focus on obser-
vational semantics only, i.e., an assumption is made that the
successor local state of an agent depends on the present local
state and the action taken by all the agents in the system. In
contrast to this, MCK (Gammie and van der Meyden 2004)
supports both observational semantics and a limited form of
recall. Under the latter each agent in a run remembers all its
past states up to that point. It follows that an agent’s succes-
sor local state depends not only on her present local state,
but on the whole of her local history up to that local state
and the action performed by all agents in the system.

The perfect recall assumption is of interest in a num-
ber of applications including security, where the intruder
is normally assumed to recall all messages that she has
observed. Perfect recall, or memoryful semantics, is also
widely used in game theoretical settings and beyond. The
key difficulty in combing imperfect information and perfect
recall is the resulting high complexity. It is known that model
checking systems against temporal-epistemic specifications
under incomplete information and perfect recall is NON-
ELEMENTARY without the common knowledge modality
(Dima 2008). The resulting complexity is so high that it in-
hibits any practical use of model checking.

To overcome this difficulty in this paper we put forward
and study an approximation of perfect recall in terms of
bounded recall. Specifically we consider agents as being en-
dowed with bounded memory and their local state to be local
histories of a finite and previously determined length. This
work exploits the intuition that bounded recall semantics is
equivalent to perfect recall whenever the properties to be ex-
pressed involve finite traces whose length is smaller than the
size of the history.

The rest of the paper is organised as follows. In Section

2 we define a revised version of interpreted systems, we in-
troduce the syntax and semantics CTLKBR, a variant of the
temporal-epistemic logic CTLK under bounded recall, and
define maps between interpreted systems with bounded and
perfect recall. We continue in Section 3 by presenting re-
sults on the relationship between model checking perfect
and bounded recall and show that model checking against
CTLKBR is PSPACE-COMPLETE. In Section 4 we intro-
duce an implementation that we built supporting bounded
recall and report the experimental results obtained when
model checking agents under various sizes of recall.

Related Work. Model checking perfect recall against
temporal-epistemic logics has extensively been studied from
a theoretical standpoint (Dima 2008; Halpern and Vardi
1986; 1989; van der Meyden 1998). It has been shown
that while the satisfiability problem for Computation Tree
Logic with knowledge (CTLK) (Fagin et al. 1997) and
without common knowledge under incomplete information
and perfect recall is undecidable, the model checking prob-
lem for the same logic is decidable (Dima 2008). The au-
thors also proved such model checking problem has an
NON-ELEMENTARY upper bound. However, when common
knowledge is added to the syntax, both the satisfiability and
model checking problem under perfect recall are undecid-
able (van der Meyden 1998).

As stated above, most present approaches adopt a mem-
oryless semantics to reduce the resulting complexity even
if it limits the expressiveness considerably. The complex-
ity of the model checking problem under memoryless se-
mantics is well understood. Explicit model checking MAS
against CTLK specifications is P-COMPLETE, whereas im-
plicit model checking is PSPACE-COMPLETE (Lomuscio
and Raimondi 2006). The contribution here presented differs
from those above in that we consider a bounded semantics.

The work here presented is related to a recent direction
of work investigating approximations of perfect recall to
imperfect recall. For example, in (Jamroga, Knapik, and
Kurpiewski 2017) and (Ågotnes and Walther 2009) an ap-
proximation of perfect recall in the context of ATL is put
forward. In (Belardinelli, Lomuscio, and Malvone 2019;
2018), a three valued semantics is developed with the aim,
again, of providing approximations for verifying ATL. In
contrast to these works, we here work on an epistemic lan-
guage. The method we propose for providing such approxi-
mation is entirely different from the ones cited above result-
ing in different properties.

We conclude by remarking that the implementation for
bounded recall semantics we introduce is based on the exist-
ing model checker MCMAS (Lomuscio, Qu, and Raimondi
2017), which previously supported memoryless semantics
only. The tool MCK (Gammie and van der Meyden 2004)
also supports memoryless semantics, but, differently from
MCMAS, it also supports perfect recall and clock seman-
tics. However, for those cases under perfect recall it only
supports systems with one agent only, which is a severe lim-
itation in practice.

CTLK with Bounded Recall
In this section we present the syntax and semantics for the
temporal-epistemic logic CTLK on systems under perfect
and bounded recall, henceforth CTLKPR and CTLKBR re-
spectively.

We first introduce interpreted system with k-bound mem-
ory. Interpreted Systems (Fagin et al. 1997) are a well-
known formalism for reasoning about knowledge in multi-
agent systems. Here we give a revised definition of such for-
malism, based on a notion of recall.

We use S∗ to denote the set of finite (possibly empty)
strings of elements of S.

Definition 1 (Interpreted System (with perfect recall)). An
interpreted system IS = 〈(Li, Acti, Pi, ti)i∈Ag, I, λ〉 is de-
fined on a set Agt = {e, 1, . . . , n} of agents such that for
every i ∈ Agt,
• Li is the set of local observations.
• Acti is the set of actions.
• Pi : L

∗
i → (2Acti \ ∅) is the protocol function.

• ti : (Li×Le)
∗×Acte×Act1×. . .×Actn → 2Li is the lo-

cal transition function such that ti(hi, he, ae, a1, . . . , an)
is defined only if ai ∈ P (hi) and ae ∈ P (he).

• I ⊆ Le × L1 × . . . × Ln = S is the set of global initial
states.

• λ : AP → 2S
∗

is the assignment function that assigns
truth values to atomic propositions in histories.

Differently from the standard notion of interpreted system
(Fagin et al. 1997), in Definition 1 the protocol and transi-
tion functions are defined on histories of arbitrary length.
Let ACT = Acte × Act1 × . . . × Actn be the set of joint
actions. The global transition function t : S∗ ×ACT → 2S

is defined such that s ∈ t(h, a) iff for every i ∈ Agt ∪ {e},
si ∈ ti(hi, he, a).

The set G ⊆ S∗ = (Le × L1 × . . . Ln)
∗ consists of

the global histories reachable from the set I of initial global
states by using the transition function t. Here we use h[i] to
denote the i-th component of a history h. With a slight abuse
of notation we will often represent a global history h ∈ S∗
as a tuple 〈he, h1, . . . , hn〉 of local histories such that for
every j ≤ |h| and i ∈ Agt ∪ {e}, h[j]i = hi[j]. Hereafter,
given an infinite sequence ρ ∈ Sω of states, we use ρ[m,n]
to denote the history from the m-th to the n-th position, for
m ≤ n. To describe the temporal evolution of an interpreted
system under perfect and bounded recall, we introduce the
notion of k-path. Here we use Sω to denote the set of infinite
strings of elements of S.

Definition 2 (k-path). Let k ∈ N ∪ {ω}. A k-path ρ origi-
nating from history h is an infinite sequence s1, s2, . . . in Sω

such that

• ρ[1, |h|] = h;
• for all i ≥ |h|, ρi+1 = t(ρ[max{1, i− k}, i], a) for some

joint action a, where (i− ω) = 0.

By Definition 2 in the case of no recall (k = 0) the tran-
sition function takes only the last visited state ρi as input to
determine the successor state ρi+1. On the other hand, in the

case of perfect recall (k = ω) the transition function takes
the whole history ρ1, . . . , ρi so far to determine successor
ρi+1.

To interpret epistemic operators, both individual and col-
lective, for every i ∈ Agt, we introduce the (k-bound) in-
distinguishability relation ∼k

i on global histories such that
h ∼k

i h
′ iff for all j ≤ k, hi[|h| −min{|h|, j}] = h′i[|h′| −

min{|h|, j}], that is, the last k i-components of histories h
and h′ are equal.
Definition 3 (Indistinguishability relations). Let A ⊆ Agt
be a group of agents, and h, h′ global histories.

• relation for everybody knows: h ∼k,E
A h′ iff ∼k,E

A =
(
⋃

a∈A ∼k
i), i.e., the local states of at least one agent in

A are indistinguishable.
• relation for distributed knowledge: h ∼k,D

A h′ iff ∼k,D
A =

(
⋂

a∈A ∼k
i), i.e., the local states of all agents in A are

indistinguishable.
We now define the temporal-epistemic specification lan-

guage that we will use in the rest of the paper. The syntax of
CTLKPR and CTLKBR is the same as the standard setting
for CTLK (Penczek and Lomuscio 2003).
Definition 4 (CTLK Syntax). A CTLK formula ϕ is con-
structed according to the following BNF:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | EXϕ | EGϕ | E(ϕUϕ) |
Kiϕ | EAϕ | DAϕ

The other Boolean connectives and CTL modalities can
be introduced as usual. The readings of the epistemic modal-
ities are as follows: Kiϕ denotes “agent i knows that ϕ
holds”; EAϕ denotes collective knowledge, i.e., “each agent
in group A knows that ϕ holds”; DAϕ denotes distributed
knowledge, i.e., “all agents in group A together know that ϕ
holds”. Note that we do not employ a common knowledge
modality.

The satisfaction of CTLKBR and CTLKPR is defined as
follows.
Definition 5 (CTLK Satisfaction). Given an interpreted sys-
tem IS = 〈(Li, Acti, Pi, ti)i∈Agt, I, λ〉, history h ∈ G, and
bound k ∈ N ∪ {ω}:
IS, h |=k p iff h[max{1, |h| − k}, |h|] ∈ λ(p)
IS, h |=k ¬ϕ iff IS, h 6|=k ϕ
IS, h |=k ϕ ∧ ψ iff IS, h |=k ϕ and IS, h |=k ψ
IS, h |=k EXϕ iff for some k-path ρ originating from h,

IS, ρ[max{(|h| − k) + 1, 1}, |h|+ 1] |=k ϕ
IS, h |=k EGϕ iff for some k-path ρ originating from h,

for all i ≥ |h|,
IS, ρ[max{i− k, 1}, i] |=k ϕ

IS, h |=k E(ϕUψ) iff for some k-path ρ originating from h,
for some j ≥ |h|,
IS, ρ[max{j − k, 1}, j] |=k ψ
and for all |h| ≤ i < j,
IS, ρ[max{i− k, 1}, i] |=k ϕ

IS, h |=k Kiϕ iff IS, h′ |=k ϕ for all h′ ∼k
i h

IS, h |=k EAϕ iff IS, h′ |=k ϕ for all h′ ∼k,E
A h

IS, h |=k DAϕ iff IS, h′ |=k ϕ for all h′ ∼k,D
A h

We also write CTLKIR to denote the logic CTLK inter-
preted on conventional observational semantics. In order to

distinguish between CTLKBR and CTLKPR, we define the
following:

Definition 6. Given a CTLK formula ϕ, an interpreted sys-
tem IS, and a history h ∈ G, the satisfaction of CTLKBR,
(IS, h) |=BR ϕ is defined as (IS, h) |=k ϕ for a fixed nat-
ural k ∈ N.

The satisfaction of CTLKPR, (IS, h) |=PR ϕ is defined
as (IS, h) |=ω ϕ.

The satisfaction of CTLKIR, (IS, h) |=IR ϕ is defined
as (IS, h) |=0 ϕ.

The following lemma states that, when considering the se-
mantics on k-bounded recall, we may consider only histories
of length at most k.

Lemma 1. Under k−bounded recall, for every reachable
history h ∈ G, we have IS, h |=k ϕ iff IS, h[max{1, |h| −
k}, |h|] |=k ϕ.

Proof. The proof is by induction on the structure of ϕ.
For atomic ϕ = p ∈ AP , IS, h |=k ϕ iff h[max{1, |h| −

k}, |h|] ∈ λ(p), iff IS, h[max{1, |h| − k}, |h|] |=k ϕ.
The case for boolean connectives is immediate.
As regards ϕ = EXψ, IS, h |=k ϕ iff for some k-path

ρ originating from h, IS, ρ[max{(|h| − k) + 1, 1}, |h| +
1] |=k ϕ. Notice that ρ is also a k-path originating from
h[max{1, |h| − k}, |h|], and by induction hypothesis we ob-
tain that IS, ρ[max{(|h| − k) + 1, 1}, |h|+ 1] |=k ϕ. As a
result, IS, h[max{1, |h| − k}, |h|] |=k ϕ.

As regards ϕ = Kiψ, IS, h |=k ϕ iff IS, h′ |=k ψ
for all h′ ∼k

i h. Notice that h′ ∼k
i h iff h′[max{1, |h′| −

k}, |h′|] ∼k
i h[max{1, |h′| − k}, |h′|], and by induction hy-

pothesis IS, h′[max{1, |h′| − k}, |h′|] |=k ψ. As a result,
IS, h[max{1, |h| − k}, |h|] |=k ϕ.

The cases for the other temporal and epistemic operators
are similar.

To illustrate the difference between bounded and per-
fect recall, consider the following variant of the train-gate-
controller (TGC) scenario (van der Hoek and Wooldridge
2002). In this version the system consists of a controller and
two trains, with each of the trains operating on a circular
track. The two tracks share one tunnel, which has red-green
traffic lights on both sides and allows only one train inside
the tunnel at any time. The traffic lights are operated by the
controller, and a train can enter the tunnel only when the
light is green. The controller grants a train access randomly.
However, if a train has requested to enter the tunnel, and has
been waiting for three time stamps, then it will discard the
request and exit the queue.

The scenario is easily expressible under perfect recall se-
mantics as each train needs to recall the previous events be-
fore requesting to enter. Bounded recall can also be used as
long as sufficient memory is employed. However, it is prob-
lematic to encode the scenario under memoryless semantics.
In fact, consider the evaluation of the following CTLK for-
mula:

φ =

N∨
i=1

EF (waitedi 3s ∧ EF (in tunneli))

The atomic proposition waitedi 3s means that train i has
waited for three timestamps, and in tunneli means train i is
in the tunnel. This formula expresses the property that there
exists a path in the system in which the train will have been
waiting for three timestamps and the controller might grant
access to the train later at some point, whereN is the number
of trains in the system and here N = 2. The formula can be
verified under perfect recall, and if we use bounded recall
semantics as an approximation, the verification result of the
above property will depend on the window size that has been
set. For example with a window size of 5, the train is able to
recall the number of timestamps it has been waiting for.

The example illustrates the different semantics, the differ-
ent capabilities and the fact that, intuitively, under a natural
modelling, a specification may hold on one semantics and
not on the other.

Model Checking CTLKBR
In this section we investigate the model checking problem
for CTLKBR and CTLKPR, and the relationship between
bounded recall and perfect recall, by showing that if an ex-
istential formula ϕ holds under bounded recall then it also
holds under perfect recall. Based on these properties, we can
consider the bounded recall semantics as an approximation
of perfect recall.
Definition 7 (Model Checking Problem). Given an inter-
preted system IS, a CTLK formula ϕ, and a window size
k ∈ N∪{ω}, model checking IS against ϕ concerns decid-
ing whether it is the case that IS |=k ϕ.

The model checking problem for CTLK is normally in-
vestigated in the context of interpreted systems under imper-
fect recall (i.e., under observational semantics). In this case
the complexity of the model checking problem is PTIME
for models given explicitly (Lomuscio and Raimondi 2006)
and PSPACE-COMPLETE for models given implicitly (Lo-
muscio and Raimondi 2006; Huang, Chen, and Su 2015),
i.e., under compact representations such as the interpreted
systems above.

Model checking interpreted systems with perfect recall is
computationally more expensive due to the enriched expres-
siveness of these structures. Model checking against CTLK
with common knowledge is undecidable as well as its satis-
fiability problem (van der Meyden 1998). Based on this, we
can also get to the conclusion that explicit model checking
with common knowledge is also undecidable.

Given an interpreted system IS, under perfect recall se-
mantics we consider histories of arbitrary length. For the
same IS with a fixed memory bound k ∈ N, by Lemma 1,
given any history longer than k, we only need to consider its
latest k observations, as the older ones are not relevant.
Definition 8 (ECTLK). The positive existential fragment of
a CTLK formula ϕ is constructed as:

ϕ ::= p | ϕ ∨ ϕ | ϕ ∧ ϕ | EXϕ | EGϕ | E(ϕUϕ) |
Kiϕ | EAϕ | DAϕ

Hereafter we assume monotonicity on the interpretation
of atoms, that is, if h ∈ λ(p) then for all h′ extending h,
h′ ∈ λ(p).

Theorem 1. Given an interpreted system IS, an ECTLK
formula ϕ, if IS |=k ϕ then IS |=k+1 ϕ.

Proof. Here we use induction to prove this theorem.
Given (IS, h) |=k p, we have h[max{1, |h| − k}, |h|] ∈

λ(p) for some k ∈ N. By monotonicity, h ∈ λ(p) as well.
Hence, IS, h |=k+1 p. The case of Boolean connectives is
immediate.

Given (IS, h) |=k EXϕ, there exits an k-path ρ originat-
ing from h such that IS, ρ[max{|h|+1−k, 1}, |h|+1] |=k

ϕ. By induction hypothesis, IS, ρ[max{|h| − k, 1}, |h| +
1] |=k+1 ϕ. Thus (IS, h) |=k+1 EXϕ.

Given (IS, h) |=k EGϕ, there exits an k-path ρ origi-
nating from h such that IS, ρ[max{i − k, 1}, i] |=k ϕ for
all i ≥ |h|. Therefore, there exits a path ρ originating from h
such that IS, ρ[max{i−k−1, 1}, i] |=k+1 ϕ for all i ≥ |h|,
and we get (IS, h) |=k+1 EGϕ.

We omit the proof for E(ϕUφ), as it follows the same
reasoning.

We assume (IS, h) 6|=k+1 Kiϕ, which means there exits
a history h′ such that h ∼k+1

i h′ and (IS, h′) 6|=k+1 ϕ.
In particular, for k = |h|, we have that h ∼k

i h′ and
(IS, h′) 6|=k ϕ. This gives us (IS, h) 6|=k Kiϕ.

The rest of the proof for EA and DA follows the same
reasoning.

Corollary 1. Given an interpreted system IS, an ECTLK
formula ϕ, if IS |=BR ϕ then IS |=PR ϕ.

Proof. If we assume IS, h |=k ϕ for some k ≥ 0, we get
IS, h |=j ϕ for all j ≥ k. When we set j = ω, we get
IS, h |=PR ϕ.

Theorem 2. If the bound k = 0, then IS |=BR ϕ ⇔
IS |=IR ϕ.

Proof. This proof is straightforward. When k = 0, the state
space under bounded recall semantics is exactly the same as
that under imperfect recall, as all states have a length of 1.
The verification of ϕ is the same under both semantics.

We now explore the complexity results of model check-
ing systems against CTLKBR and CTLKPR. For the prob-
lem of determining whether IS |=BR ϕ, we claim that
the complexity for a fixed bound k is in polynomial space
(PSPACE) with respect to the size |IS| of the given inter-
preted system and the size |ϕ| of the CTLK formula. The
problem can be solved by recursive function calls with a
depth of |ϕ|.
Theorem 3. Model checking interpreted systems against
CTLK specification under bounded recall is an EXPTIME
problem. If the window size is a fixed parameter, the prob-
lem is PSPACE-complete.

Proof. Let n be the number of agents in IS, and let G
be the set of global states in the model of length at most
k. We take an arbitrary global state h ∈ G, such that
h = (he, h1, ..., hn), where hi denotes the local state of
agent i ∈ {1, .., n, e}.With a memory bound k, each local
state of agent i, hi is composed of k + 1 single observa-
tions, i.e. agent i remembers the previous k+1 observations.

We use hi = 〈lmi . . . lm+k
i 〉 to express such property, where

lji ∈ Li denotes the single observation at time j for j > 0.
In the memoryless case, each local state of an agent is the

same as a single state in the bounded recall semantics, and
let |Li| be the number of single observations that agent i has.
The state space Hi generated from Li has a size of |Li|k+1.

Therefore the number of global states in the model is
bounded by O(

∏n
i=1 |Li|k+1) since a global state needs to

be composed of local states. In a general case where k is
not a fixed number, we get an exponential result for the up-
per bound. If we omit the constant term and consider k as a
fixed parameter, the complexity is in polynomial space.

The semantics of CTLKBR can be checked by using the
procedure VERIFY(ϕ, h), reported below, which operates
recursively by the depth of the formula. The cases are as
follows:

• VERIFY(p, h): Check whether or not p is true in h, return
YES if it is true, NO otherwise.

• VERIFY(ϕ ∧ φ, h): First call VERIFY(ϕ, h). If it re-
turns NO, return NO. Otherwise output the result of VER-
IFY(φ, h).

• VERIFY(ϕ ∨ φ, h): First call VERIFY(ϕ, h). If it returns
YES, then return YES. Otherwise output the result of VER-
IFY(φ, h).

• VERIFY(EXϕ, h): Iterate over the set of states h′ ∈ G,
and for each state h′, check if it is reachable from h. If it
is reachable from h, then call VERIFY(ϕ, h′) checking if
ϕ is satisfied in h′. If VERIFY(ϕ, h′) returns YES, return
YES. If no such state h′ is found, then return NO. This
means the procedure needs to store the value of the state
h, and it uses a polynomial amount of space.

• VERIFY(E(ϕUφ), h): Iterate over the set of states h′ ∈
G, and for each state h′, call VERIFY(φ, h′). If it returns
YES, check if h′ = h, and if it is, return YES. Other-
wise, check if there is a sequence of states from h to h′
where φ holds in every states along this path. This check
can be done by calling another procedure PATH(h, h′, φ,
log(|IS|)) which checks if there is such a valid path of
length less than or equal to the size of the model |IS|,
as G includes all possible global states. It returns YES if
there is. The procedure PATH can be found in (Papadim-
itriou 1994). This is essentially a reachability problem,
with an extra check on whether the formula is satisfied in
the state. There will be at most |ϕ| checks, where |ϕ| de-
notes the size of the input formula. Therefore, it will use
at most O(|IS|2 × |ϕ|) polynomial space.

• VERIFY(EGϕ, h): Check if there exists a path of length
|IS| such that VERIFY(ϕ, h′) holds for all states along
the path. This again can be seen as a reachability problem,
and uses polynomial space.

• VERIFY(Kiϕ, h): Iterate through all states h′ ∈ G, and
for each state, check if h′ ∼k

i h. For all h′ such that h′ ∼k
i

h, call VERIFY(ϕ, h′), and return NO if VERIFY(ϕ, h′)
returns NO. If VERIFY(ϕ, h′) returns YES for every h′,
then return YES.

• VERIFY(EAϕ, h
′): Iterate over all states h′ ∈ G, and if

h ∼k
i h
′ for any i ∈ A, call VERIFY(ϕ, h′). Return YES

if VERIFY(ϕ, h′) for all g ∈ G such that g ∼k
i g
′ for any

i ∈ A. Otherwise return NO.
• VERIFY(DAϕ, g

′): Iterate over all states g′ ∈ G, and if
g ∼k

i g′ for all i ∈ A, call VERIFY(ϕ, g′). Only return
YES if VERIFY(ϕ, g′) for all g ∈ G such that g ∼k

i g
′ for

any i ∈ A. Otherwise return NO.

The depth of calls will be at most |ϕ|. Given that the com-
plexity of model checking against CTLK has been shown to
be PSPACE-complete (Lomuscio and Raimondi 2006) we
can conclude that the complexity of model checking against
CTLK under bounded recall is PSPACE-complete when the
window size is a fixed parameter, with respect to the size of
the model and the size of the CTLK formula.

The model checking problem of CTLK under a memo-
ryless setting with incomplete information has been shown
to be PSPACE-complete, which is the same complexity as
we have shown for bounded perfect recall. However, the
same model checking problem under a perfect recall setting
has a higher complexity result of NON-ELEMENTARY(Dima
2008).

Theorem 3 concerns symbolic model checking, i.e., the
verification problem when the model is not given explicitly.
If the Kripke model is given explicitly from an interpreted
system where states and transition relations are specified ex-
plicitly, the model checking problem against CTLK speci-
fication under bounded recall is PSPACE. In the same sce-
nario where k is fixed and the bounded histories are given
explicitly, the model checking problem is PTIME-complete,
as there is no need for model construction.This is in the same
complexity class as the model checking problem under ob-
servational semantics; indeed, note that in this case the same
labelling algorithm memoryless semantics can be applied to
bounded recall semantics.

Implementation
We implemented the algorithms of the previous section into
an experimental checker called MCMASBR (MCMASBR

2020), which extends the open source checker MC-
MAS (Lomuscio, Qu, and Raimondi 2017) by adding sup-
port to bounded recall semantics; functionality for observa-
tional semantics is retained. Agents in MCMASBR remem-
ber a fixed number of the latest states visited in the run.
Therefore, the agents’ decisions are based on bounded local
histories, rather than on their present state as under obser-
vational semantics. When an agent makes a transition, the
oldest local state is deleted and a fresh one is added as in a
FIFO queue.

MCMASBR takes as input an ISPL file describing the
MAS under analysis and a set of formulas to be veri-
fied. Verification under bounded recall semantics is car-
ried out by invoking the tool with the command-line flag
-bpr [window_size], where the size of the recall win-
dow is specified by the user. For simplicity, in the present
version all agents have the same window size, which en-
codes the actual number of local states that agents remem-
ber.

History:
(state[0]=wait) and (state[1]=wait): {away};
end History
...
Evaluation
waited2 if (Train1.state[0]=wait)

and (Train1.state[1]=wait);
end Evaluation

Figure 1: BR referencing in ISPL.

To support the bounded semantics previously introduced,
we modified the original ISPL syntax to allow users to spec-
ify protocols also on the basis of past observations as pre-
scribed by Definition 1, as well as assignment functions.
This allows atomic propositions to be assigned to finite his-
tories instead of single observations. The revised expressiv-
ity supports a number of features including functionality for
referring precisely to some of the past local states. As an ex-
ample of this, see Figure 1, where the agent only waits for
two timestamps before they leave. We refer to the sources
for more details and examples0.

Upon invocation, the tool parses the input ISPL file and
then constructs the model as defined in Definition 1, where
the agents’ local states have their dimension fixed by the
window length defined by the user. The model construction
phase generates the set of bounded histories which are of ar-
bitrary lengths up to the window size. MCMASBR imple-
ments several methods to minimise the memory and compu-
tational overheads generated by the bounded recall seman-
tics. For example, since at each time stamp in a run, the
agents’ local states need to evolve as described in Section
2, the symbolic encoding of each local history contains the
composition of the previous history with the new variable
assignments representing portions of the local history. This
optimises the BDD memory used for computing and storing
large local histories, notably during the subset construction
stage where Boolean variables are generated to encode the
state space. Agents’ protocols were also modified and opti-
mised to account for the BR semantics, and are defined on
the basis of local histories also enabling reference to previ-
ous observations.

Evaluation. Intuitively, the increased expressivity of the
bounded recall semantics comes at a cost of a larger number
of Boolean variables required when compared against the
standard observational semantics. This is expected to cause a
performance degradation in the verification step. Note, how-
ever, that this is still preferable to the NON-ELEMENTARY
complexity of perfect recall. To evaluate the cost of bounded
recall, we now report how the performance of MCMASBR

scales as we increase the value of the window size and the
example size.

To do so we report the experiments obtained by imple-
menting a N-Transmission-Protocol example in ISPL, which
is similar to the well known Bit-Transmission-Protocol (Fa-
gin et al. 1995). In NTP, the sender sends packets which
contain random numbers in the set {1, ..., N} over an un-
reliable channel. The receiver only responds with an ack

N W SR SP tm (s) tv(s) B (MB)
0 9 16 0.001 0.001 8.98
1 37 136 0.012 0.001 9.18

1 2 149 560 0.039 0.002 9.92
3 597 2380 0.551 0.017 11.75
4 2389 6748 10.458 0.325 13.00
0 12 48 0.003 0.001 8.99
1 26 1176 0.016 0.001 9.15

2 2 62 18472 0.065 0.006 10.03
3 134 2.13× 105 1.069 0.116 11.65
4 2389 1.93× 106 19.073 2.599 14.50
0 24 96 0.004 0.001 8.99
1 51 4656 0.031 0.002 9.26

3 2 123 1.48× 105 0.277 0.065 10.82
3 267 3.47× 106 10.385 66.35 13.37
4 555 6.46× 107 503.584 163.513 32.09
0 30 160 0.005 0.001 9.03
1 63 1.29× 104 0.123 0.004 9.37

4 2 153 6.83× 105 66.791 187.058 11.52
3 333 2.63× 107 114.8 37.364 27.97
4 - - ≥ 5.0× 103 - -

Table 1: Experimental results for the NTP.

when it receives N packets with unique numbers in N steps
consecutively. Such system requires the agents to remember
the previous packets they received. The CTLK specification
checked for the system was:

AG(

N∧
i=1

seeni → EFrec ack)

Here rec ack represents the atomic proposition assigned
to states when the sender receives an acknowledgement from
the receiver. The atomic proposition seeni is assigned to
histories where the agent has seen the digit i in the previ-
ous N timestamps. This expresses the property that if the
receiver receives N unique set of digits consecutively, the
sender will receive an acknowledgement from the receiver
at some point. Intuitively, if the window size is less than N ,
then the atomic propositions do not exist, and the formula is
therefore not meaningful, but it holds otherwise.

Table 1 shows the experimental results obtained with
MCMASBR running on an Intel R© CoreTM i7-2600 CPU
3.40GHz machine with 16GB RAM running Ubuntu
v18.04.2 (Linux kernel v4.15). We record model construc-
tion time (tm) and verification time (tv) separately. This is
because there is a model construction stage after parsing the
ISPL file, where the model is built under bounded recall se-
mantics and the computational time for reachability will take
longer. The model construction time increases exponentially
with the window size (W); this is mostly due to the genera-
tion of a larger state space. In the table SR represents the set
of reachable states, SP represents the set of possible states
of the model, B the BBD memory memory used.

To further evaluate the scalability of MCMASBR, we now
report the experimental results obtained in Table 2 when

N W SR SP tm (s) tv(s) B (MB)
0 0.83× 102 13,122 0.037 0.002 9.46
1 0.31× 105 8.61× 107 0.263 0.011 11.04

8 2 2.50× 106 3.76× 1011 0.888 0.113 16.6
3 3.27× 107 1.23× 1015 8.654 0.41 33.34
0 3.84× 103 1.18×105 0.194 0.003 9.71
1 3.35× 105 6.97×109 0.571 0.015 12.0

10 2 7.80× 107 2.75×1014 1.918 0.226 31.94
3 1.93× 109 8.10×1018 13.14 0.576 36.55

Table 2: Experimental results for the Train Gate Controller
with N trains.

verifying the TGC example against the specification φ dis-
cussed in Section 2, where the example is here extended to
contain 10 trains and 8 trains. The assignment function for
atomic propositions differs for memoryless and bounded re-
call semantics, depending on the window size. For example,
as we discussed earlier in Section 2, the atomic proposition
waitedi 3s does not hold in any state when the window size
is smaller than 2. We refer to the source of the model in ISPL
format for more details0.

In general, we observe from both examples that the model
construction time increases more significantly than the ver-
ification time. This is to be expected due to an increase in
the resulting BDD variables.The results validate the correct-
ness of the implementation and the increased functionality
obtained over observational semantics. The degradation of
the performance is significant; it is however expected and
also needs to be compared against the high complexity of
the perfect recall case.

In summary, while the tool’s performance degrades when
increasing the window size, the results demonstrate that the
method provides a concrete way for verifying an approxima-
tion of perfect recall.

Conclusions and Future Work
There is much literature on verification approaches for MAS
against temporal-epistemic specifications (Penczek and Lo-
muscio 2003; Gammie and van der Meyden 2004). Most ap-
proaches support observational semantics. MCK is the only
tool supporting perfect recall, but this is limited to one agent
only, since the problem is undecidable for MAS of 2 agents
or above. For this reasons, it is of interest to establish meth-
ods that can deal with approximations.

In this paper, we have pursued this direction by devel-
oping a bounded recall semantics and a fully implemented
verification method for it. Intuitively, bounded recall sits
in between observational semantics and full perfect recall.
The size of the recall, defined on the length of local history
which is remembered, determines the recall capabilities of
the agent. Perfect recall can be seen as bounded recall with
infinite window size; bounded perfect recall collapses to ob-
servational semantics when the window size is equal to 0.

To evaluate the approach we have studied the verifica-
tion problem against implicitly given models and showed
that model checking is in EXPTIME. This is a worse com-

plexity than observational semantics but better than perfect
recall, which is undecidable. Moreover when fixing the win-
dow size, the problem becomes PSPACE, which is the same
as the complexity under observational semantics.

We implemented bounded recall on top of the open source
model checker MCMAS paying particular attention to opti-
mising the BDD structures resulting from the local histories.
The experimental results that we obtained confirm that the
performance degrades with higher recall sizes, but is man-
ageable in some key benchmarks for sizes up to around 10.

In the future we intend to explore avenues to improve the
scalability of the toolkit. For example, parallel computation
can be potentially considered to speed up the construction of
the state-space. Also it may be of interest to establish pro-
cedures whereby full recall is computed as the fix point of
iterations on bounded recall. We leave this for further work.

Acknowledgments
A. Lomuscio is supported by a Royal Academy of Engineer-
ing Chair in Emerging Technologies. E. Yu acknowledges
the support of the Austrian FWF grant W1255-N23 and the
LIT AI Lab funded by the State of Upper Austria. F. Belar-
dinelli acknowledges support from the ANR JCJC Project
SVeDaS (ANR-16-CE40-0021).

References
Ågotnes, T., and Walther, D. 2009. A logic of strategic
ability under bounded memory. Journal of Logic, Language
and Information 18(1):55–77.
Alur, R.; Henzinger, T. A.; and Kupferman, O. 1997.
Alternating-time temporal logic. In FOCS, 100–109. IEEE
Computer Society.
Baier, C., and Katoen, J. 2008. Principles of model checking.
MIT Press.
Belardinelli, F.; Lomuscio, A.; and Malvone, V. 2018. Ap-
proximating perfect recall when model checking strategic
abilities. In KR, 435–444. AAAI Press.
Belardinelli, F.; Lomuscio, A.; and Malvone, V. 2019. An
abstraction-based method for verifying strategic properties
in multi-agent systems with imperfect information. In Proc.
AAAI.
Biere, A.; Cimatti, A.; Clarke, E. M.; Fujita, M.; and Zhu,
Y. 1999. Symbolic model checking using SAT procedures
instead of BDDs. In DAC, 317–320. ACM Press.
Bryant, R. E. 1986. Graph-based algorithms for Boolean
function manipulation. IEEE Trans. Computers 35(8):677–
691.
Clarke, E. M., and Grumberg, O. 1987. Avoiding the state
explosion problem in temporal logic model checking. In
PODC, 294–303. ACM.
Clarke, E. M.; Henzinger, T. A.; Veith, H.; and Bloem, R.,
eds. 2018. Handbook of Model Checking. Springer.
Denning, P. J.; Comer, D.; Gries, D.; Mulder, M. C.; Tucker,
A. B.; Turner, A. J.; and Young, P. R. 1989. Computing as a
discipline. IEEE Computer 22(2):63–70.

Dima, C. 2008. Revisiting satisfiability and model-checking
for CTLK with synchrony and perfect recall. In CLIMA,
volume 5405 of Lecture Notes in Computer Science, 117–
131. Springer.
Fagin, R.; Halpern, J.; Moses, Y.; and Vardi, M. 1995. Rea-
soning About Knowledge. The MIT Press.
Fagin, R.; Halpern, J. Y.; Moses, Y.; and Vardi, M. Y.
1997. Knowledge-based programs. Distributed Computing
10(4):199–225.
Gammie, P., and van der Meyden, R. 2004. MCK: model
checking the logic of knowledge. In CAV, volume 3114 of
Lecture Notes in Computer Science, 479–483. Springer.
Halpern, J. Y., and Vardi, M. Y. 1986. The complexity of
reasoning about knowledge and time: Extended abstract. In
STOC, 304–315. ACM.
Halpern, J. Y., and Vardi, M. Y. 1989. The complexity of
reasoning about knowledge and time. I. lower bounds. J.
Comput. Syst. Sci. 38(1):195–237.
Huang, X.; Chen, Q.; and Su, K. 2015. The complexity
of model checking succinct multiagent systems. In IJCAI,
1076–1082. AAAI Press.
Jamroga, W.; Knapik, M.; and Kurpiewski, D. 2017. Fix-
point approximation of strategic abilities under imperfect in-
formation. In AAMAS, 1241–1249. ACM.
Lomuscio, A., and Penczek, W. 2007. Symbolic model
checking for temporal-epistemic logics. SIGACT News
38(3):77–99.
Lomuscio, A., and Raimondi, F. 2006. The complexity of
model checking concurrent programs against CTLK specifi-
cations. In AAMAS, 548–550. ACM.
Lomuscio, A.; Qu, H.; and Raimondi, F. 2017. MCMAS:
an open-source model checker for the verification of multi-
agent systems. STTT 19(1):9–30.
Lomuscio, A.; Qu, H.; and Russo, F. 2010. Automatic
data-abstraction in model checking multi-agent systems. In
MoChArt, volume 6572 of Lecture Notes in Computer Sci-
ence, 52–68. Springer.
MCMASBR. 2020. MCMASBR.
https://vas.doc.ic.ac.uk/software/mcmas/extensions/.
Meski, A.; Penczek, W.; Szreter, M.; Wozna-Szczesniak, B.;
and Zbrzezny, A. 2014. BDD-versus SAT-based bounded
model checking for the existential fragment of linear tempo-
ral logic with knowledge: algorithms and their performance.
Autonomous Agents and Multi-Agent Systems 28(4):558–
604.
Mogavero, F.; Murano, A.; and Vardi, M. Y. 2010. Rea-
soning about strategies. In FSTTCS, volume 8 of LIPIcs,
133–144. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik.
Papadimitriou, C. H. 1994. Computational complexity.
Addison-Wesley.
Penczek, W., and Lomuscio, A. 2003. Verifying epistemic
properties of multi-agent systems via bounded model check-
ing. Fundam. Inform. 55(2):167–185.

van der Hoek, W., and Wooldridge, M. J. 2002. Tractable
multiagent planning for epistemic goals. In AAMAS, 1167–
1174. ACM.
van der Meyden, R., and Shilov, N. V. 1999. Model check-
ing knowledge and time in systems with perfect recall (ex-
tended abstract). In FSTTCS, volume 1738 of Lecture Notes
in Computer Science, 432–445. Springer.
van der Meyden, R. 1998. Common knowledge and update
in finite environments. Inf. Comput. 140(2):115–157.

