
FIPA 97, Version 1.1 Part 2 © FIPA (1997,1998)

 1

 2

FOUNDATION FOR INTELLIGENT PHYSICAL AGENTS 3

 4
 5

 6

 7

FIPA 97 Specification, Version 2.0 8

1.1 9

Part 2 10

 11

 12

 13

Agent Communication Language 14

 15

 16

Obsolete 17

 18

 19

 20

Publication date: 23 rd October, 199828th November, 1997 21

Copyright © 1997,1998 by FIPA - Foundation for Intelligent Physical Agents 22

Geneva, Switzerland 23

 24

 25

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page ii

 26

This is one part of thea revised version interim update of the FIPA 97 Sspecifications as 27
releasedproduced in October 1997. 28

 29
FIPA plans to produce a revision of the FIPA 97 specification in October 1998. 30

The latest version of this document may be found on the FIPA web site: 31
 32

http://www.drogo.cselt.it/fipa.org 33

 34
Comments and questions regarding this document and the specification therein should be 35

addressed to: 36
 37

specsfipa97@fipa.orgnortel.co.uk 38
 39

It is planned to introduce a web-based mechanism for submitting comments to the 40
specifications.They will be attended to promptly, see 41

Please refer to the FIPA web site for FIPA's latest policy and procedure for dealing with issues 42
regarding the specification. 43

 44
 45
Notice 46
Use of the technologies described in this specification may infringe patents, copyrights or other intellectual 47
property rights of FIPA Members and non-members. Nothing in this specification should be construed as 48
granting permission to use any of the technologies described. Anyone planning to make use of technology 49
covered by the intellectual property rights of others should first obtain permission from the holder(s) of the 50
rights. FIPA strongly encourages anyone implementing any part of this specification to determine first 51
whether part(s) sought to be implemented are covered by the intellectual property of others, and, if so, to 52
obtain appropriate licences or other permission from the holder(s) of such intellectual property prior to 53
implementation. This FIPA '97 Specification is subject to change without notice. Neither FIPA nor any of its 54
Members accept any responsibility whatsoever for damages or liability, direct or consequential, which may 55
result from the use of this specification. 56

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page iii

Contents 57

1 Scope... 111 58
2 Normative references .. 211 59
3 Terms and definitions ... 333 60
4 Symbols (and abbreviated terms) .. 555 61
5 Overview of Inter-Agent Communication .. 666 62
5.1 Introduction ... 666 63
5.2 Message Transport Mechanisms.. 777 64
6 FIPA ACL Messages ... 1099 65
6.1 Preamble .. 1099 66
6.2 Requirements on agents.. 1099 67
6.3 Message structure.. 111010 68
6.3.1 Overview of ACL messages .. 111010 69
6.3.2 Message parameters .. 121010 70
6.3.3 Message content... 131111 71
6.3.4 Representing the content of messages ... 151212 72
6.3.5 Use of MIME for additional content expression encoding.. 151313 73
6.3.6 Primitive and composite communicative acts... 161313 74
6.4 Message syntax .. 161313 75
6.4.1 Grammar rules for ACL message syntax.. 171414 76
6.4.2 Notes on grammar rules ... 191515 77
6.5 Catalogue of Communicative Acts... 191616 78
6.5.1 Preliminary notes .. 201717 79
6.5.2 accept-proposal.. 221919 80
6.5.3 agree ... 232020 81
6.5.4 cancel .. 252121 82
6.5.5 cfp ... 262222 83
6.5.6 confirm ... 272323 84
6.5.7 disconfirm .. 282424 85
6.5.8 failure ... 292525 86
6.5.9 inform... 302626 87
6.5.10 inform-if (macro act)... 312727 88
6.5.11 inform-ref (macro act) .. 322828 89
6.5.12 not-understood... 332929 90
6.5.13 propose ... 343030 91
6.5.14 query-if ... 353131 92
6.5.15 query-ref... 363232 93
6.5.16 refuse .. 373333 94
6.5.17 reject-proposal... 383434 95
6.5.18 request .. 393535 96
6.5.19 request-when.. 403636 97
6.5.20 request-whenever .. 413737 98
6.5.21 subscribe... 433939 99

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page iv

7 Interaction Protocols... 444040 100
7.1 Specifying when a protocol is in operation ... 444040 101
7.2 Protocol Description Notation.. 444040 102
7.3 Defined protocols... 454141 103
7.3.1 Failure to understand a response during a protocol.. 454141 104
7.3.2 FIPA-request Protocol .. 454141 105
7.3.3 FIPA-query Protocol... 464141 106
7.3.4 FIPA-request-when Protocol.. 464242 107
7.3.5 FIPA-contract-net Protocol .. 474242 108
7.3.6 FIPA-Iterated-Contract-Net Protocol ... 484343 109
7.3.7 FIPA-Auction-English Protocol ... 484444 110
7.3.8 FIPA-Auction-Dutch Protocol.. 494545 111
8 Formal basis of ACL semantics ... 514747 112
8.1 Introduction to formal model... 514747 113
8.2 The SL Language .. 524848 114
8.2.1 Basis of the SL formalism... 524848 115
8.2.2 Abbreviations... 534848 116
8.3 Underlying Semantic Model... 534949 117
8.3.1 Property 1... 544949 118
8.3.2 Property 2... 544949 119
8.3.3 Property 3... 544949 120
8.3.4 Property 4... 545050 121
8.3.5 Property 5... 555050 122
8.4 Notation.. 555050 123
8.5 Primitive Communicative Acts .. 555050 124
8.5.1 The assertive Inform... 555050 125
8.5.2 The directive Request ... 555151 126
8.5.3 Confirming an uncertain proposition: Confirm... 565151 127
8.5.4 Contradicting knowledge: Disconfirm .. 565151 128
8.6 Composite Communicative Acts .. 565151 129
8.6.1 The closed-question case... 575252 130
8.6.2 The query-if act:.. 585353 131
8.6.3 The confirm/disconfirm-question act:... 585353 132
8.6.4 The open-question case:.. 585353 133
8.6.5 Summary definitions for all standard communicative acts....................................... 595454 134
8.7 Inter-agent Communication Plans... 645858 135
9 References .. 655959 136
Annex A (informative) ACL Conventions and Examples .. 676060 137
A.1 Conventions... 676060 138
A.1.1 Conversations amongst multiple parties in agent communities.. 676060 139
A.1.2 Maintaining threads of conversation... 676060 140
A.1.3 Initiating sub-conversations within protocols .. 686161 141
A.1.4 Negotiating by exchange of goals ... 686161 142
A.2 Additional examples... 696161 143
A.2.1 Actions and results .. 696161 144
Annex B (informative) SL as a Content Language ... 716363 145
B.1 Grammar for SL concrete syntax .. 716363 146

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page v

B.1.1 Lexical definitions.. 726464 147
B.2 Notes on SL content language semantics.. 726464 148
B.2.1 Grammar entry point: SL content expression .. 736464 149
B.2.2 SL Well-formed formula (SLWff) ... 736464 150
B.2.3 SL Atomic Formula ... 746565 151
B.2.4 SL Term.. 746565 152
B.2.5 Result predicate ... 746666 153
B.2.6 Actions and action expressions... 756666 154
B.2.7 Agent identifier .. 756666 155
B.2.8 Numerical Constants ... 756666 156
B.3 Reduced expressivity subsets of SL .. 756666 157
B.3.1 SL0: minimal subset of SL.. 756666 158
B.3.2 SL1: propositional form.. 766767 159
B.3.3 SL2: restrictions for decidability ... 776767 160
Annex C (informative) Relationship of ACL to KQML... 796969 161
C.1 Primary similarities and differences.. 796969 162
C.2 Correspondence between KQML message performatives and FIPA CA's 806969 163
C.2.1 Agent management primitives... 806969 164
C.2.2 Communications management .. 807070 165
C.2.3 Managing multiple solutions ... 807070 166
C.2.4 Other discourse performatives.. 817070 167
Annex D (informative) MIME-encoding to extend content descriptions.................................... 827171 168
D.1 Extension of FIPA ACL to include MIME headers ... 827171 169
D.2 Example.. 827171 170
 171

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page vi

Foreword 172

The Foundation for Intelligent Physical Agents (FIPA) is a non-profit association registered in 173
Geneva, Switzerland. FIPA’s purpose is to promote the success of emerging agent-based 174
applications, services and equipment. This goal is pursued by making available in a timely manner, 175
internationally agreed specifications that maximise interoperability across agent-based 176
applications, services and equipment. This is realised through the open international collaboration 177
of member organisations, which are companies and universities active in the agent field. FIPA 178
intends to make the results of its activities available to all interested parties and to contribute the 179
results of its activities to appropriate formal standards bodies. 180

This specification has been developed through direct involvement of the FIPA membership. The 35 corporate 181
members of FIPA (October 1997) represent 12 countries from all over the world 182
Membership in FIPA is open to any corporation and individual firm, partnership, governmental body or 183
international organisation without restriction. By joining FIPA each Member declares himself individually 184
and collectively committed to open competition in the development of agent-based applications, services and 185
equipment. Associate Member status is usually chosen by those entities who do want to be members of FIPA 186
without using the right to influence the precise content of the specifications through voting. 187
The Members are not restricted in any way from designing, developing, marketing and/or procuring 188
agent-based applications, services and equipment. Members are not bound to implement or use 189
specific agent-based standards, recommendations and FIPA specifications by virtue of their 190
participation in FIPA. 191

This specification is published as FIPA 97 ver. 1.0 after two previous versions have been subject to 192
public comments following disclosure on the WWW. It has undergone intense review by members 193
as well non-members. FIPA is now starting a validation phase by encouraging its members to carry 194
out field trials that are based on this specification. During 1998 FIPA will publish FIPA 97 ver. 2.0 195
that will incorporate whatever adaptations will be deemed necessary to take into account the 196
results of field trials. 197

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page vii

Introduction 198

This FIPA 97 specification is the first output of the Foundation for Intelligent Physical Agents. It provides 199
specification of basic agent technologies that can be integrated by agent systems developers to make complex 200
systems with a high degree of interoperability. 201
FIPA specifies the interfaces of the different components in the environment with which an agent can 202
interact, i.e. humans, other agents, non-agent software and the physical world. See figure below 203

AAA
Other
Agents

1.2.a

1.2.b

Agent Interaction
2.2

1.2.cHardware

Software

A

Information
Fusion

Information
Processing

Environment

x.3

Humans

 204
 205
FIPA produces two kinds of specification: 206
 normative specifications that mandate the external behaviour of an agent and ensure interoperability 207

with other FIPA-specified subsystems; 208
 informative specifications of applications for guidance to industry on the use of FIPA technologies. 209
The first set of specifications – called FIPA 97 – has seven parts: 210
 three normative parts for basic agent technologies: agent management, agent communication language 211

and agent/software integration 212
 four informative application descriptions that provide examples of how the normative items can be 213

applied: personal travel assistance, personal assistant, audio-visual entertainment and broadcasting and 214
network management and provisioning. 215

Overall, the three FIPA 97 technologies allow: 216
 the construction and management of an agent system composed of different agents, possibly built by 217

different developers; 218
 agents to communicate and interact with each other to achieve individual or common goals; 219
 legacy software or new non-agent software systems to be used by agents. 220
 221

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page viii

A brief illustration of FIPA 97 specification is given below 222
Part 1 Agent Management 223
This part of FIPA 97 provides a normative framework within which FIPA compliant agents can exist, operate 224
and be managed. 225
It defines an agent platform reference model containing such capabilities as white and yellow pages, message 226
routing and life-cycle management. True to the FIPA approach, these capablities are themselves intelligent 227
agents using formally sound communicative acts based on special message sets. An appropriate ontology and 228
content language allows agents to discover each other’s capabilities. 229
Part 2 Agent Communication Language 230
The FIPA Agent Communication Language (ACL) is based on speech act theory: messages are actions, or 231
communicative acts, as they are intended to perform some action by virtue of being sent. The specification 232
consists of a set of message types and the description of their pragmatics, that is the effects on the mental 233
attitudes of the sender and receiver agents. Every communicative act is described with both a narrative form 234
and a formal semantics based on modal logic. 235
The specifications include guidance to users who are already familiar with KQML in order to facilitate 236
migration to the FIPA ACL. 237
The specification also provides the normative description of a set of high-level interaction protocols, 238
including requesting an action, contract net and several kinds of auctions etc. 239
Part 3 Agent/Software Integration 240
This part applies to any other non-agentised software with which agents need to “connect”. Such software 241
includes legacy software, conventional database systems, middleware for all manners of interaction including 242
hardware drivers. Because in most significant applications, non-agentised software may dominate software 243
agents, part 3 provides important normative statements. It suggests ways by which Agents may connect to 244
software via “wrappers” including specifications of the wrapper ontology and the software dynamic 245
registration mechanism. For this purpose, an Agent Resource Broker (ARB) service is defined which allows 246
advertisement of non-agent services in the agent domain and management of their use by other agents, such 247
as negotiation of parameters (e.g. cost and priority), authentication and permission. 248
Part 4 - Personal Travel Assistance 249
The travel industry involves many components such as content providers, brokers, and personalization 250
services, typically from many different companies. In applying agents to this industry, various 251
implementations from various vendors must interoperate and dynamically discover each other as different 252
services come and go. Agents operating on behalf of their users can provide assistance in the pre-trip 253
planning phase, as well as during the on-trip execution phase. A system supporting these services is called a 254
PTA (Personal Travel Agent). 255
In order to accomplish this assistance, the PTA interacts with the user and with other agents, representing the 256
available travel services. The agent system is responsible for the configuration and delivery - at the right time, 257
cost, Quality of Service, and appropriate security and privacy measures - of trip planning and guidance 258
services. It provides examples of agent technologies for both the hard requirements of travel such as airline, 259
hotel, and car arrangements as well as the soft added-value services according to personal profiles, e.g. 260
interests in sports, theatre, or other attractions and events. 261
Part 5 - Personal Assistant 262
One central class of intelligent agents is that of a personal assistant (PA). It is a software agent that acts semi-263
autonomously for and on behalf of a user, modelling the interests of the user and providing services to the 264
user or other people and PAs as and when required. These services include managing a user's diary, filtering 265
and sorting e-mail, managing the user's activities, locating and delivering (multimedia) information, and 266
planning entertainment and travel. It is like a secretary, it accomplishes routine support tasks to allow the user 267
to concentrate on the real job, it is unobtrusive but ready when needed, rich in knowledge about user and 268

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page ix

work. Some of the services may be provided by other agents (e.g. the PTA) or systems, the Personal Assistant 269
acts as an interface between the user and these systems. 270
In the FIPA'97 test application, a Personal Assistant offers the user a unified, intelligent interface to the 271
management of his personal meeting schedule. The PA is capable of setting up meetings with several 272
participants, possibly involving travel for some of them. In this way FIPA is opening up a road for adding 273
interoperability and agent capabilities to the already established 274

Part 6 - Audio/Video Entertainment & Broadcasting 275
An effective means of information filtering and retrieval, in particular for digital broadcasting networks, is of 276
great importance because the selection and/or storage of one’s favourite choice from plenty of programs on 277
offer can be very impractical. The information should be provided in a customised manner, to better suit the 278
user’s personal preferences and the human interaction with the system should be as simple and intuitive as 279
possible. Key functionalities such as profiling, filtering, retrieving, and interfacing can be made more 280
effective and reliable by the use of agent technologies. 281
Overall, the application provides to the user an intelligent interface with new and improved functionalities for 282
the negotiation, filtering, and retrieval of audio-visual information. This set of functionalities can be achieved 283
by collaboration between a user agent and content/service provider agent. 284

Part 7 - Network management & provisioning 285
Across the world, numerous service providers emerge that combine service elements from different network 286
providers in order to provide a single service to the end customer. The ultimate goal of all parties involved is 287
to find the best deals available in terms of Quality of Service and cost. Intelligent Agent technology is 288
promising in the sense that it will facilitate automatic negotiation of appropriate deals and configuration of 289
services at different levels. 290
Part 7 of FIPA 1997 utilizes agent technology to provide dynamic Virtual Private Network (VPN) services 291
where a user wants to set up a multi-media connection with several other users. 292
The service is delivered to the end customer using co-operating and negotiating specialized agents. Three 293
types of agents are used that represent the interests of the different parties involved: 294
 The Personal Communications Agent (PCA) that represents the interests of the human users. 295
 The Service Provider Agent (SPA) that represents the interests of the Service Provider. 296
 The Network Provider Agent (NPA) that represents the interests of the Network Provider. 297
The service is established by the initiating user who requests the service from its PCA. The PCA negotiates in 298
with available SPAs to obtain the best deal available. The SPA will in turn negotiate with the NPAs to obtain 299
the optimal solution and to configure the service at network level. Both SPA and NPA communicate with 300
underlying service- and network management systems to configure the underlying networks for the service. 301
 302

1 303

FIPA 97, Version 1.1 Part 2 © FIPA (1997,1998)

Page 1

1 Scope 304

“Language is a very difficult thing to put into words” – Voltaire 305
This document forms part two of the FIPA 97 specification for interoperable agents and agent societies. In 306
particular, this document lays out underlying principles and detailed requirements for agents to be able to 307
communicate with each other using messages representing communicative acts, independently of the specific 308
agent implementations. 309
The document lays out, in the sections below, the following: 310
 A core set of communicative acts, their meaning and means of composition; 311
 Common patterns of usage of these communicative acts, including standard composite messages, and 312

standard or commonly used interaction protocols; 313
 A detailed semantic description of the underlying meaning of the core set of message primitives; 314
 A summary of the relationship between the FIPA ACL and widely used de facto standard agent 315

communication language KQML. 316
Objectives of this document 317
This document is intended to be directly of use to designers, developers and systems architects attempting to 318
design, build and test agent applications, particularly communities of multiple agents. It aims to lay out 319
clearly the practical components of inter-agent communication and co-operation, and explain the underlying 320
theory. Beyond a basic appreciation of the model of agent communication, readers can make practical use of 321
the ACL specification without necessarily absorbing the detail of the formal basis of the language. 322
However, the language does have a well-defined formal semantic foundation. The intention of this semantics 323
is that it both gives a deeper understanding of the meaning of the language to the formally inclined, and 324
provides an unambiguous reference point. This will be of increasing importance as agents, independently 325
developed by separate individuals and teams, attempt to inter-operate successfully. 326
This part of the FIPA 97 specification defines a language and supporting tools, such as protocols, to be used 327
by intelligent software agents to communicate with each other. The technology of software agents imposes a 328
high-level view of such agents, deriving much of its inspiration from social interaction in other contexts, such 329
as human-to-human communication. Therefore, the terms used and the mechanisms used support such a 330
higher-level, often task based, view of interaction and communication. The specification does not attempt to 331
define the low and intermediate level services often associated with communication between distributed 332
software systems, such as network protocols, transport services, etc. Indeed, the existence of such services 333
used to physically convey the byte sequences comprising the inter-agent communication acts are assumed. 334
No single, universal definition of a software agent exists, nor does this specification attempt to define one. 335
However, some characteristics of agent behaviour are commonly adopted, and the communication language 336
defined in this specification sets out to support and facilitate these behaviours. Such characteristics include, 337
but are not limited to: 338
 Goal directed behaviour; 339
 Autonomous determination of courses of action; 340
 Interaction by negotiation and delegation; 341
 Modelling of anthropomorphic mental attitudes, such as beliefs, intentions, desires, plans and 342

commitments; 343
 Flexibility in responding to situations and needs. 344
No expectation is held that any given agent will necessarily embody any or all of these characteristics. 345
However, it is the intention of this part of the specification that such behaviours are supported by the 346
communication language and its supporting framework where appropriate. 347
Note on conformance to the underlying semantic model 348

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 2

The semantic model described in this document is given solely as an informative reference point for agent behaviour, as there is currently no 349
agreed technology for compliance testing against the semantics of the epistemic operators used in the model. This is due to the difficulty of 350
verifying that the mental attitudes of an agent conform to the specification, without dictating the agent's internal architecture or underlying 351
implementation model. As such, the semantics cannot be considered normative until the issue of compliance testing is resolved. Such tests will be 352
the subject of further FIPA work. 353

2 Normative references 354

The following normative documents contain provisions which, through reference in this text, constitute 355
provisions of this specification. For dated references, subsequent amendments to, or revisions of, any of these 356
publications do not apply. However, parties to agreements based on this specification are encouraged to 357
investigate the possibility of applying the most recent editions of the normative documents indicated below. 358
For undated references, the latest edition of the normative document referred to applies. Members of ISO and 359
IEC maintain registers of currently valid specifications. 360
ISO/IEC 2022: Information technology - Character code. 361
FIPA 97 specification – Part 1: Agent Management. 362
FIPA 97 specification – Part 3: Agent/Software Integration. 363

3 364

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 3

Terms and definitions 365

For the purposes of this specification, the following terms and definitions apply: 366
Action 367
A basic construct which represents some activity which an agent may perform. A special class of actions is 368
the communicative acts. 369
ARB Agent 370
An agent which provides the Agent Resource Broker (ARB) service. There must be at least one such an agent 371
in each Agent Platform in order to allow the sharing of non-agent services. 372
Agent 373
An Agent is the fundamental actor in a domain. It combines one or more service capabilities into a unified 374
and integrated execution model which can include access to external software, human users and 375
communication facilities. 376
Agent Communication Language (ACL) 377
A language with precisely defined syntax, semantics and pragmatics that is the basis of communication 378
between independently designed and developed software agents. ACL is the primary subject of this part of 379
the FIPA specification. 380
Agent Communication Channel (ACC) Router 381
The Agent Communication Channel is an agent which uses information provided by the Agent Management 382
System to route messages between agents within the platform and to agents resident on other platforms. 383
Agent Management System (AMS) 384
The Agent Management System is an agent which manages the creation, deletion, suspension, resumption, 385
authentication and migration of agents on the agent platform and provides a “white pages” directory service 386
for all agents resident on an agent platform. It stores the mapping between globally unique agent names (or 387
GUID) and local transport addresses used by the platform. 388
Agent Platform (AP) 389
An Agent Platform provides an infrastructure in which agents can be deployed. An agent must be registered 390
on a platform in order to interact with other agents on that platform or indeed other platforms. An AP consists 391
of three capability sets ACC, AMS and default Directory Facilitator. 392
Communicative Act (CA) 393
A special class of actions that correspond to the basic building blocks of dialogue between agents. A 394
communicative act has a well-defined, declarative meaning independent of the content of any given act. CA's 395
are modelled on speech act theory. Pragmatically, CA's are performed by an agent sending a message to 396
another agent, using the message format described in this specification. 397
Content 398
That part of a communicative act which represents the domain dependent component of the communication. 399
Note that "the content of a message" does not refer to "everything within the message, including the 400
delimiters", as it does in some languages, but rather specifically to the domain specific component. In the 401
ACL semantic model, a content expression may be composed from propositions, actions or IRE's. 402
Conversation 403
An ongoing sequence of communicative acts exchanged between two (or more) agents relating to some 404
ongoing topic of discourse. A conversation may (perhaps implicitly) accumulate context which is used to 405
determine the meaning of later messages in the conversation. 406
Software System 407
A software entity which is not conformant to the FIPA Agent Management specification. 408
CORBA 409
Common Object Request Broker Architecture, an established standard allowing object-oriented distributed 410
systems to communicate through the remote invocation of object methods. 411
Directory Facilitator (DF) 412
The Directory facilitator is an agent which provides a “yellow pages” directory service for the agents. It stores 413
descriptions of the agents and the services they offer. 414
Feasibility Precondition (FP) 415
The conditions (i.e. one or more propositions) which need be true before an agent can (plan to) execute an 416
action. 417

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 4

Illocutionary effect 418
See speech act theory. 419
Knowledge Querying and Manipulation Language (KQML) 420
A de facto (but widely used) specification of a language for inter-agent communication. In practice, several 421
implementations and variations exist. 422
Local Agent Platform 423
The Local Agent Platform is the AP to which an agent is attached and which represents an ultimate 424
destination for messages directed to that agent. 425
Message 426
An individual unit of communication between two or more agents. A message corresponds to a 427
communicative act, in the sense that a message encodes the communicative act for reliable transmission 428
between agents. Note that communicative acts can be recursively composed, so while the outermost act is 429
directly encoded by the message, taken as a whole a given message may represent multiple individual 430
communicative acts. 431
Message content 432
See content. 433
Message transport service 434
The message transport service is an abstract service provided by the agent management platform to which the 435
agent is (currently) attached. The message transport service provides for the reliable and timely delivery of 436
messages to their destination agents, and also provides a mapping from agent logical names to physical 437
transport addresses. 438
Ontology 439
An ontology gives meanings to symbols and expressions within a given domain language. In order for a 440
message from one agent to be properly understood by another, the agents must ascribe the same meaning to 441
the constants used in the message. The ontology performs the function of mapping a given constant to some 442
well-understood meaning. For a given domain, the ontology may be an explicit construct or implicitly 443
encoded with the implementation of the agent. 444
Ontology sharing problem 445
The problem of ensuring that two agents who wish to converse do, in fact, share a common ontology for the 446
domain of discourse. Minimally, agents should be able to discover whether or not they share a mutual 447
understanding of the domain constants. Some research work is addressing the problem of dynamically 448
updating agents' ontologies as the need arises. This specification makes no provision for dynamically sharing 449
or updating ontologies. 450
Perlocutionary Effect 451
See speech act theory. 452
Proposition 453
A statement which can be either true or false. A closed proposition is one which contains no variables, other 454
than those defined within the scope of a quantifier. 455
Protocol 456
A common pattern of conversations used to perform some generally useful task. The protocol is often used to 457
facilitate a simplification of the computational machinery needed to support a given dialogue task between 458
two agents. Throughout this document, we reserve protocol to refer to dialogue patterns between agents, and 459
networking protocol to refer to underlying transport mechanisms such as TCP/IP. 460
Rational Effect (RE) 461
The rational effect of an action is a representation of the effect that an agent can expect to occur as a result of 462
the action being performed. In particular, the rational effect of a communicative act is the perlocutionary 463
effect an agent can expect the CA to have on a recipient agent. 464
Note that the recipient is not bound to ensure that the expected effect comes about; indeed it may be 465
impossible for it to do so. Thus an agent may use its knowledge of the rational effect in order to plan an 466
action, but it is not entitled to believe that the rational effect necessarily holds having performed the act. 467
Speech Act Theory 468
A theory of communications which is used as the basis for ACL. Speech act theory is derived from the 469
linguistic analysis of human communication. It is based on the idea that with language the speaker not only 470
makes statements, but also performs actions. A speech act can be put in a stylised form that begins "I hereby 471

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 5

request …" or "I hereby declare …". In this form the verb is called the performative, since saying it makes it 472
so. Verbs that cannot be put into this form are not speech acts, for example "I hereby solve this equation" 473
does not actually solve the equation. [Austin 62, Searle 69]. 474
In speech act theory, communicative acts are decomposed into locutionary, illocutionary and perlocutionary 475
acts. Locutionary acts refers to the formulation of an utterance, illocutionary refers to a categorisation of the 476
utterance from the speakers perspective (e.g. question, command, query, etc), and perlocutionary refers to the 477
other intended effects on the hearer. In the case of the ACL, the perlocutionary effect refers to the updating of 478
the agent's mental attitudes. 479
Software Service 480
An instantiation of a connection to a software system. 481
TCP/IP 482
A networking protocol used to establish connections and transmit data between hosts 483
Wrapper Agent 484
An agent which provides the FIPA-WRAPPER service to an agent domain on the Internet. 485

4 Symbols (and abbreviated terms) 486

ACC: Agent Communication Channel 487
ACL: Agent Communication Language 488
AMS: Agent Management System 489
AP: Agent Platform 490
API: Application Programming Interface 491
ARB: Agent Resource Broker 492
CA: Communicative Act 493
CORBA: Common Object Request Broker Architecture 494
DCOM: Distributed COM 495
DF: Directory Facilitator 496
FIPA: Foundation for Intelligent Physical Agents 497
FP: Feasibility Precondition 498
GUID: Global Unique Identifier 499
HAP: Home Agent Platform 500
HTTP: Hypertext Transmission Protocol 501
IDL: Interface Definition Language 502
IIOP: Internet Inter-ORB Protocol 503
OMG: Object Management Group 504
ORB: Object Request Broker 505
RE: Rational Effect 506
RMI: Remote Method Invocation, an inter-process communication method embodied in Java 507
SL: Semantic Language 508
SMTP: Simple Mail Transfer Protocol 509
TCP / IP: Transmission Control Protocol / Internet Protocol 510

5 511

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 6

Overview of Inter-Agent Communication 512

5.1 Introduction 513

This specification document does not define in a precise, prescriptive way what an agent is nor how it should 514
be implemented. Besides the lack of a general consensus on this issue in the agent research community, such 515
definitions frequently fall into the trap of being overly restrictive, ruling out some software constructs whose 516
developers legitimately consider to be agents, or else overly weak and of little assistance to the reader or 517
software developer. A goal of this specification is to be as widely applicable as possible, so the stance taken 518
is to define the components as precisely as possible, and allow applicability in any particular instance to be 519
decided by the reader. 520
Nevertheless, some position must be taken on some of the characteristics of an agent, that it, on what an agent 521
can do, in order that the specification can specify a means of doing it. This position is outlined here, and 522
consists of an abstract characterisation of agent properties, and a simple abstract model of inter-agent 523
communication. 524
The first characteristic assumed is that agents are communicating at a higher level of discourse, i.e. that the 525
contents of the communication are meaningful statements about the agents' environment or knowledge. This 526
is one characteristic that differentiates agent communication from, for example, other interactions between 527
strongly encapsulated computational entities such as method invocation in CORBA. 528
In order for this discourse to be given meaning, some assumptions have to be made about the agents. In this 529
specification, an abstract characterisation of agents is assumed, in which some core capabilities of agents are 530
described in terms of the agent's mental attitudes. This characterisation or model is intended as an abstract 531
specification, i.e. it does not pre-determine any particular agent implementation model nor a cognitive 532
architecture. 533
More specifically, this specification characterises an agent as being able to be described as though it has 534
mental attitudes of: 535

 Belief, which denotes the set of propositions (statements which can be true or false) which the agent 536
accepts are (currently) true; propositions which are believed false are represented by believing the 537
negation of the proposition. 538

 Uncertainty, which denotes the set of propositions which the agent accepts are (currently) not 539
known to be certainly true or false, but which are held to be more likely to be true than false; 540
propositions which are uncertain but more likely to be false are represented by being uncertain of the 541
negation of the proposition. Note that this attitude does not prevent an agent from adopting a specific 542
uncertain information formalism, such as probability theory, in which a proposition is believed to 543
have a certain degree of support. Rather the uncertainty attitude provides a least commitment 544
mechanism for agents with differing representation schemes to discuss uncertain information. 545

 Intention, which denotes a choice, or property or set of properties of the world which the agent 546
desires to be true and which are not currently believed to be true. An agent which adopts an intention 547
will form a plan of action to bring about the state of the world indicated by its choice. 548

Note that, with respect to some given proposition p, the attitudes of believing p, believing not p, being 549
uncertain of p and being uncertain of not p are mutually exclusive. 550
In addition, agents understand and are able to perform certain actions. In a distributed system, an agent 551
typically will only be able to fulfil its intentions by influencing other agents to perform actions. 552
Influencing the actions of other agents is performed by a special class of actions, denoted communicative 553
acts. A communicative act is performed by one agent towards another. The mechanism of performing a 554
communicative act is precisely that of sending a message encoding the act. Hence the roles of initiator and 555

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 7

recipient of the communicative act are frequently denoted as the sender and receiver of the message, 556
respectively. 557
Building from a well-defined core, the messages defined in this specification represent a set of 558
communicative acts that attempt to seek a balance between generality, expressive power and simplicity, 559
together with perspicuity to the agent developer. The message type defines the communicative action that is 560
being performed. Together with the appropriate domain knowledge, the communicative act allows the 561
receiver to determine the meaning of the contents of the message. 562
The meanings of the communicative acts given in §06.5 Catalogue of Communicative Acts6.5563
 Catalogue of Communicative Acts are given in terms of the pre-conditions in respect to the sender's 564
mental attitudes, and the expected (from the sender's point of view) consequences on the receiver's mental 565
attitudes. However, since the sender and receiver are independent, there is no guarantee that the expected 566
consequences come to pass. For example, agent i may believe that "it is better to read books than to watch 567
TV", and may intend j to come to believe so also. Agent i will, in the ACL, inform j of its belief in the truth 568
of that statement. Agent j will then know, from the semantics of inform, that i intends it to believe in the 569
value of books, but whether j comes itself to believe the proposition is a matter for j alone to decide. 570
This specification concerns itself with inter-agent communication through message passing. Key sections of 571
the discussion are as follows: 572

 §05.2 Message Transport Mechanisms5.2 Message Transport Mechanisms discusses the 573
transportation of messages between agents; 574

 §06.3 Message structure6.3 Message structure introduces the structure of messages; 575
 §06.4 Message syntax6.4 Message syntax gives a standard transport syntax for transmitting ACL 576

messages over simple byte streams; 577
 §06.5 Catalogue of Communicative Acts6.5 Catalogue of Communicative Acts catalogues the 578

standardised communicative acts and their representation as messages; 579
 §0Interaction ProtocolsInteraction Protocols introduces and defines a set of communication protocols 580

to simplify certain common sequences of messages; 581
 §0Formal basis of ACL semanticsFormal basis of ACL semantics formally defines the underlying 582

communication model. 583
5.2 Message Transport Mechanisms 584

For two agents to communicate with each other by exchanging messages, they must have some common 585
meeting point through which the messages are delivered. The existence and properties of this message 586
transport service are the remit of FIPA Technical Committee 1: Agent Management. 587
The ACL presented here takes as a position that the contribution of agent technology to complex system 588
behaviour and inter-operation is most powerfully expressed at what, for the lack of a better term, may be 589
called the higher levels of interaction. For example, this document describes communicative acts for 590
informing about believed truths, requesting complex actions, protocols for negotiation, etc. The interaction 591
mechanisms presented here do not compete with, nor should they be compared to, low-level networking 592
protocols such as TCP/IP, the OSI seven layer model, etc. Nor do they directly present an alternative to 593
CORBA, Java RMI or Unix RPC mechanisms. However, the functionality of ACL does, in many ways 594
overlap with the foregoing examples, not least in that ACL messages may often be expected to be delivered 595
via such mechanisms. 596
The ACL’s role may be further clarified by consideration of the FIPA goal of general open agent systems. 597
Other mechanisms, notably CORBA, share this goal, but do so by imposing certain restrictions on the 598
interfaces exposed by objects. History suggests that agents and agent systems are typically implemented with 599
a greater variety of interface mechanisms; existing example agents include those using TCP/IP sockets, 600
HTTP, SMTP and GSM short messages. ACL respects this diversity by attempting to minimise requirements 601

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 8

on the message delivery service. Notably, the minimal message transport mechanism is defined as a textual 602
form delivered over a simple byte stream, which is also the approach taken by the widely used KQML agent 603
communication language. A potential penalty for this inclusive approach is upon very high-performance 604
systems, where message throughput is pre-eminent. Future versions of this specification may define 605
alternative transport mechanism assumptions, including other transport syntaxes, which meet the needs of 606
very high performance systems. 607
Currently, the ACL imposes a minimal set of requirements on the message transport service, as shown below: 608
a) The message service is able to deliver a message, encoded in the transport form below, to a destination as 609

a sequence of bytes. The message service exposes through its interface whether it is able to cope reliably 610
with 8-bit bytes whose high-order bit may be set. 611

b) The normal case is that the message service is reliable (well-formed messages will arrive at the 612
destination) accurate (the message is received in the form in which it was sent), and orderly (messages 613
from agent a to agent b arrive at b in the order in which they were sent from a1). Unless informed 614
otherwise, an agent is entitled to assume that these properties hold. 615

c) If the message delivery service is unable to guarantee any or all of the above properties, this fact is 616
exposed in some way through the interface to the message delivery service 617

d) An agent will have the option of selecting whether it suspends and waits for the result of a message 618
(synchronous processing) or continues with other unrelated tasks while waiting for a message reply 619
(asynchronous processing). The availability of this behaviour will be implementation specific, but it must 620
be made explicit where either behaviour is not supported. 621

e) Parameters of the act of delivering a message, such as time-out if no reply, are not codified at the 622
message level but are part of the interface exposed by the message delivery service. 623

f) The message delivery service will detect and report error conditions, such as: ill-formed message, 624
undeliverable, unreachable agent, etc., back to the sending agent. Depending on the error condition, this 625
may be returned either as a return value from the message sending interface, or through the delivery of an 626
appropriate error message. 627

g) An agent has a name which will allow the message delivery service to deliver the message to the correct 628
destination. The message delivery service will be able to determine the correct transport mechanism 629
(TCP/IP, SMTP, http, etc.), and will allow for changes in agent location, as necessary. 630

The agent will, in some implementation specific way, have an structure which corresponds to a message it 631
wishes to send or has received. The syntax shown below in this document defines a transport form, in which 632
the message is mapped from its internal form to a character sequence, and can be mapped back to the internal 633
message form from a given character sequence. Note again the absence of architectural commitment: the 634
internal message form may be a explicit data structure, or it may be implicit in the way that the agent handles 635
its messages. 636
For the purposes of the transport services, the message may be assumed to be an opaque byte stream, with the 637
exception that it is possible to extract the destination of the message. 638
At this transport level, messages are assumed to be encoded in 7-bit characters according to the 639
ISO/IEC 2022 standard. This specification allows the expression of characters in extended character sets, 640
such as Japanese. The FIPA specification adopts the position that the default character mapping is US ASCII. 641
More specifically, all ACL compliant agents should assume that, when communication is commenced: 642
 ISO/IEC 646 (US ASCII) is designated to G0; 643
 ISO/IEC 6429 C0 is designated; 644
 G0 is invoked in GL; 645
 C0 is invoked in CL; 646

1 Though possibly interspersed with messages from some other agent c.

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 9

 SPACE in 2/0 (0x20) and 647
 DELETE in 7/15 (0x7f) 648
Some transport services will be able to transport 8-bit characters safely, and, where this service is available, 649
the agent is free to make use of it. However, safe transmission of 8-bit characters is not universally assumed. 650

6 651

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 10

FIPA ACL Messages 652

6.1 Preamble 653

This section defines the individual message types that are central to the ACL specification. In particular, the 654
form of the messages and meaning of the message types are defined. The message types are a reference to the 655
semantic acts defined in this specification. These types impart a meaning to the whole message, that is, the 656
act and the content of the message, which extends any intrinsic meaning that the content itself may have. 657
For example, if i informs j that “Bonn is in Germany”, the content of the message from i to j is “Bonn is in 658
Germany”, and the act is the act of informing. “Bonn is in Germany” has a certain meaning, and is true under 659
any reasonable interpretation of the symbols “Bonn” and “Germany”, but the meaning of the message 660
includes effects on (the mental attitudes of) agents i and j. The determination of this effect is essentially a 661
private matter to both i and j, but for meaningful communication to take place, some reasonable expectations 662
of those effects must be fulfilled. 663
Clearly, the content of a message may range over an unrestricted range of domains. This specification does 664
not mandate any one formalism for representing message content. Agents themselves must arrange to be able 665
to interpret any given message content correctly. Note that this version of the specification does not address 666
the ontology sharing problem, though future versions may do so. The specification does set out to specify the 667
meanings of the acts independently of the content, that is, extending the above example, what it means to 668
inform or be informed. In particular, a set of standard communicative acts and their meanings is defined. 669
It may be noted, however, that there is a trade-off between the power and specificity of the acts. Notionally, a 670
large number of very specific act types, which convey nuances of meaning, can be considered equivalent to a 671
smaller number of more general ones, but they place different representational and implementation 672
constraints on the agents. The goals of the set of acts presented here are (i) to cover, overall, a wide range of 673
communication situations, (ii) not to overtax the design of simpler agents intended to fulfil a specific, well-674
defined purpose, and (iii) to minimise redundancy and ambiguity, to facilitate the agent to choose which 675
communicative act to employ. Succinctly, the goals are: completeness, simplicity and conciseness. 676
The fundamental view of messages in ACL is that a message represents a communicative act. For purposes of 677
elegance and coherency, the treatment of communicative acts during dialogue should be consistent with the 678
treatment of other actions; a given communicative action is just one of the actions that an agent can perform. 679
The term message then plays two distinct roles within this document, depending on context. Message can be 680
a synonym for communicative act, or it may refer to the computational structure used by the message delivery 681
service to convey the agent's utterance to its destination. 682
The communication language presented in this specification is based on a precise formal semantics, giving an 683
unambiguous meaning to communicative actions. In practice, this formal basis is supplemented with 684
pragmatic extensions that serve to ease the practical implementation of effective inter-agent communications. 685
For this reason, the message parameters defined below are not defined in the formal semantics in §0Formal 686
basis of ACL semanticsFormal basis of ACL semantics, but are defined in narrative form in the sections 687
below. Similarly, conventions that agents are expected to adopt, such as protocol of message exchange, are 688
given an operational semantics in narrative form only. 689
6.2 Requirements on agents 690

This document introduces a set of pre-defined message types and protocols that are available for all agents to 691
use. However, it is not required for all agents to implement all of these messages. In particular, the minimal 692
requirements on FIPA ACL compliant agents are as follows: 693

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 11

Requirement 111:
Agents should send not-understood if they receive a message that they do not recognise or they are
unable to process the content of the message. Agents must be prepared to receive and properly handle a
not-understood message from other agents.

Requirement 222:
An ACL compliant agent may choose to implement any subset (including all, though this is unlikely) of
the pre-defined message types and protocols. The implementation of these messages must be correct
with respect to the referenced act's semantic definition.

Requirement 333:
An ACL compliant agent which uses the communicative acts whose names are defined in this
specification must implement them correctly with respect to their definition.

Requirement 4:
Agents may use communicative acts with other names, not defined in this document, and are
responsible for ensuring that the receiving agent will understand the meaning of the act. However,
agents should not define new acts with a meaning that matches a pre-defined standard act.

Requirement 5:
An ACL compliant agent must be able to correctly generate a syntactically well formed message in the
transport form that corresponds to the message it wishes to send. Symmetrically, it must be able to
translate a character sequence that is well-formed in the transport syntax to the corresponding message.

 694
6.3 Message structure 695

This section introduces the various structural elements of a message. 696

6.3.1 Overview of ACL messages 697
The following figure summarises the main structural elements of an ACL message: 698

Figure 111 — Components of a message 699

 700
In their transport form, messages are represented as s-expressions. The first element of the message is a word 701
which identifies the communicative act being communicated, which defines the principal meaning of the 702
message. There then follows a sequence of message parameters, introduced by parameter keywords beginning 703
with a colon character. No space appears between the colon and the parameter keyword. One of the 704
parameters contains the content of the message, encoded as an expression in some formalism (see below). 705
Other parameters help the message transport service to deliver the message correctly (e.g. sender and 706
receiver), help the receiver to interpret the meaning of the message (e.g. language and ontology), or help the 707
receiver to respond co-operatively (e.g. reply-with, reply-by). 708

(inform
:sender agent1
:receiver hpl-auction-server
:content
(price (bid good02) 150)

:in-reply-to round-4
:reply-with bid04
:language sl
:ontology hpl-auction

)

Begin message structure

Communicative act type

Message parameter

ACL message

Message content expression

Parameter expression

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 12

It is this transport form that is serialised as a byte stream and transmitted by the message transport service. 709
The receiving agent is then responsible for decoding the byte stream, parsing the components message and 710
processing it correctly. 711
Note that the message's communicative act type corresponds to that which in KQML is called the 712
performative2). 713

6.3.2 Message parameters 714
As noted above, the message contains a set of one or more parameters. Parameters may occur in any order in 715
the message. The only parameter that is mandatory in all messages is the :receiver parameter, so that the 716
message delivery service can correctly deliver the message. Clearly, no useful message will contain only the 717
receiver. However, precisely which other parameters are needed for effective communication will vary 718
according to the situation. 719
The full set of pre-defined message parameters is shown in the following table: 720

Table 111 — Pre-defined message parameters 721

Message
Parameter:

Meaning:

:sender Denotes the identity of the sender of the
message, i.e. the name of the agent of the
communicative act.

:receiver Denotes the identity of the intended recipient of
the message.
Note that the recipient may be a single agent
name, or a tuple of agent names. This
corresponds to the action of multicasting the
message. Pragmatically, the semantics of this
multicast is that the message is sent to each agent
named in the tuple, and that the sender intends
each of them to be recipient of the CA encoded
in the message. For example, if an agent
performs an inform act with a tuple of three
agents as receiver, it denotes that the sender
intends each of these agent to come to believe
the content of the message.

:content Denotes the content of the message; equivalently
denotes the object of the action.

2 Note that the use of performative with respect to all of the messages defined in KQML has been challenged. The term is repeated here only
because it will be familiar to many readers.

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 13

:reply-with Introduces an expression which will be used by
the agent responding to this message to identify
the original message. Can be used to follow a
conversation thread in a situation where multiple
dialogues occur simultaneously.
E.g. if agent i sends to agent j a message which
contains
 :reply-with query1,
agent j will respond with a message containing
 :in-reply-to query1.

:in-reply-to Denotes an expression that references an earlier
action to which this message is a reply.

:envelope Denotes an expression that provides useful
information about the message as seen by the
message transport service. The content of this
parameter is not defined in the specification, but
may include time sent, time received, route, etc.
The structure of the envelope is a list of keyword
value pairs, each of which denotes some aspect
of the message service.

:language Denotes the encoding scheme of the content of
the action.

:ontology Denotes the ontology which is used to give a
meaning to the symbols in the content
expression.

:reply-by Denotes a time and/or date expression which
indicates a guideline on the latest time by which
the sending agent would like a reply.

:protocol Introduces an identifier which denotes the
protocol which the sending agent is employing.
The protocol serves to give additional context for
the interpretation of the message. Protocols are
discussed in §0Interaction ProtocolsInteraction
Protocols.

:conversation-
id

Introduces an expression which is used to
identify an ongoing sequence of communicative
acts which together form a conversation. A
conversation may be used by an agent to manage
its communication strategies and activities. In
addition the conversation may provide additional
context for the interpretation of the meaning of a
message.

 722

6.3.3 Message content 723
The content of a message refers to whatever the communicative act applies to. If, in general terms, the 724
communicative act is considered as a sentence, the content is the grammatical object of the sentence. In 725

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 14

general, the content can be encoded in any language, and that language will be denoted by the :language 726
parameter. The only requirement on the content language is that it has the following properties: 727
Requirement 6:
In general, a content language must be able to express propositions, objects and actions. No other
properties are required, though any given content language may be much more expressive than this.
More specifically, the content of a message must express the data type of the action: propositions for
inform, actions for request, etc.

 A proposition states that some sentence in a language is true or false. An object, in this context, is a 728
construct which represents an identifiable "thing" (which may be abstract or concrete) in the domain 729
of discourse. Object in this context does not necessarily refer to the specialised programming 730
constructs that appear in object-oriented languages like C++ and Java. An action is a construct that 731
the agent will interpret as being an activity which can be carried out by some agent. In general, an 732
action does not produce a result which is communicated to another agent (but see, for example, 733
§(iota <variable> <term>) 734
The iota operator introduces a scope for the given expression (which denotes a term), in which the 735
given identifier, which would otherwise be free, is defined. An expression containing a free variable 736
is not a well-formed SL expression. The expression "(iota x (P x)" may be read as "the x such that P 737
[is true] of x. The iota operator is a constructor for terms which denote objects in the domain of 738
discourse. 739

B.2.5(iota <variable> <term>) 740
The iota operator introduces a scope for the given expression (which denotes a term), in which the 741
given identifier, which would otherwise be free, is defined. An expression containing a free variable 742
is not a well-formed SL expression. The expression "(iota x (P x)" may be read as "the x such that P 743
[is true] of x. The iota operator is a constructor for terms which denote objects in the domain of 744
discourse. 745

B.2.5B.2.5(iota <variable> <term>) 746
The iota operator introduces a scope for the given expression (which denotes a term), in which the 747
given identifier, which would otherwise be free, is defined. An expression containing a free variable 748
is not a well-formed SL expression. The expression "(iota x (P x)" may be read as "the x such that P 749
[is true] of x. The iota operator is a constructor for terms which denote objects in the domain of 750
discourse. 751

B.2.5B.2.5). 752
Except in the special case outlined below, there is no requirement that message content languages conform to 753
any well known (pre-defined) syntax. In other words, it is the responsibility of the agents in a dialogue to 754
ensure that they are using a mutually comprehensible content language. This FIPA specification does not 755
mandate the use of any particular content language. One suggested content language formalism is shown in 756
Annex BAnnex BAnnex BAnnex BAnnex B. There are many ways to ensure the use of a common content 757
language. It may be arranged by convention (e.g. such-and-such agents are well known always to use Prolog), 758
by negotiation3 among the parties, or by employing the services of an intermediary as a translator. Similarly, 759
the agents are responsible for ensuring that they are using a common ontology. 760
The most general case is that of negotiating (i.e. jointly deciding) a content language. However, the agent 761
must overcome the problem of being able to begin the conversation in the first place, in order that they can 762
then negotiate content language. There has to be a common point of reference, known in advance to both 763

3 The simplest case of such negotiations is where an agent publishes its admissible content language(s) in its registration entry, and other agents
simply adopt the use of the stated language or don't talk to it.

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 15

parties. Thus, for the specific purpose of registering with a directory facilitator and performing other key 764
agent management functions, the specification does include the following content language definition: 765
Definition 111: 766
The FIPA specification agent management content language is an s-expression notation used to express the 767
propositions, objects and actions pertaining to the management of the agent's lifecycle. The terms in the 768
expression are defined operationally in part one of the FIPA 97 specification. 769
 770
Requirement 7:
A compliant agent is required to exercise the standard agent management capabilities through the use of
messages using the agent management content language and ontology. The language and ontology are
each denoted by the reserved term fipa-agent-management in their respective parameters.

6.3.4 Representing the content of messages 771
As noted above, the content of a message refers to the domain expression which the communicative act refers 772
to. It is encoded in the message as the value of the :content parameter. The FIPA specification does not 773
mandate any particular content encoding language (i.e. the representation form of the :content expression) on 774
a normative basis. The SL content language is provided in Annex B on an informative basis. 775
To facilitate the encoding of simple languages (that is, simple in their syntactic requirements), the s-776
expression form included in the ACL grammar shown below allows the construction of s-expressions of 777
arbitrary depth and complexity. A language which is defined as a sub-grammar of the general s-expression 778
grammar is therefore admissible as a legal ACL message without modification. The SL grammar shown in 779
Annex B is an example of exactly this approach. 780
However, agents commonly need to embed in the body of the message an expression encoded in a notation 781
other than the simple s-expression form used for the messages themselves. The ACL grammar provides two 782
mechanisms, both of which avoid the problem of an ACL parser being required to parse any expression in 783
any language: 784
 Wrap the expression in double quotes, thus making it a string in ACL syntax, and protect any embedded 785

double quote in the embedded expression with a backslash. Note that backslash characters in the content 786
expression must also be protected. E.g.: 787
(inform :content "owner(agent1, \"Ian\") "788

:language Prolog789
…)790

 Prefix the expression with the appropriate length encoded string notation, thus ensuring that the 791
expression will be treated as one lexical token irrespective of its structure. E.g.: 792
(inform :content #22"owner(agent1, "Ian")793

:language Prolog794
…)795

As a result, an ACL parser will generate one lexical token, a string, representing the entire embedded 796
language expression. Once the message has been parsed, the token representing the content expression can be 797
interpreted according to its encoding scheme, which will by then be known from the :language parameter. 798

6.3.5 Use of MIME for additional content expression encoding 799
Sometimes, even the mechanisms in the previous section are not flexible enough to represent the full range of 800
types of expression available to an agent. An example may be when an agent wishes to express a concept 801
such as “the sound you asked for is <a digitised sound>”. Alternatively, it may wish to express some content 802
in a language or character set encoding different from that used for the description of the content, such as “the 803
translation of error message <some English text> into Japanese is <some Japanese text>”. 804

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 16

The Multipurpose Internet Mail Extensions (MIME) standard was developed to address similar issues in the 805
context of Internet mail messages [Freed & Borenstein 96]. The syntactic form of MIME headers is suited 806
particularly to the format of mail messages, and is not congruent with the transport syntax defined for FIPA 807
ACL messages. However, the capabilities provided by MIME, and in particular the now widely used notation 808
for annotating content types is a capability of great value to some categories of agent. To allow for this, an 809
agent may optionally be able to process MIME content expression descriptions as wrappers around a given 810
expression, using an extension of the ACL message syntax. 811
It is not a mandatory part of this specification that all agents be able to process MIME content descriptions. 812
However, MIME-capable agents can register this ability with their directory facilitator, and then proceed to 813
use the format defined in Annex D. 814
Note that, for the specific task of encoding language specific character sets, the ISO 2022 standard which is 815
the base level character encoding of the message stream is capable of supporting a full range of international 816
character encodings. 817

6.3.6 Primitive and composite communicative acts 818
This document defines a set of predefined communicative acts, each of which is given a specific meaning in 819
the specification. Pragmatically, each of these communicative acts may be treated equivalently: they have 820
equal status. However, in terms of definition and the determination of the formal meaning of the 821
communicative acts, we distinguish two classes: primitive acts and composite acts. 822
Primitive communicative acts are those whose actions are defined atomically, i.e. they are not defined in 823
terms of other acts. Composite communicative acts are the converse. Acts are composed by one of the 824
following methods: 825
 making one communicative act the object of another. For example, "I request you to inform me whether 826

it is raining" is the composite query-if act. 827
 using the composition operator “;” to sequence actions 828
 using the composition operator “|” to denote a non-deterministic choice of actions. 829
The sequencing operator is written as an infix semicolon. Thus the expression: 830

a ; b831
denotes an action, whose meaning is that of action a followed by action b. 832
The non-deterministic choice operator is written as an infix vertical bar. Thus the expression: 833

a | b834
denotes a macro action, whose meaning is that of either action a, or action b, but not both. The action may 835
occur in the past, present or future, or not at all. 836
Note that a macro action must be treated slightly differently than other communicative acts. A macro action 837
can be planned by an agent, and requested by one agent of another. However, a macro act will not appear as 838
the outermost (i.e. top-level) message being sent from one agent to another. Macro acts are used in the 839
definition of new composite communicative acts. For example, see the inform-if act in §0inform-if (macro 840
act)inform-if (macro act). 841
The definition of composite actions in this way is part of the underlying semantic model for the ACL, defined 842
using the semantic description language SL. Action composition as described above is not part of the 843
concrete syntax for ACL. However, these operators are defined in the concrete syntax for SL used as a 844
content language in Annex BAnnex BAnnex BAnnex BAnnex B. 845
6.4 Message syntax 846

This section defines the message transport syntax. The syntax is expressed in standard EBNF format. For 847
completeness, the notation is as follows: 848

Grammar rule component Example

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 17

Terminal tokens are enclosed in double
quotes

"("

Non terminals are written as capitalised
identifiers

Expression

Square brackets denote an optional construct ["," OptionalArg]
Vertical bar denotes an alternative Integer | Real
Asterisk denotes zero or more repetitions of
the preceding expression

Digit *

Plus denotes one or more repetitions of the
preceding expression

Alpha +

Parentheses are used to group expansions. (A | B) *
Productions are written with the non-terminal
name on the lhs, expansion on the rhs, and
terminated by a full stop.

ANonTerminal = "an
expansion".

Some slightly different rules apply for the generation of lexical tokens. Lexical tokens use the same notation 849
as above, except: 850

Lexical rule component Example
Square brackets enclose a character set ["a", "b", "c"]
Dash in a character set denotes a range ["a" - "z"]
Tilde denotes the complement of a character
set if it is the first character

[~ "(", ")"]

Post-fix question-mark operator denotes that
the preceding lexical expression is optional
(may appear zero or one times)

["0" - "9"]? ["0" - "9"]

 851

6.4.1 Grammar rules for ACL message syntax 852
This section defines the grammar for ACL. 853
ACLCommunicativeAct = Message.854

855
Message = "(" MessageType MessageParameter* ")".856

857
MessageType = "accept-proposal"858

| "agree"859
| "cancel"860
| "cfp"861
| "confirm"862
| "disconfirm"863
| "failure"864
| "inform"865
| "inform-if"866
| "inform-ref"867
| "not-understood"868
| "propose"869
| "query-if"870
| "query-ref"871
| "refuse"872
| "reject-proposal"873

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 18

| "request"874
| "request-when"875
| "request-whenever"876
| "subscribe".877

878
MessageParameter = ":sender" AgentName879

| ":receiver" RecipientExpr880
| ":content" (Expression | MIMEEnhancedExpression)881
| ":reply-with" Expression882
| ":reply-by" DateTimeToken883
| ":in-reply-to" Expression884
| ":envelope" KeyValuePairList885
| ":language" Expression886
| ":ontology" Expression887
| ":protocol" Word888
| ":conversation-id" Expression.889

890
Expression = Word891

| String892
| Number893
| "(" Expression * ")".894

895
MIMEEnhancedExpression – optional extension. See Annex D.896

897
KeyValuePairList = "(" KeyValuePair * ")".898

899
KeyValuePair = "(" Word Expression ")".900

901
RecipientExpr = AgentName902

| "(" AgentName + ")".903
904

AgentName = Word905
| Word "@" URL.906

907
URL = Word.908

909
Lexical rules 910
Word = [~ "\0x00" - "\0x20",911

"(", ")", "#", "0"-"9", "-", "@"]912
[~ "\0x00" - "\0x20",913
"(", ")"] *.914

String = StringLiteral915
| ByteLengthEncodedString.916

917
StringLiteral = "\""918

([~ "\""] | "\\\"")*919
"\"".920

ByteLengthEncodedString = "#" ["0" - "9"]+ "\""921
<byte sequence>.922

Number = Integer | Float.923
924

DateTimeToken = "+" ?925

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 19

Year Month Day "T"926
Hour Minute Second MilliSecond927
(TypeDesignator ?).928

929
Year = Digit Digit Digit Digit.930
Month = Digit Digit.931
Day = Digit Digit.932
Hour = Digit Digit.933
Minute = Digit Digit.934
Second = Digit Digit.935
MilliSecond = Digit Digit Digit.936
TypeDesignator = AlphaCharacter.937

938
Digit = ["0" – "9"].939
 940

6.4.2 Notes on grammar rules 941
a) The standard definitions for integers and floating point numbers are assumed. 942
b) All keywords are case-insensitive. 943
c) A length encoded string is a context sensitive lexical token. Its meaning is as follows: the header of the 944

token is everything from the leading "#" to the separator " inclusive. Between the markers of the header is 945
a decimal number with at least one digit. This digit then determines that exactly that number of 8-bit 946
bytes are to be consumed as part of the token, without restriction. It is a lexical error for less than that 947
number of bytes to be available. 948
 949
Note that not all implementations of the agent communication channel (ACC) [see Part One of the FIPA 950
97 specification] will support the transparent transmission of 8-bit characters. It is the responsibility of 951
the agent to ensure, by reference to the API provided for the ACC, that a given channel is able to 952
faithfully transmit the chosen message encoding. 953

d) A well-formed message will obey the grammar, and in addition, will have at most one of each of the 954
parameters. It is an error to attempt to send a message which is not well formed. Further rules on well-955
formed messages may be stated or implied the operational definitions of the values of parameters as these 956
are further developed. 957

e) Strings encoded in accordance with ISO/IEC 2022 may contain characters which are otherwise not 958
permitted in the definition of Word. These characters are ESC (0x1B), SO (0x0E) and SI (0x0F). This is 959
due to the complexity that would result from including the full ISO/IEC 2022 grammar in the above 960
EBNF description. Hence, despite the basic description above, a word may contain any well-formed 961
ISO/IEC 2022 encoded character, other (representations of) parentheses, spaces, or the “#” character. 962
Note that parentheses may legitimately occur as part of a well formed escape sequence; the preceding 963
restriction on characters in a word refers only to the encoded characters, not the form of the encoding. 964

f) Time tokens are based on the ISO 8601 format, with extensions for relative time and millisecond 965
durations. Time expressions may be absolute, or relative to the current time. Relative times are 966
distinguished by the character "+" appearing as the first character in the construct. If no type designator is 967
given, the local timezone is used. The type designator for UTC is the character "Z". UTC is preferred to 968
prevent timezone ambiguities. Note that years must be encoded in four digits. As examples, 8:30 am on 969
April 15th 1996 local time would be encoded as: 970
 19960415T083000000 971
the same time in UTC would be: 972
 19960415T083000000Z 973

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 20

while one hour, 15 minutes and 35 milliseconds from now would be: 974
 +00000000T011500035. 975

g) The format defined for agent names is taken from part one of the FIPA 97 standard. The option of simply 976
using a word as the agent name is only valid where that word can be unambiguously resolved to an full 977
agent name in the format given. A well-formed URL has the standard form: 978
 AccessTypeSpecifier "://" InternetAddress ":" PortNumber "/" Identifier 979
This specification is not included as a first-class production in the above grammar due to context 980
sensitivity, in other grammatical contexts such strings may legitimately be treated as opaque words. 981

 982
6.5 Catalogue of Communicative Acts 983

This section defines all of the communicative acts that are part of this specification. Each message is defined 984
by an informal narrative in this section, and more formally in §08 985

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 21

Formal basis of ACL semantics8 986

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 22

Formal basis of ACL semantics. The narrative and formal definitions are intended to be equivalent. However, 987
in the case of an ambiguity or inconsistency, the formal definition is the final reference point. 988
The following communicative acts and macro acts are standard components of the FIPA agent 989
communication language. They are listed in alphabetical order. Communicative acts can be directly 990
performed, can be planned by an agent, and can be requested of one agent by another. Macro acts can be 991
planned and requested, but not directly performed. 992

6.5.1 Preliminary notes 993
The meanings of the communicative acts below frequently make reference to mental attitudes, such as belief, 994
intention or uncertainty. Whilst the formal semantics makes reference to formal operators which express 995
these concepts, a given agent implementation is not required to encode them explicitly, or to be founded on 996
any particular agent model (e.g. BDI). In the following narrative definitions: 997
 belief means that, at least, the agent has a reasonable basis for stating the truth of a proposition, such as 998

having the proposition stored in a data structure or expressed implicitly in the construction of the agent 999
software; 1000

 intention means that the agent wishes some proposition, not currently believed to be true, to become true, 1001
and further that it will act in such a way that the truth of the proposition will be established. Again, this 1002
may not be represented explicitly in the agent4; 1003

 uncertain means that the agent is not sure that a proposition is necessarily true, but it is more likely to be 1004
true than false. Believing a proposition and being uncertain of a proposition are mutually exclusive. 1005

For ease of reference, a synopsis formal description of each act is included with the narrative text. The 1006
meaning of the notation used may be found in §08 1007

4 For instance, an agent which is constructed with a simple loop which receives requests for information and always answers them immediately,
can be said to be expressing an intention to be helpful; in other words to ensure that other agents who need information it possesses do indeed
gain that information.

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 23

Formal basis of ACL semantics8 1008

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 24

Formal basis of ACL semantics. 1009
6.5.1.1 Category Index 1010
The following table identifies the communicative acts in the catalogue by category. This is provided purely 1011
for ease of reference. Full descriptions of the messages can be found in the appropriate sections. 1012

Table 222 — Categories of communicative acts 1013

Communicative act
Information

passing
Requesting
information

Negotiation Action
performing

Error
handling

accept-proposal !

agree !

cancel !

cfp !

confirm !

disconfirm !

failure !

inform !

inform-if (macro act) !

inform-ref (macro
act)

!

not-understood !

propose !

query-if !

query-ref !

refuse !

reject-proposal !

request !

request-when !

request-whenever !

subscribe !

 1014
 1015

6.5.2 1016

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 25

accept-proposal 1017
Summary: The action of accepting a previously submitted proposal to perform an action.
Message content: A tuple, consisting of an action expression denoting the action to be done, and

a proposition giving the conditions of the agreement.
Description: Accept-proposal is a general-purpose acceptance of a proposal that was

previously submitted (typically through a propose act). The agent sending the
acceptance informs the receiver that it intends that (at some point in the future)
the receiving agent will perform the action, once the given precondition is, or
becomes, true.
The proposition given as part of the acceptance indicates the preconditions that
the agent is attaching to the acceptance. A typical use of this is to finalise the
details of a deal in some protocol. For example, a previous offer to “hold a
meeting anytime on Tuesday” might be accepted with an additional condition
that the time of the meeting is 11.00.
Note for future extension: an agent may intend that an action becomes done
without necessarily intending the precondition. For example, during
negotiation about a given task, the negotiating parties may not unequivically
intend their opening bids: agent a may bid a price p as a precondition, but be
prepared to accept price p'.

Summary Formal
Model <i, accept-proposal(j, <j, act>,))>

<i, inform(j, Ii Done(<j, act>,))>

FP : Bi Bi (Bifj Uifj)
RE : Bj

where
 = Ii Done(<j, act>,)

Note: this summary is included here for completeness. For full details, see §0Formal basis of ACL
semanticsFormal basis of ACL semantics.

Example Agent i informs j that it accepts an offer from j to stream a given multimedia
title to channel 19 when the customer is ready. Agent i will inform j of this fact
when appropriate:
(accept-proposal

:sender i
:receiver j
:in-reply-to bid089
:content

(
(action j (stream-content movie1234 19))
(B j (ready customer78))

)
:language sl)

6.5.3 1018

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 26

agree 1019
Summary: The action of agreeing to perform some action, possibly in the future.
Message content: A tuple, consisting of an agent identifier, an action expression denoting the

action to be done, and a proposition giving the conditions of the agreement.
Description: Agree is a general purpose agreement to a previously submitted request to

perform some action. The agent sending the agreement informs the receiver
that it does intend to perform the action, but not until the given precondition is
true.
The proposition given as part of the agree act indicates the qualifiers, if any,
that the agent is attaching to the agreement. This might be used, for example,
to inform the receiver when the agent will execute the action which it is
agreeing to perform.
Pragmatic note: the precondition on the action being agreed to can include the
perlocutionary effect of some other CA, such as an inform act. When the
recipient of the agreement (e.g. a contract manager) wants the agreed action to
be performed, it should then bring about the precondition by performing the
necessary CA. This mechanism can be used to ensure that the contractor defers
performing the action until the manager is ready for the action to be done.

Summary Formal
Model <i, agree(j, <i, act>,))>

<i, inform(j, Ii Done(<i, act>,))>

FP : Bi Bi (Bifj Uifj)
RE : Bj

where
 = Ii Done(<i, act>,)

Note: this summary is included here for completeness. For full details, see §0Formal basis of ACL
semanticsFormal basis of ACL semantics.

Example Agent i (a job-shop scheduler) requests j (a robot) to deliver a box to a certain
location. J answers that it agrees to the request but it has low priority.
(request

:sender i
:receiver j
:content (action j (deliver box017 (location 12

19)))
:protocol fipa-request
:reply-with order567

)

(agree
:sender j
:receiver i
:content ((deliver j box017 (location 12 19))

(priority order567 low))
:in-reply-to order567
:protocol fipa-request

)

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 27

6.5.4 1020

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 28

cancel 1021
Summary: The action of cancelling some previously request'ed action which has temporal

extent (i.e. is not instantaneous).
Message content: An action expression denoting the action to be cancelled.
Description: Cancel allows an agent to stop another agent from continuing to perform (or

expecting to perform) an action which was previously requested. Note that the
action that is the object of the act of cancellation should be believed by the
sender to be ongoing or to be planned but not yet executed.
Attempting to cancel an action that has already been performed will result in a
refuse message being sent back to the originator of the request.

Summary Formal
Model

<i, cancel(j, a)>
<i, disconfirm(j, Ii Done(a))>
FP : Ii Done(a) Bi (Bj Ii Done(a) Uj Ii Done(a))
RE : Bj Ii Done(a)

Note: this summary is included here for completeness. For full details, see §0Formal basis of ACL
semanticsFormal basis of ACL semantics.

Example Agent j0 asks i to cancel a previous request-whenever by quoting the action:
(cancel

:sender j0
:receiver i
:content (request-whenever :sender j …)

)

Agent j1 asks i to cancel an action by cross-referencing the previous
conversation in which the request was made:
(cancel

:sender j1
:receiver i
:conversation-id cnv0087

)

6.5.5 1022

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 29

cfp 1023
Summary: The action of calling for proposals to perform a given action.
Message content: A tuple containing an action expression denoting the action to be done and a

proposition denoting the preconditions on the action.
Description: CFP is a general-purpose action to initiate a negotiation process by making a

call for proposals to perform the given action. The actual protocol under which
the negotiation process is established is known either by prior agreement, or is
explicitly stated in the :protocol parameter of the message.
In normal usage, the agent responding to a cfp should answer with a
proposition giving its conditions on the performance of the action. The
responder's conditions should be compatible with the conditions originally
contained in the cfp. For example, the cfp might seek proposals for a journey
from Frankfurt to Munich, with a condition that the mode of travel is by train.
A compatible proposal in reply would be for the 10.45 express train. An
incompatible proposal would be to travel by 'plane.
Note that cfp can also be used to simply check the availability of an agent to
perform some action.

Summary Formal
Model

<i, cfp(j, <j, act>, (x))>
<i, query-ref(j, x (Ii Done(<j, act>, (x)) (Ij Done(<j, act>, (x))))>
FP : Brefi(x (x)) Urefi(x (x)) Bi Ij Done(<j, Inform-ref(i, x
 (x))>)
RE : Done(<j, Inform(i, x (x) = r1)>| … |<j, Inform(i, x (x) = rk)>)

where

 (x) = Ii Done(<j, act>, (x)) Ij Done(<j, act>, (x))

Note: this summary is included here for completeness. For full details, see §0Formal basis of ACL
semanticsFormal basis of ACL semantics.

Example Agent j asks i to submit its proposal to sell 50 boxes of plums:
(cfp

:sender j
:receiver i
:content ((action i (sell plum 50)) true)
:ontology fruit-market

)

6.5.6 1024

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 30

confirm 1025
Summary: The sender informs the receiver that a given proposition is true, where the

receiver is known to be uncertain about the proposition.
Message content: A proposition
Description: The sending agent:

 believes that some proposition is true
 intends that the receiving agent also comes to believe that the

proposition is true
 believes that the receiver is uncertain of the truth of the proposition

The first two properties defined above are straightforward: the sending agent is
sincere5, and has (somehow) generated the intention that the receiver should
know the proposition (perhaps it has been asked). The last pre-condition
determines when the agent should use confirm vs. inform vs. disconfirm:
confirm is used precisely when the other agent is already known to be
uncertain about the proposition (rather than uncertain about the negation of the
proposition).
From the receiver's viewpoint, receiving a confirm message entitles it to
believe that:

 the sender believes the proposition that is the content of the message
 the sender wishes the receiver to believe that proposition also.

Whether or not the receiver does, indeed, change its mental attitude to
one of belief in the proposition will be a function of the receiver's trust
in the sincerity and reliability of the sender.

Summary Formal
Model

<i, confirm(j,)>
FP: Bi BiUj
RE: Bj

Note: this summary is included here for completeness. For full details, see §0Formal basis of ACL
semanticsFormal basis of ACL semantics.

Examples Agent i confirms to agent j that it is, in fact, true that it is snowing today.
(confirm

:sender i
:receiver j
:content "weather(today, snowing)"
:language Prolog)

6.5.7 1026

5 Arguably there are situations where an agent might not want to be sincere, for example to protect confidential information. We consider these
cases to be beyond the current scope of this specification.

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 31

disconfirm 1027
Summary: The sender informs the receiver that a given proposition is false, where the

receiver is known to believe, or believe it likely that, the proposition is true.
Message content: A proposition
Description: The disconfirm act is used when the agent wishes to alter the known mental

attitude of another agent.
The sending agent:

 believes that some proposition is false
 intends that the receiving agent also comes to believe that the

proposition is false
 believes that the receiver either believes the proposition, or is uncertain

of the proposition.
The first two properties defined above are straightforward: the sending agent is
sincere (note 5), and has (somehow) generated the intention that the receiver
should know the proposition (perhaps it has been asked). The last pre-
condition determines when the agent should use confirm, inform or
disconfirm: disconfirm is used precisely when the other agent is already known
to believe the proposition or to be uncertain about it.
From the receiver's viewpoint, receiving a disconfirm message entitles it to
believe that:

 the sender believes that the proposition that is the content of the
message is false;

 the sender wishes the receiver to believe the negated proposition also.
Whether or not the receiver does, indeed, change its mental attitude to one of
disbelief in the proposition will be a function of the receiver's trust in the
sincerity and reliability of the sender.

Summary Formal
Model

<i, disconfirm(j,)>
FP: Bi Bi(Uj Bj)
RE: Bj

Note: this summary is included here for completeness. For full details, see §0Formal basis of ACL
semanticsFormal basis of ACL semantics.

Example Agent i, believing that agent j thinks that a shark is a mammal, attempts to
change j's belief:
(disconfirm

:sender i
:receiver j
:content (mammal shark))

6.5.8 1028

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 32

failure 1029
Summary: The action of telling another agent that an action was attempted but the

attempt failed.
Message content: A tuple, consisting of an action expression and a proposition giving the reason

for the failure.
Description: The failure act is an abbreviation for informing that an act was considered

feasible by the sender, but was not completed for some given reason.
The agent receiving a failure act is entitled to believe that:

 the action has not been done
 the action is (or, at the time the agent attempted to perform the action,

was) feasible
The (causal) reason for the refusal is represented by the proposition, which is
the third term of the tuple. It may be the constant true. There is no guarantee
that the reason is represented in a way that the receiving agent will understand:
it could be a textual error message. Often it is the case that there is little either
agent can do to further the attempt to perform the action.

Summary Formal
Model

<i, failure(j, a,)>
<i, inform(j, (e) Single(e) Done(e, Feasible(a) Ii Done(a))
 Done(a) Ii Done(a))>
FP : Bi Bi (Bifj Uifj)
RE : Bj

where
 = (e) Single(e) Done(e, Feasible(a) Ii Done(a)) Done(a) Ii

Done(a)
Note: this summary is included here for completeness. For full details, see §0Formal basis of ACL
semanticsFormal basis of ACL semantics.

Example Agent j informs i that it has failed to open a file:
(failure

:sender j
:receiver i
:content

(
(action j "open(\"foo.txt\”)")
(error-message "No such file: foo.txt")

)
:language sl)

6.5.9 1030

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 33

inform 1031
Summary: The sender informs the receiver that a given proposition is true.
Message content: A proposition
Description: The sending agent:

 holds that some proposition is true;
 intends that the receiving agent also comes to believe that the

proposition is true;
 does not already believe that the receiver has any knowledge of the truth

of the proposition.
The first two properties defined above are straightforward: the sending agent is
sincere, and has (somehow) generated the intention that the receiver should
know the proposition (perhaps it has been asked). The last property is
concerned with the semantic soundness of the act. If an agent knows already
that some state of the world holds (that the receiver knows proposition p), it
cannot rationally adopt an intention to bring about that state of the world (i.e.
that the receiver comes to know p as a result of the inform act). Note that the
property is not as strong as it perhaps appears. The sender is not required to
establish whether the receiver knows p. It is only the case that, in the case that
the sender already happens to know about the state of the receiver's beliefs, it
should not adopt an intention to tell the receiver something it already knows.
From the receiver's viewpoint, receiving an inform message entitles it to
believe that:

 the sender believes the proposition that is the content of the message
 the sender wishes the receiver to believe that proposition also.

Whether or not the receiver does, indeed, adopt belief in the proposition will
be a function of the receiver's trust in the sincerity and reliability of the sender.

Summary Formal
Model

<i, inform(j,)>
FP: Bi Bi(Bifj Uifj)
RE: Bj

Note: this summary is included here for completeness. For full details, see §0Formal basis of ACL
semanticsFormal basis of ACL semantics.

Examples Agent i informs agent j that (it is true that) it is raining today:
(inform

:sender i
:receiver j
:content "weather(today, raining)"
:language Prolog)

6.5.10 1032

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 34

inform-if (macro act) 1033
Summary: A macro action for the agent of the action to inform the recipient whether or

not a proposition is true.
Message content: A proposition.
Description: The inform-if macro act is an abbreviation for informing whether or not a

given proposition is believed. The agent which enacts an inform-if macro-act
will actually perform a standard inform act. The content of the inform act will
depend on the informing agent's beliefs. To inform-if on some closed
proposition :

 if the agent believes the proposition, it will inform the other agent that
 if it believes the negation of the proposition, it informs that is false

(i.e.)
Under other circumstances, it may not be possible for the agent to perform this
plan. For example, if it has no knowledge of , or will not permit the other
party to know (that it believes) , it will send a refuse message.

Summary Formal
Model

i, inform-if(j,)>
<i, inform(j,)>|<i, inform(j,)>
FP : Bifi Bi (Bifj Uifj)
RE : Bifj

Note: this summary is included here for completeness. For full details, see §0Formal basis of ACL
semanticsFormal basis of ACL semantics.

Examples Agent i requests j to inform it whether Lannion is in Normandy:
(request

:sender i
:receiver j
:content
(inform-if :sender j

:receiver i
:content "in(lannion, normandy)"
:language Prolog)

:language sl)

Agent j replies that it is not:
(inform :sender j

:receiver i
:content "\+ in(lannion, normandy)"
:language Prolog)

6.5.11 1034

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 35

 inform-ref (macro act) 1035
Summary: A macro action for sender to inform the receiver the object which corresponds

to a definite descriptor (e.g. a name).
Message content: An object description.
Description: The inform-ref macro action allows the sender to inform the receiver some

object that the sender believes corresponds to a definite descriptor, such as a
name or other identifying description.
Inform-ref is a macro action, since it corresponds to a (possibly infinite)
disjunction of inform acts, each of which informs the receiver that “the object
corresponding to name is x” for some given x. For example, an agent can plan
an inform-ref of the current time to agent j, and then perform the act “inform j
that the time is 10.45”.
The agent performing the act should believe that the object corresponding to
the definite descriptor is the one that is given, and should not believe that the
recipient of the act already knows this. The agent may elect to send a refuse
message if it is unable to establish the preconditions of the act.

Summary Formal
Model

<i, inform-ref(j, x (x))>
<i, Inform(j, x (x) = r1)> ... (<i, Inform(j, x (x) = rk)>
FP: Brefi x (x) Bi(Brefj x (x) Urefj x (x))
RE: Brefj x (x)

Note: this summary is included here for completeness. For full details, see §0Formal basis of ACL
semanticsFormal basis of ACL semantics.

Example Agent i requests j to tell it the current Prime Minister of the United Kingdom:
(request
:sender i
:receiver j
:content
(inform-ref

:sender j
:receiver i
:content (iota ?x (UKPrimeMinister ?x))
:ontology world-politics
:language sl

)
:reply-with query0
:language sl)

Agent j replies:
(inform

:sender j
:receiver i
:content (= (iota ?x (UKPrimeMinister ?x))

"Tony Blair")
:ontology world-politics
:in-reply-to query0)

Note that a standard abbreviation for the request of inform-ref used in this
example is the act query-ref.

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 36

6.5.12 1036

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 37

not-understood 1037
Summary: The sender of the act (e.g. i) informs the receiver (e.g. j) that it perceived that j

performed some action, but that i did not understand what j just did. A
particular common case is that i tells j that i did not understand the message
that j has just sent to i.

Message content: A tuple consisting of an action or event (e.g. a communicative act) and an
explanatory reason.

Description: The sender received a communicative act which it did not understand. There
may be several reasons for this: the agent may not have been designed to
process a certain act or class of acts, or it may have been expecting a different
message. For example, it may have been strictly following a pre-defined
protocol, in which the possible message sequences are predetermined. The
not-understood message indicates to that the sender of the original (i.e.
misunderstood) action that nothing has been done as a result of the message.
This act may also be used in the general case for i to inform j that it has not
understood j’s action.
The second term of the content tuple is a proposition representing the reason
for the failure to understand. There is no guarantee that the reason is
represented in a way that the receiving agent will understand: it could be a
textual error message. However, a co-operative agent will attempt to explain
the misunderstanding constructively

Summary Formal
Model

<i, not-understood(j, a)>
<i, Inform(j, (x) Bi ((e Done(e) Agent(e, j) Bj(Done(e) Agent(e,
j)
 (a = e))) = x))>
FP : Bi Bi (Bifj Uifj)
RE : Bj

where
 = (x) Bi ((e Done(e) Agent(e, j) Bj(Done(e) Agent(e, j) (a = e))) =

x)
Note: this summary is included here for completeness. For full details, see §0Formal basis of ACL
semanticsFormal basis of ACL semantics.

Examples Agent i did not understand an query-if message because it did not recognise
the ontology:
(not-understood

:sender i
:receiver j
:content ((query-if :sender j :receiver i …)

(unknown (ontology www)))
:language sl)

6.5.13 1038

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 38

propose 1039
Summary: The action of submitting a proposal to perform a certain action, given certain

preconditions.
Message content: A tuple containing an action description, representing the action that the

sender is proposing to perform, and a proposition representing the
preconditions on the performance of the action.

Description: Propose is a general-purpose action to make a proposal or respond to an
existing proposal during a negotiation process by proposing to perform a given
action subject to certain conditions being true. The actual protocol under
which the negotiation process is being conducted is known either by prior
agreement, or is explicitly stated in the :protocol parameter of the message.
The proposer (the sender of the propose) informs the receiver that the
proposer will adopt the intention to perform the action once the given
precondition is met, and the receiver notifies the proposer of the receiver's
intention that the proposer performs the action.
A typical use of the condition attached to the proposal is to specify the price of
a bid in an auctioning or negotiation protocol.

Summary Formal
Model

<i, propose(j, <i, act>,)>
<i, inform(j, Ij Done(<i, act>,) Ii Done(<i, act>,))>

FP : Bi Bi (Bifj Uifj)
RE : Bj

where
 = Ij Done(<i, act>,) Ii Done(<i, act>,)

Note: this summary is included here for completeness. For full details, see §0Formal basis of ACL
semanticsFormal basis of ACL semantics.

Example Agent j informs i that it will sell 50 boxes of plums for $200:
(propose

:sender j
:receiver i
:content ((action j (sell plum 50))(cost 200))
:ontology fruit-market
:in-reply-to proposal2
:language sl
…

)

6.5.14 1040

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 39

query-if 1041
Summary: The action of asking another agent whether or not a given proposition is true.
Message content: A proposition.
Description: Query-if is the act of asking another agent whether (it believes that) a given

proposition is true. The sending agent is requesting the receiver to inform it of
the truth of the proposition.
The agent performing the query-if act:

 has no knowledge of the truth value of the proposition
 believes that the other agent does know the truth of the proposition.

Summary Formal
Model

<i, query-if(j,)
<i, request(j, <j, inform-if(i,)>)>
FP: Bifi Uifi Bi Ij Done(<j, inform-if(i,)>)
RE: Done(<j, inform(i,)>|<j, inform(i,)>)

Note: this summary is included here for completeness. For full details, see §0Formal basis of ACL
semanticsFormal basis of ACL semantics.

Example Agent i asks agent j if j is registered with domain server d1:
(query-if

:sender i
:receiver j
:content

(registered (server d1) (agent j))
:reply-with r09
…)

Agent j replies that it is not:
(inform

:sender j
:receiver i
:content (not (registered (server d1) (agent

j)))
:in-reply-to r09

)

6.5.15 1042

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 40

query-ref 1043
Summary: The action of asking another agent for the object referred to by an expression.
Message content: A definite descriptor
Description: Query-ref is the act of asking another agent to inform the requestor of the

object identified by a definite descriptor. The sending agent is requesting the
receiver to perform an inform act, containing the object that corresponds to the
definite descriptor.
The agent performing the query-ref act:

 does not know which object corresponds to the descriptor
 believes that the other agent does know which object corresponds to

the descriptor.
Summary Formal
Model

<i, query-ref(j, x (x))
<i, request(j, <j, inform-ref(i, x (x))>)>
FP: Brefi(x (x)) Urefi(x (x)) Bi Ij Done(<j, inform-ref(i, x
 (x))>)
RE: Done(<i, Inform(j, x (x) = r1)> ... <i, Inform(j, x (x) = rk)>)

Note: this summary is included here for completeness. For full details, see §0Formal basis of ACL
semanticsFormal basis of ACL semantics.

Example Agent i asks agent j for its available services:
(query-ref

:sender i
:receiver j
:content

(iota ?x (available-services j ?x))
…)

j replies that it can reserve trains, planes and automobiles:
(inform

:sender j
:receiver i
:content

(= (iota ?x (available-services j ?x))
((reserve-ticket train)
(reserve-ticket plane)
(reserve automobile))

)
…)

6.5.16 1044

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 41

refuse 1045
Summary: The action of refusing to perform a given action, and explaining the reason for

the refusal.
Message content: A tuple, consisting of an action expression and a proposition giving the reason

for the refusal.
Description: The refuse act is an abbreviation for denying (strictly speaking, disconfirming)

that an act is possible for the agent to perform, and stating the reason why that
is so.
The refuse act is performed when the agent cannot meet all of the
preconditions for the action to be carried out, both implicit and explicit. For
example, the agent may not know something it is being asked for, or another
agent requested an action for which it has insufficient privilege.
The agent receiving a refuse act is entitled to believe that:

 the action has not been done
 the action is not feasible (from the point of view of the sender of the

refusal)
 the (causal) reason for the refusal is represented by the a proposition

which is the third term of the tuple, (which may be the constant true).
There is no guarantee that the reason is represented in a way that the
receiving agent will understand: it could be a textual error message.
However, a co-operative agent will attempt to explain the refusal
constructively.

Summary Formal
Model

<i, refuse(j, <i, act>,)>
<i, disconfirm(j, Feasible(<i, act>))>;
<i, inform(j, Done(<i, act>) Ii Done(<i, act>))>
FP : Bi Feasible(<i, act>) Bi (Bj Feasible(<i, act>) Uj Feasible(<i,
act>))
 Bi Bi (Bifj Uifj)
RE : Bj Feasible(<i, act>) Bj

where
 = Done(<i, act>) Ii Done(<i, act>)

Note: this summary is included here for completeness. For full details, see §0Formal basis of ACL
semanticsFormal basis of ACL semantics.

Example Agent j refuses to i reserve a ticket for i, since i there are insufficient funds in
i's account:
(refuse

:sender j
:receiver i
:content
(
(action j (reserve-ticket LHR, MUC, 27-sept-

97))
(insufficient-funds ac12345)

)
:language sl)

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 42

6.5.17 1046

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 43

reject-proposal 1047
Summary: The action of rejecting a proposal to perform some action during a negotiation.
Message content: A tuple consisting of an action description and a proposition which formed the

original proposal being rejected, and a further proposition which denotes the
reason for the rejection.

Description: Reject-proposal is a general-purpose rejection to a previously submitted
proposal. The agent sending the rejection informs the receiver that it has no
intention that the recipient performs the given action under the given
preconditions.
The additional proposition represents a reason that the proposal was rejected.
Since it is in general hard to relate cause to effect, the formal model below
only notes that the reason proposition was believed true by the sender at the
time of the rejection. Syntactically the reason on the lhs should be treated as a
causal explanation for the rejection, even though this is not established by the
formal semantics.

Summary Formal
Model <i, reject-proposal(j, <j, act>, ,)>

<i, inform(j, Ii Done(<j, act>,))>

FP : Bi Bi (Bifj Uifj)
RE : Bj

where
 = Ii Done(<j, act>,)

Note: this summary is included here for completeness. For full details, see §0Formal basis of ACL
semanticsFormal basis of ACL semantics.

Example Agent i informs j that it rejects an offer from j to sell
(reject-proposal

:sender i
:receiver j
:content ((action j (sell plum 50)) (price-too-

high 50))
:in-reply-to proposal13

)

6.5.18 1048

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 44

request 1049
Summary: The sender requests the receiver to perform some action.

One important class of uses of the request act is to request the receiver to
perform another communicative act.

Message content: An action description.
Description: The sender is requesting the receiver to perform some action. The content of

the message is a description of the action to be performed, in some language
the receiver understands. The action can be any action the receiver is capable
of performing: pick up a box, book a plane flight, change a password etc.
An important use of the request act is to build composite conversations
between agents, where the actions that are the object of the request act are
themselves communicative acts such as inform.

Summary Formal
Model

<i, request(j, a)>
FP: FP(a) [i\j] Bi Agent(j, a) Bi Ij Done(a)
RE: Done(a)

Note: this summary is included here for completeness. For full details, see §0Formal basis of ACL
semanticsFormal basis of ACL semantics.

Examples Agent i requests j to open a file:
(request

:sender i
:receiver j
:content "open \"db.txt\" for input"
:language vb)

6.5.19 1050

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 45

request-when 1051
Summary: The sender wants the receiver to perform some action when some given

proposition becomes true.
Message content: A tuple of an action description and a proposition.
Description: Request-when allows an agent to inform another agent that a certain action

should be performed as soon as a given precondition, expressed as a
proposition, becomes true.
The agent receiving a request-when should either refuse to take on the
commitment, or should arrange to ensure that the action will be performed
when the condition becomes true. This commitment will persist until such
time as it is discharged by the condition becoming true, the requesting agent
cancels the request-when, or the agent decides that it can no longer honour the
commitment, in which case it should send a refuse message to the originator.
No specific commitment is implied by the specification as to how frequently
the proposition is re-evaluated, nor what the lag will be between the
proposition becoming true and the action being enacted. Agents which require
such specific commitments should negotiate their own agreements prior to
submitting the request-when act.

Summary Formal
Model <i, request-when(j, <j, act>,)>

<i, inform(j, (e') Done(e') Unique(e')
 Ii Done(<j, act>, (e) Enables(e, Bj)
 Has-never-held-since(e', Bj)))>

FP : Bi Bi (Bifj Uifj)
RE : Bj

where
 = (e') Done(e') (Unique(e')
 Ii Done(<j, act>, (e) Enables(e, Bj)
 Has-never-held-since(e', Bj))

Note: this summary is included here for completeness. For full details, see §0Formal basis of ACL
semanticsFormal basis of ACL semantics.

Examples Agent i tells agent j to notify it as soon as an alarm occurs.
(request-when

:sender i
:receiver j
:content (

(inform :sender j :receiver i
:content "something alarming!")

(Done(alarm))
)

…
)

6.5.20 1052

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 46

request-whenever 1053
Summary: The sender wants the receiver to perform some action as soon as some

proposition becomes true and thereafter each time the proposition becomes
true again.

Message content: A tuple of an action description and a proposition.
Description: Request-whenever allows an agent to inform another agent that a certain action

should be performed as soon as a given precondition, expressed as a
proposition, becomes true, and that, furthermore, if the proposition should
subsequently become false, the action will be repeated as soon as it once more
becomes true.
Request-whenever represents a persistent commitment to re-evaluate the given
proposition and take action when its value changes. The originating agent may
subsequently remove this commitment by performing the cancel action.
No specific commitment is implied by the specification as to how frequently
the proposition is re-evaluated, nor what the lag will be between the
proposition becoming true and the action being enacted. Agents who require
such specific commitments should negotiate their own agreements prior to
submitting the request-when act.

Summary Formal
Model <i, request-whenever(j, <j, act>,)>

<i, inform(j, Ii Done(<j, act>, (e) Enables(e, Bj)))>

FP : Bi Bi (Bifj Uifj)
RE : Bj

where
 = Ii Done(<j, act>, (e) Enables(e, Bj))

Note: this summary is included here for completeness. For full details, see §0Formal basis of ACL
semanticsFormal basis of ACL semantics.

Examples Agent i tells agent j to notify it whenever the price of widgets rises from less
than 50 to more than 50.
(request-whenever

:sender i
:receiver j
:content ((inform :sender j :receiver i

:content (price widget))
(> (price widget) 50))

…
)

6.5.20 1054

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 47

request-whomever 1055
Summary: The sender wants an action performed by some agent other than itself. The

receiving agent should either perform the action or pass it on to some other
agent.

Message content: A tuple of an action description and a proposition.
Description: Request-whomever allows for brokering actions. an agent to inform another

agent that a certain action should be performed as soon as a given
precondition, expressed as a proposition, becomes true, and that, furthermore,
if the proposition should subsequently become false, the action will be
repeated as soon as it once more becomes true.
Request-whenever represents a persistent commitment to re-evaluate the given
proposition and take action when its value changes. The originating agent may
subsequently remove this commitment by performing the cancel action.
No specific commitment is implied by the specification as to how frequently
the proposition is re-evaluated, nor what the lag will be between the
proposition becoming true and the action being enacted. Agents who require
such specific commitments should negotiate their own agreements prior to
submitting the request-when act.

Summary Formal
Model <i, request-whenever(j, <j, act>,)>

<i, inform(j, Ii Done(<j, act>, (e) Enables(e, Bj)))>

FP : Bi Bi (Bifj Uifj)
RE : Bj

where
 = Ii Done(<j, act>, (e) Enables(e, Bj))

Note: this summary is included here for completeness. For full details, see §0Formal basis of ACL
semanticsFormal basis of ACL semantics.

Examples Agent i tells agent j to notify it whenever the price of widgets rises from less
than 50 to more than 50.
(request-whenever

:sender i
:receiver j
:content ((inform :sender j :receiver i

:content (price widget))
(> (price widget) 50))

…
)

6.5.21 1056

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 48

subscribe 1057
Summary: The act of requesting a persistent intention to notify the sender of the value of

a reference, and to notify again whenever the object identified by the reference
changes.

Message content: A definite descriptor
Description: The subscribe act is a persistent version of query-ref, such that the agent

receiving the subscribe will inform the sender of the value of the reference,
and will continue to send further informs if the object denoted by the definite
description changes.
A subscription set up by a subscribe act is terminated by a cancel act.

Summary Formal
Model

<i, subscribe(j, x (x))>
<i, request-whenever(j, <j, inform-ref(i, x (x))>, (y) Bj ((x (x) = y))>
FP : Bi Bi (Bifj Uifj)
RE : Bj

where
 = Ii Done(<j, inform-ref(i, x (x))>, (e) Enables(e, (y) Bj ((x (x) = y)))
Note: this summary is included here for completeness. For full details, see §0Formal basis of ACL
semanticsFormal basis of ACL semantics.

Examples Agent i wishes to be updated on the exchange rate of Francs to Dollars, and
makes a subscription agreement with j (an exchange rate server):
(subscribe

:sender i
:receiver j:
:content (iota ?x (= ?x (xch-rate FFr USD)))

)

7 1058

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 49

Interaction Protocols 1059

Ongoing conversations between agents often fall into typical patterns. In such cases, certain message 1060
sequences are expected, and, at any point in the conversation, other messages are expected to follow. These 1061
typical patterns of message exchange are called protocols. A designer of agent systems has the choice to 1062
make the agents sufficiently aware of the meanings of the messages, and the goals, beliefs and other mental 1063
attitudes the agent possesses, that the agent’s planning process causes such protocols to arise spontaneously 1064
from the agents’ choices. This, however, places a heavy burden of capability and complexity on the agent 1065
implementation, though it is not an uncommon choice in the agent community at large. An alternative, and 1066
very pragmatic, view is to pre-specify the protocols, so that a simpler agent implementation can nevertheless 1067
engage in meaningful conversation with other agents, simply by carefully following the known protocol. 1068
This section of the specification details a number of such protocols, in order to facilitate the effective inter-1069
operation of simple and complex agents. No claim is made that this is an exhaustive list of useful protocols, 1070
nor that they are necessary for any given application. The protocols are given pre-defined names: the 1071
requirement for adhering to the specification is: 1072
Requirement 8:
An ACL compliant agent need not implement any of the standard protocols, nor is it restricted
from using other protocol names. However, if one of the standard protocol names is used, the
agent must behave consistently with the protocol specification given here.

Note that, by their nature, agents can engage in multiple dialogues, perhaps with different agents, 1073
simultaneously. The term conversation is used to denote any particular instance of such a dialogue. Thus, the 1074
agent may be concurrently engaged in multiple conversations, with different agents, within different 1075
protocols. The remarks in this section which refer to the receipt of messages under the control of a given 1076
protocol refer only to a particular conversation. 1077
7.1 Specifying when a protocol is in operation 1078

Notionally, two agents intending to use a protocol should first negotiate whether to use a protocol, and, if so, 1079
which one. However, providing the mechanism to do this would negate a key purpose of protocols, which is 1080
to simplify the agent implementation. The following convention is therefore adopted: placing the name of the 1081
protocol that is being used in the :protocol parameter of a message is equivalent to (and slightly more 1082
efficient than) prepending with an inform that i intends that the protocol will be done (i.e., formally, Ii Done(1083
protocol-name)). Once the protocol is finished, which may occur when one of the final states of the protocol 1084
is reached, or when the name of the protocol is dropped from the :protocol parameter of the message, this 1085
implicit intention has been satisfied. 1086
If the agent receiving a message in the context of a protocol which it cannot, or does not wish to, support, it 1087
should send back a refuse message explaining this. 1088
Example: 1089

(request :sender i1090
:receiver j1091
:content some-act1092
:protocol fipa-request1093

)1094
 1095
7.2 Protocol Description Notation 1096

The following notation is used to describe the standard interaction protocols in a convenient manner: 1097
 Boxes with double edges represent communicative actions. 1098
 White boxes represent actions performed by initiator. 1099

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 50

 Shaded boxes are performed by the other participant(s) in the protocol. 1100
 Italicised text with no box represents a comment. 1101

 1102

response of message type
and message content
as performed by recipient

A comment

another response of type
and content
as performed by recipient

CA of message type
and message content
as performed by initiator

 1103

Figure 222 — Example of graphical description of protocols 1104
The above notation is meant solely to represent the protocol as it might be seen by an outside observer. In 1105
particular, only those actions should be depicted which are explicit objects of conversation. Actions which 1106
are internal to an agent in order to execute the protocol are not represented as this may unduly restrict an 1107
agent implementation (e.g. it is of no concern how an agent arrives at a proposal). 1108

 1109
7.3 Defined protocols 1110

7.3.1 Failure to understand a response during a protocol 1111
Whilst not, strictly speaking, a protocol, by convention an agent which is expecting a certain set of responses 1112
in a protocol, and which receives another message not in that set, should respond with a not-understood 1113
message. 1114
To guard against the possibility of infinite message loops, it is not permissible to respond to a not-understood 1115
message with another not-understood message! 1116

7.3.2 FIPA-request Protocol 1117
The FIPA-request protocol simply allows one agent to request another to perform some action, and the 1118
receiving agent to perform the action or reply, in some way, that it cannot. 1119

not-understood refuse
reason

failure
reason

inform
Done(action)

inform
(iota x (result action) x)

agree

request
action

 1120

Figure 333 — FIPA-Request Protocol 1121

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 51

7.3.3 FIPA-query Protocol 1122
In the FIPA-query protocol, the receiving agent is requested to perform some kind of inform action. 1123
Requesting to inform is a query, and there are two query-acts: query-if and query-ref. Either act may be used 1124
to initiate this protocol. If the protocol is initiated by a query-if act, it the responder will plan to return the 1125
answer to the query with a normal inform act. If initiated by query-ref, it will instead be an inform-ref that is 1126
planned. Note that, since inform-ref is a macro act, it will in fact be an inform act that is in fact carried out by 1127
the responder. 1128

 1129

not-understood failure
reason

refuse
reason

inform

query or
query-ref

 1130

Figure 444 — FIPA-Query Protocol 1131

7.3.4 FIPA-request-when Protocol 1132
The FIPA-request-when protocol is simply an expression of the full intended meaning of the request-when 1133
action. The requesting agent uses the request-when action to seek from the requested agent that it performs 1134
some action in the future once a given precondition becomes true. If the requested agent understands the 1135
request and does not refuse, it will wait until the precondition occurs then perform the action, after which it 1136
will notify the requester that the action has been performed. Note that this protocol is somewhat redundant in 1137
the case that the action requested involves notifying the requesting agent anyway. If it subsequently becomes 1138
impossible for the requested agent to perform the action, it will send a refuse request to the original requestor. 1139
 1140

not-understood refuse
reason

precondition
is true

failure
reason

inform
Done(action)

can proceed?

refuse
reason

cannot proceed

agree

request-when
action
precondition

 1141

Figure 555 — FIPA-request-when protocol 1142

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 52

7.3.5 FIPA-contract-net Protocol 1143
This section presents a version of the widely used Contract Net Protocol, originally developed by Smith and 1144
Davis [Smith & Davis 80]. FIPA-Contract-Net is a minor modification of the original contract net protocol in 1145
that it adds rejection and confirmation communicative acts. In the contract net protocol, one agent takes the 1146
role of manager. The manager wishes to have some task performed by one or more other agents, and further 1147
wishes to optimise a function that characterises the task. This characteristic is commonly expressed as the 1148
price, in some domain specific way, but could also be soonest time to completion, fair distribution of tasks, 1149
etc. 1150
The manager solicits proposals from other agents by issuing a call for proposals, which specifies the task and 1151
any conditions the manager is placing upon the execution of the task. Agents receiving the call for proposals 1152
are viewed as potential contractors, and are able to generate proposals to perform the task as propose acts. 1153
The contractor’s proposal includes the preconditions that the contractor is setting out for the task, which may 1154
be the price, time when the task will be done, etc. Alternatively, the contractor may refuse to propose. Once 1155
the manager receives back replies from all of the contractors, it evaluates the proposals and makes its choice 1156
of which agents will perform the task. One, several, or no agents may be chosen. The agents of the selected 1157
proposal(s) will be sent an acceptance message, the others will receive a notice of rejection. The proposals are 1158
assumed to be binding on the contractor, so that once the manager accepts the proposal the contractor 1159
acquires a commitment to perform the task. Once the contractor has completed the task, it sends a completion 1160
message to the manager. 1161
Note that the protocol requires the manager to know when it has received all replies. In the case that a 1162
contractor fails to reply with either a propose or a refuse, the manager may potentially be left waiting 1163
indefinitely. To guard against this, the cfp includes a deadline by which replies should be received by the 1164
manager. Proposals received after the deadline are automatically rejected, with the given reason that the 1165
proposal was late. 1166

not-understood refuse
reason

Deadline for proposals

reject-proposal
reason

failure
reason

inform
Done(action)

the manager cancels the
contract due to a change
of situation

cancel
reason

accept-proposal
proposal

propose
preconditions2

cfp
action
preconditions1

 1167

Figure 666 — FIPA-Contract-Net 1168

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 53

7.3.6 FIPA-Iterated-Contract-Net Protocol 1169
The iterated contract net protocol is an extension of the basic contract net as described above. It differs from 1170
the basic version of the contract net by allowing multi-round iterative bidding. As above, the manager issues 1171
the initial call for proposals with the cfp act. The contractors then answer with their bids as propose acts. The 1172
manager may then accept one or more of the bids, rejecting the others, or may iterate the process by issuing a 1173
revised cfp. The intent is that the manager seeks to get better bids from the contractors by modifying the call 1174
and requesting new (equivalently, revised) bids. The process terminates when the manager refuses all 1175
proposals and does not issue a new call, accepts one or more of the bids, or the contractors all refuse to bid. 1176

not-understood refuse
reason

reject-proposal
reason

failure
reason

inform
Done(action)

accept-proposal
preconditions3

reject-proposal
reason

propose
preconditions2

cfp
action
preconditions1

 1177

Figure 777 — FIPA-iterated-contract-net protocol 1178

7.3.7 FIPA-Auction-English Protocol 1179
In the English Auction, the auctioneer seeks to find the market price of a good by initially proposing a price 1180
below that of the supposed market value, and then gradually raising the price. Each time the price is 1181
announced, the auctioneer waits to see if any buyers will signal their willingness to pay the proposed price. 1182
As soon as one buyer indicates that it will accept the price, the auctioneer issues a new call for bids with an 1183
incremented price. The auction continues until no buyers are prepared to pay the proposed price, at which 1184
point the auction ends. If the last price that was accepted by a buyer exceeds the auctioneer's (privately 1185
known) reservation price, the good is sold to that buyer for the agreed price. If the last accepted price is less 1186
than the reservation price, the good is not sold. 1187
In the following protocol diagram, the auctioneer's calls, expressed as the general cfp act, are multicast to all 1188
participants in the auction. For simplicity, only one instance of the message is portrayed. Note also that in a 1189
physical auction, the presence of the auction participants in one room effectively means that each acceptance 1190
of a bid is simultaneously broadcast to all participants, not just the auctioneer. This may not be true in an 1191
agent marketplace, in which case it is possible for more than one agent to attempt to bid for the suggested 1192
price. Even though the auction will continue for as long as there is at least one bidder, the agents will need to 1193
know whether their bid (represented by the propose act) has been accepted. Hence the appearance in the 1194
protocol of accept-proposal and reject-proposal messages, despite this being implicit in the English Auction 1195
process that is being modelled. 1196

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 54

Figure 888 — FIPA-auction-english protocol 1197

7.3.8 FIPA-Auction-Dutch Protocol 1198
In what is commonly called the Dutch Auction, the auctioneer attempts to find the market price for a good by 1199
starting bidding at a price much higher than the expected market value, then progressively reducing the price 1200
until one of the buyers accepts the price. The rate of reduction of the price is up to the auctioneer, and the 1201
auctioneer usually has a reserve price below which it will not go. If the auction reduces the price to the 1202
reserve price with no buyers, the auction terminates. 1203
The term "Dutch Auction" derives from the flower markets in Holland, where this is the dominant means of 1204
determining the market value of quantities of (typically) cut flowers. In modelling the actual Dutch flower 1205
auction (and indeed in some other markets), some additional complexities occur. First, the good may be split: 1206
for example the auctioneer may be selling five boxes of tulips at price x, and a buyer may step in and 1207
purchase only three of the boxes. The auction then continues, with a price at the next increment below x, until 1208

perform action

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 55

the rest of the good is sold or the reserve price met. Such partial sales of goods are only present in some 1209
markets; in others the purchaser must bid to buy the entire good. Secondly, the flower market mechanism is 1210
set up to ensure that there is no contention amongst buyers, by preventing any other bids once a single bid has 1211
been made for a good. Offers and bids are binding, so there is no protocol for accepting or rejecting a bid. In 1212
the agent case, it is not possible to assume, and too restrictive to require, that such conditions apply. Thus it is 1213
quite possible that two or more bids are received by the auctioneer for the same good. The protocol below 1214
thus allows for a bid to be rejected. This is intended only to be used in the case of multiple, competing, 1215
simultaneous bids. It is outside the scope of this specification to pre-specify any particular mechanism for 1216
resolving this conflict. In the general case, the agents should make no assumptions beyond "first come, first 1217
served". In any given domain, other rules may apply. 1218

 1219

Figure 999 — FIPA-auction-dutch protocol 1220

 1221

8 1222

end of auction

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 56

Formal basis of ACL semantics 1223

This section provides a formal definition of the communication language and its semantics. The intention 1224
here is to provide a clear, unambiguous reference point for the standardised meaning of the inter-agent 1225
communicative acts expressed through messages and protocols. This section of the specification is normative, 1226
in that agents which claim to conform to the FIPA specification ACL must behave in accordance with the 1227
definitions herein. However, this section may be treated as informative in the sense that no new information 1228
is introduced here that is not already expressed elsewhere in this document. The non mathematically-inclined 1229
reader may safely omit this section without sacrificing a full understanding of the specification. 1230
Note also that conformance testing, that is, demonstrating in an unambiguous way that a given agent 1231
implementation is correct with respect to this formal model, is not a problem which has been solved in this 1232
FIPA specification. Conformance testing will be the subject of further work by FIPA. 1233
8.1 Introduction to formal model 1234

This section presents, in an informal way, the model of communicative acts that underlies the semantics of 1235
the message language. This model is presented only in order to ground the stated meanings of 1236
communicative acts and protocols. It is not a proposed architecture or a structural model of the agent 1237
design. 1238
Other than the special case of agents that operate singly and interact only with human users or other software 1239
interfaces, agents must communicate with each other to perform the tasks for which they are responsible. 1240
Consider the basic case shown below: 1241

Agent i Agent j

Message delivery / transportation service

Convert to transport form Convert from transport form

Goal G

Intent I

Msg M

Message M
Speech act

 1242

Figure 101010 — Message passing between two agents 1243
Suppose that, in abstract terms, Agent i has amongst its mental attitudes the following: some goal or 1244
objective G, and some intention I. Deciding to satisfy G, the agent adopts a specific intention, I. Note that 1245
neither of these statements entail a commitment on the design of i: G and I could equivalently be encoded as 1246
explicit terms in the mental structures of a BDI agent, or implicitly in the call stack and programming 1247
assumptions of a simple Java or database agent. 1248
Assuming that i cannot carry out the intention by itself, the question then becomes which message or set of 1249
messages should be sent to another agent (j in the figure) to assist or cause intention I to be satisfied? If 1250
agent i is behaving in some reasonable sense rationally, it will not send out a message whose effect will not 1251
satisfy the intention and hence achieve the goal. For example, if Harry wishes to have a barbecue (G =1252
"have a barbecue"), and thus derives a goal to find out if the weather will be suitable (G' = "know1253
if it is raining today"), and thus intends to find out the weather (I = "find out if it1254
is raining"), he will be ill-advised to ask Sally "have you bought Acme stock today?". From Harry's 1255
perspective, whatever Sally says, it will not help him to determine whether it is raining today. 1256

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 57

Continuing the example, if Harry, acting more rationally, asks Sally "can you tell me if it is raining today?", 1257
he has acted in a way he hopes will satisfy his intention and meet his goal (assuming that Harry thinks that 1258
Sally will know the answer). Harry can reason that the effect of asking Sally is that Sally would tell him, 1259
hence making the request fulfils his intention. Now, having asked the question, can Harry actually assume 1260
that, sooner or later, he will know whether it is raining? Harry can assume that Sally knows that he does not 1261
know, and that she knows that he is asking her to tell him. But, simply on the basis of having asked, Harry 1262
cannot assume that Sally will act to tell him the weather: she is independent, and may, for example, be busy 1263
elsewhere. 1264
In summary: an agent plans, explicitly or implicitly (through the construction of its software) to meet its goals 1265
ultimately by communicating with other agents, i.e. sending messages to them and receiving messages from 1266
them. The agent will select acts based on the relevance of the act's expected outcome or rational effect to its 1267
goals. However, it cannot assume that the rational effect will necessarily result from sending the messages. 1268
8.2 The SL Language 1269

SL, standing for Semantic Language, is the formal language used to define the semantics of the FIPA ACL. 1270
As such, SL itself has to be precisely defined. In this section, we present the SL language definition and the 1271
semantics of the primitive communicative acts. 1272

8.2.1 Basis of the SL formalism 1273
In SL, logical propositions are expressed in a logic of mental attitudes and actions, formalised in a first order 1274
modal language with identity6 (see [Sadek 91a] for details of this logic). The components of the formalism 1275
used in the following are as follows: 1276

 p, p1, ... are taken to be closed formulas denoting propositions, 1277
 and are formula schemas, which stand for any closed proposition 1278
 i and j are schematic variables which denote agents 1279
 | means that is valid. 1280

The mental model of an agent is based on the representation of three primitive attitudes: belief, uncertainty 1281
and choice (or, to some extent, goal). They are respectively formalised by the modal operators B, U, and C. 1282
Formulas using these operators can be read as: 1283

 Bip “i (implicitly) believes (that) p” 1284
 Uip “i is uncertain about p but thinks that p is more likely than p” 1285
 Cip “i desires that p currently holds” 1286

The logical model for the operator B is a KD45 possible-worlds-semantics Kripke structure (see, e.g., 1287
[Halpern & Moses 85]) with the fixed domain principle (see, e.g., [Garson 84]). 1288
To enable reasoning about action, the universe of discourse involves, in addition to individual objects and 1289
agents, sequences of events. A sequence may be formed with a single event. This event may be also the void 1290
event. The language involves terms (in particular a variable e) ranging over the set of event sequences. 1291
To talk about complex plans, events (or actions) can be combined to form action expressions: 1292

 a1 ; a2 is a sequence in which a2 follows a1 1293
 a1 a2 is a nondeterministic choice, in which either a1happens or a2, but not both. 1294

Action expressions will be noted a. 1295
The operators Feasible, Done and Agent are introduced to enable reasoning about actions, as follows: 1296

 Feasible(a, p) means that a can take place and if it does p will be true just after that 1297
 Done(a, p) means that a has just taken place and p was true just before that 1298

6 This logical framework is similar in many aspects to that of Cohen and Levesque (1990).

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 58

 Agent(i, a) means that i denotes the only agent performing, or that will be performing, the actions 1299
which appear in action expression a. 1300

 Single(a) means that a denotes an action expression that is not a sequence. Any individual action is 1301
Single. The composite act a ; b is not Single. The composite act a | b is Single iff both a and b 1302
are Single. 1303

From belief, choice and events, the concept of persistent goal is defined. An agent i has p as a persistent goal, 1304
if i has p as a goal and is self-committed toward this goal until i comes to believe that the goal is achieved or 1305
to believe that it is unachievable. Intention is defined as a persistent goal imposing the agent to act. Formulas 1306
as PGip and Iip are intended to mean that “i has p as a persistent goal” and “i has the intention to bring about 1307
p”, respectively. The definition of I entails that intention generates a planning process. See [Sadek 92] for 1308
the details of a formal definition of intention. 1309
Note that there is no restriction on the possibility of embedding mental attitude or action operators. For 1310
example, formula Ui Bj Ij Done(a, Bip) informally means that agent i believes that, probably, agent j thinks 1311
that i has the intention that action a be done before which i has to believe p. 1312
A fundamental property of the proposed logic is that the modelled agents are perfectly in agreement with their 1313
own mental attitudes. Formally, the following schema is valid: 1314

 Bi 1315
where is governed by a modal operator formalising a mental attitude of agent i. 1316

8.2.2 Abbreviations 1317
In the text below, the following abbreviations are used: 1318

i) Feasible(a) Feasible(a, True) 1319
ii) Done(a) Done(a, True) 1320
iii) Possible() (a)Feasible(a,) 1321
iv) Bifi Bi Bi 1322

Bifi means that either agent i believes or that it believes . 1323
v) Brefi (x) (y)Bi (x) (x) = y 1324

where is the operator for definite description and (x) (x) is read “the (x which is) “. Brefi (x) 1325
means that agent i believes that it knows the (x which is) . 1326

vi) Uifi Ui Ui 1327
Uifi means that either agent i is uncertain (in the sense defined above) about or that it is 1328
uncertain about . 1329

vii) Urefi (x) (y)Ui (x) (x) = y 1330
Urefi (x) has the same meaning as Brefi (x), except that agent i has an uncertainty attitude with 1331
respect to (x) instead of a belief attitude 1332

viii) ABn,i,j BiBjBi … 1333
introduces the concept of alternate beliefs, n is a positive integer representing the number of B 1334
operators alternating between i and j. 1335

In the text, the term "knowledge" is used as an abbreviation for "believes or is uncertain of". 1336
8.3 Underlying Semantic Model 1337

The components of a communicative act (CA) model that are involved in a planning process characterise 1338
both the reasons for which the act is selected and the conditions that have to be satisfied for the act to be 1339

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 59

planned. For a given act, the former is referred to as the rational effect or RE7, and the latter as the feasibility 1340
preconditions or FP’s, which are the qualifications of the act. 1341

8.3.1 Property 1 1342
To give an agent the capability of planning an act whenever the agent intends to achieve its RE, the agent 1343
should adhere to the following property: 1344
Let ak be an act such that: 1345

i) (x) Biak = x, 1346
ii) p is the RE of ak and 1347
iii) Ci Possible(Done(ak)); 1348

then the following formula is valid: 1349
Iip Ii Done(a1 ... an) 1350

where a1, ...,an are all the acts of type ak. 1351
This property says that an agent's intention to achieve a given goal generates an intention that one of the acts 1352
known to the agent be done. Further, the act is such that its rational effect corresponds to the agent's goal, and 1353
that the agent has no reason for not doing it. 1354
The set of feasibility preconditions for a CA can be split into two subsets: the ability preconditions and the 1355
context-relevance preconditions. The ability preconditions characterise the intrinsic ability of an agent to 1356
perform a given CA. For instance, to sincerely assert some proposition p, an agent has to believe that p. The 1357
context-relevance preconditions characterise the relevance of the act to the context in which it is performed. 1358
For instance, an agent can be intrinsically able to make a promise while believing that the promised action is 1359
not needed by the addressee. The context-relevance preconditions correspond to the Gricean quantity and 1360
relation maxims. 1361

8.3.2 Property 2 1362
This property imposes on an agent an intention to seek the satisfiability of its FP’s, whenever the agent elects 1363
to perform an act by virtue of property 1 8: 1364

 Ii Done(a) Bi Feasible(a) IiBi Feasible(a) 1365

8.3.3 Property 3 1366
If an agent has the intention that (the illocutionary component of) a communicative act be performed, it 1367
necessarily has the intention to bring about the rational effect of the act. The following property formalises 1368
this idea: 1369

 Ii Done(a) Ii RE(a) 1370
where RE(a) denotes the rational effect of act a. 1371

8.3.4 Property 4 1372
Consider now the complementary aspect of CA planning: the consuming of CA’s. When an agent observes a 1373
CA, it should believe that the agent performing the act has the intention (to make public its intention) to 1374
achieve the rational effect of the act. This is called the intentional effect. The following property captures this 1375
intuition: 1376

 Bi(Done(a) Agent(j, a) Ij RE(a)) 1377
Note, for completeness only, that a strictly precise version of this property is as follows: 1378

 Bi(Done(a) Agent(j, a) Ij Bi Ij RE(a)) 1379

7 Rational effect is also referred to as the perlocutionary effect in some of the work prior to this specification, e.g. [Sadek 90].
8 See [Sadek 91b] for a generalised version of this property.

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 60

8.3.5 Property 5 1380
Some FP’s persist after the corresponding act has been performed. For the particular case of CA’s, the next 1381
property is valid for all the FP’s which do not refer to time. In such cases, when an agent observes a given 1382
CA, it is entitled to believe that the persistent feasibility preconditions hold: 1383

 Bi(Done(a) FP(a)) 1384
8.4 Notation 1385

A communicative act model will be presented as follows: 1386
<i, Act(j, C)> 1387
FP: 1 1388
RE: 2 1389

where i is the agent of the act, j the recipient, Act the name of the act, C stands for the semantic content or 1390
propositional content9, and 1 and 2 are propositions. This notational form is used for brevity, only within 1391
this section on the formal basis of ACL. The correspondence to the standard transport syntax adopted above 1392
is illustrated by a simple translation of the above example: 1393

(Act1394
:sender i1395
:receiver j1396
:content C)1397

Note that this also illustrates that some aspects of the operational use of the FIPA-ACL fall outside the scope 1398
of this formal semantics but are still part of the specification. For example, the above example is actually 1399
incomplete without :language and :ontology parameters to given meaning to C, or some means of 1400
arranging for these to be known. 1401
8.5 Primitive Communicative Acts 1402

8.5.1 The assertive Inform 1403
One of the most interesting assertives regarding the core of mental attitudes it encapsulates is the act of 1404
informing. An agent i is able to inform an agent j that some proposition p is true only if i believes p (i.e., only 1405
if Bip). This act is considered to be context-relevant only if i does not think that j already believes p or its 1406
negation, or that j is uncertain about p (recall that belief and uncertainty are mutually exclusive). If i is 1407
already aware that j does already believe p, there is no need for further action by i. If i believes that j believes 1408
not p, i should disconfirm p. If j is uncertain about p, i should confirm p. 1409

<i, INFORM (j,)> 1410
FP: Bi Bi(Bifj Uifj) 1411
RE: Bj 1412

The FP’s for inform have been constructed to ensure mutual exclusiveness between CA’s, when more that 1413
one CA might deliver the same rational effect. 1414
Note, for completeness only, that the above version of the Inform model is the operationalised version. The 1415
complete theoretical version (regarding the FP’s) is the following: 1416

<i, INFORM (j,)> 1417
FP: Bi ∧

>n 1
 ABn,i,j Bi BiBj ∧

>n 2
 ABn,i,j Bj 1418

RE: Bj 1419

8.5.2 The directive Request 1420
The following model defines the directive Request: 1421

9 See [Searle 69] for the notions of propositional content (and illocutionary force) of an illocutionary act.

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 61

<i, REQUEST (j, a)> 1422
FP: FP(a) [i\j] Bi Agent(j, a) Bi PGj Done(a) 1423
RE: Done(a) 1424

where: 1425
 a is a schematic variable for which any action expression can be substituted; 1426
 FP(a) denotes the feasibility preconditions of a; 1427
 FP(a) [i\j] denotes the part of the FP’s of a which are mental attitudes of i. 1428

8.5.3 Confirming an uncertain proposition: Confirm 1429
The rational effect of the act Confirm is identical to that of most of the assertives, i.e., the addressee comes to 1430
believe the semantic content of the act. An agent i is able to confirm a property p to an agent j only if i 1431
believes p (i.e., Bip). This is the sincerity condition an assertive act imposes on the agent performing the act. 1432
The act Confirm is context-relevant only if i believes that j is uncertain about p (i.e., Bi Uj p). In addition, the 1433
analysis to determine the qualifications required for an agent to be entitled to perform an Inform act remains 1434
valid for the case of the act Confirm. These qualifications are identical to those of an Inform act for the part 1435
concerning the ability preconditions, but they are different for the part concerning the context relevance 1436
preconditions. Indeed, an act Confirm is irrelevant if the agent performing it believes that the addressee is not 1437
uncertain of the proposition intended to be confirmed. 1438
In view of this analysis, the following is the model for the act Confirm: 1439

<i, CONFIRM(j,)> 1440
FP: Bi BiUj 1441
RE: Bj 1442

8.5.4 Contradicting knowledge: Disconfirm 1443
The Confirm act has a negative counterpart: the Disconfirm act. The characterisation of this act is similar to 1444
that of the Confirm act and leads to the following model: 1445

<i, DISCONFIRM(j,)> 1446
FP: Bi Bi(Uj Bj) 1447
RE: Bj 1448

8.6 Composite Communicative Acts 1449

An important distinction is made between acts that can be carried out directly, and those macro acts which 1450
can be planned (which includes requesting another agent to perform the act), but cannot be directly carried 1451
out. The distinction centres on whether it is possible to say that an act has been done, formally Done(Action, 1452
p) (see §08 1453

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 62

Formal basis of ACL semantics8 1454

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 63

Formal basis of ACL semantics). An act which is composed of primitive communicative actions (inform, 1455
request, confirm), or which is composed from primitive messages by substitution or sequencing (via the “;” 1456
operator), can be performed directly and can be said afterwards to be done. For example, agent i can inform j 1457
that p; Done(<i, inform(j, p) >) is then true, and the meaning (i.e. the rational effect) of this action can be 1458
precisely stated. 1459
However, a large class of other useful acts is defined by composition using the disjunction operator (written 1460
“|”). By the meaning of the operator, only one of the disjunctive components of the act will be performed 1461
when the act is carried out. A good example of these macro-acts is the inform-ref act. Inform-ref is a macro 1462
act defined formally by: 1463

<i, INFORM-REF(j, x (x))> <i, INFORM(j, x (x) = r1)> | … | <i, INFORM(j, x (x) = rn)> 1464
where n may be infinite. This act may be requested (for example, j may request i to perform it), or i may plan 1465
to perform the act in order to achieve the (rational) effect of j knowing the referent of (x). However, when 1466
the act is actually performed, what is sent, and what can be said to be Done, is an inform act. 1467
Finally an inter-agent plan is a sequence of such communicative acts, using either composition operator, 1468
involving two or more agents. Communications protocols (q.v.) are primary examples of pre-enumerated 1469
inter-agent plans. 1470

8.6.1 The closed-question case 1471
In terms of illocutionary acts, exactly what an agent i is requesting when uttering a sentence such as “Is p?” 1472
toward a recipient j, is that j performs the act of “informing i that p” or that j performs the act “informing i 1473
that p”. We know the model for both of these acts: <j, INFORM (i,)>. In addition, we know the relation 1474
“or” set between these two acts: it is the relation that allows for the building of action expressions which 1475
represent a non-deterministic choice between several (sequences of) events or actions. 1476
In fact, as mentioned above, the semantic content of a directive refers to an action expression; so, this can be 1477
a disjunction between two or more acts. Hence, by using the utterance “Is p?”, what an agent i requests an 1478
agent j to do is the following action expression: 1479

<j, INFORM (i, p)> <j, INFORM (i, p)> 1480
It seems clear that the semantic content of a directive realised by a yes/no-question can be viewed as an action 1481
expression characterising an indefinite choice between two CA’s Inform. In fact, it can also be shown that the 1482
binary character of this relation is only a special case: in general, any number of CA’s Inform can be handled. 1483
In this case, the addressee of a directive is allowed to choose one among several acts. This is not only a 1484
theoretical generalisation: it accounts for classical linguistic behaviour traditionally called Alternatives 1485
question. An example of an utterance realising an alternative question is “Would you like to travel in first 1486
class, in business class, or in economy class?”. In this case, the semantic content of the request realised by 1487
this utterance is the following action expression: 1488

<j, INFORM (i, p1)> <j, INFORM (i, p2)> <j, INFORM (i, p3)> 1489
where p1, p2 and p3 are intended to mean respectively that j wants to travel in first class, in business class, or 1490
in economy class. 1491
As it stands, the agent designer has to provide the plan-oriented model for this type of action expression. In 1492
fact, it would be interesting to have a model which is not specific to the action expressions characterising the 1493
non-deterministic choice between CA’s of type Inform, but a more general model where the actions referred 1494
to in the disjunctive relation remain unspecified. In other words, to describe the preconditions and effects of 1495
the expression a1 a2 … an where a1, a2, …, an are any action expressions. It is worth mentioning that the 1496
goal is to characterise this action expression as a disjunctive macro-act which is planned as such; we are not 1497
attempting to characterise the non-deterministic choice between acts which are planned separately. In both 1498
cases, the result is a branching plan but in the first case, the plan is branching in an a priori way while in the 1499
second case it is branching in an a posteriori way. 1500

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 64

An agent will plan a macro-act of non-deterministic choice when it intends to achieve the rational effect of 1501
one of the acts composing the choice, no matter which one it is. To do that, one of the feasibility 1502
preconditions of the acts must be satisfied, no matter which one it is. This produces the following model for a 1503
disjunctive macro-act: 1504

a1 a2 … an 1505
FP: FP(a1) FP(a2) ... FP(an) 1506
RE: RE(a1) RE(a2) ... RE(an) 1507

where FP(ak) and RE(ak) represent the FP’s and the RE of the action expression ak, respectively. 1508
Because the yes/no-question, as shown, is a particular case of alternatives question, the above model can be 1509
specialised to the case of two acts Inform having opposite semantic contents. Thus, we get the following 1510
model: 1511

<i, INFORM(j,)> <i, INFORM(j,)> 1512
FP: Bifi Bi(Bifj Uifj) 1513
RE: Bifj 1514

In the same way, we can derive the disjunctive macro-act model which gathers the acts Confirm and 1515
Disconfirm. We will use the abbreviation <i, CONFDISCONF(j,)> to refer to the following model: 1516

<i, CONFIRM(j,)> <i, DISCONFIRM(j, > 1517
FP: Bifi BiUj 1518
RE: Bifj 1519

8.6.2 The query-if act: 1520
Starting from the act models <j, INFORM-IF(i,)> and <i, REQUEST(j, a)>, it is possible to derive the 1521
query-if act model (and not plan, as shown below). Unlike a confirm/disconfirm-question, which will be 1522
addressed below, an query-if act requires the agent performing it not to have any knowledge about the 1523
proposition whose truth value is asked for. To get this model, a transformation10 has to be applied to the FP’s 1524
of the act <j, INFORM-IF(i,)> and leads to the following model for a query-if act: 1525

<i, QUERY-IF(j, <i, REQUEST(j, <j, INFORM-IF(i,)>)> 1526
FP: Bifi Uifi Bi PGj Done(<j, INFORM-IF (i,)>) 1527
RE: Done(<j, INFORM(i,)> <j, INFORM(i,)>) 1528

8.6.3 The confirm/disconfirm-question act: 1529
In the same way, it is possible to derive the following Confirm/Disconfirm-question act model: 1530

<i, REQUEST(j, <j, CONFDISCONF(i,)>)> 1531
FP: Ui Bi PGjDone(<j, CONFDISCONF(i,)>) 1532
RE: Done(<j, CONFIRM(i,)> <j, DISCONFIRM(i,)) 1533

8.6.4 The open-question case: 1534
Open question is a question which does not suggest a choice and, in particular, which does not require a 1535
yes/no answer. A particular case of open questions are the questions which require referring expressions as an 1536
answer. They are generally called wh-questions. The “wh” refers to interrogative pronouns such as “what”, 1537
“who”, “where”, or “when”. Nevertheless, this must not be taken literally since the utterance “How did you 1538
travel?” can be considered as a wh-question. 1539
A formal plan-oriented model for the wh-questions is required. In the model below, from the addressee's 1540
viewpoint, this type of question can be viewed as a closed question where the suggested choice is not made 1541

10 For more details about this transformation, called the double-mirror transformation, see [Sadek 91a, 91b].

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 65

explicit because it is too wide. Indeed, a question such as “What is your destination?” can be restated as 1542
“What is your destination: Paris, Rome,... ?”. 1543
The problem is that, in general, the set of definite descriptions among which the addressee can (and must) 1544
choose is potentially an infinite set, not because, referring to the example above, there may be an infinite 1545
number of destinations, but because, theoretically, each destination can be referred to in potentially an infinite 1546
number of ways. For instance, Paris can be referred to as “the capital of France”, “the city where the Eiffel 1547
Tower is located”, “the capital of the country where the Man-Rights Chart was founded”, etc. However, it 1548
must be noted that in the context of man-machine communication, the language used is finite and hence the 1549
number of descriptions acceptable as an answer to a wh-question is also finite. 1550
When asking a wh-question, an agent j intends to acquire from the addressee i an identifying referring 1551
expression (IRE) [Sadek 90] for a definite description, in the general case. Therefore, agent j intends to make 1552
his interlocutor i perform a CA which is of the following form: 1553

<i, INFORM(j, x (x) = r)> 1554
where r is an IRE (e.g., a standard name or a definite description) and x (x) is a definite description. Thus, 1555
the semantic content of the directive performed by a wh-question is a disjunctive macro-act composed with 1556
acts of the form of the act above. Here is the model of such a macro-act: 1557

<i, INFORM(j, x (x) = r1)> ... <i, INFORM(j, x (x) = rk)> 1558
where rk are IREs. To deal with the case of closed questions, the generic plan-oriented model proposed for a 1559
disjunctive macro-act can be instantiated for the account of the macro-act above. Note that the following 1560
equivalence is valid: 1561

(Bi x (x) = r1 Bi x (x) = r2 ...) (y) Bi x (x) = y 1562
This produces the following model, which is referred to as <i, INFORM-REF(j, x (x))>: 1563

<j, INFORM-REF(i, x (x))> 1564
FP : Brefi(x (x)) Urefi(x (x)) Bj Ii Done(<j, Inform-ref(i, x (x))>) 1565
RE : Done(<j, Inform(i, x (x) = r1)>| … |<j, Inform(i, x (x) = rk)>) 1566

where Brefj (x) and Urefj (x) are abbreviations introduced above, and refj (x) is an abbreviation defined as: 1567
 refj (x) Brefj (x) Urefj (x) 1568

Provided the act models <j, INFORM-REF (i, x (x))> and <i, REQUEST (j, a)>, the wh-question act model 1569
can be built up in the same way as for the yn-question act model. Applying the same transformation to the 1570
FP’s of the act schema <j, INFORM-REF (i, x (x))>, and by virtue of property 3, the following model is 1571
derived: 1572

<i, REQUEST(j, <j, INFORM-REF(i, x (x)>)> 1573
FP: refi (x) Bi PGj Done(<j, INFORM-REF(i, x (x))>) 1574
RE: Done(<i, INFORM (j, x (x) = r1)> … <i, INFORM(j, x (x) = rk)>) 1575

8.6.5 Summary definitions for all standard communicative acts 1576
 1577
1.1.1.1 Note on use of symbols in formulae 1578
Note that variable symbols are used in the following definitions as shown below: 1579

Table 333 — Meaning of symbols in formulae 1580

Symbol: Usage:
a Used to denote an action

E.g. a = <i, inform(j, p)>
act Used to denote an action type.

E.g. act = inform(j, p)

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 66

 Thus, if
a = <i, inform(j, p)>

and
act = inform(j, p)

then
a =<i, act>

 Used to denote any closed proposition
(without any restriction).

p Used to denote a given proposition.
 Thus ' ' is a formula schema, i.e., a

variable that denotes a formula, and 'p'
is a formula (not a variable).

Consider the following axiom examples: 1581
Ii Bi , 1582

Here, stands for any formula. It is a variable. 1583
Bi (Feasible(a) p) 1584

Here, p stands for a given formula: the FP of act 'a'. 1585
 1586
8.6.5.2 Supporting definitions 1587
Enables(e,) = Done(e,) 1588

Has-never-held-since(e',) = (e1) (e2) Done(e'; e1 ; e2) Done(e2,) 1589

 1590
8.6.5.3 Accept-proposal 1591
<i, accept-proposal(j, <j, act>,))> 1592

<i, inform(j, Ii Done(<j, act>,))> 1593

FP : Bi Bi (Bifj Uifj) 1594
RE : Bj 1595

where 1596
 = Ii Done(<j, act>,) 1597

i informs j that i has the intention that j will perform action a just as soon as the precondition becomes true. 1598
8.6.5.4 Agree 1599
<i, agree(j, <i, act>,))> 1600

<i, inform(j, Ii Done(<i, act>,))> 1601

FP : Bi Bi (Bifj Uifj) 1602
RE : Bj 1603

where 1604
 = Ii Done(<i, act>,) 1605

Note that the formal difference between the semantics of agree and accept-proposal rests on which agent is 1606
performing the action. 1607
8.6.5.5 Cancel 1608
<i, cancel(j, a)> 1609

<i, disconfirm(j, Ii Done(a))> 1610

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 67

FP : Ii Done(a) Bi (Bj Ii Done(a) Uj Ii Done(a)) 1611
RE : Bj Ii Done(a) 1612

Cancel is the action of cancelling any form of requested action. In other words, an agent i has requested an 1613
agent j to perform some action, possibly if some condition holds. This has the effect of i informing j that i has 1614
an intention. When i comes to drop its intention, it has to inform j that it no longer has this intention, i.e. a 1615
disconfirm. 1616
There is no constraint on the agent who do action 'a' (it can be 'i', 'j' or any other agent). 1617
8.6.5.6 CFP 1618
<i, cfp(j, <j, act>, (x))> 1619

<i, query-ref(j, x (Ii Done(<j, act>, (x)) (Ij Done(<j, act>, (x))))> 1620
FP : Brefi(x (x)) Urefi(x (x)) Bi Ij Done(<j, Inform-ref(i, x (x))>) 1621
RE : Done(<j, Inform(i, x (x) = r1)>| … |<j, Inform(i, x (x) = rk)>) 1622

where 1623

 (x) = Ii Done(<j, act>, (x)) Ij Done(<j, act>, (x)) 1624

Agent i asks agent j: "What is the 'x' such that you will perform action 'a' when 'p(x)' holds?" 1625
8.6.5.7 Confirm 1626
<i, confirm(j,)> 1627

FP: Bi BiUj 1628
RE: Bj 1629

Confirm is a primitive communicative act. 1630
8.6.5.8 Disconfirm 1631
<i, disconfirm(j,)> 1632

FP: Bi Bi(Uj Bj) 1633
RE: Bj 1634

Disconfirm is a primitive communicative act. 1635
8.6.5.9 Failure 1636
<i, failure(j, a,)> 1637

<i, inform(j, (e) Single(e) Done(e, Feasible(a) Ii Done(a)) 1638
 Done(a) Ii Done(a))> 1639
FP : Bi Bi (Bifj Uifj) 1640
RE : Bj 1641

where 1642
 = (e) Single(e) Done(e, Feasible(a) Ii Done(a)) Done(a) Ii Done(a) 1643
i informs j that, in the past, i had the intention to do action a and a was feasible. i performed the action of 1644
attempting to do a (i.e. the action/event e is the attempt to do a), but now a has not been done and i no longer 1645
has the intention to do a, and some formula is true. 1646
The informal implication is that is the reason that the action failed, though this causality is not expressed 1647
formally in the semantic model. 1648
8.6.5.10 Inform 1649
<i, inform(j,)> 1650

FP: Bi Bi(Bifj Uifj) 1651
RE: Bj 1652

Inform is a primitive communicative act. 1653

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 68

8.6.5.11 Inform-if 1654
i, inform-if(j,)> 1655

<i, inform(j,)>|<i, inform(j,)> 1656
FP : Bifi Bi (Bifj Uifj) 1657
RE : Bifj 1658

Inform-if represents two possible courses of action: i informs j that p, or i informs j that not p. 1659
8.6.5.12 Inform-ref 1660
<i, inform-ref(j, x (x))> 1661

<i, Inform(j, x (x) = r1)> ... (<i, Inform(j, x (x) = rk)> 1662
FP: Brefi x (x) Bi(Brefj x (x) Urefj x (x)) 1663
RE: Brefj x (x) 1664

Inform-ref represents an unbounded, possibly infinite set of possible courses of action, in which i informs j of 1665
the referent of x. 1666
8.6.5.13 Not-understood 1667
<i, not-understood(j, a)> 1668

<i, Inform(j, (x) Bi ((e Done(e) Agent(e, j) Bj(Done(e) Agent(e, j) 1669
 (a = e))) = x))> 1670
FP : Bi Bi (Bifj Uifj) 1671
RE : Bj 1672

where 1673
 = (x) Bi ((e Done(e) Agent(e, j) Bj(Done(e) Agent(e, j) (a = e))) = x) 1674

Agent 'i' doesn't know the last event it has observed: 1675
(x) Bi ((e Done(e) Agent(e, j)) = x) 1676

Agent 'i' believes that agent 'j' knows 'a' to be the last event it ('j') just performed: 1677
Bi ((e) Bj(Done(e) Agent(e, j) (a = e)) 1678

Note that the existential expression is captured by the iota expression. 1679
8.6.5.14 Propose 1680
<i, propose(j, <i, act>,)> 1681

<i, inform(j, Ij Done(<i, act>,) Ii Done(<i, act>,))> 1682
FP : Bi Bi (Bifj Uifj) 1683
RE : Bj 1684

where 1685
 = Ij Done(<i, act>,) Ii Done(<i, act>,) 1686

i informs j that, once j informs i that j has adopted the intention for i to perform action a, and the 1687
preconditions for i performing a have been established, i will adopt the intention to perform a. 1688
8.6.5.15 Query-if 1689
<i, query-if(j,) 1690

<i, request(j, <j, inform-if(i,)>)> 1691
FP: Bifi Uifi Bi Ij Done(<j, inform-if(i,)>) 1692
RE: Done(<j, inform(i,)>|<j, inform(i,)>) 1693

i requests j that j informs i whether or not is true. 1694
8.6.5.16 Query-ref 1695
<i, query-ref(j, x (x)) 1696

<i, request(j, <j, inform-ref(i, x (x))>)> 1697

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 69

FP: Brefi(x (x)) Urefi(x (x)) Bi Ij Done(<j, inform-ref(i, x (x))>) 1698
RE: Done(<j, Inform(i, x (x) = r1)> ... <j, Inform(i, x (x) = rk)>) 1699

i requests j that j informs i of the referent of x 1700
8.6.5.17 Refuse 1701
<i, refuse(j, <i, act>,)> 1702

<i, disconfirm(j, Feasible(<i, act>))>; 1703
<i, inform(j, Done(<i, act>) Ii Done(<i, act>))> 1704
FP : Bi Feasible(<i, act>) Bi (Bj Feasible(<i, act>) Uj Feasible(<i, act>)) 1705
 Bi Bi (Bifj Uifj) 1706
RE : Bj Feasible(<i, act>) Bj 1707

where 1708
 = Done(<i, act>) Ii Done(<i, act>) 1709

i informs j that action a is not feasible, and further that, because of proposition , a has not been done and i 1710
has no intention to do a. 1711
8.6.5.18 Reject-proposal 1712
<i, reject-proposal(j, <j, act>, ,)> 1713

<i, inform(j, Ii Done(<j, act>,))> 1714

FP : Bi Bi (Bifj Uifj) 1715
RE : Bj 1716

where 1717
 = Ii Done(<j, act>,) 1718

i informs j that, because of proposition , i does not have the intention for j to perform action a with 1719
precondition . 1720
8.6.5.19 Request 1721
<i, request(j, a)> 1722

FP: FP(a) [i\j] Bi Agent(j, a) Bi PGj Done(a) 1723
RE: Done(a) 1724

Request is a primitive communicative act. 1725
8.6.5.20 Request-when 1726
<i, request-when(j, <j, act>,)> 1727

<i, inform(j, (e') Done(e') Unique(e') 1728
 Ii Done(<j, act>, (e) Enables(e, Bj) 1729
 Has-never-held-since(e', Bj)))> 1730

FP : Bi Bi (Bifj Uifj) 1731
RE : Bj 1732

where 1733
 = (e') Done(e') (Unique(e') 1734
 Ii Done(<j, act>, (e) Enables(e, Bj) Has-never-held-since(e', Bj)) 1735

i informs j that i intends for j to perform some act when j comes to believe . 1736
8.6.5.21 Request-whenever 1737
<i, request-whenever(j, <j, act>,)> 1738

<i, inform(j, Ii Done(<j, act>, (e) Enables(e, Bj)))> 1739

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 70

FP : Bi Bi (Bifj Uifj) 1740
RE : Bj 1741

where 1742
 = Ii Done(<j, act>, (e) Enables(e, Bj)) 1743

i informs j that i intends that j will perform some act whenever some event causes j to believe . 1744
8.6.5.22 Subscribe 1745
<i, subscribe(j, x (x))> 1746

<i, request-whenever(j, <j, inform-ref(i, x (x))>, (y) Bj ((x (x) = y))> 1747
FP : Bi Bi (Bifj Uifj) 1748
RE : Bj 1749

where 1750
 = Ii Done(<j, inform-ref(i, x (x))>, (e) Enables(e, (y) Bj ((x (x) = y))) 1751
 1752
8.7 Inter-agent Communication Plans 1753

The properties of rational behaviour stated above in the definitions of the concepts of rational effect and of 1754
feasibility preconditions for CA’S suggest an algorithm for CA planning. A plan is built up by this algorithm 1755
builds up through the inference of causal chain of intentions, resulting from the application of properties 1 1756
and 2. 1757
With this method, it can be shown that what are usually called “dialogue acts” and for which models are 1758
postulated, are, in fact, complex plans of interaction. These plans can be derived from primitive acts, by using 1759
the principles of rational behaviour. The following is an example of how such plans are derived. 1760
The interaction plan “hidden” behind a question act can be more or less complex depending on the agent 1761
mental state when the plan is generated. 1762
Let a direct question be a question underlain by a plan which is limited to the reaction strictly legitimised by 1763
the question. Suppose that the main content of i's mental state is: 1764

BI Bifj , 1765
Ii Bifi 1766

By virtue of property 1, the intention is generated that the act <j, INFORM-IF(i,)> be performed. Then, 1767
according to property 2, there follows the intention to bring about the feasibility of this act. Then, the problem 1768
is to know whether the following belief can be derived at that time from i's mental state: 1769

Bi(Bifj (Bj Bifi Uifi 1770
This is the case with i's mental state. By virtue of properties 1 and 2, the intention that the act 1771
<i, REQUEST (j, <j, INFORM-IF (i,)>)> be done and then the intention to achieve its feasibility, are 1772
inferred. The following belief is derivable: 1773

Bi(Bifi Uifi 1774
Now, no intention can be inferred. This terminates the planning process. The performance of a direct strict-1775
yn-question plan can be started by uttering a sentence such as “Has the flight from Paris arrived?”, for 1776
example. 1777
Given the FP’s and the RE of the plan above, the following model for a direct strict-yn-question plan can be 1778
established: 1779

<i, YNQUESTION(j,)> 1780
FP: Bi Bifj Bifi Uifi Bi Bj(Bifi Uifi) 1781
RE: Bifi 1782

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 71

9 1783

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 72

References 1784

[Austin 62] Austin J. L. How to Do Things with Words. Clarendon Press 1962 1785
[Cohen & Levesque 90] Cohen P.R. & Levesque H.J. Intention is choice with commitment. Artificial 1786
Intelligence, 42(2-3):213--262, 1990. 1787
[Cohen & Levesque 95] Cohen P.R. & Levesque H.J. Communicative actions for artificial agents; 1788
Proceedings of the First International Conference on Multi-agent Systems (ICMAS'95), San Francisco, CA, 1789
1995. 1790
[Finin et al 97] Finin T., Labrou Y. & Mayfield J., KQML as an agent communication language, Bradshaw J. 1791
ed., Sofware agents, MIT Press, Cambridge, 1997. 1792
[Freed & Borenstein 1996] Freed N & Borenstein N. Multipurpose Internet Mail Extensions (MIME) Part 1793
One: Format of the Internet Message Bodies. Internic RFC2045. 1794
ftp://ds.internic.net/rfc/rfc2045.txt 1795
[Genesereth & Fikes 92] Genesereth M.R. & Fikes R.E. Knowledge interchange format. Technical report 1796
Logic-92-1, CS Department, Stanford University, 1992. 1797
[Garson 84] Garson, G.W. Quantification in modal logic. In Gabbay, D., & Guentner, F. eds. Handbook of 1798
philosophical logic, Volume II: Extensions of classical Logic. D. Reidel Publishing Company: 249-307. 1799
1984. 1800
[Guinchiglia & Sebastiani 97] Guinchiglia F. & Sebastiani R., Building decision procedures for modal 1801
logics from propositional decision procedures: a case study of Modal K. Proceedings of CADE 13, published 1802
in Lecture Notes in Artificial Intelligence. 1997. 1803
[Halpern & Moses 85] Halpern, J.Y., & Moses Y. A guide to the modal logics of knowledge and belief: a 1804
preliminary draft. Proceedings of the IJCAI-85, Los Angeles, CA. 1985. 1805
[KQML93] External Interfaces Working Group, Specification of the KQML agent-communication language, 1806
1993. 1807
[Labrou & Finin 94] Labrou Y. & Finin T., A semantic approach for KQML - A general purpose 1808
communication language for software agents, Proceedings of the 3rd International Conference on 1809
Information Knowledge Management, November 1994. 1810
[Labrou 96] Labrou Y. Semantics for an agent communication language. PhD thesis dissertation submission, 1811
University of Maryland Graduate School, Baltimore, September, 1996. 1812
[Sadek 90] Sadek M.D., Logical task modelling for Man-machine dialogue. Proceedings of AAAI'90: 970-1813
975, Boston, MA, 1990. 1814
[Sadek 91a] Sadek M.D. Attitudes mentales et interaction rationnelle: vers une théorie formelle de la 1815
communication. Thèse de Doctorat Informatique, Université de Rennes I, France, 1991. 1816
[Sadek 91b] Sadek M.D. Dialogue acts are rational plans. Proceedings of the ESCA/ETRW Workshop on the 1817
structure of multimodal dialogue, pages 1-29, Maratea, Italy, 1991. 1818
[Sadek 92] Sadek M.D. A study in the logic of intention. Proceedings of the 3rd Conference on Principles of 1819
Knowledge Representation and Reasoning (KR'92), pages 462-473, Cambridge, MA, 1992. 1820
[Sadek et al 95] Sadek M.D., Bretier P., Cadoret V., Cozannet A., Dupont P., Ferrieux A., & Panaget F. A 1821
co-operative spoken dialogue system based on a rational agent model: A first implementation on the AGS 1822
application. Proceedings of the ESCA/ETR Workshop on Spoken Dialogue Systems : Theories and 1823
Applications, Vigso, Denmark, 1995. 1824
[Searle 69] Searle J.R. Speech Acts, Cambridge University Press, 1969. 1825
 1826
Additional suggested reading 1827

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 73

[Bretier & Sadek 96] Bretier P. & Sadek D. A rational agent as the kernel of a cooperative spoken dialogue 1828
system: Implementing a logical theory of interaction. In Muller J.P., Wooldridge M.J., and Jennings N.R. 1829
(eds) Intelligent agents III - Proceedings of the third ATAL, LNAI, 1996. 1830
[Sadek 94] Sadek M. D. Belief reconstruction in communication. Speech Communication Journal'94, special 1831
issue on Spoken Dialogue, 15(3-4), 1994. 1832
[Sadek et al 97] Sadek M. D., P. Bretier, & F. Panaget. ARTIMIS: Natural language meets rational agency. 1833
Proceedings of IJCAI '97, Nagoya, Japan, 1997. 1834
 1835

1836

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 74

Annex AAnnex AAnnex A 1836
(informative) 1837

 1838
ACL Conventions and Examples 1839

This annex describes certain conventions that, while not a mandatory part of the specification, are commonly 1840
adopted practices that aid effective inter-agent communications. This annex will also serve to provide 1841
examples of ACL usage for illustrative purposes. 1842

A.1A.1A.1 Conventions 1843

A.1.1A.1.1A.1.1 Conversations amongst multiple parties in agent communities 1844

There is commonly a need in inter-agent dialogues to involve more than two parties in the conversation. A 1845
typical example would be of agent i posing a question to agent j by sending a query-if message. Agent i 1846
believes that j is able to answer the query, but in fact j finds it necessary to delegate some or all of the task of 1847
answering the question to another agent k. 1848
The formal definition of the query-if communicative act reads that i is requesting j that j informs i of the truth 1849
of proposition p. Therefore, even if j does delegate all of the query to k, the semantics of ACL requires that j 1850
will be the one to perform the act of informing i. K cannot inform i directly. By extension, any chain of such 1851
delegation acts will have to be unwound in reverse order to conform to the current specification. 1852
The restriction that a delegating agent in such a scenario must, in effect, remain "in the loop" clearly does not 1853
alter the meaning of the act (except, perhaps, that it exposes i to the existence of k), but it can be critiqued on 1854
the grounds of overall efficiency. A future version of this specification may generalise the semantic definition 1855
to allow delegation which includes passing responsibility for answering the originator of the request directly. 1856
See also §A.1.4A.1.4A.1.4A.1.4A.1.4 Negotiating by exchange of goals. 1857
A.1.2A.1.2A.1.2 Maintaining threads of conversation 1858

Agents are frequently implemented with the ability to participate in more than one conversation at the same 1859
time. These conversations may all be with different agents, or may be with the same agent but in the context 1860
of different tasks or subjects. The internal representation and maintenance of structures to manage the 1861
separate conversations is a matter for the agent designer. However, there must be some support in the ACL 1862
for the concept of separate conversations, else an agent will have no standardised way of disambiguating the 1863
conversational context in which to interpret a given message. ACL supports conversation threading through 1864
the use of standard message parameters which agents are free (but not required) to use. These are: :reply-1865
with, :in-reply-to and :conversation. Additional contextual information to assist the agent to interpret the 1866
meaning of a message is provided through the protocol identifier, :protocol. 1867
The first case is one of annotating a message which is expected to generate a response with an expression 1868
which serves to abbreviate the context of the enquiry. This abbreviation is then cross-referenced in the reply. 1869
For example, agent i asks agent j if the summer in England was wet. Without any ability to refer back to the 1870
question, j cannot simply say "yes" because that would be potentially ambiguous. J can disambiguate its reply 1871
by saying "yes, the summer in England was wet", or it could say "in response to your question, the answer is 1872
yes". Different styles and implementations of agents might adopt either of these tactics. The latter case is 1873
performed through the use of :reply-with and :in-reply-to. The :reply-with parameter is used to introduce an 1874
abbreviation for the query, :in-reply-to is used to refer back to it. For example: 1875

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 75

(ask-if1876
:sender I1877
:receiver j1878
:content (= (weather England (summer 1997)) wet)1879
:ontology meteorology1880
:reply-with query-17)1881

1882
(inform1883

:sender j1884
:receiver I1885
:content true1886
:in-reply-to query-17)1887

In addition to maintaining context over instances of exchanges of communicative acts, the agents may also 1888
wish to maintain a longer lived conversational structure. They may be exchanging information about the 1889
weather in the UK, and at the same time be discussing that of Peru. The conversation can provide additional 1890
interpretative context: for example the question "what was the weather like in the summer?" is meaningful in 1891
the context of a conversation about UK meteorology, and rather less so if no such context is known. In 1892
addition, the conversation may simply be used by the agent to manage its communication activities, 1893
particularly if conversations are strongly link to current tasks. The parameter :conversation-id is used to 1894
denote a word which identifies the conversation. 1895
A.1.3A.1.3A.1.3 Initiating sub-conversations within protocols 1896

The use of protocols (c.f. §0Interaction ProtocolsInteraction Protocols) in agent interactions is introduced in 1897
order to provide a tool that facilitates the simplification of the design of some agents, since the agent can 1898
expect to know which messages are likely to be received or need to be generated at each stage of the 1899
conversation. However, this simplicity can also be restrictive: there may legitimately be cause to step outside 1900
the prescribed bounds of the protocol. For example, in a contract net protocol, the manager sends out a cfp 1901
message, which should normally be followed by a propose or a refusal. Suppose that the contractor, however, 1902
wishes some additional information (perhaps a clarification). Replying to the cfp with, for example, a query-if 1903
action would break the protocol. While agents with powerful, complete reasoning capabilities can be 1904
expected to deal appropriately with such an occurrence, simpler agents, adhering closely to the protocol, may 1905
not. Nor is it a solution to anticipate all such likely responses in the protocol: such anticipation is unlikely to 1906
cover every possibility, and anyway the resulting complexity would defeat the primary purpose of the 1907
protocol. 1908
Instead, the convention is suggested that adopting a new conversation-id (see above) for a reply is sufficient 1909
to indicate to the receiver that the reply should not be considered the next step in the protocol. It should not 1910
cause a not-understood message to be generated (the normal occurrence if a protocol is broken unexpectedly). 1911
A problem remains that adopting a new conversation-id does not make available to the agents involved the 1912
convenience of knowing that a rich context is shared. This release of the specification does not address the 1913
issue of structured conversation-id's, in which the idea of a context-sharing sub-conversation is supported, 1914
though a future version may do so. In the interim, it is suggested that, where a given domain finds that this 1915
capability is a necessity, a domain specific solution to the problem of defining conversation-id's is adopted. 1916
A.1.4A.1.4A.1.4 Negotiating by exchange of goals 1917

A common practice amongst agent communities is to interact and negotiate at the level of goals and 1918
commitments, rather than explicit commands. Indeed, some researchers will say that such indirect 1919
manipulation is one of the most compelling arguments for the effectiveness of the agent technology 1920
paradigm. 1921

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 76

While the ACL semantics does include a concept of goal and intention, the core communicative act for 1922
influencing another agent's behaviour is the request action. The main argument to request is an action, not a 1923
goal, which requires the requesting agent to be aware of the actions that another agent can perform, and to 1924
plan accordingly. In many instances, the agent may wish to communicate its objectives, and leave the 1925
reasoning and planning towards the achievement of those objectives to the recipient agent. 1926
Since no achieve-goal action is currently built-in to the ACL, it is common to embed the goal in an 1927
expression in the chosen content language which expresses the action of achieving the goal. This action can 1928
then be requested by the sending agent. Precise details of such a goal encoding depend on the chosen content 1929
language. An example might be: 1930

(request1931
:sender i1932
:receiver j1933
:content (achieve (at (location 12 84) box17))1934
:ontology factory-management1935
:reply-with query-17)1936

1937
Note, for symmetry, that a converse domain action achieved can also be used to map actions to goals. 1938

A.2A.2A.2 Additional examples 1939

A.2.1A.2.1A.2.1 Actions and results 1940

In general, the semantic model underlying the ACL states that an action does not have a value. Clearly all 1941
actions have effects, which are causally related to the performance of the action. However, it may be difficult 1942
or impossible to determine the causal effects of an action. Even a posterori observation may not be able to 1943
determine all of the effects of an action. Thus, in general, actions do not have a result. SL allows the capture 1944
of some intuitive notions about the effects of actions by associating the occurrence of the action with 1945
statements about the state of the world through the Done and Feasible operators. 1946
However, there is a class of actions which are defined as computational activities, in which it is useful to say 1947
that the action has a result. For example, the action of adding two and two in a computational device. These 1948
actions are related to the result they produce through the result predicate, which is the remit of a content 1949
language and given domain theory. In defining the result predicate, it should be noted that it takes as an 1950
argument a term, not an action which is a separate category. 1951
Consider the following three example actions: 1952

A: (request :sender i :receiver j1953
:content (action j action))1954

1955
B: (query-ref :sender i :receiver j1956

:content (iota ?x (result (action-term j action) ?x))1957
1958

C: (request :sender i :receiver j1959
:content (action j action)) ;1960

(inform-ref :sender j :receiver i1961
:content (iota ?x (result (action-term j action) ?x)))1962

The question then arises as to the differences between these actions. In summary, the meaning of the actions, 1963
are, respectively: 1964

A: Agent i says to j "do action", but does not say anything about the result 1965
B: Agent i says to j "tell me the result of doing action" 1966
C: Agent i says to j "do action, and then inform me of the result of doing action". 1967

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 77

In action B, the question can legitimately be asked whether the action is actually performed or not. It should 1968
be noted that result is a function in the domain language, SL in this case. Thus this question must really be 1969
devolved to the domain representation language. Some languages may be able to compute the meaning of an 1970
action without performing that action: this would be very useful for planning agents who may not wish to 1971
perform an action before considering its likely effects11. Other agents, such as expression simplifiers, do not 1972
want to be overburdened with the complexity of performing the simplification, then separately having to 1973
inform the questioner of the result of the simplification. Of course, if the meaning of the result predicate in a 1974
given context is that the action does, in fact, get done, then example C will likely result in the action being 1975
done twice. 1976

1977

11 Consider the bomb disposal agent being asked "what is [i.e. would be] the effect of cutting the red wire?". Agents which are able to reason
about the future consequences of their actions are likely to differentiate between the operation of observing the effects of an action (result
predicate) and predicting the effects (an effect-of prediate perhaps).

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 78

Annex BAnnex BAnnex B 1977
(informative) 1978

 1979
SL as a Content Language 1980

This annex introduces a concrete syntax for the SL language that is compatible with the description in 1981
§0Formal basis of ACL semanticsFormal basis of ACL semantics. This syntax, and its associated semantics, 1982
are suggested as a candidate content language for use in conjunction with FIPA ACL. In particular, the 1983
syntax is defined to be a sub-grammar of the very general s-expression syntax specified for message content 1984
in §06.4 Message syntax6.4 Message syntax. 1985
This content language is included in the specification on an informative basis. It is not mandatory for any 1986
FIPA specification agent to implement the computational mechanisms necessary to process all of the 1987
constructs in this language. However, SL is a general purpose representation formalism that may be suitable 1988
for use in a number of different agent domains. 1989
Statement of conformance 1990
The following definitions of SL, and subsets SL0, SL1 and SL2 are normative defininitions of these 1991
languages. That is, if a given agent chooses to implement a parser/interpreter for these languages, the 1992
following definitions must be adhered to. However, these languages are informative suggestions for the use 1993
of a content language: no agent is required as part of part 2 of this FIPA 97 specification to use the following 1994
content languages. However it should be noted that certain other parts of the FIPA 97 specification do make 1995
normative use of (some of) the following languages. 1996

B.1B.1B.1 Grammar for SL concrete syntax 1997

SLContentExpression = SLWff1998
| SLIdentifyingExpression1999
| SLActionExpression.2000

SLWff = SLAtomicFormula2001
| "(" "not" SLWff ")"2002
| "(" "and" SLWff SLWff ")"2003
| "(" "or" SLWff SLWff ")"2004
| "(" "implies" SLWff SLWff ")"2005
| "(" "equiv" SLWff SLWff ")"2006
| "(" SLQuantifier SLVariable SLWff ")"2007
| "(" SLModalOp SLAgent SLWff ")"2008
| "(" SLActionOp SLActionExpression ")".2009
| "(" SLActionOp2010

SLActionExpression SLWff ")".2011
SLAtomicFormula = SLPropositionSymbol2012

| "(" "=" SLTerm SLTerm ")"2013
| "(" "result" SLTerm SLTerm ")"2014
| "(" SLPredicateSymbol SLTerm* ")"2015
| true2016
| false.2017

SLQuantifier = "forall"2018
| "exists".2019

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 79

SLModalOp = "B"2020
| "U"2021
| "PG"2022
| "I".2023

SLActionOp = "feasible"2024
| "done".2025

SLTerm = SLVariable2026
| SLConstant2027
| SLFunctionalTerm2028
| SLActionExpression2029
| SLIdentifyingExpression.2030

SLIdentifyingExpression = "(" "iota" SLVariable SLWff ")"2031
SLFunctionalTerm = "(" SLFunctionSymbol SLTerm* ")".2032
SLConstant = NumericalConstant2033

| Word2034
| StringLiteral.2035

NumericalConstant = IntegerLiteral2036
| FloatingPointLiteral.2037

SLVariable = VariableIdentifier.2038
SLActionExpression = "(" "action" SLAgent SLTerm ")"2039

| ACLCommunicativeAct2040
| "(" "|" SLActionExpression SLActionExpression2041

")"2042
| "(" ";" SLActionExpression SLActionExpression2043

")".2044
SLPropositionSymbol = Word.2045
SLPredicateSymbol = Word.2046
SLFunctionSymbol = Word.2047
SLAgent = AgentName.2048
B.1.1B.1.1B.1.1 Lexical definitions 2049

Word = [~ "\0x00" - "\0x20",2050
"(", ")", "#", "0"-"9", "-", "?"]2051

[~ "\0x00" - "\0x20",2052
"(", ")"] *.2053

VariableIdentifier = "?"2054
[~ "\0x00" - "\0x20",2055

"(", ")"] *.2056
IntegerLiteral = ("-")? DecimalLiteral2057

| ("-")? HexLiteral.2058
FloatingPointLiteral = (("-") ["0"-"9"])+ "." (["0"-"9"])+2059
(Exponent)?2060

| (("-") ["0"-"9"])+ Exponent.2061
DecimalLiteral = ["0"-"9"]+.2062
HexLiteral = "0" ["x", "X"] (["0"-"9","a"-"f","A"-"F"])+.2063
Exponent = ["e", "E"] (["+","-"])? (["0"-"9"])+.2064
StringLiteral = "\""2065

([~ "\""] | "\\\"")*2066
"\"".2067

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 80

B.2B.2B.2 Notes on SL content language semantics 2068

This section contains explanatory notes on the intended semantics of the constructs introduced in §B.1 above. 2069
B.2.1B.2.1B.2.1 Grammar entry point: SL content expression 2070

An SL content expression may be used as the content of an ACL message. There are three cases: 2071
 A proposition, which may be assigned a truth value in a given context. Precisely, it is a well-formed 2072

formula using the rules described in SLWff. A proposition is used in the inform act, and other acts 2073
derived from it. 2074

 An action, which can be performed. An action may be a single action, or a composite action built 2075
using the sequencing and alternative operators. An action is used as a content expression when the 2076
act is the request act, and other CA's derived from it. 2077

 An identifying reference expression (IRE), which identifies an object in the domain. This is the iota 2078
operator, and is used in the inform-ref macro act and other acts derived from it. 2079

B.2.2B.2.2B.2.2 SL Well-formed formula (SLWff) 2080

A well-formed formula is constructed from an atomic formula, whose meaning will be determined by the 2081
semantics of the underlying domain representation, or recursively by applying one of the construction 2082
operators or logical connectives described in the grammar rule. These are: 2083

 (not <SLWff>) 2084
Negation. The truth value of this expresion is false if SLWff is true. Otherwise it is true. 2085

 (and <SLWff0> <SLWff1>) 2086
Conjunction. This expression is true iff well-formed formulae SLWff0 and SLWff1 are both true, 2087
otherwise it is false. 2088

 (or <SLWff0> <SLWff1>) 2089
Disjunction. This expression is false iff well-formed formulae SLWff0 and SLWff1 are both false, 2090
otherwise it is true. 2091

 (implies <SLWff0> <SLWff1>) 2092
Implication. This expression is true if either SLWff0 is false, or alternatively if SLWff0 is true and 2093
SLWff1 is true. Otherwise it is false. The expression corresponds to the standard material implication 2094
connective: 2095
SLWff0 SLWff1. 2096

 (equiv <SLWff0> <SLWff1>) 2097
Equivalence. This expression is true if either SLWff0 is true and SLWff1 is true, or alternatively if 2098
SLWff0 is false and SLWff1 is false. Otherwise is is false. 2099

 (forall <variable> <SLWff>) 2100
Universal quantification. The quantifed expression is true if SLWff is true for every value of value of 2101
the quantified variable. 2102

 (exists <variable> <SLWff>) 2103
Existential quantification. The quantifed expression is true if there is at least one value for the 2104
variable for which SLWff is true. 2105

 (B <agent> <expression>) 2106
It is true that agent believes that expression is true. 2107

 (U <agent> <expression>) 2108
It is true that agent is uncertain of the truth of expression. Agent neither believes expression nor its 2109
negation, but believes that expression is more likely to be true than its negation. 2110

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 81

 (I <agent> <expression>) 2111
It is true that agent intends that expression becomes true, and will plan to bring it about. 2112

 (PG <agent> <expression>) 2113
It is true that agent holds a persistent goal that expression becomes true, but will not necessarily plan 2114
to bring it about. 2115

 (feasible <SLActionExpression> <SLWff>) 2116
It is true that action SLActionExpression (or, equivalently, some event) can take place, and just 2117
afterwards SLWff will be true. 2118

 (feasible <SLActionExpression>) 2119
Same as (feasible <SLActionExpression> true). 2120

 (done <SLActionExpression> <SLWff>) 2121
It is true that action SLActionExpression (or, equivalently, some event) has just taken place, and just 2122
before that SLWff was true. 2123

 (done <SLActionExpression>) 2124
Same as (done <SLActionExpression>, true) 2125

B.2.3B.2.3B.2.3 SL Atomic Formula 2126

The atomic formula represents an expression which has a truth value in the language of the domain of 2127
discourse. Three forms are defined: a given propositional symbol may be defined in the domain language, 2128
which is either true or false; two terms may or may not be equal under the semantics of the domain language; 2129
or some predicate is defined over a set of zero or more arguments, each of which is a term. 2130
The SL representation does not define a meaning for the symbols in atomic formulae: this is the responsibility 2131
of the domain language representation and ontology. 2132
B.2.4B.2.4B.2.4 SL Term 2133

Terms are the arguments to predicates, and are either themselves atomic (constants and variables), or 2134
recursively constructed as a functional term in which a functor is applied to zero or more arguments. Again, 2135
SL only mandates a syntactic form for these terms. With small number of exceptions (see below), the 2136
meanings of the symbols used to define the terms are determined by the underlying domain representation. 2137
Note, as mentioned above, that no legal well-formed expression contains a free variable, that is, a variable not 2138
declared in any scope within the expression. Scope introducing formulae are the quantifiers (forall, exists) 2139
and the reference operator iota. Variables may only denote terms, not well-formed formulae. 2140
The following special term is defined: 2141

 (iota <variable> <term>) 2142
The iota operator introduces a scope for the given expression (which denotes a term), in which the 2143
given identifier, which would otherwise be free, is defined. An expression containing a free variable 2144
is not a well-formed SL expression. The expression "(iota x (P x)" may be read as "the x such that P 2145
[is true] of x. The iota operator is a constructor for terms which denote objects in the domain of 2146
discourse. 2147

B.2.5B.2.5B.2.5 Result predicate 2148

A common need is to determine the result of performing an action or evaluating a term. To facilitate this 2149
operation, a standard predicate result, of arity two, is introduced to the language. Result/2 has the declarative 2150
meaning that the result of evaluating the term, or equivalently of performing the action, encoded by the first 2151
argument term, is the second argument term. However, it is expected that this declarative semantics will be 2152
implemented in a more efficient, operational way in any given SL interpreter. 2153
A typical use of the result predicate is with a variable scoped by iota, giving an expression whose meaning is, 2154
for example, "the x which is the result of agent i performing act": 2155

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 82

(iota x (result (action i act) x)))2156
B.2.6B.2.6B.2.6 Actions and action expressions 2157

Action expressions are a special subset of terms. In particular, three functional term functors are reserved: 2158
"action", "|" and ";". An action itself is introduced by the keyword "action", and comprises the agent of the 2159
action (i.e. an identifier representing the agent performing the action) and a term denoting the action which is 2160
[to be] performed. An alternative form of action is precisely the ACL communicative act. For syntactic rules, 2161
see §06.4 Message syntax6.4 Message syntax. 2162
Two operators are used to build terms denoting composite acts: 2163

 the sequencing operator ";" denotes a composite act in which the first action (the represented by the 2164
first operand) is followed by the second action; 2165

 the alternative operator "|" denotes a composite act in which either the first action occurs, or the 2166
second, but not both. 2167

B.2.7B.2.7B.2.7 Agent identifier 2168

An agent is represented by referring to its name. The name is defined using the standard format from part one 2169
of this specification, which is repeated in §161313 2170
B.2.8B.2.8B.2.8 Numerical Constants 2171

Due to the necessarily unpredictable nature of cross-platform dependencies, agents should not make strong 2172
assumptions about the precision with which another agent is able to represent a given numerical value. SL 2173
assumes only 32 bit representations of both integers and floating point numbers. Agents should not exchange 2174
message contents containing numerical values requiring more than 32 bits to encode precisely, unless some 2175
prior arrangement is made to ensure that this is valid. 2176

B.3B.3B.3 Reduced expressivity subsets of SL 2177

The SL definition given above is a very expressive language, but for some agent communication tasks it is 2178
unnecessarily powerful. This expressive power has an implementation cost to the agent, and introduces 2179
problems of the decidability of modal logic. To allow simpler agents, or agents performing simple tasks to do 2180
so with minimal computational burden, this section introduces semantic and syntactic subsets of the full SL 2181
language for use by the agent when it is appropriate or desirable to do so. These subsets are defined by the 2182
use of profiles, that is, statements of restriction over the full expressiveness of SL. These profiles are defined 2183
in increasing order of expressiveness as SL0, SL1 and SL2. 2184
Note that these subsets of SL, with additional ontological commitments (i.e. the definition of domain 2185
predicates and constants) are used in other parts of the FIPA 97 specification. 2186
B.3.1B.3.1B.3.1 SL0: minimal subset of SL 2187

Profile 0 is denoted by the normative constant SL0 in the :language parameter of an ACL message. 2188
Profile 0 of SL is the minimal subset of the SL content language. It allows the representation of actions, the 2189
determination of the result a term representing a computation, the completion of an action and simple binary 2190
propositions. 2191
The following defines the SL0 grammar: 2192
SL0ContentExpression = SL0Wff2193

| SL0ActionExpression.2194
2195

SL0Wff = SL0AtomicFormula2196
| "(" SL0ActionOp SL0ActionExpression ")".2197

2198

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 83

SL0AtomicFormula = SLPropositionSymbol2199
| "(" "result" SL0Term SL0Term ")"2200
| "(" SLPredicateSymbol SL0Term* ")"2201
| "true"2202
| "false".2203

2204
SL0ActionOp = "done".2205

2206
SL0Term = SLVariable 2207

| SLConstant2208
| SL0FunctionalTerm2209
| SL0ActionExpression.2210

2211
SL0ActionExpression = "(" "action" SLAgent SL0FunctionalTerm ")"2212

| ACLCommunicativeAct.2213
SL0FunctionalTerm = "(" SLFunctionSymbol SL0Term* ")" 2214
 2215
B.3.2B.3.2B.3.2 SL1: propositional form 2216

Profile 1 is denoted by the normative constant SL1 in the :language parameter of an ACL message. 2217
Profile 1 of SL extends the minimal representational form of SL0 by adding Boolean connectives to represent 2218
propositional expressions. 2219
The following defines the SL1 grammar: 2220
SL1ContentExpression = SL1Wff2221

| SL1ActionExpression.2222
2223

SL1Wff = SL1AtomicFormula2224
| "(" "not" SL1Wff ")"2225
| "(" "and" SL1Wff SL1Wff ")"2226
| "(" "or" SL1Wff SL1Wff ")"2227
| "(" SL1ActionOp SL1ActionExpression ")".2228

2229
SL1AtomicFormula = SLPropositionSymbol2230

| "(" "result" SL1Term SL1Term ")"2231
| "(" SLPredicateSymbol SL1Term* ")"2232
| "true"2233
| "false".2234

2235
SL1ActionOp = "done".2236

2237
SL1Term = SLVariable2238

| SLConstant2239
| SL1FunctionalTerm2240
| SL1ActionExpression.2241

2242
SL1ActionExpression = "(" "action" SLAgent SL1FunctionalTerm ")"2243

| ACLCommunicativeAct.2244
2245
2246

SL1FunctionalTerm = "(" SLFunctionSymbol SL1Term* ")".2247
 2248

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 84

B.3.3B.3.3B.3.3 SL2: restrictions for decidability 2249

Profile 2 is denoted by the normative constant SL2 in the :language parameter. 2250
Profile 2 of SL is a subset of the SL content language which still allows first order predicate and modal logic, 2251
but is restricted to ensure that it is decidable. Well-known effective algorithms exist (for instance KSAT and 2252
Monadic [references? –ed]) that can derive whether or not an SL2 wff is a logical consequence of a set of 2253
wffs. 2254
The following defines the SL2 grammar: 2255
SL2ContentExpression = SL2Wff2256

| SL2QuantifiedExpression2257
| SL2IdentifyingExpression2258
| SL2ActionExpression.2259

2260
SL2Wff = SL2AtomicFormula2261

| "(" "not" SL2Wff ")"2262
| "(" "and" SL2Wff SL2Wff ")"2263
| "(" "or" SL2Wff SL2Wff ")"2264
| "(" "implies" SL2Wff SL2Wff ")"2265
| "(" "equiv" SL2Wff SL2Wff ")"2266
| "(" SLModalOp SLAgent SL2QuantifiedExpression2267

")"2268
| "(" SLActionOp SL2ActionExpression ")"2269
| "(" SLActionOp SL2ActionExpression2270

SL2UnivExistQuantWff ")".2271
2272

SL2AtomicFormula = SLPropositionSymbol2273
| "(" "=" SL2Term SL2Term ")"2274
| "(" "result" SL2Term SL2Term ")"2275
| "(" SLPredicateSymbol SL2Term* ")"2276
| "true"2277
| "false".2278

2279
SL2QuantifiedExpression = SL2UnivQuantExpression2280

| SL2ExistQuantExpression2281
| SL2Wff.2282

2283
SL2UnivQuantExpression = "(" "forall" SL2variable SL2Wff ")"2284

| "(" "forall" SL2variable SL2UnivQuantExpression2285
")".2286

| "(" "forall" SL2variable2287
SL2ExistQuantExpression ")".2288

2289
SL2ExistQuantExpression = "(" "exists" SL2variable SL2Wff ")"2290

| "(" "exists" SL2variable S2ExistQuantExpression2291
")"2292

2293
SL2Term = SLVariable2294

| SLConstant2295
| SL2FunctionalTerm2296
| SL2ActionExpression2297
| SL2IdentifyingExpression.2298

2299

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 85

SL2IdentifyingExpression = "(" "iota" SLVariable SL2Wff ")"2300
2301

SL2FunctionalTerm = "(" SLFunctionSymbol SL2Term* ")".2302
2303

SL2ActionExpression = "(" "action" SLAgent SL2FunctionalTerm ")"2304
| ACLCommunicativeAct2305
| "(" "|" SL2ActionExpression SL2ActionExpression2306

")"2307
| "(" ";" SL2ActionExpression SL2ActionExpression2308

")".2309
2310

That is the SL2Wff production no longer directly contains the logical quantifiers, but these are treated 2311
separately to ensure only prefixed quantified formulas, such as: 2312

(forall ?x1 (forall ?x22313
(exists ?y1 (exists ?y22314

(Phi ?x1 ?x2 ?y1 ?y2)))))2315
where (Phi ?x1 ?x2 ?y1 ?y2) does not contain any quantifier. 2316
The grammar of SL2 still allows for quantifying-in inside modal operators. E.g. the following formula is still 2317
admissible under the grammar: 2318

(forall ?x12319
(or2320

(B i (p ?x1))2321
(B j (q ?x1))))2322

It is not clear that formulae of this kind are decidable. However, changing the grammar to express this 2323
context sensitivity would make the EBNF form above essentially unreadable. Thus the following additional 2324
mandatory constraint is placed on well-formed content expressions using SL2: 2325
Within the scope of an SLModalOperator only closed formulas are allowed, i.e. formulas without free 2326
variables. 2327

2328

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 86

Annex CAnnex CAnnex C 2328
(informative) 2329

 2330
Relationship of ACL to KQML 2331

This annex outlines some of the primary similarities and differences between FIPA ACL and the de facto 2332
standard agent communication language KQML (Knowledge Querying and Communication Language) 2333
[Finin et al 97]. The intention of this appendix is not to deliver a complete characterisation of KQML (which 2334
is an evolving language in itself anyway) and the differences between it and ACL, but simply to outline some 2335
key areas of difference as an aide to readers already familiar with KQML. 2336

C.1C.1C.1 Primary similarities and differences 2337

Both KQML and ACL are interlingua languages, intended to provide a common linguistic basis for 2338
independent agents to communicate with each other. Both languages are based on speech act theory, which 2339
states that individual communications can be reduced to one of a small number of primitive speech, or more 2340
generally, communicative acts, which shape the basic meaning of that communication. The full meaning is 2341
conveyed by the meaning that the speech act itself imparts to the content of the communication. In KQML, 2342
the speech act is called the performative, though it should be noted that some researchers prefer other terms. 2343
Syntactically, KQML sets out to be simple to parse and generate, yet easily human readable. To this end, 2344
KQML's syntax is Lisp based (Lisp sharing similar syntactic goals, as well as being an early implementation 2345
vehicle for KQML): each message is an s-expression and uses a core of Lisp-like tokenising rules. Some 2346
extensions are added to allow for the encoding of content in arbitrary other notations. FIPA ACL adopts a 2347
very similar syntax, including the form of messages and message parameters. Some differences exist in the 2348
names of both the message type keywords and the parameter keywords. Both languages can be challenged in 2349
the compactness of their encoding; ACL explicitly notes that future revisions may include one or more 2350
alternative transport syntaxes optimised for message compactness. 2351
KQML was designed originally to fulfil a very pragmatic purpose as part of the Knowledge Sharing Effort 2352
(KSE) consortium. Initially, the semantics of the performatives were described informally by natural 2353
language descriptions. Subsequent research has addressed the need for a more precise semantics [Labrou 96], 2354
though it is not clear that the proposed semantics has been universally adopted. Indeed, several flavours of 2355
KQML are extant. ACL is derived from the research work of Sadek et al [Sadek et al '95], and was designed 2356
from its inception to be grounded in a formally defined semantics. 2357
KQML aims to serve several needs in inter-agent communication. These can be summarised as: 2358

 querying and information passing (e.g. evaluate, ask-if, tell, achieve, etc) 2359
 managing multiple responses to queries (e.g. ask-all, stream-all, standby, ready, next, etc) 2360
 managing capability definition and dissemenation (advertise, recommend, etc) 2361
 managing communications (e.g. register, forward, broadcast, etc) 2362

That these are all needs that must be addressed in inter-agent communication (in the general case, at least) is 2363
clear. KQML attempts to define a core set of performatives that together meet all of these needs, while 2364
balancing a desire for parsimony in the language. ACL does not attempt to cover all of these needs within the 2365
language. Instead, some categories are explicitly devolved to the agent management system (see part 1 of the 2366
FIPA 97 specification) or are the responsibility of the content language (notably managing multiple responses 2367
to queries). 2368

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 87

C.2C.2C.2 Correspondence between KQML message performatives and FIPA CA's 2369

This section outlines some specific categories of KQML messages and the (approximately) equivalent 2370
constructs in the ACL and other sections of the FIPA specification. 2371
C.2.1C.2.1C.2.1 Agent management primitives 2372

Some of the message types included in KQML can not be considered speech acts in the traditional sense, but 2373
do have a useful role to play in mediating conversations between agents and providing capabilities to manage 2374
an agent society. This specification adopts the position that, despite the arguable increase in complexity, it is 2375
better to clearly separate such concerns from the core communication primitives. Thus, equivalents to the 2376
following KQML messages are not directly included in the ACL specification: 2377

 register 2378
 unregister 2379
 recommend (-one, -all) 2380
 recruit (-one, -all) 2381
 broker (-one, -all) 2382
 advertise 2383

Instead, effects similar or equivalent to these messages can be obtained by embedding the agent management 2384
primitives defined in part one of the FIPA 97 specification, embedded in an ACL request act addressed to the 2385
appropriate facilitator agent. 2386
C.2.2C.2.2C.2.2 Communications management 2387

Similarly, the following KQML performatives find their equivalents in the FIPA specification as agent 2388
management actions, communicated via a request act: 2389

 broadcast 2390
 transport-address 2391
 forward 2392

In the last case, forward is one solution to the problem of sending a message to an agent whose agent 2393
identifier or network transport address are not known at the time of sending the message. In the semantics of 2394
KQML, each intermediary does not interpret the message embedded within the forward performative, and 2395
thus does not perform any action implied by it. This capability does exist in the FIPA specification using the 2396
agent management capabilities defined in part one of this specification. 2397
C.2.3C.2.3C.2.3 Managing multiple solutions 2398

There is frequently a need to convey more than one answer to an enquiry. This may be because the query was 2399
under-constrained, or may be due to the nature of the application, e.g. selecting records from a database. 2400
KQML provides a number of mechanisms for handling multiple queries at the message level: 2401

 sender asks replier to send any solution (ask-one) 2402
 sender asks replier to send all solutions (ask-all) 2403
 sender asks replier to send all solutions, each one in its own message (stream-all) and then to demark 2404

the end of the solution stream (eos) 2405
 sender asks replier to set up a solution generator; a protocol then exists to test, acces and destroy the 2406

generator (standby, ready, next, rest, discard). 2407
Although enquiring is a general and very useful category of speech acts, these performatives suffer from 2408
being complicated by assumptions about the representational form of the content of the reply. ACL takes the 2409
position that the requirement for managing multiple solutions is properly the remit of the content language. 2410
For example, if an application requires a solution generator, of the kind implied by KQML standby, etc, such 2411

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 88

a construct should be a part of domain content language. Operations on the generator object would then be 2412
the subject of generic request acts. 2413
C.2.4C.2.4C.2.4 Other discourse performatives 2414

The following discusses the remaining performatives in the core KQML specification. Note that statements of 2415
equivalence in the following list are advisory only, since there is no universally accepted KQML formal 2416
semantics to check against ACL semantics for equivalence. 2417

 ask-if: nearest equivalent in ACL is query-if 2418
 tell: equivalent to ACL's <i, inform(j, Bi p)> 2419
 untell: equivalent to <i, inform(j, Bi p) > 2420
 deny: equivalent to <i, inform(j, Bi p) > or <i, disconfirm(j, p) > 2421
 insert, uninsert: these performatives are not supported in ACL, since an agent is not given the power 2422

to directly manipulate the beliefs of another agent. Use inform and disconfirm instead. 2423
 delete-(one, all), undelete: these performatives are not supported in ACL, since an agent is not given 2424

the power to directly manipulate the beliefs of another agent. 2425
 achieve: goals can be communicated among agents through the use of an achieve domain-language 2426

primitive, if that is appropriate to the domain (see §A.1.4A.1.4A.1.4A.1.4A.1.4) 2427
 unachieve: KQML's unachieve is a kind of undo action: the recipient is asked to return the world (or 2428

at least, that part it has control over) to the state it was in before the corresponding achieve. There is 2429
no equivalent to this action in ACL. If a given domain is able to support such an action (e.g. the 2430
domain of text editing), specific actions may be defined in the domain ontology to support undo 2431
actions. 2432

 subscribe: equivalent to the subscribe in ACL 2433
 error: use not-understood 2434
 sorry: use refuse or failure. 2435

2436

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 89

Annex DAnnex DAnnex D 2436
(informative) 2437

 2438
MIME-encoding to extend content descriptions 2439

This Annex provides a means for agents to extend the representational capability of a given message content 2440
by using MIME style content description and encoding. 2441

D.1D.1D.1 Extension of FIPA ACL to include MIME headers 2442

The MIME enhancements extend the grammar shown in §06.4 Message syntax6.4 Message syntax as 2443
follows: 2444
MIMEEnhancedExpression = Word2445

| String2446
| Number2447
| MIMEEncapsulatedExpression2448
| "(" MIMEEnhancedExpression * ")".2449

2450
MIMEEncapsulatedExpression = "(" MIMEVersionField2451

MIMEOptionalHeader *2452
MIMEEnhancedExpression2453

")".2454
2455

MIMEVersionField = "(" "MIME-2456
Version 1.0 (FIPA ACL Message)" ")".2457

2458
MIMEOptionalHeader = "(" "Content-type:" MIME_CT_Expression ")"2459

| "(" "Content-Transfer-2460
Encoding:" MIME_CTE_Expression ")"2461

| "(" "Content-ID:" MIME_CID_Expression ")"2462
| "(" "Content-2463

Description:" MIME_CD_Expression ")"2464
| "(" MIME_Additional_CF ")".2465

2466
MIME_CT_Expression = see RFC2045.2467
MIME_CTE_Expression = see RFC2045.2468
MIME_CID_Expression = see RFC2045.2469
MIME_CD_Expression = see RFC2045.2470
MIME_Additional_CF = see RFC2045.2471
As shown here, the grammar is not complete. However, rather than duplicate the full syntax from RFC2045, 2472
and risk introducing errors or failing to keep track of changes in that specification, this document refers the 2473
reader to [Freed & Borenstein 96]. 2474
Note that the MIME headers have been introduced in such a way that they do not alter the basic s-expression 2475
form of the ACL content expression. The MIME grammar presented here is a sub-grammar of the ACL s-2476
expression grammar. 2477

FIPA 97, Version 2.01.1 Part 2 © FIPA (1997,1998)

Page 90

D.2D.2D.2 Example 2478

The following example illustrates the use of MIME-style encoding of message content: 2479
(inform2480

:sender translator2481
:receiver agent012482
:content (translation2483

(English "File system full")2484
(Japanese ((MIME-Version: 1.0 (FIPA ACL Message))2485

(Content-Type: Text/Plain; Charset=ISO-2486
2022-JP)2487

(Content-Transfer-Encoding: 7BIT)2488
"<7 bit ISO 2022 Japanese text>"2489

)2490
))2491

:ontology translation-service2492
:in-reply-to request07)2493

 2494

	1
	1	Scope
	2	Normative references
	3	�Terms and definitions
	4	Symbols (and abbreviated terms)
	5	�Overview of Inter-Agent Communication
	5.1	Introduction
	5.2	Message Transport Mechanisms

	6	�FIPA ACL Messages
	6.1	Preamble
	6.2	Requirements on agents
	6.3	Message structure
	6.3.1	Overview of ACL messages
	6.3.2	Message parameters
	6.3.3	Message content
	6.3.4	Representing the content of messages
	6.3.5	Use of MIME for additional content expression encoding
	6.3.6	Primitive and composite communicative acts

	6.4	Message syntax
	6.4.1	Grammar rules for ACL message syntax
	6.4.2	Notes on grammar rules

	6.5	Catalogue of Communicative Acts
	6.5.1	Preliminary notes
	6.5.1.1	Category Index

	6.5.2	�accept-proposal
	6.5.3	�agree
	6.5.4	�cancel
	6.5.5	�cfp
	6.5.6	�confirm
	6.5.7	�disconfirm
	6.5.8	�failure
	6.5.9	�inform
	6.5.10	�inform-if (macro act)
	6.5.11	� inform-ref (macro act)
	6.5.12	�not-understood
	6.5.13	�propose
	6.5.14	�query-if
	6.5.15	�query-ref
	6.5.16	�refuse
	6.5.17	�reject-proposal
	6.5.18	�request
	6.5.19	�request-when
	6.5.20	�request-whenever
	6.5.20	�request-whomever
	6.5.21	�subscribe

	7	�Interaction Protocols
	7.1	Specifying when a protocol is in operation
	7.2	Protocol Description Notation
	7.3	Defined protocols
	7.3.1	Failure to understand a response during a protocol
	7.3.2	FIPA-request Protocol
	7.3.3	FIPA-query Protocol
	7.3.4	FIPA-request-when Protocol
	7.3.5	FIPA-contract-net Protocol
	7.3.6	FIPA-Iterated-Contract-Net Protocol
	7.3.7	FIPA-Auction-English Protocol
	7.3.8	FIPA-Auction-Dutch Protocol

	8	�Formal basis of ACL semantics
	8.1	Introduction to formal model
	8.2	The SL Language
	8.2.1	Basis of the SL formalism
	8.2.2	Abbreviations

	8.3	Underlying Semantic Model
	8.3.1	Property 1
	8.3.2	Property 2
	8.3.3	Property 3
	8.3.4	Property 4
	8.3.5	Property 5

	8.4	Notation
	8.5	Primitive Communicative Acts
	8.5.1	The assertive Inform
	8.5.2	The directive Request
	8.5.3	Confirming an uncertain proposition: Confirm
	8.5.4	Contradicting knowledge: Disconfirm

	8.6	Composite Communicative Acts
	8.6.1	The closed-question case
	8.6.2	The query-if act:
	8.6.3	The confirm/disconfirm-question act:
	8.6.4	The open-question case:
	8.6.5	Summary definitions for all standard communicative acts
	1.1.1.1	Note on use of symbols in formulae
	8.6.5.2	Supporting definitions
	8.6.5.3	Accept-proposal
	8.6.5.4	Agree
	8.6.5.5	Cancel
	8.6.5.6	CFP
	8.6.5.7	Confirm
	8.6.5.8	Disconfirm
	8.6.5.9	Failure
	8.6.5.10	Inform
	8.6.5.11	Inform-if
	8.6.5.12	Inform-ref
	8.6.5.13	Not-understood
	8.6.5.14	Propose
	8.6.5.15	Query-if
	8.6.5.16	Query-ref
	8.6.5.17	Refuse
	8.6.5.18	Reject-proposal
	8.6.5.19	Request
	8.6.5.20	Request-when
	8.6.5.21	Request-whenever
	8.6.5.22	Subscribe

	8.7	Inter-agent Communication Plans

	9	�References

