
Nesting in Ada Programs
is for the Birds

Abstract

Given a data abstraction construct like the
Ada package and in light of current thoughts on
programming methodology, we feel that nesting is an
anachronism. In this paper we propose a nest-free
program style for Ada that eschews nested program
units and declarations within blocks and instead
heavily utilizes packages and context
specifications as mechanisms for controlling
visibility. We view this proposal as a first step
toward the development of programming methods that
exploit the novel language features available in
Ada. Consideration of this proposal's
ramifications for data flow, control flow, and
overall program structure substantiates our
contention that a tree structure is seldom a
natural representation of a program and that
nesting therefore generally interferes with program
development and readability.

I. Introduction

The advent of Ada could signal the beginning
of a new era in software development. For the
first time in over a decade a new programming
language, intended for production use and
incorporating state-of-the-art language features,
has been proposed. If accompanied by an
appropriate development environment and suitable
programming methods, the introduction of Ada could
indeed mark a turning point in the history of

software development. A major effort is now being
directed toward the development of a supportive
programming environment specifically tailored to
Ada [2]. We contend that attention should also be
directed toward the development of programming
methods that exploit the novel language features
available in Ada. In this paper we take a first
step toward developing such methods by proposing a

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission,

Lori A. Clarke+
Jack C. Wileden

Alexander L. Wolf+

Department of Computer and Information Science
University of Massachusetts, Amherst

Amherst, Massachusetts 01003

+This work was supported in part by the Air Force Office of
Scientific Research under grant AFOSR 77-3287.

program style that offers guidelines concerning the
way in which program units should be organized and
combined in an Ada program.

Historically, the first non-trivial program
organization consisted of a linear collection of
independent units. FORTRAN [I] is a familiar
example of a language using this program
organization. A unit in FORTRAN is either a main
program or a subprogram. Two FORTRAN units are
completely independent of each other unless one
explicitly invokes the other or they reference the
same COMMON block.

In an effort to improve upon FORTRAN's weak
mechanisms for data sharing and data type
enforcement, ALGOL 60 [5] introduced a more
elaborate program organization. An ALGOL 60
program consists of a collection of units and
blocks organized as a tree structure. An ALGOL 60
unit is simply a procedure, while a block is a
sequence of statements optionally preceded by a
sequence of declarations. The tree structure is
represented by textually enclosing, or nesting,
lower level units and blocks within higher level
units and blocks. While the term nesting is also
commonly used to describe the embedding of
statements within statements, such as nested if
statements or nested loops, nesting of this sort
does not concern us. Rather our concern is with
the embedding of declarations that can result when
units and blocks are nested, and hence we use the
term nesting only in this sense in the remainder of
this paper.

In ALGOL 60, nesting is used to control the
scope of visibility of entities within a program.
The scope of an entity's visibility is determined
by the location of that entity's declaration in the
program's tree structure. Access to an entity is
restricted to the unit or block in which it is
declared as well as any units or blocks nested
therein. A declaration of an entity with a
particular identifier in s given unit or block
renders invisible, or hides, any declaration of
entities with that same identifier appearing in
ancestors of that unit or block. Therefore the
visibility of a particular entity is bounded on one
side by the boundaries of the unit or block in
which it is declared and, potentially, on the other
side by the boundaries of more deeply nested units
or blocks in which its identifier is redeclared.

The entities in an Algol 60 program can be
either procedures, data objects, or labels. When
applied to labels or procedures, scope of
visibility imposes restrictions on the possible

© 1980 ACM 0-89791-030,3/80/1200/0139 $00.75

139

control flow in a program. When applied to data
objects~ it levies restrictions on data flow.

The languages that have succeeded ALGOL 60
have incorporated more sophisticated data
structures and control structures but, for the most
part, have retained the ALGOL 60 concept of tree
structured programs. Recently, CLU, Alphard, and
other experimental languages [6] have emerged with
constructs for supporting data abstraction [4].
Ada has adopted many of the data and control
structures pioneered by ALGOL's successors and
offers the package construct for data abstraction,
but Ada has also retained ALGOL's program structure
of nested program units and blocks. In Ada, a
program unit is a subprogram, a package or a task ~,
while the definition (although not the syntax) of a
block is the same as in ALGOL 60. We argue that
given a data abstraction construct such as the Ada
package and in light of current thoughts on
programming methodology, nesting is an anachronism.

As an alternative to nesting, we propose a
nest-free program organization, which is an
essentially flat organization coupled with
constructs for explicitly associating identifiers
of program entities with the particular units in
which those entities are accessed. Our objections
to a tree structure for programs are based upon the
generally unnatural organization that it produces
and its inadequacy for precisely capturing a
program's intended data references and control
flow. Thus we advocate a program style for Ada
that eschews nested program units and declarations
within blocks and instead heavily exploits packages
and context specifications as mechanisms for

controlling visibility.
The remainder of this paper elaborates our

arguments against a nested program structure and
further details the nest-free Ada program style.

2. Arguments Against Nesting

In Ada, and in its predecessors, nesting has
primarily been employed to govern control flow and
data flow within programs. In this section we
demonstrate the inadequacy of ~esting for both of
these uses and discuss how nesting interferes with
program development and readability. Throughout
this paper we use the program organization
described in Figure 1 as the basis for examples
illustrating our objections to nested program
structure. Although these examples are all stated
in terms of nesting within procedures, they could
also have been phrased in terms of nesting within

procedure declares references invokes

A
B
C
D
E
F
G

X,Y... X,Y...
..,

.°.

Y.°,

.. Z...
° . .

Y ° . .

Example Program Organizat ion

Figure I

B,C
D,E
F,G

*To simplify the presentation, we restrict
discussion to subprograms and packages.

our

packages or blocks. Only where the invocation of a
procedure is explicitly mentioned is the use of
procedures as the nested objects significant.

2°~ Control Flow Arguments
In Ada, as well as other languages that employ

a tree-structured program organization, nesting
affects the flow of control by restricting access
to program units. Ada has essentially adopted the
ALGOL 60 rules for controlling the invocation of
subprograms. These rules are based upon each

subprogram's location in the tree structure. A
given subprogram within this structure may invoke
its d~rect descendants as well as inv0~ any of its
ancestors and any siblings, either its own or its:

ancestors', which textually precede it in the
program listing. While nesting protects a
subprogram from being invoked by any subprograms
above it in the tree structure other than its
parent, the subprogram can be accessed from any of
its own descendants or those of its younger
siblings. Thus, while it may appear that nesting
would precisely capture a calling structure that is
organized as a tree, this is not the case. The
program invocations specified in Figure I are
presented in Figure 2 in the form of a call graph,
a graphical representation of the subprogram

invocations found within a program. Since this

call graph is a tree, it can also serve as the

Call Graph of the Program
Organization Specified in Figure 1

Figure 2

program structure tree, which depicts the ~e~ted
organization of a program. Figure 3 shows the
textual representation of the program structure
given by this tree. The program structure tree,
and thus its associated textual representation,
allows for the possibility of numerous other
patterns of invocations. A potential call graph
shows all possible subprogram invocations permitted
by a particular program structure tree. The
potential call graph for our example is shown in
Figure 4*. As illustrated bz the potential call
gr~i~h, the texLuai representation in ~Figure 3
realizes not only the desired calling pattern of
the example program, but many others as well. In
particular, any program whose calling pattern is a
subgraph of the potential call graph in Figure 4

*For simplicity, cycles of length one, i.e,, self

recursive procedure calls, have not been shown

140

procedure A is
X,Y : INTEGER;
. o ~

procedure B is
o o .

procedure D is

begin
-- sequence of statements of D
-- (referencing y)

end D ;

. ° o

procedure E is
Z : INTEGER;

begin
-- sequence of statements of E
-- (referencing Z)

end E ;
. o o

begin
-- sequence of statements of B
-- (invoking D and E)

end B ;
° . .

procedure C is
° . .

procedure F is
° . °

begin
-- sequence of statements of F

end F ;
. ° °

procedure G is
° ° °

begin

-- sequence of statements of G
-- (referencing y)

end G;
° . .

begin
-- sequence of statements of C
-- (invoking F and G)

end C ;
. . °

begin
-- sequence of statements of A
-- (referencing X and Y, invoking B and C)

end A ;

A Textual Representation of the Program
Organization Specified in Figure 1

Figure 3

may betextually represented by the organization of
Figure 3. In general, a given control flow
organization may be represented by several
different nested structures and a glven nested
structure may permit numerous distinct calling
patterns. Hence, at best, nesting offers an
imprecise representation of the intended calling
structure of a program.

The example discussed above illustrates the
limitations of nesting as a means for describing an
intended calling structure that is organized as a
tree. Nesting is even less suitable for
representing a more general calling structure. For
instance, suppose that the program organization

Potential Call Graph of the Program in Figure 3

Figure 4

shown in Figure i is modified so that procedure E
invokes procedure F. The resulting call graph is
presented in Figure 5. Since this call graph is
lot a tree, it cannot be used as a program
structure tree. Therefore, constructing a nested

Call Graph of the Modified
Figure I Program Organization

Figure 5

program to realize the calling structure requires
the additional effort of finding a suitable program
structure tree. In general there are several such
trees. One possible program structure tree that
supports the pattern of invocations shown in Figure
5 is given in Figure 6. The potential call graph

A Program Structure Tree for the
Call Graph of Figure 5

Figure 6

141

derived from this program structure tree does
indeed subsume the call graph of Figure 5. In
general, however, the translation from an intended
calling structure to a suitable program structure
tree is not a particularly natural operation. In
practice, programmers usually discover a suitable
program structure by moving procedures invoked by

many other procedures to successively higher
nesting levels in their" programs. For example, the
textual representation given in Figure 3 can be
modified to support the call graph of Figure 5 by
moving procedure F up to the point just ahead of
procedure B, which results in the program structure
tree of Figure 6. Thus, in general, one
consequence of nesting is that large programs
frequently begin with a long list of low level
utility procedures.

The problem of finding a suitable program
structure tree is even more complicated when two
program entities have the same identifier, since
hiding can then lead to unexpected results. For
instance, suppose that the program organization of
Figure i is modified by adding A to the list of
procedures invoked by B. Suppose further that, at

Some later date, a programmer identifies a segment
of code common to procedures D and E and decides to
make the common segment into a new procedure,
invoked by both D and E. Should the programmer
choose to give that new procedure the identifier A,
perhaps being unaware that that identifier has

already been used, the resulting call graph would
be the one shown in Figure 7. Applying the usual
technique of moving the shared procedure to a
higher nesting level would result in the program
structure tree shown in Figure 8. This tree, and
its corresponding textual representation, seemingly
permits all the intended invocations indicated in
the call graph. In this program structure,
however, the old procedure A is no longer
accessible to procedure B, since it is hidden by
the new procedure A. As a result, B's invocation
of A will now be invoking a different procedure A,

with potentially disasterous results.

2.2 Data Flow Arg~ents
Nesting affects data flow in Ada programs in

essentially the same way that it affects control
flow, by restricting access to program entities.
In the case of data flow, the entities in question
include variables, constants, and types. To

Call Graph of Another Modified
Figure I Program Organization

Figure 7

A Program Structure Tree for the
Call Graph of Figure 7

Figure 8

simplify the presentation we restrict the ensuing
discussion %~ variables, although similar arguments
can be made for constants and types.

We contend that, as was true for control flow,
a nested program structure provides an imprecise
representation of intended data flow.
Specifically, nesting permits unintended access to
variables, and hiding can lead to unanticipated
results. Both of these difficulties are
illustrated by the example program organization of
Figure 1 and the textual representation of Figure

3. According to Figure I, variable X is intended
to be referenced only by procedure A, while
variable Y is to be referenced by procedures A, D,
:and G. However, being declared in procedure A, as
they must be to permit the intended references,
these variables can, in fact, be referenced from
any of the seven procedures included in the
program. Moreover, should a programmer
subsequently insert a declaration for a new
variable with identifier Y into procedure B, this
new Y would hide the one declared in A from
procedure D. D's references to Y would then affect
the new Y rather than the old Y, with unpredictable
consequences.

Furthermore, as was the case for control flow,
nesting often leads to an unnatural program
organization when variables are shared. Again
referring to Figures i and 3, suppose that variable
Z, declared and referenced in procedure E, is to be
shared with procedure F. In some instances, a
modification of this kind can be accomplished by
moving one of the procedures involved. In this
example, making procedure E the outermost procedure
of the program will both preserve the intended
calling structure and permit E and F to reference
Z. As was previously pointed out, however, moving
a procedure can often introduce further problems
and typically results in an unnatural program
organization. Another alternative for permitting E
and F to share Z is to move the declaration of Z up
to the point in procedure A where X and Y are
declared. The principal disadvantages of this
alternative are that Z is now declared in a
procedure whose body contains no reference to Z and
that the declaration is now far from the actual
points of reference. Moreover, Z can now be
accessed by procedures other than E and F, and a
declaration of another variable with identifier Z
in procedure B or C would hide the shared variable
from E or F, respectively.

142

2.3 Program Development and Readability Arguments

Our primary motivation for proposing a program
style for Ada is to foster a more natural program
structure that facilitates development and enhances
readability. A major impediment to program
development and readability is the artificial

ordering of units imposed by nesting. As noted
above, maintaining a nested program structure
during the development phase often requires that
program units be repeatedly shuffled from location
to location. This movement of code disrupts
logical program development and, as pointed out in
the above examples, may introduce subtle program
errors° Furthermore, nesting leads to a program
text in which the bodies of lower level units
appear before the bodies of higher level units and
hence prior to the context in which they are used.
Moreover, in a nested program, variable
declarations may be encountered well before their
use due to intervening unit declarations. Most
notably, the main procedure's variable declarations
typically appear at the very beginning of the
program text while its body appears at the very
end. In addition, the use of blocks to declare
variables at intermediate locations within a
program unit is generally considered a poor
programming practice that hinders readability.
Confining all declarations of variables to the
declarative part of a program unit precisely
~st!~blishes th e entities in use within the unit and

provides a common point of reference for the unit's
name space. In sum, the program structure
resulting from nesting interferes with the logical
exposition of the program text, thereby hindering
both development and maintenance.

Ada's designers evidently recognized the
limitations that nesting imposes on program
development and readability, and attempted to
overcome them by proposing the subunit facility.
This facility permits the body of a program unit
embedded in the declarative part of another unit to
be removed from that declarative part and made
textually distinct from the enclosing unit.
Instead of the entire unit, only a stub need appear
in the declarative part of the enclosing unit. The
subunit facility appears to overcome the major
drawbacks of a nested program structure. In
particular, the text of programs developed in a
top-down fashion can be organized in a
top-to-bottom manner, as illustrated in the Ada
reference manual [3, p. I0-7], with only the stubs
of referenced subunits appearing prior to the
actual reference. However, the subunit facility in
fact preserves nesting and hence some of its
associated shortcomings with respect to
readability. According to the Ada language
definition, the textually separate aubunit body is
still considered to be logically located at the
point where the stub appears, that is, nested
within the declarative part of another unit. It is
the location of this stub that determines the
context, i.e., the visibility of other program
units and data objects, within which this subunit
is to be understood. Since the subunit is
textually distinct from the stub whose location
determines its logical context, this can make both
writing and understanding the subunit extremely

difficult,

3. A Nest-Free Program Style For Ada

Having discussed the drawbacks of a nested
program structure, we now direct our attention to
the manner in which an Ada program would be
constructed using our nest-free program style. In
this section we detail the overall program
structure implied by our proposal, justify that
structure in terms of programming methodology
considerations, and discuss how our proposal fits
within the framework of the Ada language design.

The nest-free Ada program style would generate
programs that are linear collections of program
units (i.e., subprograms, packages and tasks). No
nesting of program units would be permitted and
blocks would not be allowed to have declarative
par%s. Specifically, subprograms and tasks would
not contain the declarations (or bodies) of other
subprograms, tasks or packages and packages would
not contain the declarations (or bodies) of other
packages. Packages may contain subprograms and
%asks, but this is merely a syntactic grouping to
accomodate data encapsulation and information
hiding.

In place of nested program units and embedded
declarations, the nest-free program style heavily
exploits the package and context specification
constructs as the foundations for program
organization. Besides supporting data
encapsulation in a fairly natural way, packages can
be used to describe variable visibility and
intended control flow much more precisely than can
be done using nesting. The context specification
construct, used in conjunction with compilation
units which are packages or subprograms, provides a
means for explicitly indicating the relationships
among program entities. This approach is not only
more explicit but also more general and more
flexible than a nested program organization, which
relies upon the textual location of program units
to implicitly define a tree structure governing
control flowand variable visibility. Applying our
approach to the program organization depicted in
Figure I would result in a textual representation
like that shown in Figure 9.

The Ada package and context specification
constructs can be used to describe a program's
desired control flow much more precisely than can
be done using nesting. In a nest-free Ada program,
a program unit explicitly indicates which
subprograms it may directly access by using a
context specification that lists the compilation
units containing those subprograms. This results
in a much closer correspondence between a program's
potential call graph and its intended calling
structure than can be obtained using nesting. For
instance, the potential call graph of the program
shown in Figure 9 is identical to its call graph,
which appears in Figure 2. Furthermore, note that
revisions to a program that result in additional
sha<ing of su.bprQgrams opl~ .requiFe mo_difications
Lo the con~ex~ specifications of those program
units newly accessing the shared subprograms.
Although not illustrated by this example, there are
several other ways In which the Ada package
construct can be used to improve the description of
intended control flow. Specifically, the logical
relationships among a set of subprograms, often
based on their common use of some data objects, can
be expressed by grouping them into a package.
Moreover, the subprograms <n a package are

143

package Y PACK is
Y : INTEGER;

end Y_PACK;

... -- subprogram specifications for

... -- subprograms B, C, D, E, F, and G

with Y PACK, B, C; use Y PACK; procedure A is

X : INTEGER;

begin
-- sequence of statements of A
-- (referencing X and Y, invoking B and C)

end A ;

with D, E; procedure B is
. o ~

begin
-- sequence of statements of B
-- (invoking D and E)

end B;

with F, G; procedure C is

. o o

begin
-- sequence of statements of C
-- (invoking F and G)

end C ;

with Y PACK; use Y PACK; procedure D is
. . .

begin
-- sequence of statements of D
-- (referencing Y)

end D ;
. * °

procedure E is
Z : INTEGER;

o . .

begin
-- sequence of statements of E
-- (referencing Z)

end E ;

procedure F is
, o .

begin
-- sequence of statements of F

end F ;
. °

with Y PACK; use Y PACK; procedure G is
. . o

begin
-- sequence of statements of G
-- (referencing Y)

end G;

A Better Textual Representation of the
Program Organization Specified in Figure I

Figure 9

explicitly declared to be visible or hidden to
program units outside the package. None of these

control flow relationships can be satisfactorily
described by nesting.

Packages and context specifications also allow
for more precise control of variable visibility
than can be obtained using a nested program
organization. Local variables, which are used
within only a single program unit, can simply be

declared within that unit. Variables that are to
be shared among several program units can be placed
in the visible parLs of packages and made directly
accessible to the program units sharing them
through the use of context specifications. Figure
9 illustrates how a package, in conjunction with
context specifications~ can be used to explictly
describe the sharing of variables -- in this case
variable Y. Note that revisions to a program that
result in the sharing of a previously local
variable only require placing the shared variable
into a package and making appropriate modifications
to the context specifications of those program
units accessing the newly shared variable. Thus,
in a nest-free program organization, no unit
enclosing all the program units that are to access
some set of variables need be found or created and
program units need not inherit access to variables
that they do not use simply due to their position
in the nesting structure.

We contend that a nest-free program
organization also improves the readability of Ada
programs and facilitates program development.
Using packages and context specifications to
express a program unit's relationships, both to
other program units and to data objects, results in
a program organization in which program units can
be arranged in any desired order*. Programmers who
employ a nest-free program organization are freed
from any necessity of fitting their programs into a
tree structure and can hence more easily pursue a
methodical and structured approach to programming.

In particulars the text of a . program developed
using a top-down approach can have a top-to-bottom
organization, with higher level units preceding
lower level units in the program text. Allowing
programmers to organize their programs' units into
an ordering better suited to their style of
programming enhances their programs' readability
and thus aids those who must read, understand, and
perhaps modify their programs.

We recognize that our nest-free program style
for Ada does not provide for an absolutely precise
description of control flow and data flow. In
particular, it does not offer a general facility
for selectively denying access to program units or
data objects. It is easy to see, however, that
nesting also fails in this regard. Indeed,
completely general control of accessibility can be
obtained only through additional language
constructs (e.g., import/export lists) or through
mechanisms in a suitable programming environment.
In the absence of such mechanisms and based on the
current design of Ada, we believe our nest-free
program style provides a degree of control over
accessibility that is superior to that provided by
nesting. Furthermore, it provides a more readable
and maintainable program structure, which is more
easily adapted to top-down methods of program
.development.

*Of.course, in cases where a program unit's bod)
does not textually precede the first reference to
that unit, the Ada rules governing order of"
compilation require that a compilation unit
consisting of a specification of that unit be
placed ahead of the reference, as illustrated in
Figure 9. WYlile we do not consider this a
significant limitation on program organization,
removing this unnecessary restriction would be more

in keeping with the spirit of our proposal.

144

4o Conclusion

We have proposed a style for programming in
Ada that precludes the use of nesting and thereby
avoids nesting's negative impact on program
organization and readability. The nest-free
program style has been justified by detailing a
number of nesting's shortcomings and by showing how
this program style overcomes them without requiring
a single change to the Ada language. Although we
believe that a nest-free program organization would
benefit any programming methodology, it is
especially conducive to top-down programming since
it allows the textual ordering of the units in a
program developed in a top-down fashion to more
closely correspond to the order in which they were
generated. Thus, as contrasted with the convoluted
organization imposed by nested program structures,
the nest-free style allows a programmer to directly
record a program's development history and logical
structure within the organization of the text
itself.

References

[I] ANSI X3.9 - 1966 (USA Standard FORTRAN).

[2] Buxton, J.No, Requirements for Ada Programming
Support Environments, ("Stoneman"), United
States Department of Defense, February 1980.

[3] Ichbiah, a.D., et al., Reference Manual for
the Ada Programming Language, United States
Department of Defense, July 1980.

[4] Liskov, B.H. and Zilles, S.N., "Specification
Techniques for Data Abstractions", IEEE
Transactions on Software Engineering, SE-I, I

[5]

[6]

(March 1975), pp. 7-18.

Naur, P. (ed.), "Revised Report on the
Algorithmic Language ALGOL 60", Communications
of the ACM, 6, I (January 1963), pp. 1-17.

Wortman, D.B. (ed.), "Proceedings of an ACM
Conference on Language Design for Reliable
Software", SIGPLAN Notices, 12, 3 (March
1977).

145

