1

Reconfiguration in the Enterprise JavaBean
Component Model

Matthew J. Rutherford, Kenneth Anderson, Antonio Carzaniga,
Dennis Heimbigner, and Alexander L. Wolf

Department of Computer Science, University of Colorado,
Boulder, Colorado 80309-0430 USA,

{matthew .rutherford,kena,carzanig,dennis, alw}@cs .colorado.edu

Abstract. Reconfiguration is the process of applying planned changes
to the communication, interconnection, componentization, or function-
ality of a deployed system. It is a powerful tool for achieving a variety of
desirable properties of large-scale, distributed systems, including evolv-
ability, adaptability, survivability, and continuous availability. Current
approaches to reconfiguration are inadequate: some allow one to describe
a system’s range of configurations for a relatively broad class of system
architectures, but do not provide a mechanism for actually carrying out
a reconfiguration; others provide a mechanism for carrying out certain
kinds of limited reconfigurations, but assume a specialized system archi-
tecture in order to do so. This paper describes our attempt at devising a
reconfiguration mechanism for use with the popular and widely available
Enterprise JavaBean (EJB) component container model. We describe
extensions to the basic services provided by EJB to support the mech-
anism, a prototype implementation, and a case study of its application
to a representative component-based distributed system.

Introduction

Subsequent to their development, software systems undergo a rich and complex
set of management activities referred to as the deployment life cycle [3l6]. These
activities include the following.

Release: packaging all artifacts and configuration descriptions needed to in-
stall a system on a variety of platforms.

Install: configuring and assembling all artifacts necessary to use a released
system. Typically this involves selecting from the release the configuration
that is compatible with the specifics of the intended operating environment.
Activate: putting installed software into a state that allows it to be used.
Typically this involves allocating resources.

Deactivate: putting installed software into a state that makes it unable to
be used. Typically this involves deallocating resources.

Reconfigure: modifying an installed and possibly activated system by select-
ing a different configuration from an existing release. Typically this activity
is intended to satisfy an anticipated variation in operational requirements
and, thus, is driven by external pressures.

J. Bishop (Ed.): CD 2002, LNCS 2370, pp. 67-B1] 2002.
© Springer-Verlag Berlin Heidelberg 2002

68 Matthew J. Rutherford et al.

— Adapt: modifying an installed and possibly activated system by selecting a
different configuration from an existing release. This activity differs from
reconfigure in that it is intended to maintain the integrity of the system in
the face of changes to the operating environment and, thus, is driven by
internal pressures.

— Update: modifying an installed and possibly activated system by installing
and possibly activating a newly released configuration.

— Remowve: removing from the operating environment the installed artifacts of
a system.

— Retire: making a release unavailable for deployment.

Many commercial tools exist to address the “easy” part of the problem, namely
the activities of release, install, remove, and retire (e.g., Castanet, InstallSheild
[7], netDeploy [12], and RPM [1]), but none that covers all the activities. Re-
search prototypes have made strides at addressing dynamic reconfiguration,
but are generally conceived within restricted or specially structured architec-
tures [2/8J9I1T].

In this paper we present our attempt at improving support for the activities
of reconfigure, adapt, and update. Although the context and drivers for these
three activities differ substantially, they clearly share many of the same techni-
cal challenges with respect to the correct and timely modification of a system.
Therefore, in this paper we simply refer to the three activities collectively as
“reconfiguration”, using the individual activity names only when necessary.

In earlier work, we developed a tool called the Software Dock to automate
the configuration and reconfiguration of distributed systems [3/4)5]. However, the
Software Dock is currently restricted to the reconfiguration of installed systems
that are not active. Activated systems complicate support for reconfiguration in
at least three ways: (1) maintaining consistent application state between modifi-
cations; (2) coordinating modifications to concurrently active components; and
(3) ensuring minimum disruption or “down time”.

To help us better understand the challenges of reconfiguring activated sys-
tems, we embarked on an effort to study the problem in a particular context.
The context we chose is the widely used Enterprise JavaBean (EJB) component
framework [10]. EJBs are distributed components and, thus, further raise the
level of complexity of software deployment activities, since the activities may
have to be coordinated across multiple network nodes.

Further framing the problem, we delineated a space of reconfigurations that
we wished to address in the study (Table[[). We consider three media of modifi-
cations leading to reconfiguration: parameters, implementations, and interfaces.
We also consider whether or not modifications to multiple EJBs are dependent
or independent; a dependency implies the need for transactional modification.
In fact, the modifications should be both synchronized and transactional, since
the system could be unstable if the reconfiguration is not successful on all nodes.
On the other hand, there may be modifications that do not change the contract
between components, and while it may be desirable for these changes to be made
on all nodes, the changes do not need to be coordinated.

Reconfiguration in the Enterprise JavaBean Component Model 69

Table 1. Kinds of Reconfigurations

Independent Dependent
Parametric Preprogrammed modification Preprogrammed modification
applied to a single compo- applied to multiple compo-
nent. nents.

Implementation Modification to the imple- Modification to the imple-
mentation of a component mentation of a component
that does not require a mod- that requires a modification
ification to the implementa- to the implementation of its
tion of its clients. clients.

Interface Modification to the interface Modification to the interface
of a component that does not of a component that requires
require a modification to its a modification to its clients.
clients.

A parametric reconfiguration is one that a component is itself designed to
handle. It reflects a common way of planning for change in software systems,
namely by having certain options specified as parameters through some exter-
nal means such as a property file or database entry. By changing the parameter
values, modifications can be made to the behavior of a software system without
having to modify any of its executable software components. This type of recon-
figuration might have to be coordinated across multiple nodes. For example, a
parameter might be used to control whether or not a communication channel is
encrypted, requiring distributed, communicating components to coordinate their
response to a modification in this parameter.

An implementation reconfiguration is one in which only the implementa-
tion of a component is modified, but not its interface. Of course, the goal of
separating implementation from interface is, in part, to isolate implementation
modifications. Nevertheless, in some cases the effect of the modification does
indeed propagate to the clients of the component. For example, a component
may expose a method that takes a single string as its argument. The format of
this string is important, and an implementation modification in the component
may alter the expected format of this argument. This would require all client
components to also modify their implementation to conform to the new format,
even though the exposed interface did not change.

Finally, an interface reconfiguration results from the most pervasive modifica-
tion to a component, affecting both the interface and implementation. Typically,
an interface modification must be coordinated with client components. But this
need not always be the case. For example, the modification may simply be an
extension to the interface.

While this space may not be a complete expression of reconfiguration sce-
narios, it is sufficiently rich to exercise our ideas. In the next section we provide
some background on the EJB framework, pointing out some of its shortcomings
with respect to reconfiguration. Following that we introduce BARK, a proto-

70 Matthew J. Rutherford et al.

type infrastructure for carrying out sophisticated EJB reconfigurations. We then
demonstrate BARK by applying it to the reconfiguration of a distributed appli-
cation that we built. The demonstration covers the six kinds of reconfigurations
described above.

2 Background: Enterprise JavaBeans

The Sun Microsystems Enterprise Java initiative is a suite of technologies de-
signed to provide a standard structure for developing component-based enter-
prise applications. The technologies address issues such as database connectivity,
transaction support, naming and directory services, messaging services, and dis-
tribution. EJBs are the cornerstone of the Enterprise Java initiative. EJBs are
distributed components, intended to execute within so-called containers that
handle much of the complexity inherent in multi-threaded, database-driven,
transactional applications; theoretically, the use of the EJB framework should
allow developers to concentrate on the business logic of applications. The EJB
specification provides strict guidelines about how EJB components must be pack-
aged, and how they can reference other components. These guidelines provide a
structure in which an automated deployment system can handle various man-
agement tasks.

EJBs come in three flavors: stateless session beans, stateful session beans and
entity beans. The EJB 2.0 specification also defines a fourth flavor, message-
driven beans, which are invoked by the arrival of a message to a specific topic
or queue; here we only deal with the first three types of EJB. Stateless ses-
sion beans are components that do not maintain any state between invocations.
Essentially, stateless session beans provide utility functions to clients. Stateful
session beans are components that need to maintain a conversational state on
a per-client, per-session basis. That is, a different instance of a stateful session
bean implementation class is used for each client, and its state is maintained
between method invocations until the session is terminated. Entity beans are
used to handle persistent business objects. This means that they are used to
represent objects whose state can be shared across all the clients of the system.
Typically, entity beans are used as a software representation of a single row of a
query into a relational database.

Part of the EJB framework relates to the so-called “life cycle” stages that
an EJB implementation instance goes through as it is servicing requests. State-
less session beans have a very simple life cycle, since the same instance can
repeatedly service requests from different clients without the special handling
that is required for stateful beans. For stateful beans, the life cycle is a bit
more complicated, since the instance must be associated either with a particular
client across multiple method calls or with a particular persistent entity. EJB
containers maintain the state of component implementation instances using the
following four EJB life-cycle methods.

— Activate: the first method called after a stateful EJB is deserialized from
secondary storage. Any resources that it needs should be allocated.

Reconfiguration in the Enterprise JavaBean Component Model 71

— Passivate: the last method called before a stateful EJB is serialized to sec-
ondary storage. Any resources that it holds should be released.

— Load: valid for entity beans only, this method instructs the instance to re-
trieve current values of its state from persistent storage.

— Store: valid for entity beans only, this method instructs the instance to save
current values of its state to persistent storage.

Note that in EJB terminology, “deployment” is the process by which an EJB
server loads an EJB package and passes it to the container to make it available
to clients. In this paper we avoid this restricted definition of deployment, since
it can be confused with the broader meaning described in Section [l

Once the classes that comprise an EJB have been developed, they then must
be packaged in a standard fashion so that EJB servers can install them properly.
Typically, all the classes that are needed for the EJB to run (excluding system
classes that are available to all components) are assembled into a JAR (Java
Archive) file that includes deployment descriptors identifying the standard set
of classes that permit the EJB to be managed and used (the so-called home,
remote, and implementation classes). The descriptors also typically include the
JNDI (Java Naming and Directory Interface) name to which the interfaces to
these classes are bound. Another important part of the standard deployment
description includes information about any other EJBs upon which the given
component depends.

The packaging specification for EJBs allows multiple EJBs to be packaged
together in a single EJB JAR file. An EJB container handles all of the EJBs
packaged together as a single application unit; once EJBs are packaged together,
they cannot be maintained separately from the other EJBs with which they were
packaged. In our work we therefore assume that a single EJB JAR file is described
as containing a single component, with each EJB in the package representing a
different view onto that component. Thus, the decision made by the software
producer about the packaging of EJBs essentially drives the granularity of how
the deployment life cycle of those EJBs can be managed.

Deployment in EJB-based systems involves various combinations of a small
set of common actions.

— Retrieve a new component package from a software producer (install and
update).

— Load a component package into an EJB server (activate, reconfigure, update,
and adapt).

— Unload a component package from an EJB server (update, deactivate, and
reconfigure).

— Reload a component package into an EJB server to freshen its bindings to
other components (reconfigure, update, and adapt).

— Modify a database schema, database data, or content file (activate, update,
reconfigure, and adapt).

One of the major problems with these actions is that they can be heavy handed.
This is especially true of the actions that must be taken to reconfigure, update,

72 Matthew J. Rutherford et al.

or adapt an activated system, where component packages must be reloaded just
to make sure the bindings are up to date. This invasive process implies that
some or even all of the components in a system must be shut down for some
period of time, which is simply unacceptable in high-volume, high-availability
applications such as the electronic-commerce infrastructure systems that EJBs
were largely meant to support.

To a certain extent, this problem of heavy handedness is dictated by the way
that component package descriptors are used to specify the dependencies among
EJBs. Included in the package descriptor for a component is the well-known
naming service name of all other referenced components. When a referenced
component is loaded by its EJB application server, the well-known name is bound
into the naming service and the component is available. This presents a problem
when updating a component that has dependent clients: If the same well-known
name is chosen for the new version of the component, then the existing version
must first be unloaded before the new version can be loaded, meaning that
the system will effectively be unable to satisfy requests for a time. If instead a
different well-known name is chosen for the new version of the component, then
the package descriptors for all of its clients must be updated to be told of this
new name, which means that they must be reloaded by their EJB application
servers, again resulting in down time.

3 Approach: The BARK Reconfiguration Tool

Our approach to the problem is embodied in a prototype tool we call BARK
(the Bean Automatic Reconfiguration frameworK). It is designed to facilitate the
management and automation of all the activities in the deployment life cycle for
EJBs. BARK provides some basic functions, such as the ability to download
component packages over the Internet and load them into the EJB container.
Other, more sophisticated aspects of the framework manipulate the component
package descriptors to provide fine-grained control over a system formed from
EJBs, even down to the level of individual bindings between components. In a
sense, the functionality that BARK presents to its users defines an “assembly
language” for EJB deployment management.

It is important to note that BARK is only a management tool; it does not
provide any analysis of the running system, nor does it make recommendations
or determine automatically what steps need to be taken to reconfigure a system
in a particular way. As a management tool, it provides a certain level of checking
to make sure that the user does not put the system into an unstable state un-
wittingly. However, BARK generally allows the user to force any action, thereby

allowing the user to fully control the reconfiguration of the system as they see
fit.

3.1 Architecture

The high-level architecture of BARK is depicted in Figure[l and consists of the
following major components.

Reconfiguration in the Enterprise JavaBean Component Model 73

-—. Workbench

A

System Network

Instance A RRE L Instance B

B

Instance D

Instance C

REPOSITORY

- Bindings
~= — — — — Component Transfer
- Commands

Fig. 1. The BARK Architecture

— Application Server Module (ASM): works in cooperation with an EJB ap-
plication server instance to provide management of the components that it
serves. The ASM is installed with every application server instance that is in-
volved in the system being managed. The division of labor between an ASM
and its application server is clear. The ASM is responsible for all the pro-
cessing involved with managing the deployment life cycle of the components,
including downloading packages, tracking deployment state and component
versions, and managing reconfiguration transactions. In turn, the applica-
tion server is responsible for handling the normal running of the software.
An ASM only interacts with the application server directly when it activates
or deactivates components. To achieve the necessary granularity for bind-
ings, the ASM also adjusts the values stored in the JNDI naming service
that is typically running as part of the application server.

— Repository: a central location for storing component software packages. ASMs
download software packages from the repository when required. The reposi-
tory is a conceptual part of the BARK system; there is no specialized repos-
itory software provided as part of BARK. In practice the repository can be
any file server that is available to the ASMs. This represents the location to
which a software producer would release software components.

— Workbench: provides a system administrator with a tool for directly control-
ling ASMs, serving as a bridge between the repository, which is controlled by
software producers, and the ASMs, which represent the software consumers.

74 Matthew J. Rutherford et al.

The bindings depicted in Figure [l represent client/server relationships between
components. Knowledge about such bindings are important for deployment ac-
tivities, since it is changes in these bindings that are often involved in recon-
figuration. The commands represent requests for deployment actions. Most of
the commands depicted in Figure [[] are shown as originating from the work-
bench. However, inter-ASM commands are also necessary to ensure that any
changes to bindings are approved by both the client and the server before they
are completed.

BARK provides the ability to execute individual deployment actions or to
execute scripts that combine multiple actions. Aside from conveniently grouping
related sequences of actions, scripts are used to indicate transactional actions
directed at one or more ASMs. In fact, a script is treated just as any other
component and, therefore, its actions are managed by the ASM and the EJB
application server. Scripts can also contain code for making changes to database
structures or file contents.

3.2 Commands

Each command executed by an ASM is atomic and affects a single component
or binding. Following are the primary ASM commands.

— Add: directs an ASM to download to the local node a particular EJB compo-
nent package from a repository. After the package is downloaded, the ASM
processes its contents and makes changes to the package descriptor that will
allow the component to be properly controlled by subsequent commands.

— Delete: directs an ASM to remove a package from the local node.

— Load: directs an ASM to trigger its local application server to enable a com-
ponent to make bindings to other components and accept client requests. The
implementation of this command is EJB-vendor specific, since each vendor
has their own notion of how to “deploy” component packages.

— Unload: directs an ASM to disable a component from making bindings to
other components and accept client requests. A component cannot be un-
loaded if it still has active bindings and/or bound clients.

— Bind: directs an ASM to make a client relationship to a server component.
If the two components are managed by different ASMs, then the ASM first
contacts the server ASM directly to make sure that both the client and server
were correctly specified and can create the binding. After a component is fully
bound, it is available to accept clients. In situations where there are circular
dependencies among components, the Bind command can force a server to
accept clients before it is fully bound.

— Rebind: directs an ASM to update the binding of a component. Unlike the
Bind command, the client component must already be bound to a server
component.

— Unbind: directs an ASM to remove a relationship between two components.
This command normally cannot be used until all clients of a component
are removed, but can force the removal of a relationship in cases of circular
dependencies.

Reconfiguration in the Enterprise JavaBean Component Model 75

— FEzxecute: directs an ASM to begin execution of a loaded and fully bound
component.

— Stop: directs an ASM to suspend execution of an executing component.

— Reload parameters: directs an ASM to cause a component to reload its pa-
rameters.

— Refresh bindings: directs an ASM to cause a component to refresh its bind-
ings.

The last two commands are specifically intended to reduce the down time suffered
by a running application when undergoing reconfiguration. However, unlike the
other commands, they are predicated on cooperation from component designers,
who must expose interfaces explicitly supporting these two non-standard life-
cycle activities. With conventional EJB application servers, the only way to
cause a freshening of bindings or reloading of parameter values is to force the
server to reload the entire component package. Either that or the component
could be programmed to always refresh or reload before each use, just in case
there was a change. Both these approaches exhibit performance problems. The
alternative that we advocate through BARK is a compromise that allows a
refresh or reload directive to come from outside the component when necessary
to support reconfiguration.

3.3 Transactions

The programmatic interface of BARK is modeled through a class called Con-
nection. Instances of Connection provide strongly typed methods for executing
commands on the ASM with which it is associated. In order to get proper trans-
actional processing, some care must be taken when using Connection. To illus-
trate this, the steps taken by the scripting engine within an ASM are described
below.

1. Retrieve Connection object from primary ASM instance. If multiple ASMs
are involved in the execution of a script, one of them needs to be chosen as
the primary instance. This can be done arbitrarily, since there is no special
processing that must be performed.

2. Retrieve Connection objects for other ASMs. The primary Connection ob-
ject is used to open connections onto the other ASMs. These new, secondary
Connection objects are all considered to be in the same transaction context
as the primary Connection object.

3. Issue commands. With the proper connections established, commands can
be issued to any of the ASMs.

4. Commit or rollback. Using the primary Connection object, the entire trans-
action can be committed or rolled back.

Thus, a key feature of BARK is its support for transactional reconfigurations,
since it is easy to see how a partial reconfiguration could render a software system
unusable. The requirements on BARK’s transactions are as follows: all of the
configuration changes must be committed or rolled back as a unit; none of the

76 Matthew J. Rutherford et al.

configuration changes can be visible to other transactions until they are commit-
ted; and configuration changes made to one component during the transaction
must be visible to the other components that are involved in the transaction.

BARK uses an optimistic concurrency control scheme, which effectively means
that the first transaction to modify an object will succeed, while subsequent
modifications will fail on a concurrency violation error. When a transaction is
committed through a primary Connection object, all the secondary Connection
objects are committed using a standard two-phase commit protocol. Although
application servers that support EJBs must provide a transaction manager that
implements Sun’s Java Transaction Service, BARK manages its own transac-
tions. This was an implementation decision driven by the desire to keep ASMs
cleanly separated from application servers.

3.4 Scripts

Scripts are XML descriptions defining sequences of BARK commands that should
be carried out in a single transaction. The script first defines all of the ASMs
that are involved in the script, and then provides the sequence of actions that
must be performed on each of them.

Figure[2 contains a sample BARK script. In this script, only one node is being
managed. The script first retrieves two component packages from the repository,
giving them script-local names compA and compB. In steps 3 and 4, both compo-
nents are loaded into the EJB application server. Step 5 binds compB to compA.

<?xml version="1.0" standalone="no"7>
<!DOCTYPE bark-script SYSTEM ¢‘bark-script.dtd" >
<bark-script name="SampleScript">

<!-- host declarations -->
<instance id="moleman" url="moleman:1099" />
<!-- actions -->

<get sequence="1" instance-id="moleman" id="compA"
remote-url="http://repository/bark/ComponentA.jar" />

<get sequence="2" instance-id="moleman" id="compB"
remote-url="http://repository/bark/ComponentB. jar" />

<load sequence="3" instance-id="moleman" component-id="compA" />

<load sequence="4" instance-id="moleman" component-id="compB" />

<bind sequence="5" instance-id="moleman" force="false"
client-component-id="compB" client-view-name="ComponentB"
server-component-id="compA" server-view-name="ComponentA" />

</bark-script>

Fig.2. A BARK Script

Reconfiguration in the Enterprise JavaBean Component Model 7

3.5 Name Binding

Most EJB application servers use JNDI as a mechanism to make the developer-
defined name of the server’s (home) interface available to clients. Clients of the
component “know” this name, and use it to do their lookups. This arbitrary name
poses some problems when maintaining components in a server. For one thing,
the clients have this name hard coded somewhere in their software or in their
deployment descriptors. This effectively means that the component must always
be installed with this name, or clients will not know how to look up references to
it. For another, JNDI only allows one object to be bound to a particular name,
so new versions of a component force prior versions to be unloaded.

The primary mechanism that BARK uses to achieve finer control over com-
ponent bindings, and thereby greater flexibility in changing those bindings, is to
transform the JNDI bindings after a component has been loaded by a server. In
essence, the idea is to create an internally unique name that is known to BARK.
For example, BARK might generate the internal name bark/7730183/12876309
for a component whose original JNDI name was componentb/ComponentB. This
JNDI name rewriting is handled automatically.

One drawback of this approach is that a client of a component managed
by BARK, but that is not itself managed by BARK, does not have any way
of binding to that component directly. To alleviate this problem, BARK pro-
vides an alias mechanism through which a name can remain unchanged while its
association with internally generated names can change. The commands Bind-
name and Unbind-name are provided to manipulate such aliases. For example, if
there was a non-BARK application that needed to use the BARK-managed EJB
componentB, and it was expecting its interface to be bound to the JNDI name
componentb/ComponentB, then the Bind-name command could be used to auto-
matically create an alias from componentb/ComponentB to the BARK-generated
name bark/7730183/12876309.

3.6 Implementation

As mentioned above, the ASM software was designed to run in conjunction with
an EJB application server. We use the open-source JBoss EJB application server
in our prototype implementation of BARK. This server, as are other major
servers such as BEA’s WebLogic, is built using the Sun Microsystems JMX
framework. JMX organizes services as so-called Manageable Beans (MBeans)
that can be plugged together easily in a single application and so provide services
to each other. The ASM software was integrated into the JBoss server as an
MBean. This allows the ASM to have direct access to some of the important
services that it needs, particularly the JNDI naming service and the EJB loading
service. By being incorporated directly into the server application, the ASM
is started and stopped when the server is, allowing for explicit control of the
components it manages during those events.

78 Matthew J. Rutherford et al.

4 Example Application: Dirsync

We developed an application called Dirsync as an exercise in the use of BARK.
Dirsync provides a service for synchronizing the contents of shared directories
on remote computers. It is a component-based distributed system built from a
number of interdependent EJB components. Figure[shows the use relationships
among the components; unfortunately, space does not permit an explanation of
their individual functionality. A separate instance of Dirsync resides on each
node in a network and is responsible for the directories on that node. The rela-
tionship between any two such instances, which is mediated by bound instances
of DataChannel on either end, can be master/slave or peer-to-peer. Several ver-
sions of Dirsync were developed to drive a representative case study of how such
a distributed component-based system can be evolved over time.

Most of the components that comprise the system are session beans, both
stateless and stateful. A few entity beans are used to handle persistence of direc-
tory state, component parameters, and logging information. None of the entity
beans are accessed directly by clients of a component. Instead, clients bind to a
session bean that hides some of the details of the entity bean from the clients.

Although there are not a large number of components in Dirsync, complexity
arises out of the relationships among them (both within a local machine and
across the network), the changeable nature of the network topology, and the
state that must be maintained on each local machine. These combine to make
Dirsync a reasonable reconfiguration challenge. Some of the specific features of
Dirsync that are representative of many real-world applications are as follows.

— Both client/server and peer-to-peer relationships. Client /server architectures
are common, so any solution must be able to deal with them. But they are
also easier to reconfigure, since they embody a clear hierarchy and, therefore,
it is usually straightforward to determine an ordering for changes. With
peer-to-peer architectures, certain reconfigurations need to occur on multiple
nodes at once, making the coordination of reconfiguration more difficult.

C‘\Dz\tachannel ‘ DirsyncSys

—

DirState

PropertyMgr

Sequence

Fig. 3. The Dirsync Component Uses Hierarchy

Reconfiguration in the Enterprise JavaBean Component Model 79

— A non-stop service. This is a very common characteristic of multi-user dis-
tributed systems: there must always be something running that is ready to
accept requests. This presents a reconfiguration challenge because changes
must be made with minimal disruption to the service.

— Network topology is dictated by application settings. A dynamic network
topology is fairly common, and presents a reconfiguration challenge because
inter-node dependencies can only be determined based on the current con-
figuration. This also means that some changes to the application parameters
will require new bindings to be made between remote components.

— There is persistent state. The use of a database, or some other persistence
resource, is very common in distributed systems, particularly for business
applications. This presents a reconfiguration challenge because changes must
be coordinated between an external software application and the software
components of the system.

Table [2] summarizes a sequence of reconfigurations that we applied to a sim-
ple scenario of Dirsync running on two nodes, N-1 and N-2. Those particular
reconfigurations were chosen because they represent a range of modifications
commonly applied to component-based distributed systems and because they
cover the space of reconfigurations outlined in Table [of Section [

We collected some initial performance statistics that indicate reasonable over-
head in carrying out the reconfigurations. For example, the Bind, Rebind, and
Unbind commands generally took on the order of 30 to 50 milliseconds. The Add
and Load commands took much longer, consuming on the order of 1000 to 2500
milliseconds in our experiments. Our analysis shows that the Add command is
dominated, not surprisingly, by network latency and repository implementation
issues, while the Load command is dominated by time spent inside the JBoss
server implementation of component activation. Clearly, more experiments are
needed to validate these preliminary results.

5 Conclusion

The contribution of the work described in this paper lies primarily in the experi-
ence gained engineering advanced reconfiguration capabilities into an established
component management framework. The challenge was to work within the con-
fines of the services that the framework already provided. In fact, we saw the need
to extend that framework in only two ways (reloading parameters and refresh-
ing bindings), yet those extensions are really only for the purposes of reducing
system down time and are not required functionality.

The next step for this work is to feed our experience back into the design
of a next-generation Software Dock deployment system. Our intention is to cre-
ate a version that is in some sense parametric with respect to the underlying
component model, whether it be EJB, .NET, OSGi, or some other “standard”
infrastructure. This requires the development of architectural principles that can
be instantiated for the particular situation at hand.

80 Matthew J. Rutherford et al.

Table 2. Dirsync Reconfigurations and Associated BARK Commands

Release 1: Initial Deployment

Establishes the sharing of dirl in a client/server relationship between N-1 and N-2

o

. Add all components from the repository

b. Add, Load, Bind, and FExecute a script to create the database schemas
c. Load all components

d. Bind all local and remote components

e. Ezecute all local and remote components

Release 2: Independent Parametric Reconfiguration
The name dir1l is changed on N-2
a. Add, Load, Bind, and Ezecute a script on N-2 that can Stop Dirsync, rename
directory dir1, and change DirsyncSys parameters

b. Reload parameters of DirsyncSys on N-2
c. Execute component Dirsync on N-2

Release 3: Dependent Parametric Reconfiguration
dir2 is added as a new directory to be synchronized in a peer-to-peer fashion
a. Add, Load, Bind, and Ezecute a script on N-1 and N-2 that can Stop Dirsync and
create properties for directory dir2

b. Reload parameters of DirsyncSys on N-1 and N-2
c. Erecute Dirsync on N-1 and N-2

Release 4: Independent Implementation Reconfiguration
The file-change algorithm is enhanced to include a checksum of file contents

a. Add, Load, Bind, and Ezecute a script on N-2 that alters the database schema to
include a new field Checksum

b. Add, Load, and Bind a new version of DirState on N-2 having the checksum
algorithm

c. Rebind Dirsync on N-2 to the new version of DirState

Release 5: Dependent Implementation Reconfiguration
The format of the command file is changed to include the time of last modification

a. Add, Load, Bind, and Ezecute a script that can Stop Dirsync on N-1 and N-2
b. Unbind, Unload, and Delete Dirsync on N-1 and N-2
c. Add, Load, Bind, and Ezecute a new version of Dirsync on N-1 and N-2

Release 6: Independent Interface Reconfiguration
A method is added to PropertyMgr for easier access to integer properties

a. Add, Load, and Bind a new version of PropertyMgr on N-1

b. Add and Load a new version of DirsyncSys on N-1 and Bind it to new version of
PropertyMgr

c. Rebind Dirsync on N-1 to the new version of DirsyncSys

Release 7: Dependent Interface Reconfiguration
A subcomponent of DataChannel is enhanced for more efficient data transmission

a. Add, Load, and (locally) Bind a new version of DataChannel on N-1 and N-2
b. Bind instances of new versions of DataChannel to each other on N-1 and N-2
c. Refresh bindings of Dirsync on N-1 and N-2

Reconfiguration in the Enterprise JavaBean Component Model 81

Acknowledgments

The work described in this paper was supported in part by the Defense Ad-
vanced Research Projects Agency, Air Force Research Laboratory, and Space
and Naval Warfare System Center under agreement numbers F30602-01-1-0503,
F30602-00-2-0608, and N66001-00-1-8945. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental purposes notwithstanding
any copyright annotation thereon. The views and conclusions contained herein
are those of the authors and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or implied, of the Defense
Advanced Research Projects Agency, Air Force Research Laboratory, Space and
Naval Warfare System Center, or the U.S. Government.

References

1. E.C. Bailey. Mazimum RPM. Red Hat Software, Inc., February 1997.

2. L.J. Botha and J.M. Bishop. Configuring Distributed Systems in a Java-Based
Environment. IEE Proceedings — Software Engineering, 148(2), April 2001.

3. R.S. Hall, D.M. Heimbigner, A. van der Hoek, and A.L. Wolf. An Architecture for
Post-Development Configuration Management in a Wide-Area Network. In Pro-
ceedings of the 1997 International Conference on Distributed Computing Systems,
pages 269-278. IEEE Computer Society, May 1997.

4. R.S. Hall, D.M. Heimbigner, and A.L. Wolf. Evaluating Software Deployment Lan-
guages and Schema. In Proceedings of the 1998 International Conference on Soft-
ware Maintenance, pages 177-185. IEEE Computer Society, November 1998.

5. R.S. Hall, D.M. Heimbigner, and A.L. Wolf. A Cooperative Approach to Support
Software Deployment Using the Software Dock. In Proceedings of the 1999 In-
ternational Conference on Software Engineering, pages 174-183. Association for
Computer Machinery, May 1999.

6. D.M. Heimbigner and A.L. Wolf. Post-Deployment Configuration Management.
In Proceedings of the Sixth International Workshop on Software Configuration
Management, number 1167 in Lecture Notes in Computer Science, pages 272-276.
Springer-Verlag, 1996.

7. InstallShield Corporation. InstallShield, 1998.

8. J. Kramer and J. Magee. Dynamic Configuration for Distributed Systems. IEEE
Transactions on Software Engineering, SE-11(4):424-436, April 1985.

9. J. Kramer and J. Magee. The Evolving Philosophers Problem: Dynamic Change
Management. IEEE Transactions on Software Engineering, 16(11):1293-1306,
November 1990.

10. R. Monson-Haefel. Enterprise JavaBeans. O’Reilly and Associates, 2000.

11. K. Ng, J. Kramer, J. Magee, and N. Dulay. The Software Architect’s Assistant — A
Visual Environment for Distributed Programming. In Proceedings of the Twenty-
Eighth Annual Hawaii International Conference on System Sciences, 1995.

12. Open Software Associates. Open WEB netDeploy, 1998.

	1 Introduction
	2 Background: Enterprise JavaBeans
	3 Approach: The BARK Reconfiguration Tool
	3.1 Architecture
	3.2 Commands
	3.3 Transactions
	3.4 Scripts
	3.5 Name Binding
	3.6 Implementation

	4 Example Application: Dirsync
	5 Conclusion
	Acknowledgments
	References

