Challenges for Distributed Event Services:
Scalability vs. Expressiveness

Antonio Carzanigaf David S. Rosenblumi Alexander L. Wolft

iDept. of Computer Science iDept. of Info. and Computer Science
University of Colorado University of California
Boulder, CO 80309, USA Irvine, CA 92697-3425, USA
{carzanig,alw}@cs.colorado.edu dsr@ics.uci.edu

1 Introduction

The event-based style is a very promising approach for the development and integration of distributed ob-
jects. An event notification service (or event service) is the glue that ties together distributed components in an
event-based architecture. An event service implements what is commonly known as the publish/subscribe
protocol: components publish events to inform other components of a change in their internal state or to
request services from other components; the event service registers the interest of components expressed
by means of subscriptions and consequently dispatches event notifications. In practice, the event service
mediates and facilitates the interaction among applications by filtering, aggregating, and delivering events
on their behalf. Because of this decoupling, an event service is particularly suitable for supporting hetero-
geneous distributed objects.

The functionality of an event service is characterized by two conflicting requirements: scalability and
expressiveness. Scalability means that the service must be available over a wide-area network populated
by numerous components each one producing and consuming many events. Expressiveness demands a
rich subscription language that gives applications a flexible and fine-grained selection mechanism to describe
precisely those events or combinations of events in which they are interested.

This tension between scalability and expressiveness is evident in all the recently proposed technologies.
The ones that provide an event service facility (e.g., the CORBA Event Service [4], the Java™ Distributed
Event Specification [8], iBus [7], JEDI [2], Keryx [10], Elvin [6], and TIBCO’s TIB/Rendezvous™ [9]), as well
as other, more mature technologies not explicitly targeted at this problem domain (e.g., the USENET news
infrastructure and IP multicast), represent potential or partial solutions. One problem with some of these
technologies (CORBA, Java Events, iBus, USENET News, and IP multicast) is that they offer only a limited
selection capability, typically based on a predefined set of “channels” or equivalent multicast addresses,
that greatly reduces their potential use as a generic event service. On the other hand, the systems that offer
a better data model and better event filtering adopt either a classical centralized architecture (Elvin) or a
simple extension of the centralized architecture in which the distributed components are connected in a
hierarchical structure (JEDI, Keryx and TIB/Rendezvous). While this latter approach is relatively simple
and effective in many cases, we argue that it has some fundamental shortcomings when scaling up to wide-
area networks. In particular, it introduces unnecessary message traffic, it overloads higher nodes in the
hierarchy, and it has a single point of failure in every node.

We believe that the successful integration of distributed objects by means of events depends on both
the scalability and the expressiveness of the event service. Here we propose a research approach to this
problem that we pursued with our SIENA project [1, 5]. In particular, we focus on how to realize scalable
true content-based routing of events over a distributed event service with a generic topology.

2 Conceptual model for a Distributed Event Service

2.1 Event Model and Subscription Language

Events are represented by a data structure that we call a notification. The data model or the encoding
schema of notifications is what we call an event notification model or simply event model. The event model
defines what information can be communicated by means of events, or at least how that information must
be encoded. Most of the existing event-based systems adopt a record-like structure for notifications, while
others allow more sophisticated modeling by exploiting features akin to an object-oriented language.

Tightly related to the event model is the subscription language that defines the form of the selection ex-
pressions submitted with subscriptions. Two aspects of the subscription language are crucial to the expres-
siveness of an event service:

e the scope of the selection predicates: the part of the event model that is visible within subscription
expressions. In some cases, events have an articulated structure that allows the encoding of much
information, but only a limited and/or simple part of that structure can be used as a selection criteria
in subscriptions.

o the expressiveness of the selection predicates: determines the sophistication of subscriptions. In prac-
tice, a subscription language is expressive if it has various basic selection predicates and the ability to
combine predicates for the selection of one single event at a time as well as for grouping events into
higher-level abstractions.

In terms of scope, most existing technologies limit the selection to a single well known element of a notifi-
cation usually called a “channel” or “subject”. A few systems allow filtering based on the content of the
whole notification. In terms of expressiveness, the simplest models allow a single equality test (channel),
while the most sophisticated ones allow for other predicates and conjunctions of predicates.

scope of subscriptions

one field multiple fields

(not structured) (structured)
o simple) simple
§ equality channel-based content-based
[<5) -
5 other predlc_a tes subject-based content-based
4 and expressions
g multiple subject-based content-based
@ events + patterns + patterns

Table 1: Classes of Subscription Languages.

Table 1 gives a classification of subscription languages. Note that the difference between “content-
based” and “subject-based” is that a channel allows only a straight equality test (e.g., channel = X) whereas
the subject subsumes richer predicates like wild-card string matching (e.g., subject="AxB”). In both cases,
the filter applies to one single (unstructured) element.

2.2 Architecture of an event service

Usually, an event service is realized with one or more components called event servers (or brokers or dis-
patchers). The implementation of an event server can be anything from a library to an operating system
service to a separate process on the same host or on a remote host. At this point we are not interested in
distinguishing these cases. The architecture of an event service is determined by the number of servers, by
the topology of connections among them, and by the kind of server-to-server communication protocol. By
“communication protocol”, we refer to the type and amount of information that event servers exchange.
This protocol is obviously implemented on top of some communication mechanism that could range from

shared memory to application-level network protocols such as SMTP or HTTP. At this level, standard en-
coding and/or tunneling techniques can be used, so we do not discuss the details here.

Most existing technologies that have a distributed architecture adopt a hierarchical topology to connect
their servers. In this topology every server may be connected as a common client to a “master” server.
The protocol that connects two servers is thus the same one that connects clients and servers. So, except
for notifications, which can flow from servers to clients and from servers to other lower-level servers, any
other information may flow upward in the hierarchy.

Other technologies, such as IP multicast, have an underlying peer-to-peer network with a generic to-
pology. In this architecture, two connected routers (event servers) exchange routing information (subscrip-
tions) and data (notifications) as peers in both directions.

2.3 Classification Framework

We can use the subscription language, which determines expressiveness, and the architecture, which influ-
ences scalability, as our classification metrics. Values for the subscription language are: “channel”, “sub-
ject”, “content”, and “content + patterns”. For the architecture, we have the values “centralized”, “hierar-
chical”, and “generic peer-to-peer”. Table 2 positions several technologies that are related to event-based
infrastructures, including our system SIENA, with respect to these two metrics.

architecture
centralized hierarchical generic
peer-to-peer
S channel | CORBA, Java CORBA. Java IP multicast,
S Field iBus
£ i NNTP,
C H
= subject | ToolTalk, | yep) T18cO
o
=1 content Elvin Keryx
E Yeast, GEM
O 1)
3 content-+patterns active database SIENA

Table 2: Classification of Event-Based Infrastructures.

3 SIENA: Multicast Routing Revisited

3.1 Nature of the Event Service: A Routing Problem

In IP multicast [3], a datagram may be addressed to a host group—a “virtual” address that refers to a set
of “physical” addresses. Hosts can send a datagram with the usual IP_send primitive. Hosts can also join
(or leave) a group at any time using the special control primitive JoinHostGroup (or LeaveHostGroup). The
job of multicast-enabled routers is to forward every incoming datagram to one or more of their neighbor
routers according to (1) destination (and source) address of the datagram and (2) the group membership
information, i.e., whether or not a group has members in one of the attached networks. In IP multicast, a
special group membership protocol disseminates group membership information among routers.

It is quite evident that, in a distributed event service, the task of an event dispatcher is substantially
equivalent to the one of a multicast router. Subscribing corresponds to joining a group and sending a
datagram corresponds to publishing an event. Notice how in a channel-based event service these operations
are exactly isomorphic. Depending on the type of event service, however, there might be some fundamental
differences.

3.2 A Fundamental Difference: Content-Based Addressing

In order to understand the new challenges of an event service, we must examine the routing problem in a
bit more detail. In very simplistic terms, routing a datagram D means computing the function next-hops =
r(destinationp, routing-info). Similarly, managing the routing information in response to a control request
C (e.g., a JoinHostGroup) is done by updating the routing table routing-info’ = ¢(groupc, host¢, routing-info),
possibly forwarding that information to other neighbor routers.

In the case of IP multicast, routing-info can be as simple as a table that associates next-hops (interfaces) to
group addresses. So, r(destinationp, routing-info) is simply a table lookup routing-info(destinationp). Group
membership maintenance is also easy because group¢ is a key in the routing-info table, so when a host joins
a group groupc, either groupc is the routing table or it is not. In this latter case, the router propagates the
new membership information, while in the first case the propagation is stopped.

This simplification is possible thanks to the fact that, in IP multicast as well as in a channel-based
event service, there is a one-to-one mapping (in fact, the identity function) between destination addresses
(destinationp) and group addresses (groupc). In other words, a datagram/Zevent is explicitly addressed to
one specific group/channel.

Content-based addressing is rather different. The correspondence between the “destination address” of
a notification, which is in fact its entire content, and a “group address”, determined by a subscription, is
not as simple to compute and, more importantly, it is not a one-to-one relation, since a notification might
well match more than one subscription and vice-versa. Similarly, when propagating new subscriptions
(membership information) in content-based addressing, we can no longer rely on the fact that a subscription
is a key in the subscriptions table since two different subscriptions might define partially overlapping sets
of notifications. In this case, it is crucial to be able to compare the new subscription against the old ones to
see if there exist one that covers the new one completely so that the new one will not need to be propagated.

3.3 The SIENA Event Service

In SIENA we combine a content-based subscription language with a distributed realization based on a
generic topology of servers.

The event model is a record-like structure consisting of a set of named attributes, similar to a struct
in C. A simple subscription is a conjunction of filters, each one specifying a condition for an attribute. For
example, stock = “DIS”, gain > 10, gain < 20 would select all the events having an attribute named “stock”
whose value is “DIS” and an attribute named “gain” whose value is between 10 and 20. SIENA is also
capable of observing compound events (or patterns), i.e., sequences of events. A compound subscription is
simply an expression whose elementary terms are simple subscriptions.

SIENA extends the well-known publish/subscribe protocol by introducing another primitive called ad-
vertise. An advertisement is a meta-publication in the sense that it announces the classes of events that an
object intends to publish. Advertisements are the dual of subscriptions in that subscriptions declare the
intention of receiving notifications, and thus they define the “destination address” of notifications in the
routing tables, while advertisements define the “source address” of notifications. Advertisements do not
just serve to make the interface complete and symmetrical. The information provided by advertisements
can be used to disseminate routing directions more efficiently, thus making the event service more scalable.

3.4 Content-Based Routing in SIENA

The routing of notifications in SIENA is based on a generalization of the correspondence between virtual
addresses as defined by notifications, subscriptions, and advertisements. We call these correspondences
covering relations.

A subscription covers a notification when its filter condition is satisfied by the notification. This relation
in SIENA embodies the semantics of subscriptions described above and thus involves the evaluation of a
conjunction of simple predicates. The covering relation between subscriptions and notifications is used in
the routing function. In particular, notifications are forwarded along the paths put in place by subscriptions.

A subscription z covers another subscription y when every notification that is covered by y is also
covered by x. This relation is used in propagating subscriptions to set up the appropriate routing infor-

mation. When a server receives a new subscription y it looks for a previously registered subscription x
that covers y. If such a subscription does not exist, the server propagates an equivalent subscription to
its neighbors thereby setting up a forwarding path for future notifications. The covering relation between
subscriptions is sensibly more complex than the covering between subscriptions and notifications since it
includes a universal quantifier over the set of notifications. However, because SIENA allows only a fixed
set of “well-behaved” operators (including the usual relational operators such as =, <, and <, plus some
simple wild-card string match operations), it is still quite efficient to compute.

Similar covering relations exist between advertisements and subscriptions, as well as between differ-
ent advertisements. These relations can be used as the basis for a dual routing strategy that floods the
network with advertisements and forwards subscriptions only along the paths set up by advertisements.
Propagating advertisements is also necessary to realize a distributed observation of patterns of events.

3.5 Trading Expressiveness for Scalability

As we have seen, the covering relations play a fundamental role in the observation and dispatching of
notifications. Many optimization strategies that can be applied to the dispatching algorithms rely on the
covering relations as well [1]. Note that since they are an essential part of any basic routing operation, their
relevance goes beyond the implementation of SIENA and extends to any event service.

For the sake of scalability it is therefore necessary that these relations be efficient to compute. On the
other hand, the features of the subscription language heavily affect the complexity of the covering relations.
As we have seen, in IP multicast they are reduced to equality tests between 32-bit numbers, while in SIENA
they entail the evaluation of simple predicates and simple first-order logic expressions.

It is easy to show that adding only a little more expressive power to the subscription language makes
some of the relations not computable at all. For example, if we allowed user-defined operators in subscrip-
tions, we would still be able to match notifications against subscriptions, but we would lose the ability to
reason about the implications among subscriptions. Thus, we would not be able to verify the covering
between subscriptions and, as a consequence, we would be forced to broadcast every new subscription.

4 Conclusions

We envision a wide-area event service as an effective platform for the integration of distributed heteroge-
neous objects. However, in the realization of such an infrastructure we see two major conflicting challenges,
namely scalability and expressiveness. The fact that these two are conflicting features is shown by a pattern
in current event-based technologies: some of them offer rich selection mechanisms, but with a centralized
architecture, while others adopt a more scalable distributed architecture, but they give scarce accuracy in
filtering events. We know of no event service besides SIENA that features a scalable architecture and a
fine-grained selection and aggregation mechanism.

By analyzing the functionality of an event service and by comparing it to the well-known problem
of routing, we found that the trade off between scalability and expressiveness is not really specific to any
implementation, but rather it is intrinsic to the problem domain. In this paper we also sketched some design
solutions that we adopted for SIENA. In particular, we have formulated an event service that combines an
expressive API with a generic distributed architecture. The dispatching algorithms that implement the
SIENA event service are based on the generalization provided by our analysis.

Acknowledgments

We would like to thank Gianpaolo Cugola, Elisabetta Di Nitto, Alfonso Fuggetta, Richard Hall, Dennis
Heimbigner, and André van der Hoek for their considerable contributions in discussing and shaping many
of the ideas presented in this paper.

References

[1] A. Carzaniga. Architectures for an Event Notification Service Scalable to Wide-area Networks. PhD thesis,
Politecnico di Milano, Milano, Italy, Dec. 1998.

[2] G. Cugola, E. Di Nitto, and A. Fuggetta. Exploiting an event-based infrastructure to develop complex
distributed systems. In Proceedings of the 20th International Conference on Software Engineering (ICSE '98),
Kyoto, Japan, Apr. 1998.

[3] S.E. Deering. Multicast Routing in a Datagram Internetwork. PhD thesis, Stanford University, Dec. 1991.

[4] Object Management Group. CORBAservices: Common object service specification. Technical report,
Object Management Group, July 1998.

[5] D. S. Rosenblum and A. L. Wolf. A design framework for Internet-scale event observation and notifi-
cation. In Proceedings of the Sixth European Software Engineering Conference, Zurich, Switzerland, Sept.
1997. Springer-Verlag.

[6] B. Segall and D. Arnold. Elvin has left the building: A publish/subscribe notification service with
guenching. In Proceedings of AUUG97, Brisbane, Queensland, Australia, Sept. 3-5 1997.

[7] SoftWired AG, Zurich, Switzerland. iBus Programmer’s Manual, Nov. 1998.
http://www.softwired.ch/ibus.htm.

[8] Sun Microsystems, Inc., Mountain View CA, U.S.A. Java Distributed Event Specification, 1998.

[9] TIBCO Inc. Rendezvous information bus.
http://www.rv.tibco.com/rvwhitepaper.html, 1996.

[10] M. Wray and R. Hawkes. Distributed virtual environments and VRML: an event-based architecture.
In Proceedings of the Seventh International WWW Conference (WWW?7), Brisbane, Australia, 1998.

