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Abstract 
There is increasing interest in having software systems execute and 
interoperate over the Internet. Execution and interoperation at this scale 
imply a degree of loose coupling and heterogeneity among the components 
from which such systems will be built. One common architectural style for 
distributed; loosely-coupled, heterogeneous software systems is a structure 
based on event generation, observation and notification. The technology to 
support this approach is well-developed for local area networks, but it is ill- 
suited to networks on the scale of the Internet. Hence, new technologies 
are needed to support the construction of large-scale, event-based software 
systems for the Internet. We have begun to design a new facility for event 
observation and notification that better serves the needs of Internet-scale 
applications. In this paper we present results from our first step in this 
design process, in which we defined a framework that captures many of the 
relevant design dimensions. Our framework comprises seven models-an 
object model, an event model, a naming model, an observation model, a 
time model, a notification model, and a resource model. The paper 
discusses each of these models in detail and illustrates them using an 
example involving an update to a Web page. The paper also evaluates 
three existing technologies with respect to the seven models. 
Keywords: design, distributed systems, events, Internet, software 
engineering 

1’ Introduction 
There is increasi’ng interest in having software systems execute and interoperate over 
the Internet. Worlcflow systems for multi-national corporations, multi-sitc/multr- 
organization software development, and real-time investment analysis across world 
financial markets are just a few of the many applications that lend themselves to 
deployment on an Internet scale. Execution and interoperation at this scale imply a 
high degree of loose coupling and heterogeneity among the components from which 
such systems will be built. One common architectural style for distributed, loosely- 
coupled, heterogeneous software systems is a structure based on event generation, 
observation and notification. The technology to support this architectural style is 
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well-developed for local area networks (e.g., Field’s Msg [31], SoftBench’s 
BMS [ 131, ToolTalk [ 171 and Yeast [2O]), but it is ill-suited to networks on the scale 
of the Internet. Hence, new technologies are needed to support the construction of 
large-scale, event-based software systems for the Internet. 

We envision event observation and notification as being an explicit facility 
provided to software components across the Internet. The facility would have the 
ability to observe the occurrence of events in components, to recognize patterns 
among such events, and to notify other, interested components about the (patterns of) 
event occurrences. This is a fairly simple and intuitive characterization of its 
requirements, However, this simple characterization masks the richness and 
complexity of the issues that must be addressed in the design and implementation of 
the facility. For example, 

l To what extent should the facility support recognition of patterns of non- 
causally related events? 

l What architecture will allow the facility to efficiently organize and partition 
its observation task, to handle notifications to multiple components interested 
in the same events, and to characterize events involving multiple 
components? 

l Where in the architecture should the facility support event-pattern 
recognition and event information filtering? 

These and many other questions must be carefully addressed in any design and 
implementation effort. 

Recently there have been a small number of proposals and initial prototypes for 
Internet-scale event facilities, such as the OMG CORBA Event Service [27,28] and 
the TINA Notification Service [35]. But the definitions of these facilities address 
only a limited portion of the full problem space. Therefore, we have begun to design 
a new facility for event observation and notification that better serves the needs of 
Internet-scale applications. 

In this paper we present results from our first step in this design process, in which 
we defined a framework that captures many of the relevant design dimensions. Our 
framework comprises seven models: 

1. an object model, which characterizes the components that generate events 
and the components that receive notifications about events; 

2. an event model, which provides a precise characterization of the phenomenon 
of an event; 

3. a naming model, which defines how components refer to other components 
and the events generated by other components, for the purpose of expressing 
interest in event notifications; 

4. an observation model, which defines the mechanisms by which event 
occurrences are observed and related; 

5. a the model, which concerns the temporal and causal relationships between 
events and notifications; 

6. a notification model, which defines the mechanisms that components use to 
express interest in and receive notifications; and 
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7. a resource model, which defines where in the Internet the observation and 
notification computations are located, and how resources for the 
computations are allocated and accounted. 

Each of these models has a number of possible realizations. Taken together, these 
realizations define a seven-dimensional design space for Internet-scale event 
observation and notification facilities. Of course, these dimensions are not completely 
independent, because the models are interrelated in various ways. Because of these 
interrelationships, only a proper subset of the points in this space will correspond to 
adequate designs for Internet-scale facilities. 

The design of an Internet-scale event observation and notification facility ‘will be 
based upon one or more metaphors for distributed, loosely-coupled computation, 
Well-known examples of such metaphors include publish/subscribe, client/server, 
electronic mail, online transaction processing and central dispatch. The choice of 
metaphor(s) will bring coherence to the designs of the individual model realizations. 

We describe these models fully in Section 3, but first in Section 2 we define more 
precisely what we mean by the notion of “Internet scale”. In Section 4 we evaluate 
three existing technologies with respect to the design framework, and we conclude in 
Section 5 with a discussion of our plans for future work. 

2 Attributes of Internet Scale 
In order to provide an adequate design framework for an Internet-scale event 
observation and notification facility, we must first fully explore the ramifications of 
Internet scale. Some attributes of Internet scale will affect more the implementation of 
the facility rather than its design. An example of such an attribute is the heterogeneity 
of network elements. For this paper we limit our discussion to those attributes 
relevant to the design. 

The primary distinguishing characteristics of an Internet-scale computer network 
are the vast numbers of computers in the network and the vast numbers of users of 
these computers. As a consequence of this, it would be infeasible to employ many 
kinds of low-level mechanisms that are used to support event observation and 
notification in a local-area network, such as the following: 

l broadcast mechanisms, which indiscriminately communicate event 
occurrences and notifications to all machines on a local network; and 

. vector clocks, which piggyback onto each message exchanged between the 
communicating processes of an application a vector timestamp (whose size is 
linear in the total number of processes in the application), in order to aid the 
identification of causally-related events. 

There are other characteristics of Internet scale that we can identify, and they arc 
consequences of the vast numbers of participants. 

One important related characteristic is the worldwide geographical dispersion of 
the computers and their users. As a consequence of geographical dispersion, it 
becomes necessary to address relativistic issues in multiple observations of the same 
event. For instance, observers of two events occurring on opposite sides of the world 
may observe two different orders for those events. Additionally, an application 
requesting a notification about an event at roughly the same time as, but prior to, the 
occurrence of the event of interest may or may not be notified about the event. 
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At the scale of the Internet, the huge numbers of geographically-dispersed 
computers and users also have a much greater degree of aumomy than in local-area 
networks, Because of this autonomy, issues of resource usage are of greater concern, 
such as accounting for resource usage for observation and notification computations, 
placing limits on resource usage, and preventing misuse of resources or intrusiveness 
on others’ usage of resources. 

Related to the issue of autonomy is the security of the computers and users. 
Mechanisms and policies must be established that will allow Internet-scale event 
observation and notification to take place in a manner that is compatible with security 
mechanisms such as firewalls, and is consistent with the need to enforce access 
permissions and other protection mechanisms. 

Finally, concerns related to quality ofservice obtain much greater visibility at the 
scale of the Internet. Because of network latencies, outages and other dynamically- 
varying network phenomena, an Internet-scale event observation and notification 
facility will have to cope with decreased reliability of observations and notifications, 
as well as decreased stability of the entities to be observed and notified. 

3 Design Framework 
In this section we present a design framework for an Internet-scale event observation 
and notification facility. The framework is organized around the seven models listed 
in the introduction, each of which focuses on a different domain of concern in the 
design, Although the framework is general (in the sense of being independent of any 
particular application domain), we impose certain constraints that we feel are required 
in order for the facility to support true Internet-scale event observation and 
notification. And although the framework is quite comprehensive, there are aspects 
that it does not yet fully address, including considerations of security, quality-of- 
service and mobility; these are subjects of future work. Note that because the seven 
models are interrelated, it is necessary to defer the definitions of some concepts until 
the sections in which their relevant models are given full treatment. 

Implicit in the relationships among the seven models is a timeline of activities 
involved in event observation and notification. We can identify eight such activities, 
which occur in sequence: 

1, determination of which events will be made observable; 
2. expression of interest in an event or pattern of events; 
3. occurrence of each event; 
4. observation of each event that occurred; 
5. relation of the observation to other observations to recognize the event 

pattern of interest; 
6, notification of an application that its pattern of interest has occurred; 
7. receipt of the notification by the application; and 
8. response of the application to the notification. 

We consider the last of these activities to be outside the domain of concern of the 
event observation and notification facility. 

Looking at these activities from a slightly different perspective, our framework 
distinguishes three separate but related aspects of an event: 
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1. the occurrence of the event itself; 
2. the communication of the fact of the occurrence to applications that are 

interested in the event; and 
3. information about the event, some of which is general for all events (such as 

the time at which the event was observed), and some of which is specific to 
the event that occurred. 

Two separate but related aspects of the communication include the observation of the 
occurrence and the notification of the occurrence. We consider notifications to be 
independent and unrelated. Any attempt by an application to relate in some way the 
different notifications it receives is a duplication of, and may be inconsistent with, the 
functionality of the event observation and notification facility. 

3.1 Object Model 
The object model for an Internet-scale event observation and notification facility 
incorporates the usual notion of encapsulation of functionality, which transcends 
considerations of Internet scale. An object can be a processor, storage device, 
network device, or some other hardware component of the network, as well as any 
logical entity residing on a hardware component, such as a file, a program, a process, 
a communication packet, and the like.’ Humans also fit into this model, in that we 
assume that they always have computer-based proxy objects working on their behalf. 
An object supports a set of operations, each of which can be invoked by some other 
object. We refer to an object whose operation is invoked as an object of interest, and 
we refer to the object invoking the operation as the invoker. An operation may bc 
invoked directly through some apparatus associated with the object, or it may be 
invoked indirectly as a result of executing some program or software tool. Objects are 
also the entities that are recipients of notifications about events; we refer to such 
objects as recipients. Note that the object of interest can be an active object and 
therefore the invoker of its own operations. Note also that the sole purpose of an 
operation may be to generate an event. 

Fig. 1 presents a simple example illustrating the concepts of the object model. 
The example involves three objects- a Web page object (the object of interest), an 
object that updates the Web page (the invoker), and an object that receives 
notifications about the update (the recipient). The operation applied to the object of 
interest in this case is an update operation, which replaces the contents of the Web 
page with new contents supplied by the invoker. 

3.2 Event Model 
The event model for an Internet-scale event observation and notification facility 
incorporates a straightforward notion of event. An event is the instantaneous effect of 
the (normal or abnormal) termination of an invocation of an operation on an object, 
and it occurs at that object’s location. An event can be uniquely characterized by the 
identity of the object of interest involved in the event, the identity of the operation, the 

’ While hardware objects and their operations may be of interest to applications such as 
network managers, in this paper we will concern ourselves solely with applications involving 
software objects and operations. 
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Fig. 1. An Object Model for Web Page Updates. 

identity of the invoker, and the time of occurrence of the event2 An event is 
observuljle if some object other than the object of interest and the invoker can detect 
the occurrence of the event; it is up to the object of interest to determine which of its 
events can be observable. We refer to an observing object as an observer. 

A consequence of this model is that there is a one-to-one correspondence between 
operation invocations and event occurrences. However, not every event will result in 
an observation of the event, and not every observation will result in a notification 
being communicated to some recipient. An event is simply a phenomenon that occurs 
regardless of whether or not it is observed. In other words, an event “costs” nothing; 
any costs that are incurred result from observations and notifications. 

Another consequence of this model is that events corresponding to the initiation 
of operation invocations are not associated with the object of interest. Such events are 
associated instead with the invoker (viewing invocation as an operation on the 
invoker), This treatment of invocation and termination of an operation is analogous to 
the distinction between preconditions and postconditions in a formal specification of 
an operation, where the precondition must be satisfied by the invoker of the operation, 
while the postcondition must be satisfied by the implementation of the operation. 

Looking again at the Web page example, Fig. 2 depicts the event that is the effect 
of the termination of the update of the Web page. This event is observable, since a 
Web browser could be used to load the old version of the page prior to the occurrence 
of the event and the new version after the occurrence. 

3.3 Naming Model 
Naming is of central importance in any software system [19], and this is especially 
true of the naming model for an Internet-scale event observation and notification 
facility, which provides a way of identifying events, as well as the objects, operations 
and other information associated with events. The naming model is employed to 
express interest in events and request notifications about events. The realization of a 
naming model will typically offer a language that can be used to uniquely identify a 
specific event and to construct expressions whose interpretations are sets of events. In 
particular, the language will support the (possibly partial) specification of a name, for 
which there may be multiple matching event occurrences. We use the term event kind 
to refer to the set of event occurrences that can match a name. 

* The notion of identity is an aspect of the naming model, while the notion of the time of au 
event occurrence is an aspect of the time model, both of which are discussed below. 
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Fig. 2. An Event Model for Web Page Updates. 

The designer of an event observation and notification facility 
latitude in the choice of realization for the facility’s naming model. 

will have wide 
The two most 

prevalent classes of naming models are structure-based and property-based. 
Structure-based naming models typically employ a hierarchical naming scheme that 
corresponds to the hierarchical organization of the entities of interest, The state-of- 
the-art in Internet-scale structure-based naming models is the Universal Resource 
Locator (URL), which provides a way of locating and accessing Internet 
resources [3]. URLs could be used as the realization for a facility’s naming model, 
but the URL syntax and semantics would have to be extended to support the naming 
of additional kinds of objects; work in this direction is the subject of a draft 
specification for Uniform Resource Identifiers (URIS) [8]. 

In a property-based naming model, the entities to be named are named 
declaratively with a description of some property they possess or some predicate they 
satisfy. The current state-of-the-art in Internet-scale propert -based naming models is ifh4 to be found in Web search engines such as the AltaVista Search Service, which 
supports a content-based search mechanism for the location of Web pagese3 

Fig. 3 returns to the Web page example and depicts a possible syntax for naming 
the update event. A URL is used in this example to identify the object of interest, 
while the standard hierarchical Internet domain naming scheme is used in the example 
to identify the invoker. As was mentioned above, because this same name can be used 
to refer to all future instances of Web page updates by the invoker, we say that the 
update of the Web page by the invoker is a particular kind of event. 

3.4 Observation Model 
The observation model for an Internet-scale event observation and notification facility 
defines the way in which event occurrences and patterns of event occurrences arc 
observed for the purpose of notifying interested recipients. Observation is achieved 
through a set of observer objects, and it is implemented according to a number of 
policies that are defined as part of the model: 

. an observation policy, which defines the mechanism by which observation of 
an event is achieved; 

. an information policy, which defines how event-specific information is to bc 
requested and observed; 

3 MaVista is a trademark of Digital Equipment Corporation. 

_.. _- -- ------ 
_, I.. .> 

-.. -,. -> ,_ 



351 

hUP&m~Jcs.ud#dhdmX 
UPDATE, 

du~lc&uclrdrp . . 

Fig. 3. A Naming Model for Web Pages Updates. 

. a pattern abstraction policy, which defines what kinds of event patterns can 
be specified, how observer objects are configured to recognize event 
patterns, and how event patterns are to be identified for the purposes of 
requesting notifications about patterns; 

. a partitioning policy, which defines the way in which observation tasks are 
partitioned among observers; and 

. a jilter policy, which defines how event-specific information is used to select 
events for notification. 

There are other issues related to event observation that we discuss below as part of the 
resource model, such as when, where and how observers are created and destroyed. 

As a consequence of Internet scale, it may be infeasible for the realization of the 
observation model to maintain histories of observations. Therefore, some observation 
policies may preclude the persistence of observations. In other words, under such a 
policy, a recipient could not receive a notification about an event that occurred prior 
to the expression of interest in that event. On the other hand, a set of observers 
embodies a conceptual “registry” for the expression of interest in events by recipients. 

There are two classes of observation methods that can be employed for the 
observation policy: synchronous observation, in which the fact of an event occurrence 
is communicated explicitly to and in synchronization with the observer, and polling, in 
which the observer periodically checks for the occurrence of an event. Synchronous 
observation can be further subdivided according to whether the invoker communicates 
with the observer or whether the object of interest does. In all cases the observer 
eventually communicates a notification synchronously to one or more recipients 
and/or one or more other observers. 

Fig, 4 depicts the Web page example, with synchronous observations obtained 
from the invoker depicted on the left and synchronous observations from the object of 
interest depicted on the right. Fig. 5 depicts an observer that uses polling to check for 
the Web page update event. 

The information policy governs how event-specific information is requested, 
identified and observed. In particular, it must reconcile the desire of a recipient to 
request specific information about an event occurrence with the ability of an observer 
to obtain that information. For instance, in the case of the Web page update, a 
recipient may desire to obtain both the old contents of the Web page and the new 
contents of the Web page, to enable it to determine what was changed in the update. 
Thus, the recipient needs a way of expressing interest in both pieces of information so 
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Fig. 4. A Synchronous Observation Model for Web Page Updates. 

that the observer can take adequate steps to preserve the old contents prior to the 
occurrence of the update. In general, it will be unreasonable to support unrestrained 
requests for access to event-specific information, so the information policy must 
define precisely what kinds of request it can accommodate. One approach may be for 
recipients to provide the observer with a function or program that can be used to 
compute desired information from the object of interest. 

The pattern abstraction policy contains a definition of a language for specifying 
patterns of event kinds of interest. There are a number of suitable candidates for this 
pattern language, including general-purpose languages and logics such as regular 
expressions, first-order predicate calculus or temporal logic, as we11 as more 
specialized event-oriented languages such as TSL [23,32]. It is common to support 
event abstraction in order to provide a way of naming a pattern of events. Event 
abstraction is an especially notable feature of process algebras such as CCS [26]. The 
pattern abstraction policy may support a notion of event abstraction, in which a pattern 
of observed events is represented by a single abstract event or by a name that is used 
to refer to the pattern. Note that in order to treat a pattern as a true abstract event, it is 
necessary for the policy to establish some way of associating an object of interest, an 
operation and an invoker with the abstract event. 

The partitioning policy must address the cardinality relationships among events, 
observers, and recipients. For events, we can consider a’ single event, multiple 
independent events, or a pattern of events. For observers, we can consider a single 
observer or a cooperating team of observers. For recipients, we can consider a single 
or multiple recipients. In general, the differences among the possible combinations of 
cardinality relationships come down to an issue of performance. Factors such as the 
rate at which events of a particular kind occur or the number and (physical or 
administrative) distance of recipients, must be understood before the “correct” policy 
can be chosen. Therefore, an event observation and notification facility should allow 
flexibility and dynamism in how the observation task is partitioned. 

Once a pattern of interesting events has been observed, a notification must be sent 
to the recipient. Whether that notification actually takes place depends on whether the 
information associated with the events can pass through any filter that has been 
established between the observer and the recipient. Notice that we are drawing hero an 
important distinction between event filters, which are predicates on the content of 
associated information, and event patterns, which are predicates on the relationships 
among event occurrences. The filter policy is concerned with the language for 
expressing filter predicates, and where those predicates get evaluated, either at the 



353 

Fig. 5. A Polling Observation Model for Web Page Updates. 

observer or at the recipient. For instance, in the Web-page example, a recipient might 
be interested in only being notified of changes that involve more than 30% of the Web 
page, A predicate such as this highlights the fact that there is a general dependency 
between the associated information that is available and the filter predicate that can be 
expressed, In the example, the percentage of change must be somehow derivable Corn 
the information associated with the event. 

3.5 Time Model 
The theoretical problems of associating times with events in distributed systems and 
synchronizing clocks across distributed systems are well known (e.g., see 
Lamport [21]). But as a practical matter, the full ramifications of these issues are yet 
to be fully understood for networks of Internet scale. As we observe in Section 1, 
relativistic issues may preclude the use of any deterministic techniques for associating 
times and causal relationships with events. Internet-scale applications may therefore 
have to accommodate approximate representations of time, such as assuming the 
existence of a global clock even though such an assumption may result in inconsistent 
observations in different frames of reference. 

Such issues are the concerns of the time model. An additional choice that must be 
made in the realization of the time model is the point or points at which times are to be 
associated with the activities involved in event observation and notification. With a 
synchronous observation model, either the invoker, the object of interest, or the 
observer of an event could have the responsibility of associating a time with the event. 
With a polling observation model, the observer would most naturally associate a time 
with the event; by necessity, this time would be approximate unless the time of 
occurrence can be derived from information about the event itself or the object of 
interest. For patterns of events, it may or may not be desirable to associate a time of 
occurrence; the time could be the time at which the first event was matched to the 
pattern or at which the last event was matched. 

For the Web page example, the file system of the object of interest will associate 
a modification time with the new version of the Web page. It should be possible to 
USC this modification time as the time of occurrence for the event. 

3.6 Notification Model 
The notification model for an Internet-scale event observation and notification facility 
is concerned with the communication between observers and interested recipients, 
which was illustrated for the Web page example in Fig. 4 and Fig. 5. In fact, this 
communication is bi-directional, since it involves, first, the expression of interest by a 
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recipient in a particular pattern of events and, second, the communication of the 
notification along with any associated information that was requested back to the 
recipient. 

Looking closer at the first direction of communication, we can see that there are 
essentiahy two ways in which it can be facilitated. One way is through a pre-existing 
observer and a request being sent from the recipient to that observer. Another way is 
to treat the observer as the instantiation of an expression of interest. 

Notifications themselves should be seen as independent communications between 
observers and recipients. This becomes particularly important when there are multiple 
independent observers involved. Attempts to relate notifications duplicate the job of 
the event observation facility, which is responsible for recognizing patterns of events. 

A final issue related to notification is the lifetime of a recipient’s expression of 
interest. The realization of the notification model must give a recipient the flexibility 
to specify whether it wants to be notified only upon the first occurrence of events 
matching its pattern of interest, upon every occurrence, or according to more complex 
characterizations such as every iVth occurrence. 

Note that we could generalize our notification model somewhat to identify a 
separate requester or broker object, which establishes a relationship between an 
observer and a recipient. In other words, event observation and notification need not 
be initiated by tbe recipient. This model would accommodate applications that may 
be interested in forcing notifications to be sent to recipients, such as a software 
company wanting to notify customer PCs about product updates. The familiar 
publish/subscribe metaphor would be a degenerate case in which the object of interest 
and the observer together form the publisher, while the broker and recipient together 
form the subscriber. 

3.7 Resource Model 
An intriguing way to view an Internet-scale event observation and notification facility 
is as an architectural style for distributed computation in a wide-area network. We 
touched upon this idea in Section 1 where we noted that the facility will be designed 
around one or more distributed computing metaphors. Given that view, one can study 
the facility in terms of how resources in the network are allocated to carry out its 
computation. In our design framework this is the domain of the resource model. 

The first consideration has to do with the specific architecture chosen within the 
style. The primary issue here is the computational independence of observers: arc 
observation and notification simply part of the computation associated with invokers, 
objects of interest, or even recipients, or are they independent computations in their 
own right? A design that incorporates observation and notification with one of the 
other computations provides a straightforward answer to the question of which 
participant incurs the costs of observation and notification. But such a design raises 
other questions, such as how to share observation and notification tasks. In contrast, if 
observers are independent computations, then there is greater potential for sharing; 
This independence, however, raises the question of where those computations take 
place and which participants are charged for those computations. 

Related to the issue of architecture is the issue of managing the initiation and 
termination of the computations. Of course, invokers, objects of interest, and 
recipients all exist even in the absence of any event observation and notification tasks, 
So the resource model is specifically concerned with initiation and termination of 
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/ observers. If observers are dependent computations, then clearly their lifetimes are 
tied to the objects within which they operate. If observers are independent 
computations, then a realization of the event observation and notification facility must 
provide some form of management mechanism. 

3.8 Discussion 
It is apparent from the definition of our design framework that considerations of 
Internet scale influence the seven models to varying degrees. For instance, the object 
model is very generic and applicable to many kinds of systems, not just those that 
operate at an Internet scale. But the object model is necessitated by our formulation 
of the event model, which is driven by considerations of Internet scale. 

The event model may appear somewhat restrictive, since its characterization in 
terms of an invocation of an operation on an object implicitly associates each event 
with a single invoker. Some events, such as meetings, may be more naturally 
characterized in terms of multiple invokers. But our formulation arises from Intemet- 
scale considerations, since in general it would be infeasible to support the observation 
of an event involving multiple, Internet-wide invokers. Instead, events involving 
multiple invokers can be accommodated through event patterns in the observation 
model. Similarly, in the naming model, property-based naming may work well on an 
Internet-scale because it may be difficult or impossible to structurally name all events 
of interest. As we gain more experience with the design of our own facility, we expect 
to refine our models to incorporate additional constraints reflecting further 
considerations of Internet scale. 

4 Evaluation of Existing Technologies 
This section examines the space of existing technologies to determine the extent to 
which some of these technologies could serve as (the basis for) an Internet-scale event 
observation and notification facility, as well as to show how the design framework 
defined in Section 3 can be used to evaluate a candidate technology. A number of 

/ technologies are relevant to Internet-scale event observation and notification, and we 
can classify them as follows: 

1. theoretical models of distributed clocks [21], vector timestamps [9,25] and 
partial orders of events [29]; 

2. low-level event managers for operating systems and windowing systems, 
such as the XView Notifier [16] and the MacintoshTM Toolbox Event 
Manager [6];4 

3. the implicit invocation design model [lo]; 
4. languages and systems for event-based specification, analysis and 

debugging of sofnvare, including Instant Replay [22], Event-Based 
Behavioral Abstraction [2], TSL [23,32] and Rapide [24]; 

5. software buses, such as Polylith [3O], OLE/ActiveX [Sj and CORBA [34]; 
6. tool integration frameworks, including Field [31], SoftBenchTM [13] and 

ToolTalk M [ 173; 

4 Macintosh is a trademark of Apple Computer, Inc. 
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7. communication and collaboration systems, such as electronic mail, electronic 
bulletin boards, network news services [18], Lotus Notes@, and 
Corona [15];6 

8. sofhoare agent technology (e.g., see Genesereth and Ketchpel[l2]); 
9. active database systems, such as AP5 [7] and Ode [l 11; and 
10. event-action systems, such as Yeast [2O] and Amadeus [33]. 

Below we examine three particular technologies in detail-the Yeast Event-Action 
System, the COBBA Event Service, and the Network News Transfer Protocol. A 
more exhaustive evaluation of existing technologies will be the subject of future work. 

4.1 Yeast 

Yeast (Yet another Event-Action Specification Tool) is a client-server system in 
which distributed clients register event-action specifications with a centralized server, 
which performs event detection and specification management [20]. Each 
specification submitted by a client defines a pattern of events that is of interest to the 
client’s application, plus an action that is to be executed in response to an occurrence 
of the event pattern. The Yeast server triggers the action of a specification once it has 
detected an occurrence of the associated event pattern. Higher-level applications are 
built as collections of Yeast specifications. These applications range from simple 
deadline notifications to comprehensive automation of activities in a software process, 

Yeast’s object model includes support for predefined object classes and user- 
defined object classes. Yeast views an event as being a change to the value of an 
attribute of an object belonging to some object class. An event is named in Yeast’s 
specification language by specifying the object class, object and attribute involved in 
the event, as well as an expression that the attribute value must satisfy as an indication 
of the occurrence of the event. Yeast employs a hybrid observation model, using 
polling to identify occurrences of events involving predetined object classes, and a 
synchronous announcement mechanism to receive indications of occurrences of events 
involving user-defined object classes; the observations and specifications handled by 
one Yeast server are completely independent of those handled by any other Yeast 
server. For its time model, Yeast assumes the existence of a global clock, and it 
performs time zone conversions when the client and server are located in different 
time zones. Yeast’s notification mechanism is the KomShell [4], Communication 
from client to server is achieved through a number of Yeast client commands, while 
notification from server to chent is achieved by executing the, sequence of shell 
commands specified as the action of a specification. By default, any output produced 
by the commands of the action is sent by electronic mail to the user who submitted the 
specification. The Yeast server runs as a single UNIX@ process and therefore has all 
of the computational privileges of the user that spawned the process.7 

Because Yeast uses the TCPIIP protocol to implement all communication 
between client and server, it technically qualifies as an Internet-scale event 

5 SoftBench is a trademark of Hewlett-Packard Company. ToolTdk is a trademark of Sun 
Microsystems, Inc. See Barrett et al. for a recent study of event-based integration [l]. 

’ Notes is a registered trademark of Lotus Development Corporation. 
’ UNIX is a registered trademark in the United States and other countries, exclusively licensed 

through X/OPEN Company, Ltd. 
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observation and notification mechanism. However, the ability of a Yeast server to 
poll for events is limited to objects it can access in its local area network, typically via 
network file system services. Network transparency is also limited to a local area 
network, since at a minimum the client must specify the local network domain of the 
server with which it wishes to communicate. And although Yeast wasdesigned as a 
general-purpose event-action system, the existing implementation is suited primarily 
to observation of operating system-level events in networks of UNIX machines. 

4.2 The CORBA Event Service 
The Common Object Request Broker Architecture (CORBA) is a general-purpose, 
Internet-scale software architecture for component-based construction of distributed 
systems using the object-oriented paradigm [27,34]. The CORBA specification 
includes specifications for a number of Common Object Services, one of which is the 
CORBA Event Service [28]. The CORBA Event Service defines a set of interfaces 
that provide a way for objects to synchronously communicate event messages to each 
other. The interfaces support a pull style of communication (in which the consumer 
requests event messages from the supplier of the message) and a push style of 
communication (in which the supplier initiates the communication). Additional 
interfaces define channels, which act as buffers and multicast distribution points 
between suppliers and consumers. The TlNA Notification Service is a similar service 
defined on top of the CORBA Event Service [35]. 

The CORBA Event Service lacks support for many aspects of event observation 
and notification defined in Section 3. The object model is the object model of 
CORBA, and an event is simply a message that one object communicates to another 
object as a parameter of some interface method. The specification of the CORBA 
Event Service does not define the content of an event message, so objects must be pre- 
programmed with “knowledge” about the particular event message structure that is to 
be shared between communicating suppliers and consumers. Given this view of 
events, a naming mechanism is unnecessary, as is an observation mechanism, and any 
attempt to identify patterns of events is the responsibility of the consumers of event 
messages. Timestamps can be associated with events, but the meaning of such 
timestamps is at the discretion of the objects exchanging the event messages. Being a 
message, an event is its own notification. Computational and other resource-related 
aspects of events are subsumed by those of CORBA as a whole. 

In summary, an event as defined by the CORBA Event Service really has no 
special semantics that distinguish it from any other method call in CORBA. We hope 
that future refinements of the CORBA specification will address more fully the 
phenomenon of event occurrences within CORBA applications. 

4.3 The Network News Transfer Protocol 
The Network News Transfer Protocol (NNTP) is the protocol used to distribute 
Usenet news articles across the Internet [18]. These articles are organized into a 
collection of newsgroups, each one being set up to support ongoing discussion of a 
particular topic. Users express interest in a newsgroup by subscribing to it. A user 
can post an article to one or more newsgroups, whereby the article is distributed 
across a geographical reach specified by the user (although distribution of the articles 
posted to a newsgroup can be restricted according to policies established by the 
administrator of the newsgroup). As users post replies to articles they read, a thread 
is formed among a set of related articles. At some point an article expires. 
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One could view the newsgroups, the articles posted to the newsgroups, and the 
users who post the articles as being the objects recognized by NNTP. One could also 
view the reading of articles as being the key events, since responding to articles is the 
primary means by which new articles are generated. NNTP employs a simple 
hierarchical model for naming newsgroups, with articles numbered sequentially within 
a newsgroup and users identified by their electronic mail addresses. Except for the 
distribution specified at the time an article is posted, articles are broadcast 
indiscriminately across the Internet. This makes observation simply a matter of 
retaining unexpired articles of a newsgroup for any users who have subscribed to the 
newsgroup, and with threading being the sole pattern recognition task of the protocol, 
A notion of time is not required except for the expiration of articles, and it suffices to 
assume the existence of a global clock for such a purpose. Users are notified about 
new articles by periodically running a news reading program, which makes available 
new articles that have been posted to subscribed newsgroups. System administrators 
may enforce computational limits such as blocking access to or distribution of certain 
newsgroups, and they may establish expiration policies and storage limits for articles. 

NNTP does an excellent job supporting an Internet-scale publishhtbscribe model 
of communication. Several elements of NNTP do not quite correspond with our 
notion of event observation and notification. 

5 Conclusion 
We have described a design framework for an Internet-scale event observation and 
notification facility, to support construction of Internet-scale distributed software 
applications. The framework comprises seven models that address seven different 
aspects of the design of the facility. We used this framework to evaluate three event 
observation and notification technologies representative of the state of the art. 

We have several plans for future research on this problem. First, we have begun 
work on a prototype Internet-scale event observation and notification facility that WC 
are studying in the context of the Software Dock, an agent-based architecture for 
Internet-scale distributed configuration management and deployment [14]. 

Second, our design framework must better address security, quality-of-service and 
mobility issues, which could naturally be the subject of additional models in the 
framework. As we gain experience in designing and constructing an Internet-scale 
event observation and notification facility, we will refine the models to incorporate 
lessons learned from our experience. A number of these refinements will likely be 
made to the observation and notification models, whose realizations will require 
careful engineering to ensure efficient and reliable operation on an Internet scale, 
Such refinements might involve the definition of a formal calculus of event operations 
that would support systematic optimization of the configuration of a network of 
observers, much in the same way that optimizations are applied to relational database 
queries in query languages such as SQL. Some operations that the calculus could 
support include generation, filtering, observation, notification, advertising, 
publication, subscription and reception. 

Another key issue that must be addressed is the formal definition of the semantics 
of events. It is one thing to declare that a new kind of event is to be observed. 
However, in order to ensure that all occurrences of the event kind are generated 
uniformly, it will be necessary to provide a way of formally describing the semantics 
of the event kind and enforcing the semantics on objects to which they apply. 

--- - . . _- 
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Finally, it is clear that humans will play different roles in the use of an event 
observation and notification facility, but it is not yet clear how that role should be 
embodied in a user interface. The user interface will have to provide some scripting 
language or graphical means for the declaration of event kinds, the specification of 
event patterns of interest, and the generation of notifications. An important question 
to investigate, therefore, is whether the design of the user interface affects the design 
of all aspects of the facility itself, or whether it can instead be treated simply as just 
another application built on top of the facility. 
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